公务员期刊网 精选范文 加密技术论文范文

加密技术论文精选(九篇)

加密技术论文

第1篇:加密技术论文范文

了对于蓝牙加密算法所存在的问题的解决方案。

关键字蓝牙流加密分组加密DESAES

1引言

随着计算机网络技术的迅速发展,网络中的信息安全问题越来越受到广泛关注。信息安全主要涉及到用户身份验证、访问控制、数据完整性、数据加密等问题。网络安全产品大量涌现。虽然各种网络安全产品的功能多种多样,但它们无一例外地要使用加密技术。一个好的加密算法首先表现在它的安全性上,一个不安全的算法会使使用它的网络变得更加脆弱;其次要考虑它在软硬件方面实现的难易度,不易实现的加密算法是不现实的;第三要看使用此加密算法会不会降低数据传输速率。

蓝牙技术是一种新兴的无线网络标准,它基于芯片提供短距离范围的无线跳频通信。它注定会成为一项通用的低成本无线技术,可适用于一系列范围广泛的数据通信应用。蓝牙标准定义了一系列安全机制,从而为近距离无线通信提供了基本的保护。它要求每个蓝牙设备都要实现密钥管理、认证以及加密等功能。此外蓝牙技术所采用的跳频数据通信方式本身也是一个防止窃听的有效安全手段。蓝牙加密过程中所用到的加密算法是E0流密码。但是这种算法存在有一些缺点,128位密钥长度的E0流加密在某些情况下可通过0(2^64)方式破解。所以对于大多数需要将保密放在首位来考虑的应用来说,仅仅采用蓝牙提供的数据安全性是不够的。

2蓝牙标准中的安全措施

蓝牙技术中,物理层数据的安全性主要是采用了跳频扩展频谱,由于蓝牙技术采用了跳频技术从而使得窃听变得极困难。蓝牙射频工作在2.4Hz频段。在北美和欧洲的大部分国家,蓝牙设备工作与从2.402到2.480Hz的频带,整个频带被分为79个1MHz带宽的子信道。FHSS依靠频率的变化来对抗干扰。如果射频单元在某个频率遇到干扰,则会在下一步跳到另一频率点时重传受到干扰的信号,因此总的干扰可变得很低。

为了得到完整的传输数据,蓝牙技术使用以下三种纠错方案:1/3比例前向纠错码(FEC),2/3比例前向纠错码(FEC),数据的自动重发请求(ARQ)方案。

蓝牙技术产品的认证和加密服务一般由链路层提供,认证采用口令-应答方式进行。在连接过程中往往需要一两次认证。为了确保通信安全,对蓝牙技术产品进行认证是十分必要的,通过认证之后,可以允许用户自行增添可信任的蓝牙技术设备,例如,用户自己的笔记本电脑经过认证之后,能够确保只有用户自己的这台笔记本电脑,才可以借助用户自己的移动电话手机进行通信。

若对于通信有更高的安全要求,那么通信中的蓝牙技术产品就不必局限于采用物理层的提供,还可以采用更高级别的传输层和应用层安全机制,以确保基于蓝牙技术产品的通信更加安全可靠。

3蓝牙技术中的加密算法

在链路层中,蓝牙系统提供了认证、加密和密钥管理等功能,每一个用户都有一个标识码(PIN),蓝牙设备中所用的PIN码的长度可以在1到16个字节之间变化。通常4个字节的PIN码已经可以满足一般应用,但是更高安全级别的应用将需要更长的码字。PIN码可以是蓝牙设备提供的一个固定码,也可以由用户任意指定,标识码(PIN)会被一个128位链路密钥来进行单双向认证。一旦认证完毕,链路层会以不同长度的密钥来加密。如图1。

PINPIN

认证

链路密钥

链路密钥

加密

加密密钥Kc

加密密钥Kc

申请者校验者

图1:蓝牙中链路层的加密过程

蓝牙技术在加密过程中所采用的加密算法如下表1。

表1:蓝牙加密过程中所用的加密算法

3.1认证算法

在认证过程中,用于蓝牙认证的E1认证函数来计算出一个安全认证码或被称为MAC(媒体访问控制地址)。E1所采用的算法是SAFER+,SAFER+算法是参与1997年美国国家标准技术研究所(NIST)征集AES(AdvancedEncryptionStandard)的候选算法之一。SAFER+是基于现有的64位分组密码的SAFER-SK128,因此它的安全性可以说是经过了时间的考验。

E1函数的输入是linkkey,AU_RAND及BD_ADDR,它的定义如下:

E1:

