公务员期刊网 精选范文 可降解塑料的好处范文

可降解塑料的好处精选(九篇)

可降解塑料的好处

第1篇:可降解塑料的好处范文

关键词:可降解塑料 光降解 生物降解 光-生物降解塑料

引言

塑料这种材料已经广泛应用到国民经济各部门以及人民日常生活等各个领域。但是塑料这种材料在自然环境中难以降解,随着其用途的扩大,带来产量的增加,因此导致了严重的环境污染问题。传统的处理技术(焚烧、掩埋等)存在一定的缺陷,回收利用也存在着局限性,而且这些处理方式都不能从根本上解决问题。因此开发可降解塑料来解决废弃物难以处理的问题是一个重要的课题。

一、可降解塑料的定义

可降解塑料虽然至今在世界上没有统一的标准化定义,但是美国材料试验协会(ASTM)在通过研究相关术语的标准对其定义:在特定的环境下,其化学机构发生明显变化,并用标准的测试方法能测定其物质性能变化的塑料。这个定义基本上与降解和裂化的定义相一致。

二、降解塑料的分类及降解机理

1.光降解塑料

光降解塑料包括合成型也叫共聚型、添加型两种,该种塑料在日照下会受到光氧作用并吸收光能,光能主要为紫外光能,因此而发生自由基氧化链反应以及光引发断链反应,从而降解成对环境安全无害的低分子量化合物。

其中通过共聚反应在高分子主链引入感光基因而得到光降解特性的为合成型降解塑料,这种塑料通过调节感光基因含量来控制其光降解活性。目前某些可用于包装袋、容器、农膜等范围的乙烯―CO共聚物和乙烯―乙烯酮共聚物已实现工业化。通过将光敏助剂添加到高分子材料中而制造成的为添加型高分子光降解材料,这种类型的塑料其降解原理为光敏剂会受到紫外光的诱导,将它添加到塑料中可以引发并加速塑料的光氧化。光敏剂在光的作用下可离解成为具有活性的自由基,因此该类型塑料的光降解特性是由光敏剂的种类、用量和组成决定的。

降解塑料向深层发展的一个标准是可控光降解塑料,它在具备光降解的特性的同时,还应该具备特定的光降解行为。它被要求能控制诱导期内力学性能,并保持该性能在80%以上。因此要达到这个标准就必须对光敏剂的使用有更高的要求,在光敏剂可控制光氧化曲线的同时,也要注重控制光氧化的时间。

2.生物降解塑料

在自然界中受细菌、霉菌等微生物作用而降解的塑料为微生物降解塑料,该类型塑料的种类有部分生物降解型、完全生物降解型、化学合成型、天然高分子型、掺混型、微生物合成型和转基因生物生产型。

在微生物作用下能完全分解成CO2和H2O的为最理想的生物降解塑料,通过研究可发现,酶在塑料水解、氧化的过程中发挥着极其重要的作用,是生物降解的实质。酶会导致主链断裂,从而相应的降低相对分子质量,使其失去机械性能,以便于微生物对其更容易的摄取。

生物降解必须满足三个条件,经历三个阶段。

条件为:微生物(真菌、细菌、放射菌)的存在。

拥有氧气,并要求一定的湿度,还要有无机物培养基的存在。

适宜的温度范围为20~60摄氏度,PH范围在5~8之间。

三个阶段为:

初级生物降解――在微生物作用下,塑料等化合物的分子化结构发生变化,使原材料分子的完整性被破坏。

环境容许的生物降解――原材料中的毒性可以被去除,以及人们所不希望的特性的降解作用同样可以除去。

最终生物降解――塑料通过生物降解,被同化成微生物的一部分。生物降解过程中主要的三种物理化学反应:

物理作用――微生物细胞生长在对塑料的机械破坏中起着重要作用。

化学作用――微生物在破坏中会产生某些化学物质,起到化学作用。

酶直接作用――本质为蛋白质的酶,含有20多种氨基酸,它们能降低被吸附塑料分子和氧分子的反应活化能,以此来加速塑料的生物分解。

3.光-生物降解塑料

顾名思义,这种塑料兼具生物和光双重降解功能,使得其达到完全降解的目的。光降解高分子材料有两种:淀粉型和非淀粉型,其中较为普遍的是采用高分子的天然淀粉作为生物降解助剂。这种在高分子材料中同时添加自动氧化剂、光敏剂以及生物降解助剂等作为配置方法,来达到光-生物降解的复合效果。含有多种化学物质而形成的非淀粉型光和生物降解体系已广泛应用于吹塑制成可控降解地膜,在应用过程中发现,该薄膜不仅具备保温、保湿和力学性能,还具备可控性好、诱导期稳定等优点。

目前,光-生物降解塑料处理工艺的关键是淀粉的细化很热结构水的脱除,处理设备复杂,因此产品的质量难以控制。由于其设备的投资需要的资金大,复杂的工艺以及缺少该方面的人才技术人员,导致其市场化、产业化的发展步履维艰。

总结:

近年来在国内外,可降解塑料的开发与研究已取得了一定进展,但是其技术有待进一步优化,工艺需要不断完善,市场化的推广也要加大力度,采取有效措施降低成本、拓宽用途、提高性能等。更要注意的是降解塑料在世界上没有统一的定义,也缺乏确切的评价,识别标志、产品检测没有完整的体系导致市场混乱。

从长远发展的角度看,当代人们的环保意识不断加强,降解塑料的市场化是一种必然的趋势。当前相对较成熟的是光降解塑料技术,生物降解技术由于其处在发展阶段,因此是开发的热点,光-生物降解技术则是主要开发方向之一。

参考文献:

[1]裴晓林;应用基因组改组技术选育L-乳酸高产菌株及其发酵工艺研究[D];吉林大学;2007年.

第2篇:可降解塑料的好处范文

(征求意见稿)

 

为全面贯彻落实国家和省有关加强塑料污染治理的决策部署,进一步抓好我市塑料污染治理,建立健全塑料污染治理长效机制,根据《关于进一步加强塑料污染治理的意见》(发改环资〔2020〕80号,以下简称《意见》)和省《关于进一步加强塑料污染治理的实施办法》(浙发改环资〔2020〕307号)等文件精神,结合我市实际,制定本办法。

一、总体要求                

(一)指导思想        

坚持以生态文明思想为指导,全力践行“绿水青山就是金山银山”发展理念,全面贯彻落实国家和省推进塑料污染治理的决策部署,深入推进“垃圾革命”试点及“无废城市”创建,聚焦塑料制品“流通、消费、回收、处置”等重点环节,突出依法治理,强化源头管控、落实减量治污、规范提升发展,有力有序有效抓实塑料污染治理,为建设高质量美丽金华和浙中大花园提供坚实支撑。

(二)主要目标

1.到2020年底,率先在县(市、区)建成区、部分领域禁止、限制部分塑料制品的生产、销售和使用,废旧农膜回收处理率达到90%以上,全市塑料垃圾实现“ 零填埋”“零增长”。

2.到2021年底,50%以上县(市、区)完成“无废城市”建设,全市建成“无废城市”,塑料污染治理基本实现全程管控,基本完成塑料制品生产、流通、消费、回收处置等环节的制度建立,相关塑料替代产品开发应用水平有明显提升。

3.到2022年底,全域建成“无废城市”和“垃圾革命”示范市,全面禁止销售含塑料微珠化妆品,全市邮政快递网点禁止使用不可降解塑料包装袋、一次性塑料编织袋,一次性塑料制品消费量明显减少,全面推广塑料替代产品,在塑料污染问题突出领域和电商、快递、外卖等新兴领域,形成一批可复制推广的塑料减量和绿色物流模式。

4.到2023年底,全面巩固提升塑料污染治理常态长效机制,城乡一体的多元共治体系基本形成,塑料污染综合治理成效显著,打造塑料污染综合治理金华样本。

二、主要任务

(一)加强源头管控治理

1.抓实禁止生产销售塑料内容实施。强化执法监督,落实“禁止生产和销售厚度小于0.025毫米的超薄塑料购物袋、厚度小于0.01毫米的聚乙烯农用地膜。禁止以医疗废物为原料制造塑料制品。全面禁止废塑料进口”。到2020年底,禁止生产和销售一次性发泡塑料餐具、一次性塑料棉签,全面禁止生产含塑料微珠的日化产品。禁止审批、核准、备案上述禁限范围内的塑料制品项目(含新建、改、扩建)(市发改委、市市场监管局、市经信局、市卫健委、市生态环境局、市农业农村局、金华海关和县(市、区)人民政府)

2.推进不可降解塑料袋禁限使用。加强对不可降解塑料袋使用监管,开展不可降解塑料袋禁限使用专项整治行动。到2020年底,建制镇建成区及参照管理区域所有商场、超市、书店、药店等重点场所以及餐饮外卖打包服务和组织各类展会活动禁止使用不可降解塑料袋,集贸市场规范和限制使用不可降解塑料袋;到2021年底,实施范围扩大到全市城乡,全域禁止使用不可降解塑料袋。(市委宣传部、市商务局、市文旅局、市市场监管局和县(市、区)人民政府)

3.组织一次性塑料制(用)品专项整治。加强餐饮、酒店等重点领域一次性塑料用品使用监管,全市党政机关、国有企事业单位、学校率先停止使用不可降解一次性塑料餐(杯)具。到2020年底,全市建制镇范围餐饮行业禁止使用不可降解一次性塑料吸管,餐饮堂食服务禁止使用不可降解一次性塑料餐具。在全市星级宾馆、酒店先行推广不主动提供一次性塑料用品,并逐步延伸至其他宾馆、酒店、民宿。到2021年底,全市城乡禁止使用不可降解一次性塑料餐具、吸管等制品,所有宾馆、酒店、民宿等场所不主动提供一次性塑料用品,通过设置自助购买机、提供续充型洗洁剂等方式提供相关服务。(市市场监管局、市商务局、市文旅局、市农业农村局和县(市、区)人民政府)

4.推动“绿色快递”转型升级。以“绿色、减量、可循环”为目标,开展快递业过度包装专项整治,制定并实施减量实施方案。2021年6月前,使用“瘦身胶带”封装比例达到90%,对于已经完成包装的电商快件快递企业不再二次包装比例达到70%,循环中转袋使用率达到90%,全市50%的快递营业网点设置快递绿色包装回收装置,符合标准的包装材料应用比例达到90%,一联电子运单使用率达到30%。电商企业、邮政快递企业优先采购经过快递包装绿色产品认证的包装产品,推广使用环保胶带、包装物和填充物等,逐步减少不可降解塑料包装袋、胶带和一次性塑料编织袋的使用。到2022年底,全市邮政快递网点禁止使用不可降解塑料包装袋、一次性塑料编织袋,降低不可降解塑料胶带使用量。到2023年底,全市邮政快递网点禁止使用不可降解塑料胶带。(市邮政管理局、市商务局、市建设局和县(市、区)人民政府)

5.深化“绿色亚运”行动联动。按照“绿色、智能、节俭、文明”办赛理念,根据2022年亚运城市行动计划,普及绿色亚运知识、宣传绿色亚运理念,倡导绿色生活方式。制定并全面实施绿色亚运行动方案,设计并推广绿色亚运产品识别标志,推出系列绿色产品。在场馆、亚运村、酒店等领域,全面推广可重复使用的环保布袋、纸袋等替代产品,不主动提供一次性塑料制品,深入推进垃圾分类,建立健全大型赛事活动产废回收处置体系。(市体育局、市文旅局、市商务局、市市场监管局和婺城区、开发区人民政府)

6.创新模式优化新业态治理。加强对电商、外卖等新兴业态塑料制品使用监管,开展过度包装专项治理,制定并实施一次性塑料制品减量方案,明确新业态企业绿色管理主体责任,推动企业运营全链条绿色管理。以连锁商超、大型集贸市场、物流仓储、电商快递为重点,推动企业通过设备租赁、融资租赁等方式,积极推广可循环、可折叠包装产品和物流配送器具。鼓励企业采用股权合作、共同注资等方式,建设可循环包装跨平台运营体系。推动餐饮外卖平台落实入驻商户一次性餐具减量替代主体责任,增设消费者自选餐具数量等选项优化条件。鼓励电商与快递物流企业创新包装设计,推广可重复性使用的包装新产品。鼓励企业使用商品和物流一体化包装,建立可循环物流配送器具回收体系。(市发改委、市经信局、市商务局、市市场监管局、市邮政管理局和县(市、区)人民政府)

7.大力推动替代产品推广普及。全市党政机关、事业单位、学校、国有企业等单位带头采购使用各类塑料替代产品。结合专项整治,在集贸市场、商场、超市、书店、药店等场所宣传倡导“母亲布袋子(菜篮子)”行动,鼓励采取自助扫码取袋、免租金、低押金等方式推广可循环使用的“信义共享购物袋(篮)”。建立集贸市场购物袋集中购销制度。在餐饮外卖领域推广通过“优惠券、积分奖励、折扣”等方式引导消费者使用符合性能和食品安全要求的秸秆覆膜餐盒等生物基产品、可降解塑料袋等替代产品。鼓励生产、使用全生物降解、强化耐候等新型地膜产品。鼓励农膜覆盖替代技术和产品的研发与示范推广,提高农膜科学使用水平。(市商务局、市农村农业局、市市场监管局、市文旅局、市机关事务局和县(市、区)人民政府)

8.大力推进农膜减量行动。抓好省农业农村厅等4部门关于加快推进废旧农膜回收处理工作意见实施,制定并实施淘汰与国标不符超薄地膜减量方案,引进示范推广加厚地膜和全生物降解膜试验以及“一膜多用”“行间覆盖”等农膜减量替代技术,适时研究出台可降解地膜使用补贴政策,鼓励和支持农业生产者使用植物纤维素等可再生资源制成的可降解农膜,持续开展农田地膜残留监测,依法推动建立农膜使用、回收记录台账。到2021年底,每个县(市、区)建成3个降解地膜集成示范点。(市分类办、市农村农业局和县(市、区)人民政府)

