公务员期刊网 论文中心 优化设计论文范文

优化设计论文全文(5篇)

优化设计论文

第1篇:优化设计论文范文

结构优化的概念较早就已经提出。结构优化设计的任务在于对结构方式和外形尺寸等因素做参考进行优化设计。计算工作量较大,在计算机完全替代人工计算后,使这种方法的应用逐步变得广泛。我们把系统的设计限制来作为优化设计的束条件,将设计变量以及性能变量的一组不等式表示了出来,将可以反映设计要求的数值作为目标的函数,运用数学的方法和手段得到了满足全部条件且使目标函数为最佳的设计变量。这既是总体的设计优化方案思路也是该设计的精髓。

针对不同的设计问题,其最优设计程序通常是基本相同的,首先应当了解结构的技术以及使用的要求,完成基本布局。此后再用一组设计变量来表述结构的尺寸以及物理性能等变量,此后可以写出关于设计变量的荷载函数。并能够建立起结构分析的方法,最终形成设计变量的一种约束方程,也可以说对设计变量值进行限制。在完成最优化方案之前,应当用公式来给出一个判别指标,也就是目标函数作为设计变量的函数。使之最小的一组设计变量也将成为为最优方案。

2.减速器齿轮箱体的优化设计

本论文的优化目的在于在齿轮箱结构满足强度和刚度的基础上,进行减轻重量,并完成合理均匀分布应力的优化工作。我们提出的优化具体设计为:

第一步,针对结构确定设计方案,并通过CAD软件进行建模。

第二步,通过CAD软件和有限元分析软件的连接传递到有限元分析软件中,并获得相关的应力以及位移等参数。

第三步,据实际情况进一步确定优化目的,对设计进行计算结果分析和比较,明确能够修改的结构参数。

第四步,通过修改参数,重新进行分析,并通过这种方法获得结构参数以及相应的响应值。并完成最佳参数的选取,同时得到更加科学合理的结构和尺寸。

我们做出的优化主要是针对箱体的质量的。即在外载荷不变而且不改变结构布局的前提下,对齿轮箱进行优化。将重量当作优化的目标函数,采取结构优化设计技术能够在确保质量的情况下,有效节约成本,提高质量。实现安全性、可靠性、节约型等多个层面的兼顾。因为结构布局和材料是固定不变的,所以箱体结构也是不发生变化的,仅仅是把箱体的具体部位厚度作为设计变量,用箱体工作结构的最大位移作为状态变量,把结构的质量当作目标函数。也可以说是在原设计的基础上,不对其做大的调整和改变,仅仅是对结构最大允许最大范围进行调整,达到箱体最轻的优化设计效果。引入边界条件的方法,考虑边界条件。在边界条件发生改变时,场变量函数并不需要改变,这对于通用程序有大的简化。

3.减速器优化设计的数学模型

3.1目标函数

目标函数为A=min{f(x)} =min{f(x1, x2,…, xn)}其中: A为减速器总的中心距离,也就是各中心距的综合;x为设计变量(包含中心距和螺旋角以及齿数、模数等等); n为变量的数目。

3.2约束条件

约束条件是用来判别目标函数当中变量的取值可行与否的规定,所以减速器优化设计中提出的任何一个方案都必须满足所有的约束条件的变量所构成。在给出优化设计的约束条件的情况下,需要从各个方面进行周密的考虑。比如设计变量本身的取值要求;齿轮和零件的紧密程度等等。一般来说要充分考虑到以下几个约束条件:

一是离散性约束。其中包括齿数,也就是每个齿轮的齿数需要是整数;模数:要求齿轮模数必须符合模数系列(GB1357-78)的要求;中心距:要以10mm为单位。

二是上下界约束。螺旋角:对于直齿轮应当为零,斜齿轮取8°~15°;总变位系数:因为总变位系数能够影响齿轮承载能力,通常取0~0. 8。

三是强度约束。一般是指齿轮的齿面接触强度和轮齿的弯曲强度,依据GB3480-83标准进行。强度是否达标,需要根据实际安全系数进行实践检验。

四是根切约束。为规避根切现象,规定出最小的齿数,其中直齿轮是17,斜齿轮是14到16之间。

五是干涉约束。需要中心距和齿顶圆以及轴径满足没有干涉的关系。针对三级传动的减速器,干涉约束可以看作两个约束;第二级中心距需要比第一级大齿轮齿顶圆半径和三级小齿轮顶圆半径的总和;第三级中心距需要大于第二级大齿轮顶圆半径和第四轴半径的综合。二级齿轮传动以此类推。在完成优化设计后,能够可以获得响应,并直观地显示出参数的变化对函数的影响