在蓝牙技术中,认证采用口令-应答方式。验证方要求申请者鉴别随机数AU_RAND并返回计算结果SRES,若双方的计算结果相等则认证成功,并保留ACO(AuthenticatedCipheringOffset)值。若某次认证失败,则必须等待一定的时间间隔才能进行再次认证

3.2加密算法

在蓝牙技术中,用户信息可采用分组有效载荷的加密进行保护,但识别码和分组头不加密。有效载荷的加密采用E0流密码来实现。E0将对每一有效载荷重新同步。流密码系统E0由三部分组成。第一部分执行初始化(生成有效载荷字),第二部分生成密钥流,第三部分完成加密和解密,如图2。

有效载荷字明码文本/密码文本

Kc

地址

时钟Z密码文本/明码文本

RAND

图2蓝牙的E0流加密

有效载荷字发生器非常简单,它仅仅以适当序列对输入的位进行组合,然后将它们转移到用于密钥流发生器的四位LFSR中。加密机采用了四个线性反馈移位寄存器(LFSR),依次为LFSR1、LFSR2、LFSR3、LFSR4,其长度分别为25,31,33,39比特。LFSR的性质:加密机把四个LFSR的输出结果输入到一个有限状态机中,经有限状态机的组合运算输出密钥流序列,若在初始化阶段则输出一个随机的初始化值。加密算法使用Kc、BD_ADDR、主时钟CLK26-1及RAND这些参数。时钟CLK26-1按时隙递增,在任两次发送中,CLK26-1至少有一位是不同的,因此在每次初始化后都将产生新的密钥流。对占用多个时隙的分组来说,CLK26-1为分组所占的第一个时隙的时钟值。

第二部分是该密码系统的主要部分,并也将用于初始化过程中。密钥流取自于Massey和Rueppel流密码发生器的方法来生成。

最后就是流加密算法的加密过程。将数据流与密码算法生成二进制流比特进行异或运算。对于加密规则,流密码算法用于将加密位按位模2并加到数据流上,然后通过无线接口进行传输。对每一分组的有效载荷的加密是单独进行的,它发生在CRC校验之后,FEC编码之前。由于加密是对称的,解密使用完全和加密相同的密钥和相同的方法实现。

4蓝牙标准中加密算法存在的问题

蓝牙所采用的E0流密码算法的本身就有一些弱点。流密码算法主要的缺点在于若一个伪随机序列发生错误便会使整个密文发生错误,致使在解密过程中无法还原回明文。流加密算法系统的安全完全依靠密钥流发生器的内部机制。如果它的输出是无穷无尽的0序列,那么密文就是明文,这样整个系统就一文不值;如果它的输出是一个周期性的16-位模式,那么该算法仅是一个可忽略安全性的异或运算;如果输出的是一系列无尽的随机序列(是真正的随机,非伪随机),那么就有一次一密乱码本和非常完美的安全。实际的流密码算法的安全性依赖于简单的异或运算和一次一密乱码本。密钥流发生器产生的看似随机的密钥流实际上是确定的,在解密的时候能很好的将其再现。密钥流发生器输出的密钥越接近于随机,对密码分析者来说就越困难。然而,这种随机的密钥流却不容易得到。

在蓝牙E0流加密中用到的LFSR易受到相关攻击和分割解决攻击,且用软件实现效率非常低。在实现过程中要避免稀疏的反馈多项式,因为它们易遭到相关攻击,但稠密的反馈多项式效率也很低。事实上LFSR算法用软件实现并不比DES快。

以上的这些问题会让人认为蓝牙的安全体系是高度不可靠的,然而一个不可忽略的事实是:通过蓝牙连接传输的数据一般来说并不是非常重要的。目前蓝牙标准考虑到的安全技术只适用于规模较小的网络,如果网络结点较多,拓扑复杂(如AdHoc网络),现有的基于点对点的密钥分配和认证机制不能满足需求。蓝牙所提供的数据安全性措施对小型应用来说看起来已足够了,但任何敏感数据或会产生问题的数据都不应直接通过蓝牙传输。为了使蓝牙技术应用得更广泛,我们可采用另外更强劲的加密算法,如DES算法。

5DES解决方案

5.1DES简介

1977年1月,美国政府采纳了由IBM研制的作为非绝密信息的正式标准乘积密码。这激励了一大批生产厂家实现这个在保密产业中成为数据加密标准DES(dataencrytionstandard)的加密算法。此算法有一个64比特的密钥作为参数。明文按64比特分组加密,生成64比特的密文。