9.引导增加绿色产品供给。立足“电商之都”产业集聚优势,大力推动塑料制品生产企业推行绿色设计,采用新型绿色环保功能材料,依法落实标准化生产,增加使用符合质量控制标准和用途管制要求的再生塑料,提升产品安全性和可回收利用性能。引导企业主动调整结构、加快转型升级,加强可循环、易回收、可降解替代材料和产品研发,降低应用成本,有效增加绿色产品供给。加强可降解塑料袋等替代产品的检验检测能力建设。引导鼓励可降解塑料生产企业扩大规模,培育2-3家可降解材料和产品生产骨干企业。(市发改委、市经信局、市商务局、市市场监管局和县(市、区)人民政府)

(二)规范回收利用处置

10.提升塑料废弃物分类收集质量。结合垃圾革命及无废城市创建,按照“减量化、资源化、无害化”原则,加大塑料废弃物分类投放、分类收集和处理力度,禁止随意堆放倾倒,逐步减少垃圾分类配套居民和单位可降解塑料袋发放。在大型商超楼宇、机场、车站等塑料废弃物产生量大的场所增加可回收物容器设施数量,提高收运频次。加强农村塑料废弃物分类收运体系建设,实现全覆盖,偏远地块或农膜集中使用区域,配备必要设施设备,使用者先行定点堆放,再统一清运至生活垃圾回收点。到2020年底,全市实现塑料废弃物分类收运全覆盖、零填埋,废旧农膜回收处理率达到90%以上。(市分类办、市建设局、市交通运输局、市农业农村局、市商务局和县(市、区)人民政府)

11.探索推动回收模式创新。整合提升“两网”融合,推动社区(农村)、物业、回收企业协同推进垃圾分类和资源回收。探索以政府购买服务、税收优惠等方式,推动再生资源规模化、规范化、专业化、清洁化管理,打造再生资源全闭环产业链。到2020年底,全市培育有实力的再生资源回收企业x家以上。大力推进“互联网+”再生资源回收模式,引导支持供销系统企业对低值可回收塑料废弃物实行兜底回收。鼓励企业建立再生资源回收利用信息化平台,推进线上线下分类回收融合发展。大力推进两网融合回收体系,到2020年底,全市塑料废弃物回收网络覆盖率达到90%以上,到2021年底,实现城乡全域覆盖。(市分类办、市建设局、市农业农村局、市商务局、市供销社和县(市、区)人民政府)

12.引导产废者履行主体责任。引导包装生产企业、电商企业和快递企业主动与回收利用企业合作,建立“互联网+”平台与线下物流相结合的机制,采用押金、以旧换新、设置自动回收设施、网购送货回收包装物等方式,推动塑料废弃物回收途径多元化。鼓励企业使用商品和物流一体化包装,建立可循环物流配送器具收回体系。推动快递、电商外卖平台、环卫部门、回收企业等开展多方合作,推动快递等企业建立包装容器逆向物流体系,通过积分、返现、抵现等形式,在校园、社区、商圈、园区等设置快递包装物回收点和外卖餐盒回收设施,到2022年底,全市建成一批快递包装物回收点。指导再生资源回收企业开展进商超、进社区、进机关、进市场、进宾馆、进餐饮,签订塑料废弃物定点回收协议。(市经信局、市建设局、市农业农村局、市商务局、市机关事务局、市供销社、市邮政管理局和县(市、区)人民政府)

13.健全农药废弃包装物、农膜和渔网渔具回收机制。落实废弃包装物常态化、长效化回收处理机制,农药废弃包装物回收率、处置率分别达80%、90%。探索农膜生产者责任延伸制度试点,依托废旧农膜再利用企业,布局废旧农膜回收网点,建立农膜厂家、经销商、使用者、农膜回收再利用企业等多方参与的农膜全流程监管回收体系,制定“以旧换新”激励机制,实现废旧农膜回收率达到90%以上,对于无利用价值的废旧农膜,纳入农村生活垃圾处理体系。规范废旧渔网渔具回收处置,在专门网具生产厂家设置回收点,负责回收处理。(市分类办、市经信局、市农业农村局和县(市、区)人民政府)

14.合力推进资源化能源化利用。以全市现有生活垃圾分类处置体系、国家和省级资源循环利用基地、再生资源回收利用体系为依托,聚力推动塑料废弃物资源化利用,加快金华市第二生活垃圾焚烧发电厂、东阳生活垃圾焚烧发电厂、磐安生活垃圾焚烧厂等项目建设,实现要素集聚、设施共享、污染可控的处置优势,对分拣成本高、不宜回收利用的塑料废弃物进行能源化处置,打造“ 资源—产品—再生资源”闭环资源循环利用模式,提高塑料废弃物回收利用水平。(市发改委、市建设局、市农业农村局、市商务局、市生态环境局、市供销社和县(市、区)人民政府)

(三)推进塑料垃圾清理整治

15.开展塑料垃圾清理行动。以“五水共治”、美丽金华和无废城市创建为抓手,每年市县联动开展塑料垃圾专项清理联合行动,加强生活垃圾非正规堆放点、倾倒点排查整治,突出城乡结合部、环境敏感区、道路和江河沿线、坑塘沟渠等区域塑料污染问题,明确责任,限期清理。发挥各级河湖长作用,定期开展江河湖泊、港湾塑料垃圾清理。加强塑料废弃物回收利用环节的污染防治。落实农田残留地膜监测分析,逐步降低农田残留地膜量,推进“肥药两制”改革,抓实农药化肥塑料包装废弃物清理整治。(市治水办、市美丽办、市分类办、市建设局、市农业农村局、市生态环境局、市水利局、市行政执法局和县(市、区)人民政府)

16.强化联合执法监督。全面启动商场超市、集贸市场、餐饮行业等重点领域禁限塑推进情况专项执法检查,依法查处生产、销售小于0.025毫米超薄塑料购物袋和厚度小于0.01毫米聚乙烯农用地膜等违法行为,按照国家明确禁限时限,开展一次性发泡塑料餐具、一次性塑料棉签和含塑料微珠日化产品联合执法行动。依法依规严厉打击违规生产销售国家明令禁止的塑料制品,严格查处虚标、伪标等行为。开展塑料污染综合执法,加强对废塑料回收、利用、处置等环节的环境监管,严格依法查处塑料污染环境问题。各行业主管部门按照各自职责,加强监督执法,及时依法依规查处塑料生产处置污染和破坏生态行为,并通过曝光、约谈等方式督促整改,警示震慑违法者。(市建设局、市农业农村局、市商务局、市市场监管局、市生态环境局、市水利局和县(市、区)人民政府)

17.创新数字监管和信用治理相结合。依托全市现有生活垃圾分类处置信息化监管平台和再生资源回收利用体系,结合“两网”融合,建立健全覆盖塑料污染源产生、运输、处置全过程信息化监测网络,探索塑料污染数字化智能监管,实现全过程动态跟踪监管。完善再生资源回收信息网络建设,深化再生资源回收品种、数量等信息收集和统计分析。结合生活垃圾源头减量绿色信用建设,探索推进塑料污染治理信用建设,组织部分电商、外卖和商超企业进行信用建设试点,探索建立对选择绿色包装材料、开展包装物回收利用、使用非一次性购物袋等绿色行为的商家和消费者给予绿色积分奖励办法举措,并纳入统一信用体系评价,拓展信用体系覆盖范围和应用领域,将失信行为纳入信用“黑名单”。(市发改委、市建设局、市农业农村局、市商务局、市生态环境局和县(市、区)人民政府)

(四)营造全民共治良好氛围

18.大力组织专题宣传。结合生活垃圾分类,利用地球日、低碳日、世界环境日等活动契机开展专题宣传,注重引导城乡居民消费习惯,鼓励企业主动承担社会责任,提升全民塑料治污认识和重视程度。充分发挥报纸杂志、广播电视等传统媒介和手机客户端、网络直播等新兴网络平台,在学校、商场、超市、集贸市场、大型社区和车站、机场、地铁、旅游景点等人员集聚、大流量场所,通过户外显示屏、移动电视、墙体标语、灯箱展板、短视频、动漫、长图、广播等多种形式开展塑料污染治理专题宣传,全面介绍禁塑治污推进时间表和路线图,总结推广典型做法。(市委宣传部(文明办)、市分类办、市建设局、市交通局、市农村农业局和县(市、区)人民政府)

19.加强全民参与教育引导。结合垃圾革命试点暨无废城市创建活动,采用专题教育、主题讲座、专项实践等多种活动方式,将塑料污染治理内容纳入机关事位、企业、学校日常宣传教育和社区共建、社会实践当中,引导公众树立生态责任意识,自觉践行绿色生活方式,积极参与垃圾分类和塑料治污,主动减少使用一次性塑料制品,杜绝过度包装。组织塑料污染治理科普宣传,将塑料污染治理宣传作为我市垃圾革命的重要内容,强化党政机关、企事业单位等公共机构践行绿色低碳生活先行示范作用,引导行业协会、商业团体开展专业研讨,规范行业建设,推动公益组织开展塑料垃圾治污专项志愿活动,丰富志愿服务活动内涵。(市委宣传部(文明办)、市民政局、团市委、市科协和县(市、区)人民政府)

三、保障措施

(一)建立联席会商制度。按照上级要求和工作实际,各市级有关单位按照职能建立健全塑料污染治理工作目标体系、工作体系、政策体系和评估体系,市发改委和市生态环境局会同市级有关单位建立全市塑料污染治理工作联席会商制度。创新监管方式,完善日常监测和工作考核,探索建立塑料污染治理全链条闭环管理机制,统筹协调推进全市塑料污染治理工作,及时总结分析工作进展,重大情况和问题向市委市政府报告。各县(市、区)参照建立相应工作机制。要其他市级相关部门按分工负责。(市发改委、市经信局、市生态环境局、市商务局、市建设局、市农业农村局、市文旅局、市市场监管局、市邮政管理局和县(市、区)人民政府)

(二)加快涉塑法规立制。抓紧推进《金华市城镇生活垃圾分类管理条例》立法相关工作,将塑料污染防治相关内容、标准及惩治措施纳入条例,为全面推进塑料污染治理提供法律保障。严格执行国家塑料制品禁限目录和绿色设计导则,明确再生塑料质量控制标准和用途。探索建立塑料原材料与制成品的生产、销售信息披露制度。指导推进快递包装绿色产品认证标识制度体系建设,探索制定电商、快递、外卖等新兴领域绿色管理和评价标准,推进快递业绿色包装地方标准制定。探索实施企业信用管理,推行法人守信承诺和失信惩戒制,将违规生产、销售、使用塑料制品等行为列入企业失信记录。(市分类办、市发改委、市商务局、市建设局、市生态环境局、市农村农业局、市市场监管局和县(市、区)人民政府)

(三)加大政策支撑力度。及时国家和省市政策资金重点支持方向,积极争取国家和省专项资金支持,加大可降解替代材料和绿色包装产品的研发生产以及专业化智能投放运营项目支持,推进可循环、可降解材料关键核心技术攻关和成果转化,优先支持可降解材料和产品生产骨干企业扩能项目列入省、市重点项目和省重大产业项目。向上争取更多资源要素,深化市“ 无废城市”建设试点和部级(省级)资源循环利用示范城市(基地)建设,鼓励争创快递包装回收示范城市、新型绿色供应链建设、新产品新模式推广和废旧农膜回收利用等部级示范试点,支持可循环回收专业设施投放运营。将一次性塑料制品管控要求纳入旅游景区和星级宾馆、酒店评定评级标准。各级党政机关和国有企事业单位带头停止使用不可降解一次性塑料制品,将绿色包装标准纳入政府招投标、采购强制条件,同等条件下优先采购绿色包装商品和物流服务。各级地方人民政府是塑料污染治理责任主体,要结合本地实际,制定具体实施办法,细化落实政策措施。(市分类办、市发改委、市生态环境局、市商务局、市农业农村局、市建设局、市市场监管局、市邮政管理局和县(市、区)人民政府)

(四)强化任务督查考核。各县(市、区)和市级相关部门按照职能细化工作计划方案,抓好分解落实。市生态环境局会同市发改委等有关部门开展联合专项行动,协同推进塑料污染治理落实督导检查,相关督查事项纳入美丽金华、垃圾革命和无废城市创建、文明城市创建、美丽乡村、文明社区、绿色饭店等各类考核评定活动。各相关行业管理部门日常监管中发现有关塑料环境污染和生态破坏行为的,应依法立案查处。对实施不力的责任主体,依法依规予以查处,并通过曝光、约谈等方式督促整改。对落实不力、进度滞后相关县(市、区)政府和单位,按照党政领导干部生态环境损害责任追究相关规定对相关负责人进行约谈问责。(市治水办、市美丽办、市分类办、市创建办、市发改委、市经信局、市生态环境局、市商务局、市农业农村局、市建设局、市文旅局、市市场监管局、市邮政管理局和县(市、区)人民政府)

 

 

 

金华市发展和改革委员会

2020年9月18日

第3篇:可降解塑料的好处范文

关键词:回收热能法;分类回收法;化学还原法;氢化析解法;减类设计法;生物降解法

中图分类号:X783 文献标识码:A 文章编号:1674-0432(2010)-09-0164-1

塑料制品凭借其轻便、耐腐蚀、外表精致等特点,取代了原有的古老的包装外形,从而形成了新一代的包装风格。但是,令人意想不到的是,正是因为塑料制品的这些优良特点,产生了经久不败的塑料固体废弃物。使用后的塑料制品包装物的随意丢弃已经成为危害我们的生活环境的罪魁祸首,追其最主要的原因,就是这些废弃物的难以处理,而且其无法在土壤里被分解吸收。现在,我国已有的城市固体废弃物中,塑料制品的比例已经达到了18-25%。塑料制品固体废弃物的处理已经不仅只是纯粹的塑料工业的问题,现在已经发展成为公害,而得到国际社会的“特别”关注。

