公务员期刊网 精选范文 汽车电子论文范文

汽车电子论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的汽车电子论文主题范文,仅供参考,欢迎阅读并收藏。

汽车电子论文

第1篇:汽车电子论文范文

MC9S12XE系列单片机于2009年9月推向市场,经过几年的市场考验,其应用已日趋成熟化。飞思卡尔公司为确保此系列单片机产品供货的长期性和稳定性,提供了业内领先的长期市场供货计划,保证最短15年的供货期和一流的技术支持,并在国内设有生产厂,目前市场售价60元左右。MC9S12XE系列单片机主要有五大特点。

1)单片机内部采用了增强型XGATE协处理器模块,允许高速数据自主地在单片机外设和内部RAM、I/O端口之间进行数据传输与处理。XGATE内置有一个16位的精简指令集内核,可以对要传输的数据进行预处理并执行复杂的通信协议,易于用C语言进行编程。XGATE可以显著降低CPU的负荷,使CPU能够集中资源运行关键的系统活动,从而提高了单片机的数据处理能力。

2)S12XE系列包括一个存储器保护单元(MPU),用于防止软件中的系统错误。这个MPU解决了不同模块之间的错误交互导致的潜在问题,这项特性在汽车设计中非常关键,因为它有助于最大程度地控制汽车中系统故障的扩散。

3)单片机片内集成了可达1024KB的闪速存储器Flash。近年来,随着Flash在单片机片内的应用走向成熟,单片机的开发和应用又迎来了一次新的飞跃。Flash是一种非易失性存储介质,读取它的内容同RAM的读取一样方便,而对它的写操作却比EEPROM还要快。在系统掉电后,Flash中的内容仍能可靠保持不变。Flash的主要优点是结构简单、集成密度大、成本低。由于Flash可以局部擦除,且写入、擦除次数可达数万次以上,从而使开发微控制器不再需要昂贵的仿真器。

4)简单的背景开发模式(BDM):PC主机BDM调试器目标板,使得开发成本进一步降低,也使得现场开发和系统升级变得比较方便。

5)应用锁相环技术提高了系统的电磁兼容性。在以往不使用锁相环的微控制器应用系统中,晶振电路由于其工作频率比较高(通常为几兆赫兹至几十兆赫兹)而成为一个很大的干扰源,这一问题给系统设计、线路板布局带来了很多不便。MC9S12XE系列单片机在时钟发生系统中巧妙地使用了锁相环技术,因而可在几兆赫兹的外部晶振情况下,通过软件编程产生上百兆的系统时钟,从而降低了对外辐射干扰,提高了系统的稳定性。

2在汽车电子中的应用

现以一个典型的后处理系统电控单元的设计开发为例,说明XEP100在汽车电子领域的应用,该系统基于模块化的设计思想,主要从电源模块、信号输入调理模块、中央处理模块、通信模块、尿素泵的驱动模块、尿素喷嘴的驱动模块、尿素泵管箱加热的驱动模块、故障诊断模块而设计。中央处理模块采用了飞思卡尔16位单片机XEP100作为核心处理器,主要功能是根据从CAN总线上获得的发动机的实时工况、数字信号(包括钥匙开关、蓄电池的电源开关等)和模拟信号(包括尿素温度、尿素液位、尿素压力、催化器前温等)由单片机XEP100进行精确的逻辑运算,来控制尿素溶液的喷射时刻和喷射量,尿素溶液被喷射到排气管中与发动机尾气进行化学反应,从而起到净化尾气的作用。电源模块需要把蓄电池电压24V转换为5V的直流电压,为单片机等集成芯片及传感器提供5V电源。中央处理模块是由中央处理器、晶振电路、复位电路、程序刷写电路和接口电路组成,它是整个控制器DCU的核心,也是单片机XEP100工作必不可少的最小模块单元。CAN通信模块实现与发动机控制器ECU、仪表控制器信息的交互,通过CAN总线实现参数的在线标定调试、程序的刷写。信号调理模块主要用于处理模拟信号和钥匙开关等数字信号,模拟信号需要经过一系列的调理电路处理成0~5V的电压信号给单片机的AD端口,再由单片机进行AD转换,数字信号经过一系列的调理电路给单片机的IO口。尿素泵的驱动模块中采用了infineon公司的电机控制芯片,它内部集成了H桥电路,用来驱动泵内的电机,实现电机的正反转;对喷嘴、尿素箱加热、尿素泵加热、尿素管加热的驱动采用了安森美公司的MOSFET功率驱动芯片,对执行器的诊断可通过SPI接口与单片机通信,实时读取故障信息。该后处理系统的电控单元被应用在重汽国Ⅳ重型柴油车辆上,主要包括A7车型和HOWO车型,以满足重型柴油机国Ⅳ排放法规的需要。经过长期的试验验证,证明以单片机XEP100为主控芯片的电控单元具有非常好的稳定性和可靠性,并赢得了良好的市场反映。

3结束语

第2篇:汽车电子论文范文

(一)外商的汽车技术

对我国汽车电子产业发展产生了巨大的威胁同发达国际相比,我国的汽车电子产业发展则滞后了知识10年的时间,尤其是在电子控制单元、系统控制精度等发面存在着极为明显的劣势。这就导致了我国生产的汽车电子产品技术含量较低,难以开拓市场,企业市场竞争力不堪一击。在我国加入WTO以来,国外的先进技术指导下的汽车电子零部件纷纷涌入我国市场,他们在技术和资金上具有明显的优势,这就给我国的汽车电子产业发展形成了巨大的压力,尤其是一些规模较小的企业根本很难与之抗衡,并最终导致国内汽车电子企业的市场占有率微乎其微。

(二)汽车电子产品国产偏好大大限制了汽车电子产业技术的提高研究

我国汽车电子产业的发展过程来看,我国在汽车电子产业的国家政策方面一直保持着明显的国产化趋势。也就是说,我国在汽车电子产业发展过程中,比较注重通过引进先进技术,然后在实践过程中通过具体操作和日常积累的方式,掌握这种技术,最终实现自主开发。总的来说,这一古城忽视了汽车产业的自主研发技术能力的条,并且缩小了自主研发产品的范围,在一定程度上制约了产品的开发能力和汽车电子产业的专业技术能力。

(三)规模效应削弱了企业市场竞争力

我国大部分的汽车电子零部件企业规模小,没有形成规模效益,因此产品生产成本高,效益低,所占市场份额小,不具备国际竞争力。若想提高竞争力,企业必须扩大规模,加大生产量,提升自主研发能力。汽车电子产业技术的发展不仅需要投入大量的技术和资金,而且产品的回收期很长,这在无形中就增加了技术开发的风险和难度,从而很大程度上制约了我国中小规模汽车电子企业的发展和提高。

(四)汽车产业的合资发展模式

限制了企业研发能力在我国汽车产业发展的初期,实行的是合资发展方式,这样便于弥补我国在技术和资金方面的劣势。但是正是这一发展方式导致大量的核心技术掌握在跨国公司中,我国仅仅是停留在加工层面上,在技术方面难以实现本质上的突破。在世界汽车产业发展链上,受限于技术资源的匮乏,我国长期处于世界工厂的地位,我国汽车产业发展的也仅仅是制造能力,企业研发能力的提升十分缓慢。

二、我国汽车电子产业发展对策

(一)突破汽车电子产业发展

为了实现汽车产业的突破性发展,我们可以以新能源汽车为契机,大力发展新能源汽车的动力电池、系统控制技术、整车匹配技术、电空调技术以及电转向技术等。同时我们可以借助国家在车载信息系统的普及应用项目平台,大力推广处理器系统、图像显示体统、大容量信息存储系统等,实现核心技术能力的突破,快速占领这一市场。

(二)加强企业的人才管理和建设结合

国际汽车产业发展经验来看,他们之所以能够取得巨大的竞争优势,一方面在于他们先进的技术,另一方面则是由于他们科学有效的人才管理体系。为了留住高精尖人才,吸引业界精英,汽车电子企业不经应该提高员工的薪资待遇,更应该优化员工的工作环境,提升企业文化。另一方面,汽车电子企业也可以利用校企平台,加强企业和高效的合作。企业可以为高效的教材编写、实训课程提供丰富的实践案例。企业可以在高校设立相应的奖学金,开设一些定向课程等方式,扩大企业的社会影响力,同时社会员工对于企业的情感,培养一支专业基础知识扎实、实践动手能力较强同时具备创新能力的人才队伍,为企业发展培养后备力量。"