由于DES是一种块加密方法,这意味着加密过程是针对一个数据块一个数据块地进行的。在DES算法中,原始信息被分成64位的固定长度数据块,然后利用56位的加密密钥通过置换和组合方法生成64位的加密信息。解密用的密钥与加密密钥相同,只是解密步骤正好相反。DES传送数据的一般形式是以代入法密码格式按块传送数据。DES采用的加密方法,一次加密一位或一个字节,形成密码流。密码流具有自同步的特点,被传送的密码文本中发生错误和数据丢失,将只影响最终的明码文本的一小段(64位),这称为密码反馈。

与蓝牙流密码算法不同,数学上可以证明分组加密算法是完全安全的。DES块密码是高度随机的、非线性的,生成的加密密文与明文和密钥的每一位都相关。DES的可用加密密钥数量多达72x1015个。应用于每一明文信息的密钥都是从这一巨大数量的密钥中随机产生的。DES算法已被广泛采用并被认为是非常可靠的。

5.2蓝牙中用DES取代E0流密码

如图1,在两个蓝牙设备经过认证并已生成了加密密钥Kc后就可进行加密了。因为Kc可在8~128比特变化,而DES加密算法使用长度为56比特的密钥加密长度为64比特的明文从而获得64比特的密文,所以这里可取Kc的长度为56比特。用DES加密蓝牙数据分组的过程如下:

a)将来自蓝牙分组分割成64比特的明文段。其中的一段记为x=DIN[63:0],先通过一个固定的初始置换IP,将x的比特置换为x0。即:x0=IP(x)=L0R0,这里L0是x0的前32比特,R0是x0的后32比特。

b)进行16轮完全相同的运算,在这里是数据与密钥相结合,例计算LiRi,。

Li=Ri-1

Ri=Lif(Ri-1,Ki)

其中Ki是来自密钥Kc=Key[63:0]的比特的一个置换结果。而f函数是实现代替、置换及密钥异或的函数。

c)对R16L16进行初始置换IP的逆置换IP,获得密文y=DOUT[63:0],即y=IP(R16L16)。最后一次迭代后,左边和右边未交换,将R16L16作为IP的输入,目的是使算法可同时用于加密和解密。

无论是硬件还是软件,此DES加密方案都易实现。其中DES的硬件实现如图3。此硬件加密方案采用低成本的可编程逻辑器件和现成可用的用于高级加密处理的智力产权(IP)产品实现。目前,大批量时只用10美元即可购买到10万系统门的可编程逻辑器件。这些器件还允许在设计中增加其它功能,如高级错误纠正。因此可编程逻辑器件可大幅度降低系统级的成本。

用软件(这里选用C语言)来实现该加密算法。为了算法实现的方便,这里删去了初始置换和末置换。

将此加密算法嵌入蓝牙协议中的基带部分以取代E0流密码算法,可允许蓝牙技术安全地应用到范围广泛的安全性具有最重要地位的应用中去。这些应用包括:金融电子交易:ATM、智能卡,安全电子商务交易,安全办公通信,安全视频监视系统,数字机顶盒,高清晰度电视(HDTV),其它消费电子设备等领域。

另外,对蓝牙加密这个过程中,可发现DES加密算法在近距离无线局域网的特定环境下存在一些问题。进而优化算法,最终可为应用于各种近距离无线网络通信的加密算法的选择提供有实际意义的参考依据。

6结束语

蓝牙是一项将会改变我们通信方式的令人激动的新技术。然而,蓝牙技术在标准化过程中都未曾完整地考虑安全问题。作为以无线信道为传输媒体的通信网络,蓝牙网络相对于固定网络更容易受到攻击。对于数据安全性处于首要地位的应用来说,实现高水平的数据安全性是必须的。目前蓝牙标准所采用的E0流密码算法存在着很多弊端,而DES和RSA算法相对来说更安全,而且较易实现。

参考文献

[1]金纯许光辰等编著《蓝牙技术》[M](北京)电子工业出版社2001年3月

[2]于跃韩永飞蓝牙技术的安全性[J]《电信技术》2001年第9期

[3]Andrew《ComputerNetwork》[M]S.TanenbaunPrenticeHall1998

[4]VainioJ.,BluetoothSecurity,05-25-2000

[5]Bluetooth,TheBluetoothSpecification,v.1.0B

/developer/specification/specification.asp

第2篇:加密技术论文范文

网络通信有一定的风险性,对数据加密技术的需求比较大,结合网络通信的实践应用,通过例举网络通信中的风险表现,分析其对数据加密技术的需求。网络通信的安全风险有:①网络通信的过程中,面临着攻击者的监听、窃取破坏,很容易丢失传输中的数据信息;②攻击者随意更改网络通信中的信息,冒充管理者截取传输信息,导致网络通信的数据丢失;③网络通信中的数据信息被恶意复制,引起了系统瘫痪、信息不准确的问题。由此可见:网络通信中,必须强化数据加密技术的应用,采取数据加密技术,保护网络通信的整个过程,预防攻击行为,提高网络通信的安全水平,避免出现恶意攻击的现象,保障网络通信的安全性和积极性,表明数据加密技术的重要性,进而完善网络通信的环境。