由于我们对生活环境质量的迫切需要,全球塑料制品加工业积极研究出了许多种适应社会发展的新型塑料环保科技。不管是在资源节约方面(主要目的是提高制品的耐用性能、寿命的长远性、产品的多功能化及适量设计),还是在资源回收再利用的方面(主要是研究塑料固体废弃物的高效分选技术,分离技术,高效率熔融再利用的技术、化学回收再利用的技术、完全的生物降解性材料,水溶性能材料,可食用高效薄膜),还有在减量化的技术方面(主要研究的是废弃无塑料压缩减容的技术,薄膜袋装容器制造技术,在保证其应用性能良好的前提下,尽量将其成品向薄型化发展的技术)都有所发展。

在我国,城市的塑料制品固体废弃物的处理方面,目前主要采用的方法之填埋、焚烧和回收再利用。列举几项可行的处理方法:

1 焚烧法回收热量

大部分塑料制品是以石油做为原料,其主要的成分是碳氢化合物,可以在空气中燃烧,如聚苯乙烯在燃烧时产生的热量要比染料油的还高。有相当一部分专家都认为,把塑料制品的垃圾送入焚化炉进行燃烧,可以为供暖和发电提供热量,因为石油染料在燃烧时85%都被直接烧掉了,在其中只有5%制成了塑料成品,塑料制品在用完以后再被送去当燃料烧掉是很正常的事情,热量的使用是回收塑料的方法之一,不容小觑。

但是,使用这种方法处理塑料也有一定的弊端的,焚烧法把所有种类的塑料制品全都集中燃烧时,会有很多有毒气体产生。比如:PVC的成分中氯占到一半,在燃烧时释放出的大量氯气会产生很强的腐蚀作用。所以在使用这种方法前之,最好把塑料固体废弃物进行分类挑选。

2 分类回收法

想要回收利用塑料制品,最重要的就是对塑料固体废弃物进行严格的分类。最常见的塑料种类有低密度聚乙烯、聚苯乙烯、聚氯乙烯、聚丙烯、聚氨酯、高密度聚乙烯、聚酰胺等等,而这几种塑料的差别,一般人也难以分辨。但是现在,对塑料进行分类的工作大都还是由人工来完成的。最近科学家们正在研究如何使用机器对塑料废弃物进行分类。在德国有一家环境设备公司利用红外线来对塑料进行辨认,不仅迅速而且准确,就是进行分拣的经济成本较高,不能普及。

3 化学法

近年来研究人员开始从化学的角度分析如何处理塑料固体废弃物的问题,所采用的方法是利用化学作用将聚合物的长链变短,并且恢复其原有物质的性质,分解出来的物质可以用来作为生产新的塑料产品的原料。如果这种方法可以推广的话,无疑将是塑料工业的一大改革。

4 减少塑料种类法

为了是塑料制品便于回收利用,在生产塑料制品的时候,设计人员开始考虑怎样避免使用多种材料塑料。近年美国汽车生产公司已经试验在其新款车型的设计中减少30%的塑料种类,其目的是为了便于废气塑料的回收利用。目前,这种想法构思正逐渐影响整个塑料产品加工业。

5 析解法

在处理混合塑料废弃物的时候可以利用氢化作用,将混合后的废弃物碎片置于氢反应炉内,以一定的温度加热并且限制其温度,就能产生出瓦斯和合成原油等物质。该种处理方法可以用于处理聚氯乙烯塑料废弃物,其优点是不会产生氯气和有毒的气体二英。使用这种方法处理混合塑料固体废弃物时,根据 不同的塑料种类,可将其中的55-75%的成分炼成合成原油。

6 高效生物降解法

在研究开发塑料废弃物能源回收再利用技术的同时,使用生物降解法处理塑料制品成为全球各国塑料加工业的研究方向。研究人员希望通过微生物降解的方法是塑料可以在微生物环境中被生物降解,用以处理大量的一次性使用的塑料,特别是农业薄膜和塑料包装废弃物对土地、森林、海洋的污染。研究目标是开发出一种不影响其使用功能,而且在废弃后,可以被环境中的微生物进行分解后完全融入生态循环的有机塑料。同时这种塑料的生产成本不宜过高,具有相当好的经济性。这样的生物降解性塑料在使用后就可与普通生活垃圾一起进行堆肥,而不需要进行分类收集和再处理。而且,生物薄膜分解的产物进入生态循环,不会产生资源浪费和污染的问题。

第4篇:可降解塑料的好处范文

【关键词】生物降解塑料 二氧化碳基材料 生物安全评价

引言

当前世界塑料工业技术的迅速发展,塑料用途已渗透到工业、农业以及人民生活的各个领域,已经成为国民经济发展的支柱材料。但是塑料的大量使用后随之也带来了大量的固体废弃物。目前城市固体废弃物中塑料的质量分数已达1 0%以上,体积分数则在30%左右,而其中大部分是一次性塑料包装及日用品废弃物,它们对环境的污染、对生态平衡的破坏已引起了社会极大的关注。二氧化碳基塑料是以二氧化碳和环氧化物为主要原料共聚合而成的新型绿色高分子材料。该材料既可高效利用二氧化碳,变废为宝,又具有良好的氧气阻隔性、透明性,并可实现完全生物降解,有望广泛应用于食品包装领域。但是,二氧化碳基材料的生物安全性还有待进一步的评价。本研究依据《化学品毒性鉴定技术规范》中生物学评价的要求对二氧化碳基塑料进行了系统的生物安全性评价,包括急性毒性、亚急性毒性试验,致突变毒性,遗传毒性等,为二氧化碳基塑料的食品包装用途提供生物安全性依据。

1 材料和方法

1.1 实验材料

二氧化碳基塑料(聚对二氧环己酮,PPD0树脂):分子量≥10万道尔顿

1

1.2 实验方法

1.2.1 受试物处理

将聚二氧化碳基塑料低温粉碎后分别过120目和200目筛待用。

1.2.2 小鼠急性毒性试验(最大耐受剂量法)

选用18g-22g健康昆明种小鼠20只,雌雄各半,进行试验。聚二氧化碳基塑料最大使用用浓度0.25g/mL,灌胃容量为20mL/kgBW,即以10 0g/kgBW的剂量,2次灌胃,每次间隔6小时,连续观察14天,记录中毒状况和死亡情况,确定最大耐受剂量(MTD)。

1.2.3 亚慢毒性试验(90天喂养试验)

采用离乳大鼠(试验开始时体重为70g-85g,差异不超过平均体重的±20%)80只,雌雄各半。随机分为0_25g/kqbw、0.50g/kgbw、1.00g/kgbw3个剂量组和基础饲料对照组。实验用样品的掺入量分别为0.312%、0.625%、1.25%,动物单笼饲养,每天观察并记录动物的一般表现,行为、中毒表现和死亡情况。每周称一次体重和两次食物摄入量,计算每周及总的食物利用率;在试验中期和末期分别测定血红蛋白、红细胞计数、白细胞计数及分类、血清中谷丙转氨酶、谷草转氨酶、尿素氮、肌酐、葡萄糖、血清白蛋白、总蛋白、总胆固醇、甘油三酯等:称量肝、肾、脾、的脏器绝对重量和计算脏体比。对各剂量组动物大体检查未发现明显病变时,进行高剂量组和对照组的肝、肾、胃、肠、脾、、卵巢的病理组织学检查,并进行统计学处理。

1.2.4致突变性毒性

(1)Ames试验。选用经鉴定符合要求的鼠伤寒沙门氏组氨酸缺陷型TA97、TA98、TA100、TA102四株试验菌株,采用平板掺入法进行试验。采用多氯联苯(PCB)诱导的大鼠肝匀浆,经生物活性鉴定合格后作为体外代谢活化系统。根据毒性测定结果,试验用样品共设8 ug/皿、40μg/皿、200μg/皿、1000μg/皿、5000μg/皿5个剂量组,同时设阳性对照、溶剂对照(加入10%的吐温80替代样品溶液)、未处理对照。在顶层琼脂中加入0.1ml试验菌株增菌液,0.1ml试验用样品溶液和0.5mlS-9混合液(当需要代谢活化时),混匀后倒入底层培养基平板上,每个剂量3个平皿。在37±1℃培养48h,计数每皿回变菌落数。试验用样品组回变菌落数超过自发回变的2倍以上;进行活化(加S-9)和非活化(不加S-9)试验,并具有剂量一反应关系时即判定为阳性。试验在相同条件下重复做两次。

(2)小鼠骨髓嗜多染红细胞微核试验。选用体重25g-30g小鼠50只,随机分为5组,每组10只,雌雄各半。试验用样品设1.0g/kgBW、2.0g/kgBW、4.0g/kgBW3个剂量组。同时设溶剂对照(10%吐温80水溶液)和阳性对照(环磷酰胺40mg/kgBW,腹腔注射)。采用间隔24h两次经口灌胃法给予聚二氧化碳基塑料,连续5d。末次给试验用样品6h后,颈椎脱臼处死动物。取股骨骨髓用小牛血清稀释涂片,甲醇固定,Glemsa染色。双盲法阅片。在光学显微镜下,每只动物计数1000个嗜多染红细胞(PCE),计算微核发生率。每只动物观察200个嗜多染红细胞,计数成熟红细胞(NCE),计算PCE/NCE比值。

1.2.5 遗传毒性实验

(1)小鼠染色体畸变试验。选用健康常年雄性体重25g-30g小鼠,每组5只。试验用样品设1.0g/kg、2.0g/kg、4.0g/kg体重3个剂量组。同时设溶剂对照(10%吐温80水溶液)和阳性对照(环磷酰胺40mg/kg体重,腹腔注射)。灌胃给予受试药物,每天一次,连续5天。受试药物后的第15天脱臼处死、制片。于处死采集样品前4h腹腔注射4.0mg/kg秋水仙素。取组织,制备悬浮液,用姬姆萨染液染色,计数畸变细胞:对每只动物选择100个分散良好的中期分裂相,在显微镜油镜下进行读片。在读片时应记录每一观察细胞的染色体数目,对于畸变细胞还应记录显微镜视野的坐标位置及畸变类型。所得各组的染色体畸变率用X2检验进行统计学处理,以评价试验组和对照组之间是否有显著差异。

(2)小鼠畸形试验。用体重25g-30g的性成熟雄性小鼠25只,随机分为5组。以1.5mg/kg体重剂量的丝裂霉素C(经口给予)为阳性对照,10%吐温80水溶液为溶剂对照,试验用样品设1.0g/kg、2.0g/kg、4.0g/kg体重3个剂量组。每日灌胃一次,灌胃容量为10mL/kgBW,连续5天,末次灌胃后30天处死动物,取附睾制片,伊红染色,高倍镜下检查小鼠的形态,每组计数5只动物,每只动物计数1000个结构完整的,计算畸变发生率(以百分率计),并进行统计处理。

(3)胎鼠致畸试验。25g一30g的孕鼠25只,随机分为5组。以1.5mg/kg体重剂量的丝裂霉素C(经口给予)为阳性对照,10%吐温80水溶液为溶剂对照,试验用样品设1.0g/kg、2.0g/kq、4.0g/kg体重3个剂量组。孕鼠处死和一般检查:小鼠于妊娠第20d处死。剖腹检查卵巢内黄体数,取出子宫,称重;检查活胎、早期吸收和死胎数;活胎鼠检查;胎鼠骨检查;胎鼠内脏检查。

1.2.6 数据处理

采用SPSS软件进行数据处理。对计量资料采用单因素方差分析,但需按方差分析的程序先进行方差齐性检验,方差齐,计算F值,F值

2 结果

2.1 急性毒性

BALB/C二月龄雄性小鼠10只,经口给予10g/kg体重的二氧化碳基降解塑料水悬液,间隔6小时重复给予一次。连续观察14天,未发现小鼠出现毒负作用症状;未发现小鼠出现死亡情况。实验表明经口给予二氧化碳基降解塑料LD50>10g/kg,属于实际无毒。表明二氧化碳基降解塑料不会对生物产生急性毒性。

2.2 亚慢毒性试验(90天喂养试验)

对二氧化碳基降解塑料进行大鼠90天喂养试验。试验过程中未见动物有明显异常表现。试验期间大尉舌动自如、毛发光亮、饮水、进食、大小便正常。二氧化碳基降解塑料对各剂量组大鼬的体重、进食量及食物利用率与对照组比较,雌、雄性均无显著性差异(P>0.05)。临床检查、血液学检查、血液生化学检查、脏器称量等结果表明各检验项目的实验与对照组比较,差异不显著(P>0.05)。大体各检查各剂量组大鼠共80只,雄、雌各半。剖检后肉眼观察,心、肺、肝、脾、肾、胃、肠、(卵巢)、脑等主要脏器的颜色、形状、大小等均未见明显异常。病理组织学检查结果表明对照组和高剂量实验组雌、雄性大鼠的肝、肾、胃、肠、脾、、卵巢均未见明显损伤性病理变化和与二氧化碳基降解塑料有关的病理组织学改变。

2.3 突变毒性

2.3.1 Ames试验

用二氧化碳基降解塑料进行Ames试验。各剂量组回变菌落数均未超过溶剂对照组回变菌落数2倍以上,亦无剂量―反应关系,对鼠伤寒沙门氏菌TA97、TA98、TA100、TA102四株试验菌株,在加与不加肝微粒体酶活化系统时,结果均为阴性,而且试验结果可重复,说明二氧化碳基降解塑料无致突变活性。