(三)大力培养汽车电子产业专业人才

在汽车电子产品发展方面,不在于高端技术的攻关突破,而是需要保持产品的高可靠性、高一致性,把握产品的品质,在技术和管理上不断提升。当国内的产品跟国际有冲突的时候,应该花时间努力提高产品技术及质量,使国内的技术实力和质量比国外强。技术创新方面,我们可以从单个系统或单项技术重点突破,逐步实现产业化,形成国际化的竞争力和供给能力。

(四)借助国际品牌,拉动国内企业发展

第3篇:汽车电子论文范文

OSEK/VDX规范从实时操作系统(Real-TimeOperatingSystem,RTOS)、软件接口、通讯和网络管理等方面对汽车的电子控制软件开发平台作了较为全面的定义与规定。将OpenSystemsandtheCorrespondingInterfacesForAutomotiveElectronics规范简称为OSEK规范。

兼容OSEK/VDX规范的操作系统应用架构

OSEK/VDX标准包括以下四部分:OSEK/VDX操作系统规范(OSEKOperatingSystem,OSEKOS),OSEK/VDX通讯规范(OSEKCommunication,OSEKCOM),OSEK/VDX网络管理规范(OSEKNetworkManagement,OSEKNM)以及OSEK/VDX实现语言(OSEKImplementationLanguage,OSEKOIL)。采用符合OSEK/VDX标准的嵌入式实时操作系

统可以提高产品代码的复用率、降低开发成本、缩短产品开发周期。使用兼容OSEK/VDX标准的嵌入式实时操作系统的应用架构如下图所示。

2.OSEK/VDX任务管理

OSEK/VDX将任务分为基本任务和扩展任务。基本任务具有3种状态:运行状态、就绪状态、挂起状态;扩展任务比基本任务增加一个等待状态。基本任务只在开始和结束时才有同步点。扩展任务运行时可能进入等待状态,因此不仅在开始和结束有同步点,而且运行过程中可能有多个同步点。下图所示的是扩展任务与基本任务的状态转化图。

OSEKOS规范规定的任务类型

3。OSEK实现语言规范

为了达到软件可移植的目标,OSEKOIL规范(OSEKImplementationLanguageSpecification)定义了一种配置和使用OSEK应用的方法。下图表示了一个遵守OSEK规范的应用开发过程。OIL文件可以是手写的或者是系统配置工具产生。

基于OSEK规范的应用开发过程

OIL提供一种在特定CPU中配置OSEK应用的机制。每个CPU对应一个OIL描述。所有的OSEK系统对象用OIL对象来描述。OSEK应用的OIL描述是一组OIL对象的组合。CPU是这些OIL对象的容器。OIL明确地为每个OIL对象定义了所有标准属性。每个OSEK应用可以定义附加地特殊执行属性和引用。每个OSEK应用可以限制每个属性的取值范围。

4.车控电子产品的开发流程

车控电子产品是软硬件结合的嵌入式系统。为了节约资源,缩短产品开发周期,一般应采取软硬件同步开发的方案。车控电子产品的开发工具对软硬件的同步开发、调试提供了很好的支持。车控电子产品的软件开发分为功能描述、软件设计、代码生成、操作系统环境下高级调试等步骤。车控电子产品的硬件开发分为硬件描述、硬件设计、硬件调试等步骤。当软件设计完成后,通过使用相应的工具,完成在虚拟ECU平台上的验证。当硬件设计完成后,与硬件一起进行软硬件集成调试。通过这种开发方式,缩短了产品上市的时间。

软硬件并行的开发方案

5.车控电子产品软件开发流程

汽车车控电子产品软件开发流程是“V”形开发流程。“V”形开发流程分为五个阶段,即功能设计、原型仿真、代码生成、硬件在回路仿真-HIL、标定。

在功能设计阶段使用的主要工具是MATLAB。通过使用MATLAB提供的Simulink、Stateflow等工具,完成控制方案的设计、功能模块的设计、控制算法的设计等任务,并进行初步的仿真模拟工作。在原型仿真阶段使用的主要工具是dSPACE。使用dSPACE提供的快速控制原型-RCP工具完成离线的仿真工作。在开始该阶段之前,需要使用RealTimeWorkshop、Targetlink等工具完成由Simulink、Stateflow等产生的代码向标准C代码的转换工作。

6.车控电子产品代码生成过程

在进行向标准C代码的转换的过程中,可以根据需要加入符合OSEK规范的嵌入式实时操作系统。在代码生产阶段使用的主要工具是CodeWarrior。通过使用CodeWarrior提供的编译器、调试器等工具,完成从标准C代码向目标硬件平台上的产品代码的转换工作。下图表示了车控电子产品的代码生成过程。

第4篇:汽车电子论文范文

汽车电子设计已成为汽车系统设计中的重点和难点。传统方式下的汽车设计者不得不借助各种机械的、液压的、电子的汽车零部件以验证汽车各子系统的功能,开发周期长,成本居高不下。为了缩短开发周期、降低开发成本,人们引入了SABER仿真技术进行汽车系统技术的验证和开发。SABER仿真技术通过对整个汽车系统进行有效的建模和分析,能够节约大量的试验设备和试验时间。国际上几大跨国汽车公司都已使用SABER仿真技术进行设计,如美国通用、大众、克莱斯勒等。目前,国内有泛亚技术中心能够运用此项技术与通用(北美)进行同步开发。

1SABER软件仿真技术

SABER软件是一个在数学模拟及硬件设计方面功能卓著的仿真工具。对于复杂的混合信号设计和验证问题,SABER软件为设计工程师提供了一种功能强大的混合信号行为仿真器。由于混合信号硬件描述语言——MAST的支持,SABER软件实现了单一内核混合信号及混合技术的仿真,完全改变了模拟电路仿真的现状。SABER软件在混合技术领域具有多个仿真引擎,可以分别处理不同领域的设计单元,且遵循相应的守恒定律,支持电力系统、机电一体化、机械系统、电子系统、光电控制系统、液压系统等系统单元。现在,SABER软件在汽车和飞机制造领域已得到广泛的应用。尤其是在汽车制造领域,许多欧美公司已将它定为行业标准,并投资SABER软件的发展以不断满足新的设计需要。

SABER软件具有明显的优势:分析从SOC到大型系统之间的设计,包括模拟电路、数字电路及混合电路;通过单一的混合信号仿真内核就可以提供精确有效的仿真结果;通过对稳态、时域、频域、统计、可靠性及控制等方面的分析来检验系统性能。

SABER仿真器能够让设计人员对从汽车的最初设计方案(方框图)到由实际电路和机械实现的完整系统进行仿真。这种能力对于复杂运动控制系统的设计(如ABS系统、安全气囊系统、发动机控制系统、车身控制系统等)尤为重要。

2汽车电子仿真技术的应用

汽车在投产之前要经过大量的测试试验,对原设计不断地进行修正往往会耗费大量的物力和时间。在设计阶段,对各种状况进行模拟仿真、修正、完善设计,能够提高效率、缩短开发周期。使用SABER软件进行仿真,主要分为3个阶段:建立数学模型、对系统原理进行仿真和对仿真模型进行修改检验。

2.1建立数学模型

所谓计算机仿真就是将实际系统的运行规律用数学形式表达出来,它们通常是一组微分方程或差分方程,然后通过计算机采用数值求解法求解这些方程。

在仿真之前,首先对系统原理图中的所有零部件进行抽象化,建立数学模型,绘制系统的数学模型。为了对电路或系统进行计算机仿真,经常需要开发一个或一组模型。要研究电路的详细特性,可能要求对物理器件建模,有时还需要对大型电路或系统建模。系统模型可能无需和器件模型一样详尽,但作为大系统仿真的一部分,系统模型仍然非常有用。零部件数学模型的质量直接关系到仿真结果的准确性。通过对数学模型各种参数属性的设置来模拟零部件的功能,同时,经过大量计算和试验,不断修正、完善数模。对于同一类零部件可以共用一个(或一类)模型,通过调整数模参数值来实现零部件的更迭。这对于缩短开发周期、节省开发成本,起着至关重要的作用。