第2篇:优化设计论文范文

1.1积极使用高新施工设备

当前我国的机械制造业和发达国家相比还存在较大差距,我国在内燃发动机的设计和制造方面与世界先进国家相比,落后了近二十年,燃油经济水平、平均能源利用率等各项标准也都落后于西方发达国家,这种情况在一定程度上对我国的低碳公路建设产生了负面影响,所以,在道路的施工过程中我们要加强高新技术施工设备的应用,同时,还要加强对其耗油量、燃料使用率等各项参数进行仔细评估,一旦发现有不符合标准的设备,一定要第一时间对其进行维修保养,如果依然满足不了运行需求,必须及时替换掉,积极使用高新技术环保的设备继续开展作业。

1.2施工过程中积极应用新型环保材料

随着人们环保意识的不断增强,公路建设领域也研发了很多低碳环保材料,其中温拌沥青混合料、沥青路面再生等新型材料表现最为明显。温拌沥青混合料是一种拌和温度介于热拌沥青和冷拌沥青之间,但是其性能却能够达到或接近热拌沥青混合料的环保型沥青混合料。温拌沥青混合料技术能够在很大程度上节约燃料油,减少有害气体地排放。

1.3制定科学合理的公路施工方案

在进行道路施工之前,设计规划人员要制定出科学合理的施工方案,为公路的低碳环保提供保障。具体可以从路基设计、坡度设计、防雨水冲刷设计等方面入手,此外,还要科学合理安排借土弃土的位置,合理地选择砂石料供应商,从而提高工作效率。

2加强公路运营管理过程中的低碳优化控制

2.1完善交通体系运行管理方案

前文提到交叉口的存在会在对车流量造成较大影响,所以对交叉口进行合理的信号配时设计是非常必要的,如果交叉口的间距比较短,就可以采取信号联动措施,保证交叉口具备良好的服务水平,减少交叉口对车辆正常行驶的影响,从而减少车辆的燃油消耗以及尾气排放;须对交通标志、道路标线等进行重新规划,必要的时候可以采用动态的信息展示板,这样驾驶员不仅能够获得更多的交通信息,选择最合适的行驶路线,减少了不必要地绕行,同时公路的服务水平也能够得以提升,最重要的是车辆可以保持匀速行驶,减少尾气排放,有利于实现低碳环保的目的。此外,交通运输管理部门也可以通过多种方式鼓励居民拼车出行,提高车辆的运载率,这样不仅能够缓解我国当前的交通压力,也能够减少二氧化碳地排放。

2.2完善公路的基础设施

交通运输管理部门要积极引进先进的服务系统,提高车辆通行效率,规避不必要的拥堵。当前,在交通领域内最受欢迎、应用范围最广泛的就是ETC系统,该系统是当前世界上最为先进的收费系统,车辆在通过收费站时不需要停车,而是通过车载设备实现对车辆信息地识别、付款等功能,该系统非常适用于高速公路,通过该系统能够使车辆通行速度得到巨大提升,减少拥堵,降低温室气体地排放。