2.3.2 小鼠骨髓嗜多染红细胞微核试验

对二氧化碳基降解塑料进行小鼠骨髓嗜多染红细胞微核试验。各剂量组两种性别小鼠骨髓多染红细胞与成熟红细胞的比值(PCE/RBC)在1.1 6-1.23之间,未见试验用样品对两种性别小鼠的骨髓细胞增殖有抑制作用。各剂量组雌、雄小鼠骨髓多染红细胞微核发生率与样品溶剂对照组比铰均无显著性差异(P>0.05);而环磷酰胺组与样品溶剂对照组比较,有显著性差异(见图1)。说明该二氧化碳基降解塑料未使小鼠嗜多染红细胞微核率发生改变。

2.3.3 小鼠骨髓染色体畸变试验

经口给予小鼠2.0g/kg体重、4.0g/kg体重二氧化碳基塑料5天后,与溶剂对照组比较,小鼠骨髓染色体畸变细胞率在两个剂量组与溶剂对照组组间比较,均无显著性差异(P>0.05)。表明聚乳酸在2.0g/kq体重、4.0g/kq体重剂量范围内无致骨髓细胞突变作用。二氧化碳基塑料对小鼠体重增长无不良影响。

2.4 遗传毒性试验

2.4.1 小鼠染色体畸变试验

昆明种健康清洁级雄性小鼠(25g-30g)进行小鼠染色体畸变试验。经口给予小鼠2.0g/kgBW、4.0g/kgBW聚二氧化碳基塑料5天后,观察结果显示在本实验剂量范围内聚二氧化碳基塑料不引起小鼠初级精母细胞染色体畸变数增加,说明聚二氧化碳基塑料在2.0g/kgBW、4.0g/kgBW剂量范围内无致生殖细胞突变作用(见图2)。聚二氧化碳基塑料对小鼠体重增长无不良影响。

2.4.2 小鼠畸形试验

对二氧化碳基塑料进行小鼠畸形试验。各剂量组小鼠畸形发生率与样品溶剂对照组比较无显著性差异;而丝裂霉素C组小鼠畸形发生率与样品溶剂组比较,有显著性差异(见图3)。未见二氧化碳基塑料对雄性小鼠生殖细胞有明显损伤作用。

2.4.3 胎鼠致畸试验

1g/kg BW剂量组的聚二氧化碳基塑料对孕鼠体重、子宫总重,胎鼠体重、身长、胎盘重及着床率、活胎率、外观畸胎率、骨骼畸胎率、内脏畸胎率无明显影响。即在1g/kgBW剂量未发现聚二氧化碳基塑料有致畸作用。

结语

二氧化碳基塑料经大鼠口最大耐受剂量均大于10.0g/kgBW,且未发现亚急性毒性,属实际无毒物质。AM ES实验未发现二氧化碳基塑料具有致突变性毒性,二氧化碳基塑料每天灌胃10mL/kg体重,5天后小鼠骨髓嗜多染红细胞微核、染色体畸变作用为阴性,表明受试物无致突变活性。遗传毒性实验表明,二氧化碳基塑料没有遗传毒性作用。

参考文献

[1]俞文灿.可降解塑料的应用、研究现状及其发展方向[J].中山大学研究生学刊(自然科学、医学版),2007,28(1):22-32.

[2]王火喜.国内外降解塑料的现状及发展方向[J].现代塑料加工应用,2002,14(4):61-65.

[3]秦玉升,顾林,王献红.二氧化碳基脂肪族聚碳酸酯的功能化研究进展[J].高分子学报,2013,5:600-608.

[4]刘宇娜,花玉香,郭胜辉.二氧化碳基生物可降解塑料研究概况及工业进展[J].天津科技,2011,5:125-126.

[5]胡洁,李东风,臧红霞.二氧化碳基塑料降解性能的研究[J].安徽农业科学,2013,41(26):10793-10795.

第5篇:可降解塑料的好处范文

关键词:生物降解性能;合成塑料;可生物降解塑料

中图分类号:TQ321.4;X384 文献标识码:A 文章编号:0439-8114(2013)11-2481-05

塑料是人工合成的长链高分子材料[1]。由于塑料具有优秀的理化性能,如强度、透明度和防水性等,合成塑料已广泛应用于食物、药物、化妆品、清洁剂和化学品等产品的包装。塑料已经成了人类生活中不可缺少的一部分,目前全世界大约有30%的塑料用于包装,而且仍以每年高达12%的比率扩展。

塑料材料在世界范围内的广泛使用,在给人类生产和生活带来巨大益处的同时也带来了很多问题:如石油资源的大量消耗和塑料垃圾的日益增加等,它们会给人类未来的生活带来难以估计的能源危机和环境污染问题。尤其是各种废弃塑料制品的处理问题,已经不单是简单的环境治理方面的问题,世界各国普遍已将其发展认识成为值得重视的政治问题和社会问题。由于塑料在自然进化中存在的时间较短,因此塑料可抵抗微生物的侵蚀,自然界中一般也没有能够降解塑料这种合成聚合物的酶[2]。目前塑料垃圾一般是通过填埋、焚化和回收处理掉。但不恰当的塑料废弃物处理往往是环境污染的重要来源,不仅直接危害人类的生存,而且潜在地威胁社会的可持续发展。比如聚氯乙烯(Polyvinyl chloride,PVC)塑料的燃烧会产生二恶英的持久性有机污染物[3]。

由于与传统塑料有相似的材料性质,又具有非常好的生物降解性能[4],以聚羟基脂肪酸酯(Polyhydroxyalkanoates,PHAs)、聚乳酸(Polylactic acid,PLA)、 聚己内酯(Polycaprolactone,PCL)等为代表的可生物降解塑料已开始广泛应用于各种包装材料、医疗设备以及一次性卫生用品生产,另外在农田地膜生产中也已用作聚丙烯或聚乙烯的替代品[5]。可生物降解塑料的使用可降低石油资源消耗的30%~50%,进一步缓解对石油资源的使用;另外可生物降解塑料制品的废弃物可以进行堆肥处理,所以与普通石油来源的塑料垃圾相比可避免人工分拣的步骤,这样就大大方便了垃圾的收集和后续处理。因此,可生物降解塑料十分符合现在提倡的可持续发展的政策,以利于真正实现“源于自然,归于自然”。

1 塑料降解概述

任何聚合物中的物理和化学变化都是由光、热、湿度、化学条件或是生物活动等环境因素引起的。塑料的降解一般包括光降解、热降解以及生物降解等。

聚合物光降解的敏感性与其吸收来自对流层的太阳辐射的能力直接相关。在非生物降解中,光辐射活动是影响降解最重要的因素[6]。一般来说,UV-B辐射(295~315 nm)和UV-A辐射(315~400 nm)会直接造成光降解;而可见光(400~760 nm)是通过加热来实现加快聚合体降解的;红外光(760~2 500 nm)则是通过加快热氧化作用实现降解。大多数塑料倾向于吸收光谱中紫外部分的高能量辐射,激活电子更活跃的反应,导致氧化、裂解和其他的降解。

聚合物的热降解是由过热引起的分子降解。在高温下,聚合物分子链的迁移率和体积会发生改变,长链骨架组分断裂,发生相互作用从而改变聚合物特性[6]。热降解中的化学反应导致材料学和光学性能的改变。热降解通常包括聚合物相对分子质量变化和典型特性的改变;包括延展性的降低、脆化、粉末化、变色、裂解和其他材料学性能的降低。

生物降解是塑料降解的最主要途径,一般来说,塑料在自然状态下进行有氧生物降解,在沉积物和垃圾填埋池中进行厌氧降解,而在堆肥和土壤中进行兼性降解。有氧生物降解会产生二氧化碳和水,而无氧生物降解过程会产生二氧化碳、水和甲烷[7]。通常情况下,高分子聚合物分解成二氧化碳需要很多不同种类的微生物的配合作用,一些微生物可将其降解为相应的单体,另一些微生物能利用单体分泌更简单的化合物,还有一些微生物再进一步利用这些简单化合物以实现聚合物的完全降解[1]。

生物降解是受很多因素控制的,包括微生物类型和聚合物特性(迁移率、立构规整度、结晶度、相对分子质量、功能团类型以及取代基等),另外添加到聚合物中的增塑剂和添加剂等都在生物降解过程中起着重要作用[8]。降解过程中聚合物首先转化成单体,然后单体再进行矿化。大多数聚合物都难以通过细胞膜,所以在被吸收和生物降解进入细胞前必须先解聚成更小的单体或寡聚体[9]。微生物降解起始于各种各样的物理和生物推动力。物理动力(如加热/冷却、冷冻/熔化以及湿润/干燥)会引起聚合物材料裂化的机械破坏;微生物进一步渗透,造成小规模溶胀和爆破。至少有两种酶在聚合物降解中起着重要作用,它们分别是胞内解聚酶和胞外解聚酶。胞外解聚酶将聚合物分解成短链分子,短链分子小到足以透过细胞膜,被胞内解聚酶进一步分解。

2 天然可生物降解塑料的生物降解

天然可生物降解塑料一般是指以有机物为碳源,通过微生物发酵而得到的生物降解塑料。主要以PHAs较多,其中最常见的有聚3-羟基丁酸酯[Poly(3-hydroxybutyrate),PHB]、聚羟基戊酸酯[Poly(3-hydroxyvalerate),PHV]和其共聚物[Poly(3-hydroxybutyrate-co-3-hydroxyvalerate),PHBV][10]。微生物在营养缺乏的情况下产生并储存PHAs,当营养不受限时微生物会将其降解并代谢[11]。但是微生物储存PHAs的能力未必能保证环境中微生物对PHAs的降解能力。微生物必须先分泌胞外水解酶,将聚合物转化成相应的羟基酸单体[7]。PHB水解产物为3-羟基丁酸,而PHBV的胞外降解产物为3-羟基丁酸和3-羟基戊酸[12]。这些单体都是水溶性的,可透过细胞壁,在有氧情况下进行β-氧化和三羧酸循环,完全氧化为二氧化碳和水,厌氧情况下还会生成甲烷。实际上,在所有高等动物血清中都发现了3-羟基丁酸,因此PHAs可用于医学方面,包括用于长期控制药物释放、手术针、手术缝合线、骨头和血管替代品等。

目前已在多种环境中分离出大量可以降解PHAs的微生物[13,14]。在土壤中发现的Acidovorax faecilis、Aspergillus fumigatus、 Comamonas sp.、 Pseudomonas lemoignei和Variovorax paradoxus,在活性污泥中分离出的Alcaligenes faecalis和Pseudomonas sp.,在海水中发现的Comamonas testosteroni,存在于厌氧污泥中的Ilyobacter delafieldii以及在湖水中发现的Pseudomonas stutzeri对PHAs均具有降解能力。

PHB胞外解聚酶是微生物自身分泌的,对于环境中PHB的新陈代谢发挥着重要作用。很多PHB解聚酶已从Alcaligenes[15]、Comamonas[16]和Pseudomonas[17]的微生物中分离纯化出来。对它们的基本结构分析表明,这些酶由底物结合区、催化区和连接二者的联合区域构成。底物结合区域在结合PHB方面发挥着重要作用。催化部分包含一个催化单元,由催化三联体(Ser-His-Asp)构成。目前对于PHB解聚酶的性能研究已比较深入,研究显示,PHB解聚酶相对分子质量一般低于100 000,大多数PHA解聚酶相对分子质量都在40 000~50 000;最适pH为7.5~9.8,只有来源于Pseudomonas picketti和Penicillium funiculosum的解聚酶的最适pH是5.5和7.0;在较宽的pH、温度、离子强度等范围内稳定;大多数PHA解聚酶都会受到丝氨酸酯酶抑制剂的抑制[18]。

3 聚合物共混材料的生物降解

聚合物共混材料是由可降解塑料和通用塑料混合制成的,其降解率取决于其中较易降解的成分,降解过程破坏聚合物的结构完整性,增加了表面积,剩余聚合物暴露出来,微生物分泌的降解酶也会增强。目前常见的聚合物共混材料主要是以淀粉基为主要可降解部分的共混材料。

3.1 淀粉/聚乙烯共混物的生物降解

聚乙烯是一种对微生物侵蚀有很强抵御能力的惰性聚合物[19]。随着相对分子质量的增加,生物降解也会减弱[20]。将容易生物降解的化合物如淀粉添加到低密度的聚乙烯基质中,可加强碳-碳骨架的降解。与纯淀粉相比,淀粉聚乙烯共混物的碳转移率降低,在有氧的情况下转移率较高。Chandra等[21]研究发现在Aspergillus niger、Penicillium funiculom、Chaetomium globosum、 Gliocladium virens和Pullularia pullulans混合真菌接种的土壤环境中,线性低密度聚乙烯淀粉共混物可有效地被生物降解。添加淀粉的聚乙烯的降解率取决于淀粉含量,而且对环境条件和共混物中的其他成分很敏感[22]。很多研究者在研究时发现,在淀粉/低密度聚乙烯共混物中添加改性淀粉后,改性淀粉可增强其在共混物中的可混合性和黏着力[23]。但是与未改性的淀粉/聚乙烯共混物相比,这种改性淀粉的生物降解率较低。

3.2 淀粉/聚酯共混物的生物降解

淀粉和PCL共混物被认为是可完全降解的,这是因为共混物中的每种成分都是可生物降解的[24],Nishioka等[25]已在活性污泥、土壤和堆肥中研究了不同等级商用聚酯Bionoll的生物降解能力。PHB解聚酶和脂酶均可以打开PHB的酯键,由于其结构的相似性,这些酶还能降解Bionolle。Bionolle和低成本淀粉的混合物的开发研究可进一步提高成本竞争力,同时在可接受的程度上维持其他性能。有研究表明,淀粉的添加大大提高了Bionolle组分的降解率[26]。

