公务员期刊网 论文中心 正文

风力发电机组振动优化设计论文

风力发电机组振动优化设计论文

1风电机组振动特性研究分析

风电机组中发生共振的现象时有发生,为了避免机组发生较大振动,需对塔筒以及整个风力发电机轴系进行共振裕度分析。塔筒为细长结构,可采用梁模型进行简化处理得到塔筒的1、2阶弯曲频率。轴系计算中,重点关心了机组的1、2阶扭转自振频率。风力发电机组的激振源较多,主要有转频、电网频率以及叶片通过频率,振动特性分析较为复杂。通过机组工作转速与固有频率的CAMPBELL分析以及机组的共振裕度分析表,从而可得出结论,该机组动力特性良好。塔筒为细长梁模型,一阶弯曲固有频率一般介于1倍工作转频至3倍工作转频之间,因此塔筒的频率必须首先保证避免共振。同时发电机部件由于激振来源较多,主要来自转频、电网以及叶片通过频率等,振动特性分析较为复杂。对于机组振动特性的分析,可以通过机组CAMPBELL分析.

2强度优化设计

为提高风电产品的市场竞争力,机组在保证性能的基础上,要具备成本优势以及开发效率优势。基于以上目的,优化设计的方向和目标大致分为以下几个方面。

2.1以降低重量为目标的多参数强度优化设计

降低重量主要是要通过减小产品的尺寸来实现。在保证产品的刚强度各项性能指标满足要求的前提下进行,即优化之后进行。许用应力值:σ≤[σ]疲劳损伤因子:D≤1,D<0.5(焊缝)

2.2基于工艺成本控制的多目标强度优化设计

对于产品某些加工部位的表面光洁度可进行优化设计,对产品成型工艺可进行降本优化改进。例如,在保证疲劳可靠性的前提下,由原来的表面光洁度2.5μm增至12.5μm,显然降低了加工的难度,节约了加工成本。同样,由原来的锻造成型改为铸造成型,同样可降低机组的制造成本,并满足批量产生的需求。在工艺优化设计中,同样需保证结构的抗疲劳性能,需满足以下疲劳性能指标:疲劳损伤因子:D<1,D<0.5(焊缝位置)。

2.3整体提高产品性能的全新优化设计

上述2种优化方式与方法,参数的调整系统性不强。借助计算软件的先进优化算法,例如遗传算法等,可以对结构的重量、疲劳可靠性等进行系统的优化分析。

2.4基于软件设计开发平台,自主编程定制优化

设计流程,缩短开发周期为了能够满足批量产品的设计需求,在大量分析计算经验积累的基础上,对于某些特定问题,借助软件的设计开发平台,开发全参数的强度分析设计软件。

3风电机组中几类特殊难点问题

3.1螺栓连接强度分析计算

风机和发电机部件中,螺栓连接及焊缝连接是最常用的2种连接方式。对于此类问题的静强度与疲劳强度分析,考核标准以欧洲的标准体系British、GermanorDNV或美国的ASME标准为主。对于塔筒分段的链接螺栓,有学者提出了采用分段线性模拟螺栓在不同阶段受力的方法,该方法简单易行。对于塔筒与主机架、主机架与发电机主轴、轮毂与发电机等部位的连接螺栓,由于载荷较为复杂,采用上述经验公式已不能满足要求,需要借助FEA分析方法。结合载荷谱,通过计算最终得到螺栓的疲劳损伤值。

3.2焊缝连接强度分析计算

关于焊缝疲劳问题,国际焊接协会IIW-2003、欧洲标准Eurocode3part1.9、英国标准BS7608、挪威船级社DNV的相关规范,以及美国机械工程协会ASME规范,均给出了相应的计算方法。东方电机一般采用国际焊接协会中的热点应力法来分析焊缝疲劳。首先,在FEA分析模型中建立热点应力的参考点,单位载荷作用下,得到2个参考应力点的应力分量,然后通过外推公式,最终得到热点位置的应力分量。通过查找和选取相应的疲劳等级DC,计算之后得到焊缝损伤。若损伤因子D<0.5,可满足抗疲劳的要求。

3.3传动链疲劳分析难点

传动链的疲劳问题较为复杂。主轴轴承的装配,使得载荷在该位置的传递出现了较大的非线性因素耦合效应,主要来自于3个方面:

(1)轴承轴向及径向紧量装配。

(2)轴承内部滚子与滚道的接触。

(3)螺栓预紧作用的非线性效应。这使得FEA模拟仿真结果具有较大的不确定性,成功解决此类问题的难点在于准确模拟滚子与滚道的接触应力传递。

4结语

风电机组的研发设计虽然借助于较为完备的标准体系,但对于工程中出现的复杂多样的事故及问题,有时却没有标准可供参考。所以,风电机组的整机分析、机电耦合振动分析、风流场与复合材料耦合振动响应分析、机组应力及位移响应分析、机组疲劳断裂损伤的深入研究等,均有待更为深入的研究逐步解决。此外,产品优化设计也是一个多因素集成的工作,往往需将设计工艺制造难度、材料成本、电磁性能、通风散热性能、强度振动性能、软件计算性能等诸多因素予以综合考虑,才能创造性价比高、具有市场竞争力的产品。

作者:李源 陈昌林 谭恢村 单位:东方电气东方电机有限公司

精选范文推荐