在一定外界条件(即输人或激励,包括外加控制与外加干扰)的作用下,从系统的一定初始状态出发,所经历的由其内部的固有特性(即由系统的结构与参数所决定的特性)决定了整个动态过程。研究系统及其输人、输出三者之间的动态关系,即可确定其性能的属性。图1是汽车音响系统中扬声器的物理模型,其中In_pfUIn_m作为输人信号、由电磁学可知,可以进一步将其简化为力f(t)输人。

于是可将其进一步简化为质量-阻尼-弹簧系统,如图2所示,图2中m、c、k分别表示质量、粘性阻尼系数、弹簧刚度。对系统而言,质量受外力f(t)的作用,质量位移为y(t)(实际扬声器衔铁的振幅),系统的动力学方程为my"(t)cy''''''''(t)ky(t)=f(t),y(o)=yo,y''''''''(o)=y''''''''。

其中,y(0)与y''''''''(0)分别为质量的初位移与初速度,这就是在输人作用于系统之前系统的初始状态。显然,此系统在任何瞬间的状态完全可以由质量的,y(t)与y''''''''(t)这两个变动着的状态(即状态变量)在此瞬间的取值来刻画。因为y(t)在此瞬间的取值代表了位移的情况,y''''''''(t)在此瞬间的取值代表了y(t)在此瞬间的变化趋势(速度)的情况。

还有一种更直接的建立数学模型的方法,就是模拟硬件描述语言(AHDL)的含义。MAST就是一种AHDL,Saber仿真器可以仿真用MASTAHDL描述的网表。

零部件的模型是建立在大量计算和试验基础上的,SABER软件提供了大量的零部件库文件,对于类似的零件只需修改其属性参数值即可。

2.2对系统原理进行仿真

在仿真过程中,将数学模型转变成为计算机上运行的仿真模型,是由SABER软件系统来完成的,并同时根据仿真模型编制出仿真程序。通过对系统的仿真,可以随时得出各个子系统或零部件的瞬时工作状态及性能参数变化,如电压、电流、功率、转矩等各参数的波形。通过对这些波形与实际试验的结果进行对比分析,找出两者的差别,从而修正原设计。

如先前所提及的,安全性和舒适性的需求导致了新的、高能耗的负载。这些负载可能随着汽车产品的进一步电子化,汽车电子控制装置得到更多的应用,所消耗的电能也将大幅度地增加。现有的12V动力电源已满足不了汽车上所有电气系统的需要,今后将采用集成的42V起动机-发电机供电系统,发电机最大输出功率将由目前的1.4kW提高到8kw左右,发电效率将会达到80以上。伺时,电压等级的提升还将同时带来许多新的问题。12V/42V汽车双电压系统原理图如图3所示。

在双电压系统中,把用电设备分成两部分:中小功率负载由14V电压供电,如室内灯、中控锁、收音机、仪表、车载导航系统等主要为车身电子设备;大功率负载,如电控机械制动装置、电控机械气门正时装置、三元催化转换加热器、电控悬架等,主要为发动机、底盘系统电子设备,由42V电压供电。此双电压供电系统有两个关键器件,一个是DC/DC变换器,它能把交流发电机输出的42V高电压转变为14V的电压。另一个,是装在发动机和变速器之间的起动-发电机,借助一个半导体整流-逆变功率变换器,它不仅充当交流发电机,发出42V的高电压,而且在发动机起动时还作为起动机用。由于它是直接起动发动机,起动时间仅为0.5s,所以噪声很小。

2.2.2起动机/发电机系统

大功率起动机与发电机(IntegratedStarter/Alternator,ISA)的转矩特性一致,因此,集成两种设备于一体在技术上是可行的,在经济上的效益也显而易见。如图4所示的输出功率与内燃机曲轴转速的关系曲线,ISA让内燃机的速度达到600v/min的起动速度,然后切换到发电模式。由于42V系统能够提供足够的电能,发动机在极短的时间内起动且在点火前达到更高的转速,这样可以降低低转速下的排放,换句话说,使得汽车重起动变得更加容易。

2.2.3双电压系统中42V供电系统

在运行中,双电压系统的电压随着转速变化而变化,电压峰值对电器元件的影响是非常明显的。图5所示的是双电庄系统中42V供电系统的变化曲线,非常清晰地显示了在转速急剧变化时电压的瞬时值,此脉冲电压峰值在电气系统设计和选择电子电器元件时有着非常重要的参考价值。

在仿真过程中,主要分两种类型进行。为了描述简单,这里将42V与14V分开进行讨论。第一种方法,全部打开所有的电子设备,可以观察到整个系统及各个电子器件的电压、电流波形,以及各个电子电器设备互相切换或同时打开时的电压、电流波形。同时,很方便地观察到在抛载状况时的峰值电压波形,局部抛载或全部抛载对系统的影响。

2.2.414V供电系统

14V电压系统主要用于各控制单元,对波形要求甚高。若峰值电压及电流产生严重的脉动,使蓄电池两端电压产生脉动干扰,控制单元搭铁(蓄电池负极)电位也将随之产生脉动干扰。如果这个干扰脉冲幅值过大,就会造成原有信号的丢失,引起控制失灵。观察峰值电压的波形,判定是否符合系统要求。14V线路上的电压波形如图6所示。

2.3对仿真模型进行修改、检验

通过对系统的仿真,得出的初步结果往往不能与理想的目标相一致,还需要通过分析研究,以及与试验进行对比,对系统原理或数学模型进行修改。SABER提供多种仿真分析,如:直流工作点分析、交流小信号分析、顺态分析、蒙特卡罗分析(在模型参数值浮动范围内随机取样,对所取的参数进行分析,检验器件参数在一定范围内浮动对输出的影响)、零极点分析等。结合多种分析,加以对仿真模型的完善。

第5篇:汽车电子论文范文

1)汽车发动机基本原理和构造

当今世界上的汽车发动机工作过程基本上都由四个冲程组成,即进气、压缩、膨胀和排气。利用燃料和空气的混合气在气缸内燃烧产生的高温高压气体的膨胀,发动机借助于曲柄连杆机构通过曲轴对外输出扭矩而作功。发动机按照所用燃料可分成汽油机、柴油机和燃气发动机;按照点火方式可分成点燃式和压燃式;汽油机按照空气和燃油的比例可分成理论当量燃烧和稀薄燃烧;按照汽油喷射地点可分成中央喷射、进气口喷射和缸内喷射。

发动机的各个部分按其功能可分成燃油供应系统、进气排气系统、点火系统、曲柄连杆传动机构、系统、冷却系统和辅助系统如发电机、起动机、空调压缩机和各种泵等。

发动机工况可分成冷起动、起动后、暖机、怠速、部分负荷、全负荷、加速、减速和倒拖滑行等。这些工况主要根据负荷与转速,结合发动机温度(即冷却液温度)来区分。

2)电子控制在发动机中的重要意义

汽车电子控制始于发动机电子控制。电子控制之于1957年引入发动机以及于1967年商品化,其初衷是为了满足越来越严格的排放法规要求,同时提高汽车的动力性、燃油经济性和舒适性。现代汽车和发动机技术离开了电子控制是不可思议的。电子产品的产值在整个汽车中所占的比例随着汽车级别的提升而升高,可达30以上。