3.3 淀粉/水溶性聚合物聚乙烯醇共混物的生物降解

水溶性聚合物聚乙烯醇(Polyvinyl alcohol,PVA)与淀粉有更好的兼容性,而且这种共混物拥有良好的薄膜性能。很多这样的共混物已得到发展并用来制作可生物降解包装设备[27]。PVA和淀粉共混物也被认为是可生物降解的,因为这两种成分在多种生物环境下都是可生物降解的。从城市污水厂和垃圾堆埋区的活性污泥中分离出的细菌和真菌对淀粉、PVA、甘油和尿素共混物的生物降解能力数据表明,微生物可消耗淀粉、PVA的非结晶区、甘油和尿素增塑剂[27],而PVA的结晶区未受降解影响。

3.4 脂肪族-芳香族共聚酯的生物降解

脂肪族-芳香族(Aliphatic-aromatic,AAC)共聚酯结合了脂肪族聚酯的生物可降解性和芳香族聚酯的高强度性能。为了降低AAC的成本经常混加淀粉。与其他可生物降解塑料相比,AAC和低密度聚乙烯有更相似的特性,特别是吹膜挤出。AAC也符合食品保鲜膜的所有功能要求,如透明度、弹性和防雾特性,所以这种材料很适合用于水果和蔬菜的食品包装。虽然AAC以化石燃料为基础,但是它是可生物降解和堆肥降解的。通常情况下,它在微生物环境中12周就会被降解得肉眼不可见。

4 合成塑料的生物降解

4.1 聚乳酸聚酯的生物降解

聚乳酸(Polylactic acid,PLA)是一种线性脂肪族聚酯,它是由天然乳酸缩聚或是丙交酯的催化开环制得的。PLA中的酯键对化学水解作用和酶催化断键都很敏感。PLA的应用是其热压产品,如水杯、外卖食物餐盒、集装箱和花盆盒。PLA在60 ℃或是高于60℃大规模的堆肥操作中可以完全降解。PLA的降解首先是水解成水溶性化合物和乳酸。这些产物被多种微生物快速代谢成CO2和水。Torres等[28]研究了Fusarium moniliforme、Penicillium roquefort 对PLA低聚物(相对分子质量为1 000)的降解;Pranamuda等[29]报道了Amycolatopsis sp.对PLA的降解,而在Tomita等[30]的研究中也报道了Bacillus brevis对PLA具有降解能力。另外,已证明可使用专性酯酶如Rhizopus delemer脂肪酶降解小分子PLA(相对分子质量为2 000)。

4.2 聚琥珀酸丁二酯的生物降解

聚琥珀酸丁二酯(Polybutylene succinate,PBS)具有优良的机械性能,通过传统的熔融技术可用于一系列终端产品。这些应用包括地膜、包装膜、塑料袋和易冲刷卫生产品。PBS是水合式生物降解的,通过水解机制开始生物降解。在酯键处发生水解,相对分子质量降低,使得微生物可进行进一步降解。

4.3 改性的聚对苯二甲酸乙二酯的生物降解

改性的聚对苯二甲酸乙二酯(Polyethylene terephthalate,PET)是在PET中添加乙醚、酰胺或是脂肪族单体共聚单体,由于它们的键能较弱而更容易通过水解作用进行生物降解。这一降解机制包括酯键的水解与醚和酰胺键的酶促作用。改性PET可通过改变所使用的共聚单体调节和控制降解率。

5 聚氨酯的生物降解

聚氨酯(Polyurethane, PUR)是具有分子内氨基甲酸酯键(碳酸酯键-NHCOO-) 的聚异腈酸酯和多元醇的缩合产物。据报道,PUR中的氨基甲酸酯键易受到微生物的进攻。PUR的酯键水解作用被认为是PUR的生物降解机制。已发现土壤中的4种真菌Curvularia senegalensis、 Fusarium solani、Aureobasidium pullulans和Cladosporium sp.可降解聚氨酯。Kay等[31]分离并研究了16种不同细菌降解PUR的能力。Shah[32]报道称在埋于土壤中6个月的聚氨酯薄膜中分离出了5种细菌,它们分别被定义为Bacillus sp. AF8、 Pseudomonas sp. AF9、 Micrococcus sp. AF10、 Arthrobacter sp. AF11和Corynebacterium sp. AF12。

FTIR光谱可用来证明聚氨酯生物降解机制是聚氨酯中酯键的水解作用。聚氨酯生物降解能力取决于酯键的水解作用[33]。酯键降低的比率大约超过醚键50%,这与测量到的聚氨酯降解的数量相吻合。FTIR分析埋于土壤中6个月经真菌作用后的PUR薄膜[34],显示2 963 cm-1(对照)至2 957 cm-1(试验)波峰有轻微下降,这表明在1 400~1 600 cm-1处C-H键的断裂和C=C的形成。FTIR分析Corynebacterium sp.降解聚氨酯的分解产物表明聚合物的酯键是微生物酯酶进攻的主要地方[31]。目前已分离并表征了两种PU酶,它们分别是与细胞膜结合的PU酯酶和胞外PU酯酶[35]。这两种酶在聚氨酯的生物降解中发挥着不同的作用。与膜结合的PU酯酶可提供细胞介导接近聚氨酯的疏水表面,然后胞外PU酯酶吸附在聚氨酯表面。在这些酶的作用下,细菌可以吸附在聚氨酯的表面并将PU基质水解代谢掉。

6 结论

传统石油来源的通用塑料的过度使用已使得其成为当今世界环境污染的罪魁祸首,因此可生物降解塑料取代通用塑料已经成为未来材料科学领域发展的必然趋势。这些可生物降解塑料的优势主要体现在其可生物降解性和可再生性,此外还具有许多优良的理化性能,如热塑性、生物相容性、产物安全性、成膜后具有高透明度、纤维的高拉伸强度以及易于加工等。但是应该看到的是相关可生物降解塑料在自然界中降解往往十分缓慢,而且在PLA经改性或制成产品后,其在环境中的降解就更为缓慢,因此在进行可生物降解塑料合成和改性研究的同时,其生物降解研究也应该受到重视,以实现其废弃物快速完全降解,并建立有效的生物循环系统以实现产品物料循环。

参考文献:

[1] EUBELER J P, BERNHARD M, ZOK S, et al. Environmental biodegradation of synthetic polymers I. Test methodologies and procedures [J]. TrAC Trends in Analytical Chemistry,2009,28(9):1057-1072.

[2] MUELLER R J. Biological degradation of synthetic polyesters-enzymes as potential catalysts for polyester recycling [J]. Process Biochemistry, 2006,41(10):2124-2128.

[3] JAYASEKARA R,HARDING I,BOWATER I, et al. Biodegradability of selected range of polymers and polymer blends and standard methods for assessment of biodegradation[J]. Journal of Polymers and the Environment,2005,13(2):231-251.

[4] 陈国强,罗荣聪,徐 军,等. 聚羟基脂肪酸酯生态产业链——生产与应用技术指南[M].北京:化学工业出版社,2008.25-37.

[5] OJUMU T V, YU J, SOLOMON B O. Production of polyhydroxyalkanoates, a bacterial biodegradable polymer[J]. African Journal of Biotechnology,2004,3(1):18-24.

[6] LUCAS N,BIENAIME C,BELLOY C,et al. Polymer biodegradation: Mechanisms and estimation techniques [J]. Chemosphere,2008,73(4):429-442.

[7] VOLOVA T G,BOYANDIN A N,VASILIEV A D,et al. Biodegradation of polyhydroxyalkanoates (PHAs) in tropical coastal waters and identification of PHA-degrading bacteria [J]. Polymer Degradation and Stability,2010,95(12):2350-2359.

[8] ARTHAM T, DOBLE M. Biodegradation of aliphatic and aromatic polycarbonates[J]. Macromolecular Bioscience,2008,8(1):14-24.

[9] TRAINER M A, CHARLES T C. The role of PHB metabolism in the symbiosis of rhizobia with legumes [J]. Applied Microbiology and Biotechnology,2006,71(4):377-386.

[10] SHAH A A, HASAN F, HAMEED A, et al. Biological degradation of plastics: A comprehensive review[J]. Biotechnology Advances,2008,26(3):246-265.

[11] PAPANEOPHYTOU C P, VELALI E E, PANTAZAKI A A. Purification and characterization of an extracellular medium-chain length polyhydroxyalkanoate depolymerase from Thermus thermophilus HB8[J]. Polymer Degradation and Stability,2011, 96(4):670-678.

[12] GARC?魱A D E,MAR?魱A C, HUESO DOM?魱NGUEZ K B. Simultaneous kinetic determination of 3-hydroxybutyrate and 3-hydroxyvalerate in biopolymer degradation processes[J]. Talanta,2010,80(3):1436-1440.

[13] ZHOU H, WANG Z, CHEN S, et al. Purification and characterization of extracellular poly(β-hydroxybutyrate) depolymerase from Penicillium sp. DS9701-D2[J]. Polymer-Plastics Technology and Engineering,2009,48(1):58-63.

[14] CALABIA B P, TOKIWA Y. A novel PHB depolymerase from a thermophilic Streptomyces sp.[J]. Biotechnology Letters,2006,28(6):383-388.

[15] BACHMANN B M, SEEBACH D. Investigation of the enzymatic cleavage of diastereomeric oligo (3-hydroxybutanoates) containing two to eight HB units. A model for the stereoselectivity of PHB depolymerase from Alcaligenes faecalis T1[J]. Macromolecules,1999,32(6):1777-1784.

[16] KASUYA K, DOI Y, YAO T. Enzymatic degradation of poly [(R)-3-hydroxybutyrate] by Comamonas testosterone ATSU of soil bacterium[J]. Polymer Degradation and Stability,1994, 45(3):379-386.

[17] SCH?魻BER U, THIEL C, JENDROSSEK D. Poly(3-hydroxyvalerate) depolymerase of Pseudomonas lemoignei[J]. Applied and Environmental Microbiology,2000,66(4):1385-1392.

[18] JENDROSSEK D. Microbial degradation of polyesters: A review on extracellular poly(hydroxyalkanoic acid) depolymerases[J]. Polymer Degradation and Stability,1998,59(1-3):317-325.

[19] GILAN I, HADAR Y, SIVAN A. Colonization, biofilm formation and biodegradation of polyethylene by a strain of Rhodococcus ruber [J]. Applied Microbiology and Biotechnology,2004,65(1):97-104.

[20] ROSA D S,GABOARDI F, GUEDES C G F, et al. Influence of oxidized polyethylene wax(OPW) on the mechanical, thermal, morphological and biodegradation properties of PHB/LDPE blends [J]. Journal of Materials Science,2007,42(19):8093-8100.

[21] CHANDRA R, RUSTGI R. Biodegradation of maleated linear low-density polyethylene and starch blends [J]. Polymer Degradation and Stability,1997,56(2):185-202.

[22] ALBERTSSON A C, KARLSSON S. Aspects of biodeterioration of inert and degradable polymers[J]. International Biodeterioration & Biodegradation,1993,31(3):161-170.

[23] 何小维,黄 强. 淀粉基生物降解材料[M]. 北京:中国轻工业出版社,2008.262-263.

[24] (日)土肥义治,(德)A. 斯泰因比歇尔. 生物高分子 聚酯Ⅲ——应用和商品(第4卷)[M]. 陈国强,译.北京:化学工业出版社,2004.49-53.

[25] NISHIOKA M, TUZUKI T, WANAJYO Y, et al. Biodegradable Plastics and Polymers[M]. Amsterdam: Elsevier Science,1994. 584-590.

[26] RATTO J A, STENHOUSE P J, AUERBACH M, et al. Processing, performance and biodegradability of a thermoplastic aliphatic polyester/starch system [J]. Polymer,1999,40(24): 6777-6788.

[27] TUDORACHI N, CASCAVAL C N, RUSU M, et al. Testing of polyvinyl alcohol and starch mixtures as biodegradable polymeric materials [J]. Polymer Testing,2000,19(7):785-799.

[28] TORRES A, LI S M, ROUSSOS S, et al. Screening of microorganisms for biodegradation of poly(lactic-acid) and lactic acid-containing polymers [J]. Applied and Environmental Microbiology,1996,62(7):2393-2397.

[29] PRANAMUDA H, TOKIWA Y. Degradation of poly(L-lactide) by strains belonging to genus Amycolatopsis[J]. Biotechnology Letters,1999,21(10):901-905.

[30] TOMITA K, KUROKI Y, NAGAI K. Isolation of thermophiles degrading poly(L-lactic acid)[J]. Journal of Bioscience and Bioengineering,1999,87(6):752-755.

[31] KAY M J, MORTON L H G, PRINCE E L. Bacterial degradation of polyester polyurethane [J]. International Biodeterioration,1991,27(2):205-222.

[32] SHAH A A. Role of microorganisms in biodegradation of plastics [D].Islamabad:Quaid-i-Azam University,2007.

[33] TANG Y W, LABOW R S, SANTERRE J P. Isolation of methylene dianiline and aqueous-soluble biodegradation products from polycarbonate-polyurethanes[J]. Biomaterials,2003, 24(17):2805-2819.