2数据加密技术在网络通信中的应用

数据加密技术提升了网络通信的安全性,规范了网络通信的运营环境,规避了潜在的风险因素。网络通信中的数据加密,主要分为方法和技术两部分,对其做如下分析:

2.1网络通信中的数据加密方法

2.1.1对称加密

对称加密方法在网络通信中比较常用,利用相同的密钥,完成通信数据加密到解密的过程,降低了数据加密的难度。对称加密中,比较有代表性的方法是DES加密,属于标准对称加密的方法。例如:DES在网络通信中的应用,使用了固定的加密框架,DES通过密钥,迭代子密钥,将56bit密钥分解成16组48bit,迭代的过程中进行加密,而解密的过程与加密流程相似,使用的密钥也完全相同,加密与解密密钥的使用正好相反,根据网络通信的数据类型,完成对称加密。

2.1.2非对称加密

非对称加密方法的难度稍高,加密与解密的过程,采用了不同的密钥,以公钥、私钥的方式,对网络通信实行非对称加密。公钥和私钥配对后,才能打开非对称加密的网络通信数据,其私钥由网络通信的管理者保管,不能公开使用。非对称加密方法在网络通信中的应用,解密时仅需要管理者主动输入密钥的数据即可,操作方法非常简单,而且具有较高的安全水平,提高了加密解密的时间效率。

2.2网络通信中的数据加密技术

2.2.1链路加密

网络通信中的链路加密,实际是一种在线加密技术,按照网络通信的链路分配,提供可行的加密方法。网络通信的数据信息在传输前,已经进入了加密的状态,链路节点先进行解密,在下一链路环境中,重新进入加密状态,整个网络通信链路传输的过程中,都是按照先解密在加密的方式进行,链路上的数据信息,均处于密文保护状态,隐藏了数据信息的各项属性,避免数据信息被攻击窃取。

2.2.2节点加密

节点加密技术确保了网络通信节点位置数据信息的安全性,通过节点处的数据信息,都不会是明文形式,均表现为密文,促使节点加密成为具有安全保护功能的模块,安全的连接了网络通信中的信息。加点加密技术在网络通信中的应用,依赖于密码装置,用于完成节点信息的加密、解密,但是此类应用也存在一个明显的缺陷,即:报头、路由信息为明文方式,由此增加了节点加密的难度,很容易为攻击者提供窃取条件,是节点加密技术应用中需要重点考虑的问题。

2.2.3端到端加密

网络通信的端到端加密,是指出发点到接收点,整个过程不能出现明文状态的数据信息。端到端加密的过程中,不会出现解密行为,数据信息进入到接收点后,接收人借助密钥加密信息,提高网络通信的安全性,即使网络通信的节点发生安全破坏,也不会造成数据信息的攻击丢失,起到优质的加密作用。端到端加密时,应该做好出发点、接收点位置的网络通信加密,以便确保整个网络通信过程的安全性。

3结束语

第3篇:加密技术论文范文

【关键词】分布式计算机网络 加密技术优化 混沌理论

1 引言

分布式环境下的计算机网络是指将网络划分为多个子区域,这些子区域由不同的管理者进行管理。当管理者需要获取其余子区域的信息时则需要进行通信。在分布式网络中,不设有控制处理中心,网络中的任意一个节点和另外两个节点相互链接,这就为信息传输路径提供了多种多样的选择。分布式计算机网络具有运行灵活,网络管理流量较少,自身可靠性和延展性较强等优势,同时容易进行维护,所用代码可以重复,因此被广泛应用于企业管理和社交媒体等的网络设计中。然而正是由于分布式计算机网络不存在中心节点,用户信息较为分散,从网络中的任意一个节点都可以轻松获取用户的个人隐私信息,容易造成信息泄露和滥用,因此在分布式环境下的网络安全问题越来越引起学者的广泛关注。目前采用的网络安全控制策略分为保证操作系统安全,网关保密,采用防火墙及加解密技术等,其中加解密技术应用较为普遍。传统的网络加密技术在分布式网络中虽然可以起到一定的安全防护作用,但其对系统的占用较大,同时耗时较长,因此需要对其进行优化。