3)发动机电子控制的核心问题

汽油机电子控制的核心问题是燃油定量和点火定时。柴油机电子控制的核心问题是燃油定量和喷油定时。

2.汽车和发动机电子控制系统的组成

汽车和发动机电子控制系统跟其它电子控制系统一样,也是由传感器、电子控制单元(ECU)和执行器组成。

1)传感器

(1)目前汽油机电子控制系统常用的传感器有:

l进气岐管绝对压力传感器(提供进气岐管绝对压力信息供计算负荷等)

l燃油压力传感器(提供油轨燃油压力信息)

l燃油箱压力传感器(提供燃油箱压力信息)

l机油压力传感器(提供机油压力信息)

l冷却液温度传感器提供(提供发动机温度信息)

l进气温度传感器(提供进气温度信息供计算空气密度等)

l空调蒸发器温度传感器(提供空调蒸发器温度信息)

l空调冷凝器温度传感器(提供空调冷凝器温度信息)

l空气流量传感器(提供空气流量信息供计算负荷等)

l节气门位置传感器(提供负荷信息、负荷范围信息、加速减速信息)

l油门踏板位置传感器(提供负荷信息、负荷范围信息、加速减速信息等)

l霍尔传感器(提供转速信息、曲轴位置和相位信息)

l感应式转速传感器(提供转速信息和曲轴位置信息)

l燃油箱液面位置传感器(提供燃油箱液面位置信息)

l爆震传感器(提供发动机机体接收到的振动信息)

l排气再循环阀阀杆位移传感器(提供排气再循环阀开度信息)

l氧传感器(提供过量空气系数l是大于1还是小于1的信息)

(2)目前柴油机电子控制系统常用的传感器有:

l增压压力传感器(提供增压压力信息)

l燃油压力传感器(提供共轨燃油压力信息)

l机油压力传感器(提供机油压力信息)

l冷却液温度传感器(提供发动机温度信息)

l燃油温度传感器(提供燃油温度信息)

l进气温度传感器(提供进气温度信息)

l排气温度传感器(提供排气口和排气管的温度信息)

l空调蒸发器温度传感器(提供空调蒸发器温度信息)

l空调冷凝器温度传感器(提供空调冷凝器温度信息)

l空气流量传感器(提供空气流量信息)

l节气门位置传感器(提供节气门位置信息用于排气再循环控制)

l转角传感器(提供分配泵轴转角信息)

l油门踏板位置传感器(提供负荷信息、负荷范围信息、加速减速信息)

l霍尔传感器(提供转速和曲轴相位信息)

l海拔高度传感器(提供海拔高度信息)

l车速传感器(提供车速信息)

l感应式转速传感器(提供转速信息和曲轴位置信息)

l燃油箱液面位置传感器(提供燃油箱液面位置信息)

l排气再循环阀阀杆位移传感器(提供排气再循环阀开度信息)

l氧传感器(提供过量空气系数l的具体数值)

l压差传感器(提供微粒物捕集器的压差信息)

lNOX传感器(提供排气后处理系统的NOX浓度信息)

2)电子控制单元

电子控制单元(ECU)接受传感器提供的各种信息并加以处理,根据处理向执行器发出指令给,对发动机实施控制。电子控制单元由微型计算机和模拟电路组成。随着发动机技术的不断发展,电子控制单元的信息处理量越来越大,现在所用的芯片已经达到32位,晶体管数量可超过700万个,匹配参数可超过6000个,针脚数目可超过150个。

3)执行器

(1)目前汽油机电子控制系统常用的执行器有:

l电动燃油泵

l电磁喷油器

l点火线圈

l各种怠速执行器

l炭罐控制阀

l排气再循环控制阀

l电动节气门(又称电子油门)

l液压回路电磁阀(用于可变气门定时控制等)

l气动回路电磁阀(用于可变进气管长度控制等)

l全可变气门电子控制执行器

l涡轮增压废气放空控制阀

l电动二次空气泵

l三效催化转化器加热执行元件

l冷却风扇

l空调压缩机电磁离合器

l发动机上的其他辅助设备

(2)目前柴油机电子控制系统常用的执行器有:

l电动输油泵

l各种燃油喷射泵

l喷油量执行器(集成于燃油喷射泵内)

l喷油提前角执行器(集成于燃油喷射泵内)

l燃油切断阀(集成于燃油喷射泵内)

l共轨高压泵

l共轨压力控制阀

l各种共轨喷油器

l单元喷嘴系统和单元泵系统的高压燃油电磁阀

l炽热塞

l排气再循环控制阀

l电动节气门(又称电子油门)

l可变气门控制执行器

l可变进气管长度执行器

l涡轮增压废气放空控制阀

l冷却风扇

l空调压缩机电磁离合器

l发动机上的其他辅助设备

一部分柴油机传感器和执行器集成于燃油喷射设备之内,因所用的柴油喷射设备而异。

3.汽油机基本的电子控制项目

1)燃油定量。这是汽油机最重要的电子控制项目。控制对象是进入发动机的空气与燃油的质量比例,由ECU根据发动机的负荷、转速和冷却液温度等参数决定。负荷就是驾车人对发动机的扭矩要求,通过吸入空气量或油门踏板位置传递给ECU。执行器是电动燃油泵和电磁喷油器。燃油定量影响汽车的动力性、燃油经济性、舒适性、排放和零部件的安全。

2)点火定时。点火定时通常用点火发生时活塞在压缩冲程上止点之前多少度曲轴转角,即点火提前角来表征,也要根据发动机的负荷、转速和冷却液温度等工况参数决定。执行器是点火线圈。点火定时同样影响汽车的动力性、燃油经济性、舒适性、排放和零部件的安全。

3)爆震控制。汽油机爆震会损坏发动机,恶化排放和燃油经济性。通过电子控制避免爆震的主要途径是减小点火提前角。所以爆震控制通过点火定时控制实施。但是过小的点火提前角会影响燃油经济性。爆震控制的目的就是使点火提前角保持在恰好不发生爆震的临界点。

4)油箱蒸发排放物控制。油箱蒸发排放物都是碳氢化合物,是有害物质,必须利用活性炭罐加以吸附,并在适当的时候用新鲜空气清洗活性炭罐。清洗气流通过进气管送入气缸燃烧。并不是任何工况下都可以进行清洗,所以要利用炭罐控制阀对清洗气流加以控制。

4.柴油机基本的电子控制项目

柴油机基本的电子控制项目就是燃油定量和喷油定时。这两者都由喷射设备根据转速、负荷和冷却液温度等信息控制。这里,负荷信息由油门踏板传感器提供。如果说汽油机可以采用,也可以不采用油门踏板位置传感器的话,那么柴油机必须采用。

5.扩展的发动机电子控制项目

1)扩展的汽油机电子控制项目

l可变进气管长度电子控制。用于提高发动机动力性。

l可变气门电子控制。用于提高发动机动力性、经济性和舒适性,降低有害物质排放。

l增压压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l排气再循环电子控制。用于降低发动机氮氧化物排放。

l二次空气电子控制。用于满足欧4以上法规对碳氢化合物和一氧化碳排放的要求。

l三效催化转化器燃油加热或电加热电子控制。用于满足欧4以上法规对排放的要求。

l停车-起动运行电子控制。用于提高发动机经济性和满足欧4以上法规对排放的要求。

l气缸封闭和气门封闭电子控制。用于提高发动机经济性,降低有害物质排放。

l喷油压力和喷油定时控制。用于汽油直喷,提高动力性和经济性,降低有害物质排放。

2)扩展的柴油机电子控制项目

l喷油压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l喷油规律电子控制。用于提高发动机动力性和经济性,降低有害物质和噪声排放。

l多次喷油电子控制。用于提高发动机动力性和经济性,降低有害物质和噪声排放。

l可变进气管长度电子控制。用于提高发动机动力性。

l可变气门电子控制。用于提高发动机动力性、经济性和舒适性,降低有害物质排放。

l增压压力电子控制。用于提高发动机动力性和经济性,降低有害物质排放。

l排气再循环电子控制。用于降低发动机氮氧化物排放。

l停车-起动运行电子控制。用于提高发动机经济性和满足欧4以上法规对排放的要求。

l气缸封闭和气门封闭电子控制。用于提高发动机经济性,降低有害物质排放。

l微粒物捕集器再生电子控制。用于降低发动机微粒物排放。

6.展望和结语

1)发动机电子控制系统是一个非常有潜力的市场。随着排放法规的逐步趋严和燃油经济性要求的逐步提高,发动机技术正在飞速发展,新的电子控制技术还在不断涌现。

2)都说世界制造业的重心正在向中国转移。汽车行业,包括汽车电子行业,也在一定程度上出现了这种趋势。但是,目前中国发动机电子控制系统的原配套产品基本上都出自外资企业。这些企业组装产品用的元件几乎都不是在中国生产的。由此我国丧失了许多GDP和就业岗位。国营和民营企业技术水平低下,只能仿造外资企业的产品,跟在外资企业后面从维修备件市场分一点残羹冷饭。有的甚至还偷偷摸摸地打着外资企业的招牌,干着生产假冒伪劣产品的勾当。这种局面应当扭转。政府应当看到,这个行业的发展将会带来巨大的GDP增长,并创造大量的就业机会。所以政府应当做出规划,对这一行业加以扶植和整顿。