第6篇:可降解塑料的好处范文

【关键词】环保购物袋;可降解;油墨;石头纸

0.前言

随着人们生活水平的不断提高,人们的环保观念也不断提升。大家对过度包装浪费资源,包装物弃置污染环境等情况不断发出声讨。国家也出台了“限塑”令,通过有偿使用减小购物袋的用量。但作为日常生活必不可少的用品,大部份购物袋在使用完后仍然会被丢弃成为生活垃圾。绝大部分最终作为塑料垃圾进入环境,而塑料大多化学性能稳定,在自然环境中分解需要100~300年。如果用焚烧方法处理,焚烧设施不仅需投入大量资金,焚烧时还会有二恶英等多种有毒物质产生,造成二次污染。而对于回收利用,收集或即使强制收集进行回收利用,它的经济效益也不太好。所以要从根本上解决废塑料的环境污染问题,就应该用能降解或易降解的购物袋代替普通塑料购物袋。现在笔者根据多年的印刷和油墨生产实践经验,应如何为制造可降解环保购物袋的几点应用体会,愿与大家共同探讨。

1.制造可降解环保购物袋材料

制造新型可解环保购物袋,最重要的是要选用合适的材料。首先就是选用无污染的可降解材料替代普通塑料薄膜,还有就是选用合适的环保型印刷油墨。这样才有可能制造出符合环保要求的购物袋。

1.1环保基材的选择

目前可用的可降解材料有以下几种:

1.1.1光降解塑料

光降解塑料一般是指在光(紫外光)的照射下,引起光化学反应而使大分子链断裂和分解的塑料。光降解塑料可分为添加型和合成型两类。添加型是在高分子材料中添加光敏剂,由光敏剂吸收光能后产生自由基,促使高分子材料发生氧化作用后进而引发聚合物分子链断裂使其降解。降解式将光敏基团(如羧基、双键等)导入高分子结构内赋予材料光降解的特性。常用的光敏剂有过渡金属络合物、硬脂酸盐、N,N-二丁基二硫代氨基甲酸铁等,用量约1%~3%(质量)。合成型光降解塑料是通过共聚反应在塑料的高分子主链上引入羰基等感光基团而赋予其光降解特性的,并可以通过调节光敏基团的含量来控制光降解活性。现在已知以一氧化碳或乙烯酮类为光敏单体与烯烃类单体共聚,可合成含羰基结构的聚乙烯(PE),聚丙烯(PP),聚氯乙烯(PVC)等光降解聚合物。光降解塑料只能在光照下降解,受气候环境、地理因素制约很大,如果埋地部分不能降解,而且价格较高,因此光降解塑料很难广泛推广使用。

1.1.2生物降解塑料

生物降解能很好的解决埋地部分不能降解的问题。目前研究开发的生物降解材料有天然高分子材料、微生物合成高分子材料、 人工合成高分子材料以及共混性高分子(添加型)材料。天然高分子型是利用淀粉、纤维紊、甲壳质、蛋白质等天然高分子材料制备的生物降解材料。其特点是贮存运输方便,只要保持干燥,不需避光,应用范围广,不但可以用于农用地膜、包装袋,而且广泛用于医药领域。生物合成的完全生物降解塑料是微生物把某些有机物作为食物源,通过生命活动合成的高分子化合物。通过微生物合成而得到的生物降解塑料以聚羟基脂肪酸酯(PHA)类为多,其中最常见的有聚3-羟基丁酸酯(PHB)、聚羟基戊酸酯(PHV)及PHB和PHV的共聚物(PHBV)。化学合成法合成的生物降解塑料大多是在分子结构中引入能被微生物降解的含酯基结构的脂肪族聚酯,目前具有代表性的产品有聚己内酯(PCL),聚琥珀酸丁二醇酯(PBS),聚乳酸(PLA),以及最近国内研究最热的二氧化碳基生物降解塑料等。另外按降解方法分生物降解可以分为:(1)生物物理降解法:当微生物攻击侵蚀高聚物材料后由于生物细胞的增长使聚合物组分水解、电离或质子化而分裂成低聚物碎片,聚合物分子结构不变,这是聚合物生物物理作用而发生的降解过程。(2)生物化学降解法:由于微生物或酶的直接作用,使聚合物分解或氧化降解成小分子,直至最终分解成为二氧化碳和水,这种降解方式属于生物化学降解方式。同样生物降解塑料也存在价格较高

1.1.3光-生物双降解塑料

光-生物双降解塑料具有光、生物的双重降解性。是当前世界降解塑料的主要开发方向之一。试验表明光-生物双降解塑料可在一个特定时间内(通常为9个月~5年)在环境中能完全分解。但由于合成型光降解塑料成本较高,研究较少。目前研究较多的是掺混型光一生物双降解塑料。

1.1.4石头纸

石头纸是一种由碳酸钙研磨粉与高分子聚合物、胶合剂为原材料的新型材料,广义上说石头纸也是光-生物双降解类材料。石头纸具有既可替代传统的植物纤维纸张、专业性纸张,又能替代传统的大部分塑料薄膜,且具有成本低、可控性降解的特点,能够为使用者节省大量的成本,且不会产生污染。从替代塑料包装物角度看,它能为国家节省大量的石油资源,产品使用后能够降解,不会造成二次白色污染。另外石头纸与上面进过的几种可降解塑料相比,还具有不可燃性,可书写和办公室打印,适用于大多数印刷方式,包括胶印(柯式印刷、平版印刷)、凹版印刷、凸版印刷、丝网印刷、轮转印刷等。最重要目前已经能大量工业化生产,这是用于生产非塑料型环保购物袋的理想新材料。当然石头纸也有一些不足的地方:就是石头纸因含有大量的碳酸钙而不透明性,硬度也偏大而导致抗屈拆性差等。

表1 几种可降解基材性能对比表

1.2印刷油墨的选择

印刷油墨是制造购物袋必不可少的组成部分。须然印刷油墨占购物袋的成本很小,只占3%~5%左右。但对于一个购物袋是否符合环保要求就尤为重要了。选择印刷油墨要注意以下几点:

1.2.1油墨的可降解性

油墨的连结料多为高分子聚合物,本质上也是一种塑料。因此现用大部分印刷油墨降解性能较差,如果将这些油墨和塑料一起填埋处理,让其自然降解,一般需要50年以上才能在环境中能完全分解。因此为配套降解基材,必需选用以可快速降解的连结料所生产的油墨。现在市面上能找到的可降解油墨有以大豆油油墨、聚乙烯醇油墨、聚酮油墨,这几类油墨通常只需5~10年即可完全降解。

1.2.2油墨中的重金属含量

众所周知人体如果摄入过量的重金属,可造成严重的生理损害,引发多种疾病。重金属进入人的机体后,会在人体内部积聚下来,并可能转化为毒性更强的金属化合物。以镉为例,镉元素进入人体后,在体内形成镉硫蛋白,通过血液到达全身,并有选择性地蓄 积于肾、肝中。情况严重时,使骨骼的生长代谢受阻碍,从而造成骨骼疏松、萎缩、变形等。慢性镉中毒主要影响肾脏,最典型的例子是日本著名的公害病——痛痛病。慢性镉中毒还可引起贫血。油墨中的重金属通常来自于颜料,特别是一些重金属化合物颜料,如镉红、铬红、铬黄及银朱等。另外可溶性重金属盐毒性大易于进入人体,因此我国、欧盟、美国都制定了油墨(涂料)涂层中可溶性重金限制:(见下表)

1.2.3油墨中其它有毒有害物质

油墨中可能存在有毒有害物质有:(1)连结料生产合成时残留的单体,如剧毒物游离甲苯二异氰酸酯;(2)颜料生产合成时残留的强致癌物多氯联苯(PCB)、芳胺(MAK-Ⅲ);(3)溶剂残留导致苯、甲苯、二甲苯、甲醛超量。许多国家严格控制油墨干膜中的有毒有害物质含量。以甲醛为例:日本要求甲醛含量

2.结语

随着近年不断有新材料的发明,并逐步进入实用化、产业化。带动更多环境友好的产品将进入我们的生活。我们相信,在不久的将来,真正可降解型环保购物袋会进入我们的生活,使“白色污染”会逐渐从环境中消失。我更期待这些环保新技术、新发明将为人类与自然的真正和谐作出巨大的贡献。

【参考文献】

[1]刘彦平,杨志远,杨建业.我国生物全降解塑料的研究进展.[期刊论文]-塑料工业,2006,(z1).

[2]王广文.生物塑料和降解塑料的研究进展.[期刊论文]-塑料科技,2011,5.

第7篇:可降解塑料的好处范文

[关键词]垦区;白色污染;危害;防治

一、垦区白色污染现状

黑龙江垦区作为全省乃至全国农业发展的排头兵,在国家稳定粮食安全生产的政策引领下,不仅逐年加大农业投入,加速实现农业现代化的步伐。在整体经济向好的状况下,城镇建设也迎来了春天,人口聚集,城镇发展和科技进步,也带来了农业、工业和生活中塑料制品的使用的快速增加。在各项环境污染中,白色污染越来越重,逐渐成为垦区不得不面对,又不得不探求加快治理的重要污染面源。不可否认,塑料制品的出现,在一定程度对各行各业起到了支撑作用,但随着塑料制品消耗量大幅提高,垃圾中塑料成分和比例也在成倍增加。 “白色污染”不仅污染环境,更对人体健康产生危害。塑料制品进入土壤会影响农作物吸收,进入生活垃圾中给垃圾综合利用带来困难。因此,治理“白色垃圾”已成为垦区社会面临的一项长期而艰巨的任务。

二、“白色污染”的定义

所谓“白色污染”,是人们对塑料垃圾污染环境的一种形象称谓,它是指由聚苯乙烯、聚氯乙烯等高分子化合物制成的一次性的塑料制品,在其使用后被弃成固体废弃物。由于缺少回收利用价值,其中,绝大部分被丢弃在环境中,主要集中于城镇、河道和道路两侧农田,湖泊和水塘中,不仅破坏了景观,造成了“视觉污染”,而且由于其具有在自然中难以降解的特点,对自然生态环境也造成了直接和间接的破坏。这种由废弃的一次性塑料制品通常多为白色,所造成的“视觉污染”和自然环境的破坏被形象地统称为“白色污染”。

三、“白色污染”的成因和危害

(一)白色污染的成因

垦区白色垃圾主要以农用塑料薄膜和生活塑料制品为主。随着科学技术在旱作农业的应用,为提高产量,覆膜种植和温室移栽大量使用,保证了农业稳产、增产,但大量的塑料垃圾也在不断的产生,由于回收难,白色污染成为了旱作农业污染的重要来源之一。生活塑料制品更是五花八门,品种繁多,尤其是方便袋的大量生活使用,更是形成白色污染主要来源。这两种是垦区白色污染的主要产生根源。

(二)白色污染存在两种危害

1.“视觉污染”。是指散落在城市和农村中,人们随手丢弃的塑料废弃物对市容、镇容和村容及景观的破坏.例如散落在农村街道两旁、漫天飞舞或挂在枝头上的超薄塑料袋,农田白色一片的塑料薄膜,这些都给人们带来不好的视觉刺激,人民对此反映强烈。

2.“潜在危机”。是指塑料废弃物进入自然环境而难以降解带来的环境问题,其危害主要包括以下几点:一是不易回收,回收成本高,利用率低,利润少,且回收价格低,导致不愿回收的现象发生。二是难以降解。回收的塑料废弃物不易处理。若将其焚烧,则产生大量的有毒烟雾,污染大气,易形成酸雨;埋于地下,很难降解,且对土地产生毒害,改变其酸碱度,导致农业减产;进入水体或陆地,不仅影响环境,易被动物吞食,导致死亡,破坏生态平衡。三是高温分解出毒害物质,在达到65℃时,毒害物质就会析出并且渗入到食品中,对肝脏、肾脏、生殖系统及中枢神经等人体重要部位造成危害。

四、“白色污染”的防治

黑龙江垦区对治理“白色污染”十分重视,在减少使用塑料制品同时,加大了回收利用,主要采取以下方法:

(一)加强垃圾分类管理

从家庭开始分类,居民住宅、公共场所都有分类垃圾箱。居民自觉按要求投放,很少有随地乱扔废物的现象。密闭的专用车上门收集垃圾。废纸、废塑料等包装废物送往工厂再生利用,厨房、庭院垃圾用于堆肥。不能再生利用的垃圾在对环境不造成污染的前提下填埋或焚烧,生活垃圾无害化处置率很高,各环节流失到环境中的垃圾极少。

(二)加大回收力度

垦区每年产生废旧塑料几千吨,由于数量不断增加,而回收利用率却很低(几乎不到20%),废弃塑料大量散落而引发的环境问题日益引起人们的高度重视。因此,治理“白色污染”已经成为环境保护的热点问题。而治理“白色污染”的其中一种有效办法就是限制产量和加大回收力度。主要通过对废旧塑料收购部门的补贴,提高收购价格,提升民众收集塑料的积极性,实现废旧塑料的高效回收。

(三)加大宣传力度

治理“白色污染”是一项社会系统工程.应采取积极对策,运用行政、科技、经济等手段综合治理。特别是要加强宣传教育工作和加大优化环境的措施。利用各处行政组织、新闻媒介、学校教育等多种形式广泛宣传,普及有关知识,大张旗鼓地宣传造成“白色污染”的原因及其危害。提高公众环保意识,积极参与废塑料的回收,提高使用有利于环境保护的包装材料,适度包装,节约资源,不用或者少用一次性包装产品。提供垃圾分类回收,反对随手丢弃垃圾,减少垃圾产生量。

(四)禁止使用一次性塑料包装物

在形成“白色污染”的废塑料中,几乎全部为塑料包装物,尤其是一次性发泡塑料餐具和一次性超薄塑料袋等。前者在我国的年生产能力达到70亿只,由于重量轻、体积庞大、难以清洗干净等原因造成回收成本高、难以有效利用。后者,由于使用面非常广、很薄等原因造成环境中污染物随处可见,回收困难。因此,限制或禁止使用难以收集、处置的一次性塑料包装物,减少和控制使用塑料包装材料避免过度包装,严格地进行适度包装。

(五)推广使用替代品

目前,许多环保产品为治理白色污染提供可能,如:纸模塑类,以纸浆为原料生产餐具;植物秸杆类制品,以植物的秸杆、稻壳等粉碎压制成型;淀粉类制品,以玉米淀粉、甘蔗粉为原料制作餐具;生物降解塑料类,在塑料中混入光催化原料、淀粉以达到降解的目的。要不断推广使用可降解制品来替代难降解的塑料制品,来促进替代产品的开发利用,使难降解塑料制品能早日退出我们的生产、生活领域。