本文在分布式网络加密技术中引入了混沌理论。混沌是对过程进行研究的一种非线性的动力学理论,所采用的混沌序列具有复杂性和不确定性的特点,这为其应用于网络安全方面提供了可能性。本文将混沌理论引入分布式计算机网络的加密技术优化过程中,介绍了系统的整体结构和软件的运行流程,将迭代产生的混沌序列作为一次性口令,通过对口令的认证实现网络加密的优化。结果表明所提优化方法对系统性能的消耗较小,运算速度较快,达到了对分布式网络加密技术优化的目的。

2 系统设计

2.1 总体结构

本文提出的基于混沌理论的分布式环境下计算机网络加密系统共分为三层,分别为应用层,接口层和加密层,如图1所示 。应用层包含各种应用程序,这些程序用于调用加密接口;接口层则主要由签名、加密、身份认证和证书等接口构成,同时含有抽象的底层加密接口。这一层结构隐藏了应用层算法实现的具体细节,只为上一层提供简便的接口,方便应用程序安全服务的运行;加密层中含有对应于接口的各种算法,主要负责各种具体算法的实现。

2.2 加密系统设计

2.2.1 混沌理论

混沌属于伪随机运动,发生在确定的非线性系统中。对于一个系统来说,当参数和初始条件给定时,运动具有确定性,然而其长期状态与初始状态密切相关。而混沌函数的特性是可以扩大拉长和重叠折返,因此不可预测,对具有非线性特点的迭代方程进行研究:

其中LE为Lyapunov特征指数,表示两点间平均指数的幅散率。只要在混沌区间对A和xB分别取值,其迭代轨迹就会以指数形式发散,同时初始值的差异很小时,其迭代轨迹会产生很大的变化,因此初始值是获取迭代序列的重要因素。将上述特点引入加密理论就获得了基于混沌理论的加密方法。对于分布式环境下的计算机网络加密需要对用户进行身份认证,而一次性口令是一种行之有效的防御措施,由于混沌具有对初始条件敏感、迭代序列多样的特点,因此采用混沌理论的一次性口令可以作为用户身份识别的依据。图2为基于混沌理论的一次性口令认证过程,首先A将带有用户名的连接请求发送至B,经B确认后发送初始身份X0,在传输的同时对信息进行加密和签名处理,之后进过混沌算法处理迭代生成一次性口令,最后经B解密并保存并与A生成的口令比较,如果结果相同则反馈A成功登录。

2.2.2 基于混沌理论的网络加密技术的软件设计

图3所示为基于上述混沌理论的网络加密技术软件工作流程,在初始化后,软件需要先后对信息加密,异常事件和设备运行进行判别,对信息加密的判别涉及到信息排队分类,密钥管理和加密/脱密程序, 其中信息排队分类程序是将信息根据不同密级经行分类,并根据缓存格式和时延大小进行排队,密钥管理程序则主要负责动态地分配和管理各个工作密钥,加密/脱密程序则是对将排队完毕的信息采用系统算法完成加密/脱密过程的处理;常事件判别所需的程序负责处理加密时出现的异常事件,如非法脱密或非法用户入侵等;在设备运行判别中,终端/节点自动求助程序则起到在加密装置出现问题时将故障设备关停并切换其他正常运行设备的作用。

3 加密性能优化结果分析

3.1 系统开销

在对分布式环境下计算机网络进行加密时需要考虑加密技术对整个系统性能开销的影响,图4为优化前后系统性能开销的对比分析,可以看出采用混沌理论后,相比较于传统的机密技术系统消耗下降,这是由于系统结构没有采用过多的结构层,从而减少了层与层之间的调用开销,另一方面,采用混沌理论的加密技术只需要对迭代序列(用作一次性口令)进行处理,数据传输和处理过程中对系统的占用较少。

3.2 加密时耗

采用混沌理论对分布式环境下计算机网络加密技术的优化还体现在加密时耗上,对加密时耗的计算如式3所示:

Tj=∑mi=1PiTji (3)

式中Tji为j加密方法处理数据流i所需时间,Pi为处理数据流i的操作频数。

如表1所示,对比了两种加密技术消耗的时间,虽然采用混沌理论的加密技术在初始化和提取过程中的耗时(分别为64934?s和8956?s)略高于传统加密技术,但前者的加密时间要远远低于后者,分别为43765?s和17224?s,这是因为基于混沌理论的加密技术在对数据流的处理过程中有很多是不需要进行加密和认证的,而传统加密技术则需要对每项数据流进行加密和认证,因此会消耗大量的时间,可以看出将混沌理论引入加密技术中可以大大提高分布式环境下计算机网络加密的效率。

图5为两种加密技术运算时间随信息长度的变化,可以看出随着信息长度的增加,两种加密技术的运算时间均有所增大,但总体来说基于混沌理论的分布式环境下计算机网络加密技术的运算时间均低于传统的加密技术,其时效性较高。