3结语

第3篇:优化设计论文范文

新的系统选用2台37kW电机分别驱动一台A10VSO100的恒压变量泵作为动力源,系统采用一用一备的工作方式。恒压变量泵变量压力设为16MPa,在未达到泵上调压阀设定压力之前,变量泵斜盘处于最大偏角,泵排量最大且排量恒定,在达到调压阀设定压力之后,控制油进入变量液压缸推动斜盘减小泵排量,实现流量在0~Qmax之间随意变化,从而保证系统在没有溢流损失的情况下正常工作,大大减轻系统发热,节省能源消耗。在泵出口接一个先导式溢流阀作为系统安全阀限定安全压力,为保证泵在调压阀设定压力稳定可靠工作,将系统安全阀调定压力17MPa。每台泵的供油侧各安装一个单向阀,以避免备用泵被系统压力“推动”。为保证比例阀工作的可靠性,每台泵的出口都设置了一台高压过滤器,用于对工作油液的过滤。为适当减小装机容量,结合现场工作频率进行蓄能器工作状态模拟,最终采用四台32L的蓄能器7作为辅助动力源,当低速运动时载荷需要的流量小于液压泵流量,液压泵多余的流量储入蓄能器,当载荷要求流量大于液压泵流量时,液体从蓄能器放出,以补液压泵流量。经计算,系统最低压力为14.2MPa,实际使用过程中监控系统最低压力为14.5MPa,完全满足使用要求。顶升机液压系统在泵站阀块上,由于系统工作压力低于系统压力,故设计了减压阀以调定顶升机系统工作压力,该系统方向控制回路采用三位四通电磁换向阀,以实现液压缸的运动方向控制,当液压缸停止运动时,依靠双液控单向阀锥面密封的反向密封性,能锁紧运动部件,防止自行下滑,在回油回路上设置双单向节流阀,双方向均可实现回油节流以实现速度的设定,为便于在故障状态下能单独检修顶升机液压系统,系统在进油回路上设置了高压球阀9,在回油回路上设置了单向阀14。该液压站采用了单独的油液循环、过滤、冷却系统设计,此外还设置有油压过载报警、滤芯堵塞报警、油位报警、油温报警等。

2机械手机体阀台的液压原理

对于每台机械手都单独配置一套机体阀台,机体阀台采用集成阀块设计,通过整合优化液压控制系统,将各相关液压元件采用集约布置方式,使全部液压元件集中安装在集成阀块上,元件间的连接通过阀块内部油道沟通,从而最大限度地减少外部连接,基本消除外泄漏。机体阀台的四个出入油口(P-压力油口,P2-补油油口,T-回油油口,L-泄漏油口)分别与液压泵站的对应油口相连接。压力油由P口进入机体阀台后,经高压球阀1及单向阀2.1后,一路经单向阀4给蓄能器6供油以作为系统紧急状态供油,一路经插装阀3给系统正常工作供油。为保证每个回路产生的瞬间高压不影响别的工作回路,在每个回路的进出口都设置了单向阀,对于夹钳工作回路因设置了减压阀16进行减压后供油,无需设置单向阀。对于小车行走系统,由比例阀12.1控制液压马达21的运动方向,液压马达设置了旋转编码器,对于马达行走采用闭环控制,以实现平稳起制动以及小车的精准定位。为避免制动时换向阀切换到中位,液压马达靠惯性继续旋转产生的液压冲击,设置了双向溢流阀11分别用来限制液压马达反转和正转时产生的最大冲击压力,以起到制动缓冲作用,考虑到液压马达制动过程中的泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀9.1和9.2从补油管路P2向该回路补油,为实现单台机械手的故障检修,在补油管路P2上设置了高压球阀8,为实现检修时,可以将小车手动推动到任意检修位置,系统设置了高压球阀5.2。对于双垂直液压缸回路,由比例阀12.2控制液压缸22的运动方向,液压缸安装了位移传感器,对于液压缸位置采用闭环控制,实现液压缸行程的精准定位,液压缸驱动四连杆机构来完成夹钳系统的垂直方向运动;为防止液压缸停止运动时自行下滑,回路设置了双液控单向阀13.1,其为锥面密封结构,闭锁性能好,能够保证活塞较长时间停止在某位置处不动;为防止垂直液压缸22因夹钳系统及工件自重而自由下落,在有杆腔回路上设置了单向顺序阀14,使液压缸22下部始终保持一定的背压力,用来平衡执行机构重力负载对液压执行元件的作用力,使之不会因自重作用而自行下滑,实现液压系统动作的平稳、可靠控制;为防止夹钳夹持超过设计重量的车轮,在有杆腔设置了溢流阀15.1作为安全阀对于夹钳液压缸回路,工作压力经减压阀16调定工作压力后由比例阀17控制带位置监测的液压缸23的运动,来驱动连杆机构完成夹钳的夹持动作,回路设置了双液控单向阀13.2,来保证活塞较长时间停止固定位置,考虑到夹钳开启压力原小于关闭压力(液压缸向无杆腔方向运动夹钳关闭),在液压缸无杆腔回路上设置了溢流阀15.3,调定无杆腔工作压力,当比例换向阀17右位工作时,压力油经液控单向阀13.2后,一路向有杆腔供油,一路经电磁球阀18向蓄能器19供油,当夹钳夹住车轮,有杆腔建立压力达到压力继电器20设定值后,比例换向阀17回中位,蓄能器19压力油与有杆腔始终连通,确保夹持动作有效,当比例换向阀17左位工作时,蓄能器19压力油经电磁球阀18与有杆腔回油共同经过比例换向阀17回回油口。紧急情况下,电磁换向阀7得电(与系统控制电源采用不同路电源),将蓄能器6储存的压力油,一路经单向阀9.11供给夹钳液压缸23,使夹钳打开,同时有杆腔回油经电磁球阀18,单向阀9.9回回油T口;一路压力油经节流阀10,单向阀9.3使液压马达21带动小车向炉外方向运动,液压马达回油经比例换向阀12.1,单向阀9.5回回油T口。以确保设备能放下待取车轮,退出加热炉内部,保护设备安全。