第6篇:汽车电子论文范文

这其中最重要,也是最关键的挑战,就是面对在汽车上用了好几十年的12V电压,已经没有办法满足高度电子化对于电压的急迫需求。因此,除了必须要因应42V电压取代12V电压的技术问题之外,还有当汽车电源主体架构改变之后,可能要面临到的高成本问题。由此可见,未来车用电子必须要寻求电源管理最佳化解决方案,甚至是以模拟、分离、电源MOSFET晶体管…等元件,解决车内应用与整合性的技术问题。

车用电力系统日渐短缺迫切需要新元件及新设计

越来越多的汽车电子设备,或电子系统导入车内应用之后,车用电力供应逐渐呈现不足的现象,使得汽车制造厂必须开始面对功率的控制,以及功率转换技术提出更高的要求,借以推动车用功率半导体、相关封装技术,能够更进一步的往前发展,这当中所包含的领域,也不再只是功率大小,还是MOSFET(Metal-Oxide-SemiconductorFieldEffectTransister;MOSFET)晶体管、绝缘闸极晶体管(InsulatedGateBipolarTransistor;IGBT)及控制与保护回路整合模块(IntelligentPowerModule;IPM)等问题。

归纳其主原因,是因为车上所使用的功率半导体元件与一般较常用的功率半导体元件比较起来,不论是对电压或电流、开关频率、功率损失、动态特性,甚至对于元件保护程度,都是相当严苛的;再加上汽车产业对于「用电的规范,已经开始从12V提升到42V,所以对于汽车用电的要求也就更高了。另一方面,必须具备也可进行高频切换动作及电能处理,才能使车上的电子产品,更能够发挥轻薄短小的应用优势,甚至是具有车上所需的高效率、信赖度与可靠性等要求。

汽车对于用电控制管理的概念成熟之后,其应用层面也越来越多;比方说,利用电力来作为汽车的制动及转向等运用,使得汽车电力、电子技术领域开始进行革新动作,而在这场汽车电力变革的过程中,将以电子转向或集成式启动器交流发动机(IntegratedStarterAlternator;ISA)作为主要架构。因为这是一种完全可逆的电机系统,又可称为交流伺服电动机,它是一种具有自动平衡式显示设备,藉由随动系统来确实执行元件,将放大器的输出电压(控制电压)转变为机械能,驱动滑动触点,除了能够让系统持续保持在平衡状态,还可以在高效率的状态下,实现许多需要很大峰值功率的电子功能。

以实际例子来说明:比方说,当驾驶者在红灯要转为绿灯可前进时,在第一时间将发动机关闭,主要是因为当驾驶者踩下油门时,交流发电机促使汽车能够很快地加速前进,如此一来,汽车不但能够降低排放有害气体,同时还能减少油料的用量。在这一方面,还能使用多余的电力来进行的各项控制,包括:电子动力转向(EPS)、主动式悬挂系统、电子透平机辅助设备、电子阀门控制、变速空调等,因此,这对集成式启动器交流发动机是非常重要的。

从技术门槛的角度来看,汽车集成式启动器交流发动机主要的技术困难在于,大功率的电子控制系统是采取部分设计方式,在执行上有它的困难。换句话说,由于汽车集成式启动器交流发动机是一个三相逆变器/整流器,除了负责对42V负载进行供电作用,或者当整流器在进行工作时,也能为36V电池进行充电之外,还必须在发动机起动时,能以逆变器方式为起动电动机进行供电的动作。从这边就能看得出来,为了让汽车电子系统能具有稳定的供电设计,就必须先厘清大功率电子元件,在不同应用阶段应该要有不同的工作诉求。

MOSFET晶体管改造汽车电源供应系统

再来,谈谈功率型金属氧化层场效晶体管(简称为功率MOSFET晶体管),这是一种属于多载式导电的单极型电压控制元件,其特性就是:开关速度快、高频率性能好,输入阻抗高、驱动功率小、热稳定性优良、无二次击穿…等优点,可以提供给设计者一种高速度、高功率、高电压,以及高增益的元件,因此在各类型小功率开关电路的应用非常广泛。

图说:PowerMOSFET是一种功率集成元件,它是由成千上万个小型MOSFET并联而成,图中所示为N通道的MOSFET单元结构剖面示意图。(资料来源:交通大学电子电力芯片设计与DPS控制实验室)

这对汽车用电系统来说,由于功率MOSFET晶体管具有很强的电流管理能力,才能够满足集成式启动器交流发动机必须兼具最大负载的效果及要求。换句话说,就是让汽车能在低温度的环境下,使内燃机具有较强的冷起动功能。不过,大部分汽车制造厂普遍认为,车用交流发动机大概只需要10kW就已经足够,过去也许是如此;不过,这对使用42V功率系统的10kW系统,这样肯定是不够的,这是因为逆变器在最后产生适当的输出电压与马达相联之后,一方面要调节马达的频率,另一方面还要调节马达电压,所以每个开关接口至少要超过400A来通过峰值电流的能力,才能因应越来越强大的车用电力系统。

图说:MOSFET晶体管提供了一个非常稳定安全操作区域(SafeOperatingArea;SOA),因为MOSFET再顺向偏压时,不需苦于二次崩溃所产生的效应,此直流与脉波的SOA优于BJT。(资料来源:交通大学电子电力芯片设计与DPS控制实验室)

借以降低电压功耗设计提升汽车发电机工作效率

要如何提高汽车发电机工作效率?若从降低正向电压来思考,这或许不失为一个方法,可以藉由降低寄生电感来减少切换时产生的电压尖脉冲。由于元件对于封装电流感度很灵敏,因此很多人都认为模块设计是最好的方式。不过,因为一般的模块封装设计方式,将影响到通过电流的能力。值得注意的一点是,虽然汽车发动机在「热车阶段,不需要很大的电流支持,但是功率MOSFET晶体管的限定电流会因为温度上升而有所下降,因此交流发动机的功率电路部分温度,必须保持在比较低温的状态,才能维持稳定的电压。另外,为了尽量提高额定电流,必须使用RDS(ON)较低的MOSFET晶体管,才得以满足车用电力需求。

改进的方式则能够以先进的封装技术,借以提高通过电流的能力,或者是使用分离元件等技术来达成,同时还能够尽量降低寄生电感(ParasiticInductance),良好值约为10uH20uH之间。除此之外,在电流切换过程还有更进一步的要求;简单说,就是要针对所使用的开关频率(一般为数千Hertz)进行最佳化动作,使逆变器或整流器能够在很高频率或环境温度高达150℃的情况下,还能提供全部的功率。

如何以特殊设计方式解决车上电流需求

在多种类型的汽车中,包括:汽车、大客车、卡车…等,最主要的动力来源大都是来自于内燃机系统来供应,它的模块设计大都是由半桥电路所组成,让车上的元件能够控制或驱动半桥电路中的高/低阶开关设备。另外,还能控制该桥次级端上的同步整流器MOSFET,使具有两个功率MOSFET晶体管芯片(每个为150mm),其电源母线不会受到任何电源装置发展故障的时候而受到影响,还能在42V的电源母在线,对600A的电流进行切换动作,藉此完成匹配性的设计。

其次,则因为汽车内部的温度或者是电压、电流过大容易造成温差的问题,易使车内电子设备中的材料受到影响,导致设备产生压应力或张应力。因此,为了减少汽车电子设备的热应力问题,通常会将MOSFET晶体管芯片安置在陶瓷基片上,这是因为陶瓷基片的温度系数与矽的温度系数能够完全匹配,若采用较为先进的导线压焊技术,特殊的架构不但能改善热源分布,进而加强整个模块系统的低热组性能,使模块能承受汽车所处的多变环境与电压功率起伏。