4 结束语

传统的分布式网络加密技术存在灵活性差,系统占用率高,耗时长的缺点。本文引入混沌理论对分布式环境下计算机网络加密技术进行优化可以明显降低由于加密对系统性能造成的损耗,其加密时间较短,可以广泛应用于网络加密技术优化的过程中。

参考文献

[1]Priyantha,N.B.,Chakraborty,A.,and Balakrishnan,H.The Cricket location-support system[C].In Proceedings of the 6th Annual international Conference on Mobile Computing and Networking(Boston,Massachusetts,United States,August 06-11,2000).Mobi Com'00.ACM,New York,NY,32-43.2000

[2]周福才,朱伟勇.基于混沌理论身份认证研究[J].东北大学学报(自然科学版).2002,23(08):730-732.

作者简介

王珂(1980-),女(汉族),河南省郑州市人。硕士研究生。讲师。主要研究方向计算机网络。

第4篇:加密技术论文范文

1研究背景理论意义

网络通信的安全极为重要,早年大家是通过对网络信息的加密处理来保护信息的安全,但是随着计算机技术的不断发展破译技术已经很成熟,早年用密文加密对手段已经没有办法保证信息的安全,要知道信息一旦被破译有可能不仅仅是财产损失,很多个人信息也会无法受到保护,由此就产生了信息的隐蔽方法。

1.1隐蔽通信技术在国内外的现状与发展趋势

信息隐蔽技术是通过对信息进行处理然后通过信道进行信息的传送,就是通过载体把信息变为隐蔽信息载体。目前的隐蔽通本文由论文联盟收集整理信技术研究还是基于数字认证安全和版权的认证,另一方面就是对信息的加密。早在上世纪80年代美国就信息安全问题下达过信息安全指令,而我国在1999年也下达了相同的指令,学者表示通过网络数据流来隐蔽通信技术是可以实施的,隐蔽通信技术也就此成为了研究热议的话题。

1.2网络流隐蔽通信技术的优势

网络数据不是静态的而是动态的,从出现到消失人们都难以捕捉,很多黑客也无法拦截到准确的信息,这是网络数据的优势之一,可以利用其动态的特性。

网络世界报传送的信息量是十分巨大的,每分每秒都有数以万计的网络数据包在传送,利用网络数据包来隐蔽通信技术很可行,它有自身独特的特性和优势,可以保护信息安全。

1.3隐蔽通信技术存在的问题和研究目的

传统的隐蔽通信技术很容易被检测器检测出来,只有对协议进行分析就很容易发现隐蔽信道,所以传统的隐蔽通信技术隐藏能力低。通过算法可以估计信道内信息传输量,传统的信息隐蔽技术通过数据包头可以隐蔽的信息量很少,所以隐蔽通信技术还存在信息容量小的问题。而我们研究的目的就是为了提高信息的存储量,提升信息容量的算法就是当务之急,并且研究目的也在于提高网络流对信息通讯的隐蔽性。

2隐蔽通信信道的探究

2.1时间信道的报文延迟

在tic通道中,传递符号“0”的时间为si0,传递符号“1”的时间为si1。下面我们分别从信道容量和平均传递时间两方面讨论影响信息传送的因素。在实际网络中,报文的延迟时间是变化的,从而导致了同一报文发送间隔会对应多种可能的报文到达间隔。对一发送间隔而言,到达时间间隔将分布在以该发送间隔为中心一段区域内。到达间隔分布越集中,解码中的误码率越低,信道容量就越大。

2.2隐蔽信道存在的必要条件

隐蔽信道是隐蔽在网络通信下的另一种通信方式,它

的存在就是问了实现隐蔽通信。隐蔽信道是可行的,从信息理论角度,信息的输出和输入是有着必然的联系,隐蔽信道从正常的输入端输入,隐蔽信息的接收方从正常的信道接收这样就可以实现信息的隐蔽,其中必须具备以下的条件;(1)传送放和接收方的共享资源属性和权限必须相同;(2)必须能够控制传送方和接收方之间的通信,能够调节传输的顺序;(3)必须满足时间特性双方都参考一个时钟。网络时间信道可以作为载体把传送方和接收方联系起来,传送者改变报文时间特性接收者可以第一时间检查出被改变的时间报文对其进行解读。

2.3隐蔽时间信道特性分析

计算机网络中传输的相邻报文往往是不在相同的网络环境下,所以在网络传送的时间上是有差别的,根据相邻报文的时间差来接收隐蔽的通信信息是隐蔽信息技术的有效途径之一,但是相邻报文的传送存在一定的误码率,所以要最大限度的提升信息容量,隐蔽信息技术必须提高对网络环境的抗干扰能力。信息隐藏算法中主要有两种算法,其中有空间域算法,其中最具代表性的就是lsb算法。对于扩展时间信道的容量我们必须加强对算法的研究。

