您现在的位置: 公务员期刊网 >> 论文范文 >> 工业论文 >> 数据挖掘论文 >> 正文

电力调度自动化系统中数据挖掘的运用

摘要:本文主要以电力调度自动化系统中数据挖掘技术运用分析为重点进行阐述,结合当下数据挖掘概述为主要依据,从神经网络法、灰色分析法、模糊分析法、线路故障专家系统、负荷管理专家系统、状态检修专家系统这六方面进行深入探索与研究,其目的在于提升电力调度自动化系统中数据挖掘技术运用效率,为加强电力调度自动化系统的实效性做铺垫。

关键词:数据挖掘;电力调度自动化;数据仓库

0引言

对于电力调度自动化系统来讲合理应用数据挖掘技术十分重要,其是确保电力调度自动化系统效用充分发挥的基础,也是推动现代化社会持续稳定发展的关键。基于此,相关人员需给予数据挖掘技术高度重视,促使其存在的价值与效用在电力调度自动化系统中发挥出最大,为提高我国国民生活水平奠定基础。本文主要分析电力调度自动化系统中数据挖掘技术运用,具体如下。

1数据挖掘相关概述

从技术层面讲,数据挖掘便是在诸多数据中,利用多种分析工具探寻数据同模型间的关系,并通过此种关系的发现为决策提供有效依据。由于数据挖掘的飞速发展,随着出现了许多多元化的技术与方法,基于此便形成了多种不同的分类。通俗的讲,能够把数据挖掘分为验证驱动性和发现驱动型这两种知识发现。验证驱动型指的是客户利用多元化工具对自己所提的假设进行查询与检索,来否定或是验证假设的一个过程;而发现驱动型是通过统计或是机器学习等技术来研究新的假设。

2数据挖掘技术在电力调度自动化系统中的运用

(1)灰色分析法。在对时间线上相关联的数据进行分析时会应用到灰色分析法,通过应用一定的数学方法,把数据中的白色部分当作主要依据,找出它同黑色部分有关联的地方,进而实现数据灰色化。在挖掘电力数据时,灰色分析法为最普遍的利用方法之一,主要把其应用到电力数据预测及分析中。它的优点为尽管数据不完整或是数据有限皆能够应用与分析,但其不足为不能将大数据的使用价值充分的发挥出。(2)神经网络法。所谓神经网络法指的是合理应用计算机的计算机能力的前提下,对离散数据展开逻辑处理的一种方式,为专家系统中应用的基础方式。通过对计算机云计算的能力合理应用,这些专家系统能够对电力数据进行深度分析、充分挖掘,其对电力数据预测与整理具有不可或缺的作用,事实上,神经网络法属于人工智能法,其能够实现对诸多数列展开联动分析,并明确每个数列间的关系,让其逻辑性得到有效发挥。   (3)模糊分析法。此种方法为聚类分析法的一种,是最常应用聚类方法,其主要是对已知数列进行聚类与分析,让数据能够展开全面、综合的分类。同灰色分析法差异点为,利用模糊分析法能够合理应用大数据优势,满足对其的实质性需求。

3电力调度自动化对数据挖掘技术的具体需求

目前,我国数据挖掘技术,因五防系统等技术还处于发展的初级阶段,对应的管理措施还未完全构成,所以,尽管说数据挖掘的专家系统以能够在多方面展现出优势,但若想实现遥控系统和专家系统是一件不可能实现的事。(1)负荷管理系统。电力负荷管理为电力调度自动化系统中的主要环节。依据冗余回路间的负荷分布,电能能够自动对负荷的上级节点进行连续与切换。另外,当其中有一个节点出现故障,符合管理系统则能够充分发挥效用,让该故障节点在事故出现以后被自动切除。负荷管理系统的实际工作原理为依据对各线路的负荷状态进行全面监测,并通过合理应用数据挖掘技术,对满足这些状态表现出的数据进行预测,并分析、判断、整理这些数据变化形式,基于此来对负荷进行道闸分配。目前,在我国电力调度中,负荷管理系统已投入应用,但因有关技术的滞后性,不能实现同电网远控系统完美对接,所以还没有实现广泛应用,对于调度系统中所发布的命令皆由人工来实现。(2)线路故障系统。传统的电力线路检修,一般都是在线路出现严重故障以后,才开展利用相应方法对电力线路进行巡查,并且探寻出存在其中的故障。但若是把线路故障系统利用到其中,那么该系统会依据电力线路两端产生故障形式,在电力线路产生故障以后自动且及时的判断出电力线路受损的部位。相比于较完善的线路故障系统而言,还能够同时判断多个故障点。通过将线路故障系统利用到电力调动自动化系统之中,不但能够将冗杂的线路切除掉,还能减小电力线路故障发生率,以及停电检修率,并且还能在很大程度上监督电力线路巡查力度,让电力维修人员能够有足够的实践对线路出现故障的部位分析、判断,并制定与之对应的补救措施。特别是一些地埋线路等,利用此种能够定位的线路故障系统具有积极作用。 (3)状态检修系统。对变压器、电缆、开关等设施的具体运行状态进行充分分析,外加对互感器、集中器等设备的运行状况进行判断,状态检修系统能够以此来对电力调度自动化系统的运行状态进行检查,探究其是否健康,并深入规划故障设备切除方案,自动的把故障设备切除掉。合理利用状态检修系统是电力检修的前提条件,为实现对全部设备充分管理的关键点,并且其利用价值为能够自动化更换再用设备,使倒阀变成检修的状态,并朝着调动系统进行报警。当然,因有关技术的不成熟,导致状态检修系统在部分企业依旧处于闲置的状态,致使其含有的效用无法充分的发挥出。

4结束

综上所述,若想电力调度自动化系统存在的价值发挥出最大,有关人员加强数据挖掘技术应用势在必行。因其是保证电力调度自动化系统稳定性的根本要素,还是推动电力调度自动化系统效用发挥的关键点。为此,有关部门需合理应用数据挖掘技术,让其包含的作用都利用到电力调度自动化系统中,为进一步提高社会公众生活水平提供有效依据。

参考文献:

[1]聂宇,罗超,高小芊,寇霄宇,何宇雄,苑晋沛,李蔚.基于电力调度自动化系统中数据挖掘技术的应用[J].科技创新与应用,2018(03):143-144.

[2]周洋.数据挖掘在电力调度自动化系统中的应用解析[J].科技创新与应用,2017(35):149-150.

[3]刘雅铭.解析电力调度自动化系统中数据挖掘技术应用[J].低碳世界,2017(33):66-67.

[4]朱维佳,曹坚.电力调度自动化系统中数据挖掘技术的应用[J].电气时代,2015(07):108-111.

作者:李琳 李淼 王志宏  刘紫玲 高永俊 韩明彤 张成 丁宝帅 单位:国网辽宁省电力有限公司营口供电公司

阅读次数:人次

  • 上一篇论文:
  • 下一篇论文: 没有了