再来,就是如何降低杂散电感,使杂散电感低于8nH,这对消除尖峰电压是非常重要的。在一般设计上,为了降低电磁干扰(EMI)带来的影响,包括:栅极驱动电路、感测电路或保护电路,都装在一块很小的印刷电路板(PCB)上,而后将印刷电路板盖在模块上,使驱动电路能够以20kHz频率之下,驱动这些MOSFETT晶体管,其中涉及的参数感测和转换,都是在这块电路板上进行。因此,除了可以降低基板及散热器之间的抗热阻效能之外,在与传统模块相比,还能够使内部杂散电感降低60%以上,使设计及安装过程更为简单。

大功率MOSFET晶体管体现汽车电动转向系统

针对汽车采用大功率逆变器/整流器等元件技术,虽然说这是最理想电路设计和实施。不过,截至目前各界还没能够有个最后的定论,主要的问题还持续存在著。不过,42V的集成式交流发动机将是未来电动转向(EPS)汽车系统的关键所在,相信这点是不容质疑。不过,由于电流能力又会因为受到分离式的MOSFET晶体管塑料封装技术,而有所限制。这些限制对已经在汽车市场逐渐成熟的电动转向系统来说,将促使设计人员,将不同分离元件并联起来一同使用,或者采取模块的方式,才能提高分离封装通过电流的能力,借以降低中档及低档电动转向的系统成本。

大多数汽车系统中所使用的模块,目前大部分都都是采用绝缘金属基片(IMST)的设计方式。而在陶瓷基片方面,则是采用直接覆铜(DBC)的方式,并在厚膜基片及电流较小的情况下,才会改印刷电路板的模块设计方式。最后,在功率逆变器封装方面,对于中等功率和低功率,一个新的构想是将芯片封装在引在线,这时没有单独的基片,MOSFET晶体管可直接安装在同一个模塑引在线,用引线架构形成连接端子,进行外部连接到模块的外壳上,便能达到较佳的电源管理。

图说:因应汽车上的电源朝向低损耗化、小型化和超薄化需求,实现了优于传统系列的超低导通电阻特性和高耐击穿性依靠低导通电阻特性,并可以降低功耗,因而最适合用作电机驱动器、点滴器、DC/DC变换器等的开关元件。(资料来源:东芝半导体)

结论

第7篇:汽车电子论文范文

Keywords:automotiveelectronics,reconfigurablecomputing,reconfigurable-logicdevice,dynamicreconfigurabletechnology.

1引言

汽车历经百余年的发展,其机械结构已经达到了近乎完美的程度,业界对汽车机械性能的改善已经很难再有更大的提升空间。为了提高汽车的可靠性、功能性和舒适性,电子技术在汽车上被广泛应用。电子技术与机械结构的结合,被认为是当前汽车技术发展过程中的一次“革命”。

汽车电子技术是汽车设计中的核心技术。汽车电子化的程度是衡量一个国家汽车工业发展水平的重要标志。汽车的设计者利用汽车电子技术开发新的车型,把它作为改善和提高汽车整体水平所采用的最重要的技术方案;汽车制造商则通过加快汽车电子化的进程,把增加汽车电子装置的数量等措施作为汽车的新卖点和夺取未来汽车市场的最重要手段。目前在国际上的中、高档轿车的设计中,汽车电子产品平均已经占到了汽车制造成本的27。这个数字还在不断创造新高。据英飞凌(Infineon)公司预测,到2010年用于轿车上的汽车电子装置的支出平均将占到整车制造成本的50。而在我国,每辆汽车的平均汽车电子设备应用比例要比国际水平低5.5倍[1>。汽车电子技术的发展与应用是目前我国汽车产业进步所面临的一大契机和挑战。

可重构计算技术成形于上个世纪九十年代中期[2>。如图1所示,其主要思想是利用可重构逻辑器件(如FPGA)的可重构特性,通过不同的器件配置文件来改变器件实现的功能,从而能够以硬件的性能灵活实现多种应用。可重构计算技术避免了微处理器计算模式因为取指、译码等步骤导致的性能损失,同时也消除了专用集成电路(ASIC)计算模式因为前期设计制造的复杂过程带来的高代价和不可重用等缺陷。可重构计算技术目前已经应用在了很多领域,如目标匹配、大数值运算等等,都取得了非常好的效果。

图1:微处理器、可重构计算、专用集成电路等三种计算模式的比较

汽车电子产品有着很多特殊的需求,而可重构计算作为一项新兴的技术,具有的高性能、高灵活性、低开发周期、低成本等特征非常适合于汽车电子领域的应用。

2汽车电子领域的需求分析

从1950年美国通用公司开创了将半导体技术应用于汽车制造领域的先河—将晶体管收音机安装在汽车上开始,汽车电子产业历经50多年的发展,目前已经形成了功能多样化、技术一体化、系统集成化、通信网络化、技术标准化等技术特征。当前,汽车电子技术已经进入了优化人-汽车-环境的整体关系的研究阶段。汽车在满足安全、节能、环保的同时,将进一步满足人们生活的需要,向舒适、便利、高效、数字化、信息化和智能化方向发展。

汽车电子技术主要有两个大的应用领域:一个是汽车电子控制系统,另一个是车载汽车电子装置[3>。其中,汽车电子控制系统是机械和电子相结合的汽车电子产品,它的工作状况会直接影响到汽车的性能。而车载汽车电子装置则是可以在汽车环境下独立使用的电子装置,它的性能好坏并不影响汽车的性能。相比之下,汽车电子控制系统的设计与开发涉及到了机械和电子两个学科领域,这两部分的研发要协同进行,所以整个过程比较复杂。车载电子装置是IT行业中的应用在汽车领域的扩展,种类较多,例如遥控中央门锁、车载电话、后座娱乐系统、GPS导航系统、车载计算机等等。这些产品因和整车的性能无关,可以独立地进行开发,所以和汽车电子控制系统相比,在开发的环节上比较简单。

汽车电子领域对电子技术发展的主要需求有如下几个方面:

·性能高。目前在汽车电子产品中对性能要求最高的部分是车内的信息娱乐系统。一个信息娱乐系统可能包括多通道音频系统、DVD播放器、GPS导航系统以及免提移动电话等等。这些子系统中涉及到的功能(如视频处理等操作)需要强大的信号处理能力,对性能要求极高。另外,随着汽车主动安全理念的深入人心,新的汽车安全系统开始采用图像、视频和雷达处理,同时引擎和刹车控制系统也将采用更复杂的计算控制策略,计算量庞大的实时运算将在应付突发事件的时候发挥重要作用。这也给相关的汽车电子产品的处理能力提出了挑战。

·灵活性强。汽车的设计者和制造商都面临的一个严峻问题是必须保证汽车电子设备的寿命与汽车的寿命相匹配。汽车电子设备的生命周期很短,不断出现的新兴的汽车标准以及标准本身的不断变化进一步导致选择标准时必须考虑到其寿命、灵活性以及被接受的广泛程度。为了保证汽车电子产品能够紧跟汽车产业的发展,就要求汽车电子产品具有相当的灵活性使其能够根据需求做适时的改动。在当前各种新的技术标准层出不穷,而业界又缺乏占据有绝对优势的标准的时候,对汽车电子技术的这一需求显得尤其重要。

·可靠性高。汽车作为一类特殊的产品,经常会工作在恶劣的环境下,这对应用在其中的电子产品的可靠性提出了严格要求。电子产品的精密性使它成为影响整车可靠性、安全性的重要因素。特别是在汽车电子控制系统中,高温的工作环境往往会给电子产品带来损伤,这极大地增加了整车的危险性。这就要求电子产品能够抵御住恶劣工作环境的干扰,同时具有适当的容错能力,能够在受到部分损伤的时候将其造成的影响降到最低。

·开发时间短。尽量缩短新车型新产品的研发时间是汽车设计者和制造商追求的目标之一。图2显示出在汽车电子产品方面的新技术研发周期是非常短的。这就要求汽车电子技术的研发需要有方便快捷的开发平台,并且在技术研发上有延续性和可复用性,尽量缩短开发时间。特别是在车载汽车电子装置的研发中,因为它们与汽车本身的性能无关,所以更可以不受到整车其它部分研发进展的约束,需要在尽量短的时间内开发出适合需要的产品。