2.4信息隐藏技术对现代的意义

第5篇:加密技术论文范文

关键词:加密系统,数据平台,对称加密,非对称加密

 

0引言

快速信息化已经是我国经济社会发展的一个显著特征。许多的企事业单位,尤其是物流企业和电子商务企业已经把数据平台作为了自己的核心竞争力之一。但是基于信息技术和网络技术的数据平台正在面临着来自安全性方面的诸多挑战。

本文提出了一种通用的基于两种加密技术的加密系统,为解决数字平台所面临的安全性难题提供了可能。该系统融合了对称加密技术、非对称加密技术、验证技术,较好的实现了了数据交流者的身份认证、数据传输过程中的保密、数据发送接收的不可否认、数据传输结果的完整。本系统尤其适用于对保密度有较高需求的数据平台。

本文重点针对4个方面进行讨论:(1)数据平台安全性问题;(2) 对称加密体制与非对称加密体制; (3) 一种更加安全的加密与验证系统; (4) 总结.

1数据平台安全性问题

在数字时代,数据平台的构建已经是企业的必需。论文参考网。企业的关键业务数据作为企业的宝贵资源和生存发展的命脉,其安全性是不言而喻的。论文参考网。但是,现实是,这些数据却没有得到很好的保护。据赛门铁克公司2010年1月对27个国家的2100家企业进行的调查显示,被调查的所有企业(100%)在2009年都曾出现过数据丢失问题,其中有75%的企业曾遭受过网络攻击。

数据平台的建设要注意以下问题:

(1)严格终端管理【1】。

终端采用硬件数字证书进行认证,并要求终端用户定期修改PIN码,以确保终端和数据来源的真实性。

(2)采取访问控制技术,允许合法用户访问规定权限内的应用。

(3)保证通信链路安全,建立端到端传输的安全机制。

其中,解决数据安全性问题最有效的方法就是在存储和传输过程中对数据加密,常见的加密技术包括对称加密技术和非对称加密技术。

2对称加密体制与非对称加密体制

2.1. 对称加密体制

2.1.1对称加密体制的原理

对称加密技术在已经有了悠久的历史,以凯撒密码为代表的古典密码技术曾被广泛应用。现代的对称加密算法虽然比那些古典加密算法复杂许多,但是其原理都是一样的:数据发送方将明文数据加密后传送给接收方,接收方利用发送方用过的密钥(称作秘密密钥)及相同算法的逆算法把密文解密成明文数据。

图1给出了对称加密体制的工作流程。发送方对要发送的明文数据M用秘密密钥K加密成密文C后,密文经网络传送到接收方,接收方用发送方使用过的秘密密钥K把密文C还原成明文数据M。

图1: 对称加密体制工作原理图

2.1.2对称加密体制的特点

对称加密算法的优点是加解密时运算量比较小,所以加解密速度比较快[2]、加解密的效率也比较高。

该算法的缺点是不容易管理密钥。原因有二:一,在对称加密体制下,用来加密和解密的密钥是同一个,这就要求接收数据一方,即解密数据一方需要事先知道数据发送方加密时所使用的密钥。二,每对用户每次使用对称加密算法时,都需要使用其他人不知道的惟一的钥匙,密钥的需要量比较大。假如平台上有n个用户需要交流,根据保密性要求,每两个用户就需要一个密钥,则这n个用户就需要n(n-1)/2个密钥。论文参考网。

2.2. 非对称加密体制

2.2.1非对称加密体制的概念

与对称加密技术不同,在非对称加密体制下加密密钥与解密密钥不相同【3-4】。在这种体制下,每个用户都有一对预先选定的、完全不同但又完全匹配的密钥:一个是可以像电话号码一样进行注册公布的公开密钥KPub,另一个是用户需要保密的、可以用作身份认证的私有密钥KPri,而且无法根据其中一个推算出另一个。这样,数据的发送方(加密者)知道接收方的公钥,数据接收方(解密者)才是唯一知道自己私钥的人。