3结论

第4篇:优化设计论文范文

(1)铰制器用铰直轮材料抗磨强度低,造成打捆线表面质量及直线度差,打捆线因回抽而无法完成打捆。

(2)四台线道小车通过中心板连接在一起,通过液压缸的带动来完成打捆线的穿线工作,由于长时间的运行,1#打捆机4#线道由于重力作用小车容易发生下沉变形,线道小车底部滑道与支撑辊之间脱离,支撑辊无法起到支撑作用,从而造成液压缸活塞杆在前移的过程中由直线运动变为抛物线运动,活塞杆前端下沉疲劳折断产生故障时间。并且由于线道小车下沉,造成打捆头与线道小车穿线困难,造成打捆机顶线或送线不到位。

(3)线道内打捆线的传送运行靠深沟球轴承支撑传动,因此线道内球轴承用量较多,每台线道小车用量约400盘,摩根打捆机所用轴承型号为6301,由于轴承直径小,承载能力差,并且由于打捆线在穿线过程中的冲击作用,轴承损坏频繁,并且由于数量多并且轴承在线道内部,当轴承损坏时很难进行更换,造成打捆线回抽,影响车间的生产。

(4)各线道处常开翻板导槽用橡胶弹簧使用寿命短,当弹簧失效或弹簧座开焊的时候造成翻板关闭不严,打捆线回抽,更换橡胶弹簧或弹簧支座需要拆卸导槽用时较多。

2解决方案的确定

摩根公司经过几年的研究并且结合用户在使用过程中提出的不足,对现在生产的打捆机进行了部分的改造,如升降台的升降采用了曲柄连杆结构,由液压缸来带动升降曲柄的运行从而带动升降台的运行;弧形导卫与双线导槽设计成一体结构,并且将扭簧采用圆柱螺旋压缩弹簧代替。但若对摩根公司早期线材打捆机进行升级改造,升级费用较高,仅单台升级备件费用就高达48万,并且即使升级改造后因新旧线道的兼容性差,使用故障率较高。这就需要有针对性的优化设计来消除设计缺陷形成的隐患,确保打捆机的稳定生产。经对打捆机的认真研究以及对打捆机各类故障的分析,形成了以下优化设计思路。