·成本低。汽车产业对价格的影响十分敏感。价格是决定汽车产品竞争力的重要因素之一。选用合适的技术、材料和器件对汽车工业的发展起着举足轻重的作用。随着汽车电子产品在整车成本中所占份额的增加,尽量降低这部分电子产品的成本是一个极为关键的问题。

图2:汽车领域项目创新周期和开发时间示意图[4>

以上我们讨论了在汽车电子领域对电子产品技术的一些基本需求。除此之外汽车电子产品还需要尽量降低能耗以及减少占据的空间等。

3可重构计算技术在汽车电子领域的应用前景

在当前的汽车电子产品中,大量使用了微处理器和专用集成电路实现关键功能。可重构计算技术的出现为汽车电子产品提供了另一个高效灵活的选择。

可重构计算技术的发展主要依赖于可重构逻辑器件技术和动态重构技术的发展。随着半导体技术的进步,目前商用的可重构逻辑器件在单片上已经可以集成数以百万计的基本逻辑门单元和其它各种复杂的计算逻辑,甚至有的高端器件上已经集成了多个微处理器核进一步加强器件的计算能力[5>。这为原来只是用于实现简单的胶合逻辑和原形系统设计的可重构逻辑器件能够逐步占领计算系统的核心地位提供了基本支持。动态重构是当前可重构计算技术的研究热点之一,它是指在不影响当前系统正常运行的前提下,将可重构逻辑器件上的部分资源配置为新的功能,从而提高资源利用率和增加系统性能。动态重构是可重构技术的发展方向,目前主要集中在如何减少器件重构开销、优化资源调度等方面的研究上。

与传统的采用微处理器和专用集成电路的汽车电子产品相比较,利用可重构计算技术的汽车电子产品具有以下优点:

·可重构计算技术能够高效实现特定功能。可重构逻辑器件上都是硬连线逻辑,它是通过改变器件的配置来改变功能的。器件的配置信息一旦被加载,整个系统就可以以硬件的性能大大加快功能的实现。汽车电子产品中那些计算量庞大的功能,典型的例子如视频处理,其核心算法是定点数据上的算术密集型信号处理操作。经过研究发现,这些操作是适合在可重构逻辑器件上高效实现的。将可重构逻辑器件用于加速核心算法的执行,再补充另外的微处理器与之耦合用于执行辅助功能,如输入、输出等操作,是很好的可重构计算系统的构建方式。目前已经有多个利用可重构计算技术的高效的视频处理系统,并已经在汽车电子领域广泛使用[6>。

·可重构计算技术能够通过动态改变器件配置来灵活满足多种功能需求。动态可重构特性使得同一可重构逻辑器件能够满足不同的设计需求,这一点是传统的专用集成电路计算模式不能够达到的。汽车电子产品不同于一般的电子产品,它受到了很多因素的束缚。例如车型的限制,采用相同基本设计的同一款汽车会有经济型、标准型和豪华型等不同型号。这就要求针对不同的型号都要有相应的电子产品支持。为每个型号的汽车都分别设计专门的计算核心单元和电路的代价是高昂的,可重构计算技术就可以消除这个障碍。汽车设计者可以仅开发出一款运用了可重构逻辑器件的原型系统,然后根据不同的车型要求灵活地将可重构逻辑器件配置为相应的功能。另外,由于在业界缺少占有绝对优势的标准,采用何种技术标准也是设计者必须解决的难题。例如,当前车上总线就有LIN、CAN、MOST等多种标准共存,不同标准的技术参数都有很大差异,为了使这些总线标准间不发生冲突,就可以考虑利用可重构逻辑器件作为各标准间的桥接逻辑。

·可重构计算技术适合恶劣工作环境下的应用。当前的可重构计算技术已经经受住了很多极端工作环境的考验,例如NASA的“勇气”号和“机遇”号火星车上就使用了大量可重构逻辑器件。在汽车应用领域,温度会给汽车电子产品带来最大的损伤。业界最高的节点温度是150摄氏度,而用于恶劣环境下的可重构逻辑器件的特殊封装足够保证系统在此情况下的正常运行。利用可重构逻辑器件的另一个优势是不需要微处理器必需的散热系统,大大减少了电子产品占据的空间。另外可重构逻辑器件具有的大量的冗余可重构逻辑资源,使得当器件的某些区域被破坏的时候,系统可以使用动态重构技术自动避开这些区域同时利用周边的其它逻辑资源组合替代该区域被破坏的功能。

·可重构计算技术具有强大的技术支持来加速产品开发。不同于专用集成电路的设计,可重构计算技术不需要大量的NRE(Non-RecurringEngineering)工作。器件厂商会配合不同的可重构逻辑器件提供相应的开发工具和流程,同时还会提供大量参考设计和IP核以减少设计者的重复劳动并提高设计的可靠性。还有很多技术已经成熟的仿真工具和验证工具可以在设计的各个阶段用于保证设计的正确性,减少了出错返工导致的时间浪费。

·可重构计算技术的使用能够大大降低系统成本。系统成本的降低主要体现在两个部分:一个是在设计过程中,另一个是在运行过程中。目前的车用可重构逻辑器件的单价最低已经降至1.5美元,而且利用它实现应用的开发成本又远远低于专用集成电路。可重构逻辑器件的灵活性使得它不必像专用集成电路一样,一个细微的修改就会导致整个电路的重新设计与制作。同时,在系统运行的时候经过分析可以确定有的功能不会同时被使用,那么设计者就可以考虑利用动态重构技术在不同的需求时段里分别实现这两个功能,做到“一片多用”,节省了资源、空间和成本。

从上面的讨论可以看出,将可重构计算技术应用于汽车电子领域有着很大的优势,是切实可行的技术方案。当前,业界也已经注意到了可重构计算技术的应用前景。

4可重构计算技术在汽车电子领域面临的问题

虽然可重构计算技术当前已经在多个领域取得了长足进展,但是在汽车电子领域具体应用的时候,还会面临很多问题。下面列举几个最典型的问题:

·可重构逻辑器件的选型。目前生产商用可重构逻辑器件的几大厂商:Xilinx,Actel,Altera和Lattice等都已经开始关注汽车电子领域并陆续有产品推出。这些产品的硬件结构、处理能力和市场价格等都各不相同。如何针对应用进行合适的器件选型是一个非常重要的问题。当前的可重构逻辑器件基本都是基于SRAM、Flash或者反熔丝技术。这三种技术各有千秋,其中主流的基于SRAM的器件目前已经具有非常强大的处理能力;基于Flash的器件较少但是性价比较高;基于反熔丝技术的器件不具有多次重构的能力但是可靠性较好。所以针对不同的应用场合进行器件选型需要在对应用和器件信息都非常熟悉的基础上进行。

·可重构逻辑器件上应用的实现。虽然目前已经有多种方法简化了利用可重构计算技术实现应用的开发过程。但是用硬件描述语言或者硬件原理图来设计由可重构逻辑器件执行的应用程序对于大部分应用开发者来说还是陌生和困难的。为了排除软件设计者在软件算法的硬件化实现中碰到的困难,已经有多种类高级语言的硬件描述语言被开发出来,但是这些技术还并不成熟。由EDA软件厂商推出的各种硬件应用设计软件,也还存在着一些局限和缺陷,而且不能够完全发挥出可重构计算技术的威力。这就要求汽车电子产品的设计者务必掌握利用可重构计算技术的设计思想并将其渗透到产品的设计中去。

·可重构逻辑器件的可靠性保证。不同于传统的微处理器和专用集成电路计算模式,可重构逻辑器件是通过改变器件配置来改变功能的。特别是基于SRAM的器件,是由存储在器件上的配置信息来控制器件中各逻辑单元间的硬连线的。因此通过配置端口输入其它的配置信息就可能改变甚至损坏器件的功能,而在以前则不会出现类似情况。为了防范这些问题,就需要在关键电子设备上采用基于反熔丝技术的只能一次重构的可重构逻辑器件或者使用对配置信息加密等方法。