第8篇:可降解塑料的好处范文

数码技术在盐生境根系微生态研究中应用

项目简介:该课题组创立了根系图像信息研究系统,并对其应用条件进行了探索;利用高分辨率(800万像素)数码相机、电子计算机、彩色图像处理软件以及根系培养装置等有机组合,建立了根系生长动态可视化、信息化、无损监测实验平台,测定误差均小于3%,并对使用过程中有关的影响因素及其解决办法进行了实验探索,达到了实用化的程度;该课题组开展了NaCl盐胁迫条件下根系动态监测的研究,对苏柳根系的盐胁迫动态响应(包括根长、根径、表面积、发根量以及新梢生长量等)进行了测定分析,基本摸清了根系的胁变规律;对天津市盐碱地的利用现状以及30年来的研究历程进行了调查考证分析,为有关盐碱地的研究和开发利用提供了详实资料。

海泡石改良盐碱地应用技术研究

项目简介:该课题组利用海泡石改良盐碱地经三年示范在不同农作物均取得了明显的增产效果,而且方法简便,成本较低,易于农民接受。从长远看,不仅为唐山市海泡石矿产资源优势转化为经济优势开辟了途径,而且能改良土壤,减少环境污染,可谓一举多得。因此,利用海泡石进行盐碱地的改良具有广阔的推广应用前景。该项研究取得的科研成果可以在环渤海的辽宁、唐山、天津、山东等同类型盐碱地应用。

沿黄低洼盐碱地池溏综合渔业技术

项目简介:该项技术是采取挖塘抬田的方法,把渔业利用与改碱种植结合起来,使水、土都获得有效利用,并采取加注淡水,增施有机肥,施用中性和酸性化肥等调节水质的排盐降碱方法,改善水质环境,提高鱼产量;开展池塘与台田综合开发利用,推广鱼-畜,鱼-农-草,鱼-农-果等综合开发利用模式。该技术在陕西沿黄、渭河滩推广池塘面积15000亩,配套台田5000亩,平均亩产鱼达600公斤,亩综合效益1000元以上。采用该技术开发利用沿黄低洼盐碱地,可为社会提供鲜活商品鱼、生猪、果品,改善人民生活,又可改善生态环境,利用国土资源,安排项目区剩余劳动力,并为沿黄大农业经济发展提供资金,促进沿黄地区渔业经济的发展。

重盐碱地改良

项目简介:巴州二十九团场地处重盐碱地区。开垦前1米土层全盐量一般在3%以上,高的达10%,属于硫酸盐氯化物盐土,地下水矿化度一般在50-100克/升。该团场广大职工经过20多年的生产和科学实验,逐步摸索了一套治理重枯渍土的办法:(1)开挖排碱渠道,建立排水网。自使用以来共清挖排渠500多千米,土方量300多万m3。使全团渠道成网,灌排畅通。在大面积种植水稻情况下,实行合理灌溉,地下水仍控制在1.5米以下,每年排出地下水185万m3,防止了大面积返盐。(2)改建条田。将建场初期1000米长,500米宽,排水间距500米,近600亩的大条田,改建为每个条田只有150亩左右,排水问距100-120米宽。(3)平整地土,采取条田大平,播前小平,小块细平,种水稻的格田里高差小超过3-5厘米,从而保证上水一致,脱盐均匀。(4)种稻洗盐,实行水旱轮作。通过种植水稻,可使1米土层含盐量由原来的2%降到0.8%左右。种稻洗盐可使水稻保苗95%以上,配合相应的农业技术措施,水稻单产可达300多千克左右。实行水旱轮作,尤其通过种稻淡化作物根系层,提高稻后旱作保苗率20%-30%,增产30%-40%。(5)增施有机肥。除种植苜蓿外,每年还积肥造肥,1亿多千克,水稻田亩施2000多千克基肥,增加有机质,改善土壤结构。

利用浅井-深沟体系综合治理旱涝碱咸

项目简介:(1)建立浅井深沟体系。从利用咸水,扩大抗旱水源入手,建市一个能够统一调度大气降水、地面水、土壤水、地下水,调节控制水位、水量和能灌能排能蓄的地下水库,结合农业措施,把盐碱地改造成高产稳产农田。(2)总结了咸水灌溉中水盐运动的一些规律,提出咸水灌溉技术和土壤盐分预测预报的方法。取得不同作物不同生育期的耐盐指标。(3)通过秋冬压盐,春季抽咸排咸,降低潜水位达2米左右,大大抑制土壤返盐过程。雨季控制水位在2-2.5米,达到防涝防托目的,并在自然脱盐基础上,用升排加速脱盐过程,使实验区非盐化土壤由占耕地总面积的17%提高到72%,平均每亩盐储量由9.25吨下降为6.62吨。(4)通过合理抽成换淡,地下水出现明显淡化趋势,弄清成水淡化因素(土体脱盐强度、潜水降深、引渗淡化程度、承压咸水的矿化度)及其间相互关系,初步掌握水质变化的规律,提出咸水水质各项指标及动态变化,为加速咸水淡化和预测预报水质对土壤及作物的影响,以及采取相应措施提供一定依据。完成实验区改变农业生产基本条件的农田基本建设,初步实现大地园田化;旱涝碱咸综合治理效果显著;在井排沟排综合作用下,连续降雨400-500毫米也不致发生涝害;盐碱地面积由1974年占耕地、83%降到1976年的28%,通过抽成换淡,地下咸水开始淡化,上部潜水矿化度下降1克/升以上的井,占总数的60%。综合治理区的农业生产有较大程度的增长,3年累计净增粮食104.75万千克,棉花3.5万千克。

盐碱地土壤改良剂生产技术

项目简介:国内外盐碱地改良一般采用的办法有:水利技术,即以水压盐;化学改良;生物改良,即秸秆还田;利用盐生植物降盐,抑制蒸腾。该项目利用海洋生物材料制备盐碱地土壤改良剂,通过改善土壤物理、化学、微生物生态结构,增强作物抗盐能力,以达到改良盐碱地土壤,提高低度盐碱地(含盐量2g/kg以下)作物产量,提高中、高度盐碱地(含盐量2g/kg以上)植物成活率及生长速率,对抑制土壤盐碱化,解决中国土地资源短缺,促进盐碱地区经济发展,以及保护生态环境,都具有重要意义。

沸石对盐碱地增产效果及机理的研究

成果简介:该项研究课题是依照辽宁省科委1990年下达的计划重点科研项目进行的。沸石是一种具有独特的内部结构和结晶化学性质的矿物,具有较强的离子代换量和良好的选择性、吸附性,沸石用于农业土壤改良剂。试验结果表明,施沸石后土壤的理化性质,土壤的结构都有明显的改善,土壤的含盐量,特别是Na离子的含量,由于沸石的吸附明显降低。在不同低产盐碱土条件下,田间试验玉米最高增产58%;棉花增产15.5%-51.8%。向日葵增产21.96%,三年内应用沸石面积12600亩,共计增收3713万元,取得显著经济效益。

盐碱地地下水南美白对虾优质苗种培育及健康养殖技术

项目简介:该项目结合“上农下渔”治理盐渍地的实践经验,利用盐碱地池塘渗水和地下卤水进行南美白对虾苗种培育和养殖,有效隔断了海水对虾病毒的水平传播,培育和放养无病毒感染的健康虾苗。同时,采取全程投喂全价优质配合饵料,杜绝病原生物饵料(蛤、蟹类等)入池,利用生物技术调控水质、实现南美白对虾的无病毒健康养殖。该项目将信息技术与盐碱地地下水南美白对虾苗种培育和健康养殖技术匹配集成,开发了南美白对虾养殖专家系统、投饲决策支持系统、南美白对虾虾病诊断与防治系统。以盐碱水质改良调控为核心,将专家系统与池水盐度调控及离子调节仪、增氧机、水质测试仪、自动投喂机、病毒防治技术等系列养殖工程技术集成配套,形成高层次多功能的南美白对虾养殖技术推广平台和技术体系,使该优良虾种在中国盐碱地地区大规模养殖成功并实现产业化。该项技术已在山东、江苏、河北、辽宁和天津等省市推广应用,累计推广对虾育苗水体23700立方米,育出虾苗19.3亿尾;推广对虾养殖面积30多万亩,产虾54450吨,每亩纯增收益2074.5元。

盐碱地综合治理与合理开发利用研究

项目简介:该项目首次将致酸铝离子引入苏打盐碱良中来、通过大量的实验室改良机理研究和十余年的盆栽、田间试验、筛选出了铝离子改良剂,并明确了该改良剂对苏打盐碱土的改良机理,提出了以铝离子改良剂利用改良综合技术模式;以苏打碱斑为主攻目标,提出了盐碱土旱田改良利用综合技术模式;通过对吉林省西部盐碱土农业利用适宜性评价,提出了苏打盐碱土农业利用的方向,为吉林省农业生态环境建设和农业可持续发展提供了理论依据和技术支撑。项目的特点:该研究以理论创新与技术创新相结合,先进性和适用性相结合,试验研究与示范推广相结合,研制出的以铝离子改良剂施用为核心技术内容的苏打盐碱良利用配套技术,具有理论依据充分、技术成熟、符合生产实际、成本低、见效快、效果稳定、宜于推广等特点。特别是对于重度苏打盐碱土的改良效果尤为显著。

流沙地、盐碱地大面积引洪灌溉恢复红柳技术研究

项目简介:红柳,也叫柽柳,是新疆一种主要荒漠树种,对荒漠平原生态系统具有重要的稳定作用。

该项研究,在自治区人民政府的大力支持下,在新疆南部伽师、策勒、皮山、于田、皮山等县的重盐碱地、流沙地开展了试验。该项试验以洪水为灌溉水源,化害为利,使试区植被覆盖度达60%以上,流沙被基本固定,大面积红柳林的吸盐、泌盐和生物排水作用,减轻了土壤盐碱危害,提高了土地生产力。在3年试验期,恢复红柳27万亩,招过指标17万亩;通过5年的推广,恢复红柳林70万亩。试验期投入20万元,每亩投入不到1元,大面积推广,加上基建投资,每亩成本仍低于10元。成林后的红柳仅薪材产值在300元以上,投入产出比在1:30以上。自治区主要领导同志批示:"这是为南疆人民办的一件大好事"。在试验推广期间,研究人员对20万人次进行了宣传,将技术真正交给了群众。

苦咸水栽培食用菌新技术

项目简介:该项目为了充分开发利用苦咸水地区大量闲置的盐碱地和地下浅层苦咸水资源,解决了盐碱地苦咸水不能栽培食用菌的技术问题,促进农业和农村经济结构调整,对鸡腿菇、平菇、草菇、姬菇和杏鲍菇从菌种选育、培养料配制、出菇场所选用、出菇和出菇管理都进行了反复试验和较大面积的示范,逐渐摸索出了一套利用盐碱地苦咸水栽培食用菌的较成熟的技术和工艺路线,取得了显著的技术成果。同时,该项目确定了苦咸水栽培食用菌土壤含盐量和苦咸水矿化度的适宜指标范围。

绿色生物降解材料助力北京奥运会

北京奥组委有关负责人表示,2008年奥运会将广泛采用生物降解材料,为“绿色奥运”助力。

据北京奥组委奥运村部副部长王淑贤和餐饮处处长抗易介绍,奥运会举办期间,在集中用餐的地点将有选择地使用生物降解塑料餐具;在使用一次性餐具的场所,将全部使用生物降解塑料餐具;所有的垃圾袋都要使用生物分解塑料制品。

这两位官员还表示,奥运村公寓外装和室内装修所用材料也将按照国家环保标准甚至高于国家标准进行选择,玻璃为节能产品,外墙采用了具有保温功能的节能装饰板。

专家认为,北京2008年奥运会期间将产生1万吨以上垃圾,包括4%不可回收的塑料垃圾,这将对环境造成很大的负担。而绿色生物降解塑料可在自然条件下被微生物分解,是目前普通塑料的最佳替代材料。他们希望生物降解材料在北京奥运会的餐饮、住宿、办公等方面得到推广应用,举办一届成功的绿色奥运会。

在2008年奥运会期间,运动员居住的奥运村中将使用800多万绿色生物可降解塑料袋。

奥组委奥运村部王淑贤副部长向外界透露,就奥运村采购可降解的垃圾袋、洗衣袋等生物降解塑料制品的有关事宜,奥运村部和奥科委办公室正在积极协调,推动相关工作的开展。

王淑贤副部长说,在奥运会期间,不仅是奥运村中使用的40万只黑色垃圾桶塑料袋、750万只放在运动员房内的白色塑料袋和20万只医用黄色塑料袋都将为可降解材料制成,而且他们还对奥运村内商业服务区的企业提出了使用可降解塑料袋的要求。此外,有关的奥运纪念品的包装袋也将使用环保材料。

北京市科委副主任王荣彬指出,目前本市仅超市塑料袋的每天消耗量就达到5吨,而且每年还呈快速增长趋势,白色污染日益严重。同时,据专家预计,在北京奥运会期间,将产生10000吨以上垃圾,其中就包括4%也就是400吨不可回收的塑料垃圾。这些垃圾的存在,不仅对本市环境是一大负荷,也会影响到奥运期间垃圾的处理及资源化综合利用效果。奥组委和市科委希望通过奥运的示范应用,向市民推广和介绍绿色生物材料的使用,从而对解决白色污染起到作用。

知名环境化学专家董金狮认为,2008年北京奥运会使用的降解塑料产品,在强调易降解的同时,也在强调易回收。目前国际上普遍将易回收作为环保的首要要求,回收也成为废弃物的首要环保处理方式。

“降解塑料在明年北京奥运会上大量被采用,必将对全民的环保教育和培养全社会使用降解塑料产品的习惯大有帮助,也能对应用客户使用降解塑料产生积极意义。”中国塑料加工工业协会降解塑料专业委员会秘书长翁云宣说。

资料链接:何为生物降解塑料

“生物降解塑料”英文缩写为“BDP”,全称biodegradableplastics,指废弃后可以在堆肥条件下被微生物分解为二氧化碳、水等小分子的一类塑料。这类材料最初的意图是解决石油基塑料多数无法在自然环境下消解的问题。

普通塑料由石油提炼研制而成,虽然价格低廉且容易加工,但它的弊端也逐渐引起人们的警觉:首先,使用废弃后的塑料必须依赖高代价的工业回收才能重新变成石油加以利用;其次,全球产生的几千万吨废塑料使填埋场不堪负重,如果焚烧的话又会产生大气污染;另外,破碎后的塑料常常无法收集,长期混杂在土壤中造成肥力下降;最后,石油价格逐年上涨和全球能源危机让生产厂商开始放眼新的替代品,是否能从可再生资源中提取某种物质制成塑料呢?