2.1升降台系统

(1)将法兰轴承座体材质由铸铁改为铸钢,增加座体的抗冲击性能。

(2)将底座球面轴承改为滑动轴承。

(3)在升降台升降液压缸的两侧增加支撑导向机构。

2.2线道系统

(1)更改铰直轮的材质及公差尺寸,延长铰直轮的使用寿命。

(2)更改线道小车支撑辊结构,增加受力面积,确保线道小车的稳定运行。

(3)将轴承6301进行优化改造加工成厚壁轴承,保持轴承外径尺寸不变,去除法兰缘衬套,将轴承内径尺寸做成与法兰缘衬套内径尺寸相同。

(4)更改橡胶弹簧橡胶材质,由普通橡胶改为进口硅胶,增加弹簧的弹性及使用寿命。将弹簧支座由焊接结构改为一体结构,采用线切割加工。

3具体实施措施

3.1升降台系统

(1)针对于升降台内臂、外臂连接法兰轴承经常受冲击损坏的问题,将法兰轴承座体的材质由铸铁改为铸钢,增加轴承座体的抗冲击性。

(2)针对于升降臂与底座连接的球面轴承经常损坏的现象,将球面轴承结构改为滑动轴承结构,滑动轴承材质选用铸铜、外形尺寸为准45×准57×49;轴承座根据滑动轴承的外形尺寸以及原球面轴承的安装尺寸重新设计。

(3)支撑导向机构。支撑导向机构结构图如图1所示。支撑轴通过M64螺纹与升降台拖枕连接在一起,支撑座与升降台底座通过螺栓把合,导向套对支撑轴起到支撑导向作用,通过支撑轴的支撑导向作用来减少升降台的晃动,保证车间的稳定运行。此结构对升降台稳定运行起到关键作用的是支撑导向套,此支撑导向套采用橡胶材质,导向套中间部位打斜口以便于安装。

3.2线道系统

(1)改变铰制器铰制轮的材质,由45#钢改为42Cr-Mo,并且对铰制轮表面采用高能离子注入技术进行表面硬化,提高铰制轮的综合力学性能及耐磨性,同时将铰制轮的外形尺寸由准(69.90~70)mm改为准(70~70.05)mm,通过偏心轴来调整铰制轮与打捆线的相对位置,提高打捆线的表面质量。

(2)1#、4#线道小车在重力的作用下容易发生变形,并且线道小车导向面磨损变形以后,小车支撑辊与小车导向面接触面积变小,支撑辊失去支撑作用造成定位锥头与打捆头定位不好,无法完成打捆线穿线动作。针对此情况对支撑辊进行优化设计,将辊面加长由原来的30mm增加到60mm,内部结构改为双滚针结构,增加了支撑辊的灵活性及抗载荷能力,支撑辊与小车接触良好。

(3)将线道用6301轴承进行优化改造加工成厚壁轴承,保持轴承外径尺寸不变,去除法兰缘衬套,将轴承内径尺寸做成与法兰缘衬套内径尺寸相同,提高轴承的抗冲击性。

(4)橡胶弹簧内部弹性元件材质由普通橡胶改为进口硅橡胶,弹性元件的弹性增加。橡胶弹簧支座由原来的焊接结构改为一体结构,并且使用线切割进行加工,避免了弹簧支座开焊现象的发生。

4结束语

第5篇:优化设计论文范文

一、双曲拱坝体形设计条件的特点

每个工程的先前设计和施工,都要先考虑到建设环境,如施工区的地形、气温、运行等,以下将对这些环境因素进行分析:

(1)地形:双曲拱坝的建设地形为V字形,两岸地基基本对称,而地形的坡度均为50°左右。

(2)气温:经过多年的观察发现,拱坝建设区域位置的常年气温均在18℃左右,当然,不包括特殊情况,在每年的8月份气温达到最高,在28℃左右;每年1月份气温达到最低,在0℃左右;年度温差较大。

二、双曲拱坝体形优化设计

1.体形优化程序在对双曲拱坝的设计时,为了确保拱坝优化设计的正确合理,对优化设计方案进行比较,并采用中国水利水电科学研究院材料所编制的ADASO拱坝体形优化程序和浙江大学水工结构研究所编制的ADAO拱坝体形设计程序进行优化计算。

2.拱冠梁前倾度分析

针对拱坝体形的优化设计,首先得对拱冠梁前倾度进行分析,对拱冠梁前倾度的分析就必须了解拱坝各方面的数据和构造,然而,我们研究的拱坝的河谷比较宽,梁向作用就比较明显;使得前倾的体形对上游坝踵有压紧的趋势,有利于减小对上游坝踵的作用力。当水库的水位最大落差超过坝高的百分之七十,水库供水的死水位就非常低,拱坝向上游侧位移的倾向就比较明显,则在下游低高程处就会存在较大的压力。在对双曲拱坝体形设计时,拱坝体形不能过于前倾,否则会造成应力过大,导致拱坝的稳定性减弱;所以,该工程双曲拱坝的拱梁前倾度要适中,不易过大或过小,这样会增强拱坝的稳定性。