·动态重构技术的研发与使用。虽然动态重构技术在理论上已经有了很大发展,并且有很多原型系统已经被开发。但是由于技术条件限制,目前缺乏具有普适性的研发方法,真正使用在产品上的技术也还有一些不足。这需要业界和学术界协作,针对汽车电子领域的关键应用进行攻关,尽量多地将当前已经成熟的动态重构技术应用在汽车电子产品上,带来高效率、高资源利用率等优势。同时开展对动态重构技术的方法学的研究,为将动态重构技术更广泛地应用在电子产品领域提供技术保障。

第8篇:汽车电子论文范文

关键词:电子汽车衡;称重;维护

随着国民经济和科学技术的飞跃发展,电子汽车衡这种快速、准确、自动称量可靠性高的计量器具,越来越多地广泛应用于企业、商贸港口、仓储等领域,在企业生产经营中的贸易结算,物料管理等方面起到了重要的作用。电子汽车衡多数安装于户外,为露天使用,因电子汽车衡所用的称重传感器、匹配器等电子元器件都安装于秤体基础内,容易受到灰尘、潮气、雷击和不法分子作弊等的影响,引起称重误差,严重时会损坏传感器和电子元器件,甚至造成电子汽车衡瘫痪。笔者结合工作实践,从做好电子汽车衡的日常防护的角度,就提高电子汽车衡的工作效率进行了一些探讨。

1电子汽车衡的构成和工作原理

电子汽车衡系统标准配置由秤台、称重传感器和称重显示部分,包括称重显示仪表,接线盒和信号电缆三大基本单元组成,根据用户不同需要可选购其它外接设备以组成各种配置,包括计算机、打印机、大屏幕显示器、电源浪涌保护器、稳定电源及多功能电源插座。

承载货车进入秤台,在物体重力作用下,使称重传感器弹性体产生变形,粘贴于弹性体上后应变计桥路阻抗失去平衡,输出与重量数值成比例的信号,经传感器内部的放大器,A/D转换器,微处理等电子原件进行相应的数据。

2电子汽车衡维护的基本方法和要求

电子汽车衡出现故障,需要进行分析、检查,调修最后报请检定部门,检定合格后才能投入使用。这是一项较复杂细致的工作,既要有理论知识,又要有实践技能。一是在弄通原理基础上,可以通过看、闻、听、触的直观检查法、分割法、置换法、电阻电压测量法等行之有效的方法来逐段检查分析判断,在这里分析的思路是最重要的,因为故障实例是多种多样的。但是只要检修思路对头,就可触类旁通、举一反三。二是记住电路中各主要测试点的电阻值、电压值,对重要的元件开路或短路会产生什么后果做到心中有数。三是要熟练掌握常用测试仪表的使用以及元件好坏的判别方法,目前电子汽车衡的称重显示仪表基本上采用中规模集成电路,在弄通整个原理的基础上,要对各集成块的性能,技术参数和引脚定义有足够的了解,这样有助于提高排除故障的能力。四是处理故障也要进行小结和反思,积累经验和教训,提高维修数率。

3电子汽车衡维护的重点及措施

3.1防称重误差,提高设备的精确度

造成电子汽车衡称重误差的因素很多,诸如:电子汽车衡秤体水平限位器脱落卡住、传感器钢球偏离中心位置、承重台与底座或地基之间有异物顶住、秤台与秤边护坡相靠和传感器、接线盒元器件损坏等故障。避免误差主要做好三个方面的工作。首先,电子汽车衡安装完毕后,要先用接近该汽车衡最大称量的车辆往返多次在秤台上通过,并在秤台上采用急刹车的方式,使秤台各部位的残余应力释放出来,确保称重传感器的钢球位于钢球碗及承重台钢球碗之间,使传感器与承重台垂直受力,避免了侧向受力,影响称重数值的准确性,再锁紧传感器底座固定螺栓,传感器固定螺栓要用黄油涂抹并包裹严密,以防螺栓锈蚀后难以拆卸更换传感器。其次,电子汽车衡在使用一段时间后,要用撬棍检查一下秤台是否晃动灵活,秤体与护坡之间(或秤坑之间)的缝隙里有无石子等异物顶住承重台,导致重量未能完全加在传感器上产生偏差,以及避免秤台与坡道(或秤坑)相靠,产生称重数值误差。第三,加强衡器的防尘、防水处理,可采取在秤台面的两节秤体连接处,在钢质秤面板(或水泥秤面板)加专用高强度、抗老化橡胶密封条,在密封条与秤体之间施密封胶的方案,以达到长期防尘、防水的效果。另外,安装在秤体里的接线盒也易受雨水和潮气的侵蚀,接线盒里的线路板元器件遇到潮气容易造成短路,元器件损坏。对此,一方面可以选用一个密封性好的盒体,另一方面还可以与电子汽车衡厂家专业人员一同设计,在不影响秤体的情况下,加长各传输线(各传输线之间要做好屏蔽保护),把传输线通过镀锌钢管埋在地下引入室内,这种把接线盒移入室内的办法,可彻底的防止因接线盒气密性不好带来的器件间的短路故障的发生。对于有基础坑的电子汽车衡来说,要加强防积水的措施,基础坑内凿排水沟槽,要备置抽水机,在连续降雨时要立即拔掉电源,避免信号线、电源线和传感器浸水后短路,及时抽掉基坑积水,疏通排水沟,以保证基坑干燥后仪表通电正常使用。3.2防雷雨损坏,提高设备的安全性

在春天梅雨季节以及夏季雷雨多的时候,露天使用的电子汽车衡和放在室内的称重仪表都深受其害,每年都有电子汽车衡遭雷击的报修事件发生,雷电的破坏有直击雷和感应雷之分。电子汽车衡安装在露天的秤体易遭直击雷破坏,而安装在室内的称重仪表多数遭感应雷破坏,当雷电直接击在秤体上,造成称重传感器和接线盒内元器件均被击毁,感应雷通过导线、电源线以及信号侵入磅房内,致使称重仪表损坏。雷雨天气拔掉电子汽车衡的电源插头不失为一种应急措施,但是会影响到正常工作运作很不方便。采取有效防雷措施可以极大的提高工作效率,可采取最直接的方式在秤体附近安装避雷针、接闪器等避雷设置;电子汽车衡秤体部分要求每个称重传感器都要设接地(接地线一端与该称重传感器附近秤体相连,另一端与该秤重传感器下地桩相连),对于安装在基础内的接线盒,其接地线也必须与秤体有效连通,整个秤体接地线与秤体附近的接地桩相连形成一个接地网;安装于室内的称重仪表则要求对引入磅房内的电源线和信号线要有屏蔽层保护,并且屏蔽层也要有效接地,磅房内电源线路应加装电源浪涌保护器、空气开关等保护措施,称重仪表的接地线应与磅房的接地桩相连,达到抗干扰防雷击的双重作用。防雷措施完成后,应定期检查秤体和磅房各地线连接点是否接触完好,防止各连接点经过较长时间后,产生氧化、松动、锈蚀等情况的发生,防患于未然。

3.3防不法作弊,提高设备的可靠性

电子汽车衡由于其结构因素和用户在防范管理方面存在漏洞,容易被不法分子在电子汽车衡上采取一些技术措施进行作弊,使企业蒙受经济损失。防止作弊行为,应重点采取四点防护措施:一是对于无基坑的电子汽车衡,应在离秤台两侧约2cm处分别加设防护墙,防护墙高度与秤台面相平,其目的既消除人为作弊空间,又可以防止大风卷入汽车衡基础内对准确计量的影响;二是对有基坑及浅基坑的电子汽车衡,在基坑处传感器操作监视孔上应加盖固定铁板并加锁;三是制定司磅员岗位职责,对称重系统软件设置权限控制,司磅员经培训后持证上岗操作,配备保卫人员加强夜间巡视检查工作;四是要严格按照计量器具检定周期申请检定,在使用过程中发现称重偏差太大或仪表显示异常时,要提高警惕,及时通知计量检定部门进行检查测试,防止不法分子有可乘之机。

参考文献

[1]荆大永.全电子汽车衡的故障分析和处理[J].计量技术,2004,(2).