其实答案在十多年前就已经有了。“生物降解塑料”在1980年末由欧美国家提出,后来逐渐为澳大利亚、日本、中国等亚太国家所接受。目前,美国Natureworks公司从玉米、大豆中提取聚乳酸(PLA),日本昭和电工、三菱化学利用琥珀酸来做塑料的技术已经相当成熟,而且逐渐被人们所接受认可,在欧美、日韩市场中占有一席之地。这些塑料产品,源于自然,回归自然,无需工业回收就能自己分解,既大大降低了石油消耗,也省去了回收带来的种种困难和环境污染。

我国从事生物降解塑料生产技术研究有十余年时间,其中清华大学、中科院长春应用化学研究所、中科院微生物所等机构已经和企业合作进行了生产,而且核心技术并不比国外公司差。

PBS生物降解塑料亟待扩产

生物降解塑料产业在经历了行业发展初始阶段的阵痛后发展迅猛,生产企业已开始从生产阶段、初步销售阶段、应用推广阶段进入到盈利阶段。近日,鑫富药业年产3000吨的全生物降解新材料(PBS)集成工艺及成套生产线项目完成生产设备安装调试工作,进入试生产阶段。PBS的推广应用将进一步丰富生物降解塑料的应用,增加下游生产厂家的选择,促进整个生物降解塑料行业的发展。

PBS技术已成熟

上世纪八九十年代淀粉添加型降解塑料曾风靡全国,但由于降解不完全和产品价格高等问题,并未得到市场认可,数十家企业陆续转停产,造成严重的投资浪费。此后,中国降解塑料产业开始向可完全生物降解塑料转型。

虽然现在市场上品种众多,但生物降解塑料制品的性能依然难以完全满足消费者需求。每种材料本身的机械和加工性能只在某一方面有突出特性,综合性能还存在这样或那样的不足,这成为制约其市场应用和推广的瓶颈之一。

除医用及高附加值材料外,目前对环境负荷较大的一次性包装膜垃圾袋、餐饮具、地膜等大宗产品市场生物降解塑料的用量并不大。

从当前的应用研究来看,国内用PBS制成的一次性餐盒、购物袋、包装膜已没有问题。此外,PBS不需回收,埋在垃圾堆里3个月就可完全降解,解决了白色污染的问题。据了解,除国内的鑫富药业外,目前世界上只有日本三菱化学和昭和高分子公司开始了PBS工业化生产,规模在1万吨左右。不过与国内的一步聚合法不同,日本PBS的生产采用的是扩链法。

有待扩产

“PBS将丰富生物降解塑料的应用,增加下游生产厂家的选择,促进整个生物降解塑料行业的发展。”中国塑协降解塑料专业委员会秘书长翁云宣表示,近年来,我国生物降解塑料产业发展很快,在经历了行业发展初始阶段的阵痛后,生物降解塑料生产企业已经开始从生产阶段、初步销售阶段、应用推广阶段进入到盈利阶段。“但是产品的供应不足阻碍了产业下游的开发和推广应用。”

据了解,2005年生物降解塑料生产企业约30家,生产能力6万吨/年,实际生产约3万吨/年。国内市场需求约5万吨/年。日前,北京新材料发展中心透露,目前我国生物降解塑料生产企业已经达到200多家,2010年我国生物降解塑料产能将达到25万吨左右。

此外,来自欧洲生物塑料协会的资料显示,2003年欧盟可生物降解产品的消费量为2.5万-3万吨,预计2010年生物降解塑料的用量会达到50万-100万吨。

“但目前国内包括PBS、PLA、PHA在内的多种生物降解塑料的总产量也不过几万吨。”翁云宣说,原料紧张必然影响下游的开发推广应用。此外,翁云宣表示,近几年我国消费者的健康消费意识有明显提高,“生物降解制品日渐得到消费者的认可”。

仍需支持

不过与普通聚乙烯塑料相比,PBS的价格还是相对较高,这意味着成本问题将继续影响生物降解塑料产业的发展。季君晖说:“有调查显示,与现有塑料产品相比,PBS成本增加不超过20%,消费者就可以接受,如果超过30%,可能就会有一些阻碍。”

PBS的主要原材料是丁二酸丁二醇,目前,工程塑料国家工程研究中心正在研究用非粮食作物如秸秆、玉米芯等制备丁二酸丁二醇。季君晖说,发酵法制备原材料的技术正在中试,水解法制备原材料已经中试成功。“这些技术产业化后将降低PBS的价格。”

“其实,国内生物降解塑料的研究水平并不比国外差,但消费能力不同导致在应用上存在差距。”季君晖说,国外消费者对价格的接受能力相对较强,因此,推广生物降解塑料比国内更容易。

第9篇:可降解塑料的好处范文

汽车制造、房屋门窗、3D打印原料、人工关节、人工晶体等生物医用材料都来自塑料……如今,传统塑料正在向环保、高性能等方面寻求突破,并推动了多个行业转型升级,颠覆了人们以往对塑料难降解、高污染的印象。

亚洲最大的国际橡塑展近期在广州拉开帷幕。记者从展会上了解到,在电子信息、生物医学、节能减排、环境保护及智能交通等方兴未艾的新领域,都将对功能性、轻量化、微型化、绿色化的新材料产生需求。针对这种情况,塑料加快在各领域的推广,绿色低碳环保成为塑料行业发展大趋势。

汽车:

塑料车架内饰减重又低碳

“这是碳纤维首次大规模地用于量产车型。”在橡塑展上,一款车身结构和框架完全采用碳纤维增强塑料制造的宝马i3吸引了不少人前来参观,黑色的车顶、银灰色的车架除了透出一身炫酷之外,其高性能塑料不但能够减低车重,从环保效应看,能同时减低油耗和二氧化碳排放。

“汽车座椅也是全塑料的,用复合材料代替金属,重量比传统座椅减轻20%。”巴斯夫中国有限公司的沈佳虹告诉记者。

现场专家介绍,汽车轻量化主要体现在汽车优化设计、合金材料及非金属材料应用上,其依次为汽车的轻量化减重10%~15%、30%~40%、45%~55%。

事实上,高度重视降低碳足迹早已成为汽车制造业的共识,日前,工信部《汽车有害物质和可回收利用率管理要求(征求意见稿)》,意味着产业“绿色”发展基调将进一步强化。

该《要求》提出,汽车生产企业作为污染控制的责任主体,应积极开展生态设计,采用合理的结构和功能设计,选择无毒无害或低毒低害的绿色环保材料和易于拆解、利用的部件,应用资源利用率高、环境污染小、易于回收利用的绿色制造技术。无疑,《要求》出台后,汽车生产企业将对零部件企业和汽车材料供应商在环保材料使用、绿色制造技术方面提出更高的要求。

塑料材料因为其拥有更轻的质量,相比玻璃和金属来说具有较低的碳足迹。中国工程塑料工业协会秘书长郑恺表示,工程塑料等非金属材料的“减重”效果明显,越来越多的汽车部件开始采用工程塑料替代金属制件。

据悉,发达国家将汽车用塑料量作为衡量汽车设计和制造水平高低的一个重要标志,每辆汽车塑料用量从上世纪90年代的100~130kg上升到2004年的152kg和2006年的174kg,现在用量是230kg。目前德国汽车塑料用量最多,占整车用料的15%以上。专家预计,到2020年,汽车平均塑料用量将可能达到500kg/辆以上,约占整车用料的1/3以上。

不少专家还表示,国外汽车品牌现在已经大规模使用塑料复合材料和高性能的工程塑料等,而国内自主品牌汽车在塑料复合材料上的应用(重量占比)却相对较少。这也反映了我们整车轻量化技术水平的差距。

建筑:

采用塑料建材无毒可循环

将塑料和木质粉料按一定比例混合后,经热挤压产出成型的板材,可作家具、天花板等。“这种木塑复合材料不仅比木材耐用性高,而且节省了木材,且可循环使用,无苯无甲醛等有害物质”。

来自青岛某塑料机械公司携带其最新研发的木塑家具板设备参展,记者看到,其所挤出的家居板直接带有花纹,免去了后续处理部分。据厂家介绍,该产品无甲醛、防火防潮、没有虫害,可直接取代市场现存的胶合板,并且可以回收利用。

“绿色建筑的推广,拉动了这些节能环保建材和相关制造技术的发展。”建筑专家介绍, 按照我国颁布的《绿色建筑行动方案》要求的旧房节能改造目标,以每平方米200元改造标准计,建筑节能材料未来市场容量高达2.6万亿元。塑料在建材中应用的增加,是未来建筑材料环保节能发展的趋势之一。

据展览主办方介绍,塑料建材是继钢铁、木材、水泥之后新兴的第四大类新型基础材料。近几年,中国这一行业年均增速超过15%,30%以上的地区应用了新型塑料管材,部分省市已经达到90%;东北三省、内蒙古等地的一些城镇,40%以上的新建住宅都使用了塑料门窗;青岛、大连80%以上的新建住宅使用了塑料窗。

“如今塑料建材在建筑工业和城镇建设中所做的贡献越来越大。”业内专家介绍,以聚氨酯保温材料为例,使用一立方米该材料,一年能减少二氧化碳排放量270千克。按1年消耗100万吨聚氨酯保温材料计算,则一年可减少二氧化碳排放量700万吨。到2030年建筑节能材料采用保温处理后,将使温室气体减排达到56亿吨。

“上述保温塑料建材在美国、日本等国建筑上的应用已十分成熟,节能效果良好。而在我国大规模的应用才刚刚开始,未来发展空间巨大。”中国塑协聚氨酯制品专委会理事长林永飞表示。

3D打印:

使用可降解塑料成新宠

精致的工艺品、眼镜都可以打印出来,而采用的是可降解的塑料。记者在广东银禧科技股份有限公司的展位看到,两台3D打印机被团团围住,工作人员演示将计算机上的三维图像数据发送至3D打印机,打印机内装有液体或粉末等“打印材料”,与电脑连接后,可以按照三维图像数据把“打印材料”一层层叠加起来,制作成实物。

“3D打印使用的材料几乎没有浪费,既节省成本,又带来环境效益。” 该公司3D打印事业部销售工程师苏官旺表示。他指着旁边放着的各种颜色的线材告诉记者,3D打印的材料十分关键,它决定了生产的环保价值。这种3D打印使用的是“PLA可生物降解线材”,其降解率达到了90%,而且打印出来的塑料产品,如果不需要使用了,可以进行填埋等处理,降解时间则需要根据填埋土地的湿度来决定。

值得注意的是,在整个3D打印过程中,记者并没有闻到传统塑料加工过程中的刺鼻难闻气味,反而闻到了一股类似玉米的清香。“PLA中文名叫聚乳酸,采用天然玉米提取物为原料,它可以用于食品的包装材料以及医疗中的手术缝合线。如果您用PLA打印出了一个杯子,您也可以直接用它来喝水。” 苏官旺向记者解释了PLA的环保无毒特性。

据了解,使用环保塑料的3D打印还能够实现产品生产本土化,减少运输需求,客户做好设计图,就可以在当地打印出需要的产品,减少了长途运输成本和温室气体排放。

不但用于3D打印,原材料的绿色环保性成为众多塑料原料供应商追求的目标,并逐渐通过认证制度建立起可追溯的渠道。

在本次国际橡塑展上,有知名外资企业就推出另一项可持续性举措――生态标签。目前,该标签已在该企业各业务单元中全面推广。生态标签包括由36项标准组成的可持续性评定,这些标准充分考虑到社会责任、产品性能与环境保护因素。获得该可持续性卓越标签认证的产品具有高度的差异化,但生态标签产品都是在不降低产品性能的前提下,积极协助客户提高产品的可持续性。“目前,我们已对80%的产品进行了审核,向其中50个产品标注了生态标签。”该公司高管说。

挑战:

成本差异考验厂家选择

中国是世界塑料消费量、塑料制品产量、塑料制品出口量、塑料机械产销量第一大国。

“然而,目前中国人均塑料产品的消费量仍然低于全球平均水平,中国市场具有巨大的增长潜力。”展会现场某外资化工企业市场负责人告诉记者。

“在中国市场,成本是很重要的考虑因素,大部分产家在选择材料的时候,都倾向于以最低廉的价钱把产品造出来。”在谈到节能环保的新材料在中国市场推广的瓶颈时,巴斯夫特性材料业务部亚太区副总裁楼剑锋表示。

据业内人士介绍,在一些附加值较低的产品中,新型塑料材料的普及并不顺利,如可降解塑料就遇到了这样的困境。“在饮料与食品包装材料行业中,每年包装材料的生产需求量达6700万吨,绝大部分包装材料对生态环境构成严重威胁。因此推广可降解塑料成为了当务之急。”

“可降解塑料的市场售价是普通塑料产品的2~3倍,若成功出售,利润水平在10%,而普通的塑料利润水平虽然只有1%~3%,但是售价便宜市场占有率高。在这种情况下,可降解塑料目前销售阻力较大,成本较高,资金占用较大,下游企业的接受能力较差是首要的原因。”有生产商指出,可降解塑料有一定的保质期,如果销售不畅,企业的亏损风险较大。因此企业陷入了成本和利润之间的考量,这就使得可降解塑料依旧处于宣传推广阶段。