3.拱圈中心角的优化在双曲拱坝的建设中,拱圈的中部拱受到的作用力最大,拱圈中心角在该处也是最大的,而拱坝的上部拱圈的拱作用力比较小,拱圈中心角也就比较小。然而,本文研究的拱坝坝址比较宽,所以,对于拱坝中上部拱圈的作用力需要增强,这就说明中上部拱圈的中心角需要增大。研究表明,坝址的岩性主要是熔结凝灰岩,它的抗风化能力较强,岩体比较坚硬,风化浅薄,坝址断层中等发育,但是其规模较小,坝肩的稳定性较好,设计人员可以利用这一特点,来增大中上部拱圈的中心角。

4.拱坝的优化设计参数

(1)体形参数:对于拱梁中心线曲线、拱冠梁厚度、拱段厚度和拱冠梁中轴线的曲率半径等的计算均用三次多项式方程拟合。抛物线形拱圈任一点i处的拱圈厚度计算表达式:()(/)niCaCiaTTTTSS式中:Ti为任一点处的拱厚;Tc为拱冠梁处拱厚;Ta为拱端处的拱厚;Si为水平拱圈中心线上i点处沿中心线到拱冠梁的弧长;Sa为水平拱圈中心线上拱端沿中心线到拱冠梁的弧长;n指数在拱圈参数描述行中提供。

(2)工程中的计算工况:在工程中采用四种工况进行计算,这四种工况计算分别是:自重+泥沙压力+正常蓄水位+设计正常温降,自重+泥沙压力+正常蓄水位+设计正常温升,自重+泥沙压力+死水位+设计正常温降,自重+泥沙压力+校核洪水位+设计正常温升。

(3)坝体及基岩力学参数:坝体混泥土的容量24KN/m3,泊松比为0.167、弹性模量为1.8万MPa,温度线胀系数0.000008,基岩变形模量为1.5万PMa,泊松比为0.15。

(4)参数的约束条件:在拱坝的建设中,基本组合时,所能承受的最大压应力为5.25PMa,承受最大主拉应力为1.18MPa。

(5)经过计算结果分析,对比两种优化计算程序的技术结果,发现两者相差并不多大,然而,本文的计算结果是根据ADAO程序得出的,根据ADAO程序优化设计结果绘制出拱冠梁剖面图

三、线弹性有限元拱坝应力分析

对于水利水电枢纽工程双曲拱坝体形优化设计之后,需要针对工程实际施工的可行性进行分析和探究,对于拱坝的变形和应力分析一般都采用三维线弹性有限元法,这种分析方法对拱坝变形和应力分析有着重要的作用,拱坝体形的施工是分期封拱的,然而,对拱坝的应力和应变分析就显得十分重要。在对拱坝进行分析计算时,需要根据拱坝所处的位置和该处的地质环境,计算分析时,用理想的弹性材料模型对坝体材料和基岩进行模拟,然而,模拟基岩和坝体时可以采用六结点五面体或八结点六面体等单元,用夹层单元模拟断层。通过对有限元分析,得出应变和应力都基本符合拱坝的受力分析,在坝基附近二十分之一坝高的范围内易出现应力集中的现象,也就是俗称的高应力区,该范围内的应力分布连续,坝体表现为弹性工作状态;从以上分析可以得出,最大主拉应力都表现在拱冠梁底上游面,也就是俗称的坝踵处,高水位的工况控制坝体的主应力;而最大主压应力都出现在拱冠梁底下游面,也就是俗称的坝址处,拱坝底高程坝基局部有应力集中的现象,有限元主应力量值比较大。

四、双曲拱坝优化设计的建议

在对水利水电枢纽工程双曲拱坝优化设计时,应当注意以下几个方面:

(1)在对双曲拱坝优化设计时,要参考历年双曲拱坝优化设计保留的数据,对以往的数据进行分析,得出有利于当前双曲拱坝优化设计的数据,掌握当前优化设计的方向。

(2)对双曲拱坝工程建设进行实地考察,并根据以往的数据资料进行实地测量,对不同数据进行核算,对不正确的数据加以改正,为双曲拱坝优化设计提供可靠的参数,保证数据的准确性。

(3)在建设过程中缺少不了先进的测量和施工设备,由于该工程建设面积相对较大,可以运用GPS定位技术对工程建设进行全方位定位,得出精准的位置数据,为工程建设提供保障;在有限元时必须充分认证,科学合理准确的模型对于优化设计的准确性有着重要的意义。

五、结语

通过上文我们大概可以得出,拱坝从设计到施工建筑再到维护,难度都非常之大。拱坝是一种应力复杂、受地形条件制约较大的空间壳体结构,然而,拱坝设计的关键,是对拱坝的优化设计;拱坝的优化设计难度相当大,受多方面条件的制约,要想得出完善的拱坝优化设计,不仅需要高技术的专业人才,而且还得有高新的技术设备,更需要优质的建筑环境。

作者:叶小萍 王朝进 单位:盐城市盐都区水利规划设计院 连云港市水利规划设计院有限公司

第二篇

一、拱坝体形设计条件的特点

拱坝体形设计条件的特点包括气温、地形条件、水库运行条件等方面,以下做简要的分析:

(1)气温:据往年数据统计,水库所处位置的常年平均气温为16.7℃,每年的7月平均气温最高,达到了27.8℃,每年1月的月平均气温最低,为3.9℃。气温的年变幅较大,而水温年变幅稍小于气温年变幅。

(2)地形条件:河谷为V字形,两岸地形基本对称,地形的坡度为40度左右,为典型的宽河谷地形。

(3)水库运行条件:正常蓄水位234m时河谷的宽度为345m,设计的洪水位239.58m,坝顶高程为240m,水库可以起到发电、供水、泄洪等作用,正常消落深度为87m,供水死水位为148m。

二、混凝土双曲拱坝体形优化设计

1.拱冠梁前倾度分析

要对混凝土双曲拱坝体形进行优化设计,首先分析拱冠梁前倾度,本文研究的坝址河谷较宽,梁向作用明显,采用前倾的体形对上游坝踵有压紧的趋势,可以减小上游坝踵的拉力。但水库的水位最大消落深度超过了坝高的70%,水库供水死水位非常低,拱坝向上游侧位移的倾向比较明显,在下游低高程处存在较大的拉力。在水库双曲拱坝体形的设计时,拱坝体形不宜过于前倾,否则拉应力过大,对拱坝的稳定性有削弱,本水库的拱坝采用适度前倾的拱冠梁剖面。

2.拱冠梁剖面厚度优化

分析了拱冠梁的前倾度之后,要对其剖面的厚度进行优化,本文的措施是减小底部厚度,增加中上部的厚度。水库坝址的河谷较宽,如果按照常规的设计,中上部的厚度不足,刚度小,所承担的水推力很小,较多的水推力集中在中小部位,难以充分发挥拱圈的效用。在进行拱冠梁剖面厚度进行优化时,还要兼顾到经济性,结合节省混凝土用量的要求,提出了四个方案。四个方案都是减小底部厚度,增加中上部的厚度,通过对四个方案进行不同拱冠梁剖面拱坝体形的应力分析发现,随着剖面变薄,混凝土的用量也随之减少,坝体的整体应力水平不断提高,接近规范允许值。剖面中上部的厚度加大可以增加刚度,使拱圈承担了更多的水推力。方案4的承受的拱坝体形应力值最大,但没有超过规范应力值,并且混凝土的用量也最小,应力分布更均匀,本文的工程优化选择了方案4。

3.拱圈中心角的优化

拱拱圈的中部拱作用力最强,拱圈中心角在此处的也最大,上部拱圈的拱作用力较小,拱圈中心角也相对小。本文研究的水库坝址很宽,中上部拱圈的作用力需要增强,也就是说中上部拱圈的中心角需要增加。坝址岩性主要为熔结凝灰岩,抗风化能力强,岩体致密坚硬,风化浅薄,坝址断层中等发育,但规模小,坝肩的稳定性好,可以利用此特点,增大中上部拱圈的中心角。

4.拱端加厚

混凝土双曲拱坝在基础部位受到的约束最为强烈,弯矩、扭矩、剪力的共同作用,受力条件十分复杂,拱坝基础对于整个拱坝的稳定性和安全性的重要程度不言而喻,因而需要改善靠近基础部位的坝体应力状态。一般拱坝中部拱圈的应力大,对此段进行针对性的加厚处理,加厚比达到了25%左右;上部拱圈受力较小,因而可以不加厚;下部拱圈受力较小,加厚10%左右。

5.设计体形优化

本文研究的水库混凝土双曲拱坝体形采用抛物线形状,属于变曲率拱坝,要解决稳定性与应力之间的矛盾,可以通过调整拱圈各部位的曲率来实现,在弯矩小处减小曲率,在弯矩大的拱冠处加大曲率,这样可使拱端推力偏向山体,又能改善坝体的应力状态,利于增强拱座的稳定性。根据体形优化的思路,经三维线弹性有限元法分析,可以确定其最终的优化体形,优化后的拱坝混凝土体积比初步设计少3.5万m3,开挖量减少2,600m3,节省资金1,250万元。

三、线弹性有限元拱坝应力分析

水库混凝土双曲拱坝体形优化设计之后,要对其实际施工的可行性进行分析研究,而三维线弹性有限元法在对拱坝的变形和应力分析时具有重要的左右,而且拱坝体形优化施工是分期封拱的,应力和应变分析十分必要。根据水库所处的位置,分析其地质环境,计算分析时用理想的弹性材料模型对坝体材料和基岩进行模拟,模拟基岩和坝体时可以用6结点五面体或8结点六面体等单元,夹层单元模拟断层。经过计算分析,在校核洪水位+温升、正常水位+温降工况时,拱冠梁底上游面出现最大主拉应力分别是3.60MPa和3.20MPa,拱冠梁下游最大主应力分别是-8.80MPa和-7.70MPa;在死水位+温升工况时,主拉应力最小,出现在中低拱圈下游面端,为1.00MPa左右。主压应力在双曲拱坝上较小,主要是在拱冠梁底上游面存在,量值大概为-6.50MPa。经过有限元分析,应力和应变基本符合拱坝的受力分析,在坝基附近1/20坝高的范围内出现应力集中的现象,也即是高应力区,此范围内的应力分布连续,坝体呈弹性工作状态。从上述的分析可以发现,最大主拉应力都出现在拱冠梁底上游面,也就是坝踵处,高水位的工况控制坝体的主应力;而最大主压应力都出现在拱冠梁底下游面,也就是坝趾处,拱坝低高程坝基局部有应力集中的情况,有限元主应力量值比较大。根据SL282—2003《混凝土拱坝设计规范》的规定,当采用有限元分析时,还要增加“有限元等效应力”。在校核洪水位+温升、正常蓄水位+温降工况时,坝踵的最大等效主拉应力分别是2.4MPa和1.80MPa,超过了规定的2.0MPa和1.50MPa,但超过的幅度并不大,与同类工程相比,处于同一应力水平;而坝趾最大等效主压应力分别为5.40MPa和4.20MPa,满足规范的7.14MPa和6.25MPa,符合设计的工况要求。六、水库混凝土双曲拱坝体形优化设计的注意事项在对水库混凝土双曲拱坝体形进行优化设计时,必须注意几个方面的内容:

(1)要统计历年的历史数据,从以往的数据中发现存在的不足,可以大略的掌握优化设计的方向;

(2)实地测量校核,根据已有的资料数据进行实地测量,进行印证,有不同的地方需要修正,以便为优化设计提供可靠的参数;

(3)结合先进的分析设备,水库的面积大,影响的范围远,可以结合GPS定位技术等来进行分析,以便得出科学的资料;

(4)有限元建模时必须充分论证,科学合理的模型对于分析的准确性影响很大,因而从节点、网格、弹性模量设置、材料等方面进行细致的分析,确保有限元分析的科学性。

四、结束语