非对称加密技术以大数的分解问题、离散对数问题、椭圆曲线问题等数学上的难解问题来实现,是目前应用最为广泛的加密技术。

图2给出了非对称加密体制的工作流程。发送方把明文数据M用接收方的公钥KPub接收方

加密成密文C后经网络传输给接收方,接收方用自己的私钥KPri接收方把接收到的密文还原成明文数据M。

图2: 非对称加密体制工作原理图

2.2.2非对称加密体制的特点

非对称加密算法的优点是安全性比较高

非对称加密算法的缺点是算法十分复杂,加解密的效率比较低,用该技术加解密数据是利用对称加密算法加解密同样数据所花费时间的1000倍。

3. 一种更加安全的加密与验证系统

3.1加密与验证系统的框架

更加安全的加密与验证系统主要由数据的加密作业、数据的解密作业、数据完整性验证三大模块组成。

数据加密模块由数据发送方作业。发送方首先将待发送数据明文经哈希变换并用发送方私钥加密后得到数字签名。然后,使用对称加密中的秘密密钥对数字签名和原数据明文进行再加密。最后,使用接收方的公钥对秘密密钥进行加密,并将上述操作结果经网络传送出去。

数据解密作业模块由数据接收方作业。接收方首先用自己的私钥对接受到的、经过加密的秘密密钥进行解密。然后,用解密得到的秘密密钥对接收到的数据密文和加密后的签名进行解密。

数据完整性验证模块也是由数据接收方作业。接收方对解密模块作业得到的数据明文和数据签名进行操作,首先将该明文进行哈希变换得到数据摘要。然后,运用数据发送方的公钥对数据签名变换得到另一个摘要。最后,比较这两个摘要。若两者完全相同,则数据完整。否则,认为数据在传输过程中已经遭到破坏。

该系统框架将对称加密、非对称加密、完整性校验三者融为一体,既保证了数据的高度安全性又有很好的时效性,同时,兼顾了数据源的合法性和数据的完整性,能有效地规避仿冒数据源和各类攻击,是一种值得推广的数据存储和传输安全系统模型。

3.2加密与验证系统的实现

图3给出了这种种更加安全的加密与验证系统工作流程。其中,M指数据明文,C指数据密文,A、B分别为数据发送方和接收方,私钥A指A的私钥,公钥B指B的公钥。

图3:一种更加安全的加密与验证系统

4.总结

文中提出了一种基于两种加密技术的加密与验证系统设计,讨论了该加密与验证系统的总体框架与流程实现,得出了本系统能到达到更高的安全性与时效性的结论。

数字时代的到来给我们带来了前所未有的挑战和机遇,我们必须迎头赶上,化解挑战抓住机遇,提高自身的综合竞争力。把信息技术应用于各个行业,必将为我国社会经济的发展和人民生活水平的提高带来新的福音。

参考文献

[1]周蓉蓉. 构建公安消防信息网内外网边界接入平台[J]. 网络安全技术与应用, 2009, 12:46-48.

[2]管孟辉,吴健,湛文韬,张涛. 移动电子政务平台中安全Web服务的研究[J]. 计算机测量与控制, 2009.17(5): 967-969.

[3]程伟. 基于无线的核心WPKI安全开发平台设计[J]. 地理与地理信息科学, 2009, 9(6) : 50-52.

[4]徐丽娟,徐秋亮,郑志华. 基于身份无可信中心的数字签名方案[J]. 计算机工程与设计, 2007, 28(23) :5607-5609.

第6篇:加密技术论文范文

[关键词]RSA 公钥密码体制 安全性

RSA密码系统是较早提出的一种公开钥密码系统。1978年,美国麻省理工学院(MIT)的Rivest,Shamir和Adleman在题为《获得数字签名和公开钥密码系统的方法》的论文中提出了基于数论的非对称(公开钥)密码体制,称为RSA密码体制。RSA是建立在“大整数的素因子分解是困难问题”基础上的,是一种分组密码体制。

一、对称密码体制

对称密码体制是一种传统密码体制,也称为私钥密码体制。在对称加密系统中,加密和解密采用相同的密钥。因为加解密密钥相同,需要通信的双方必须选择和保存他们共同的密钥,各方必须信任对方不会将密钥泄密出去,这样就可以实现数据的机密性和完整性。

二、非对称密码体制

非对称密码体制也叫公钥加密技术,该技术就是针对私钥密码体制的缺陷被提出来的。在公钥加密系统中,加密和解密是相对独立的,加密和解密会使用两把不同的密钥,加密密钥(公开密钥)向公众公开,谁都可以使用,解密密钥(秘密密钥)只有解密人自己知道,非法使用者根据公开的加密密钥无法推算出解密密钥,顾其可称为公钥密码体制。

采用分组密码、序列密码等对称密码体制时,加解密双方所用的密钥都是秘密的,而且需要定期更换,新的密钥总是要通过某种秘密渠道分配给使用方,在传递的过程中,稍有不慎,就容易泄露。

公钥密码加密密钥通常是公开的,而解密密钥是秘密的,由用户自己保存,不需要往返交换和传递,大大减少了密钥泄露的危险性。同时,在网络通信中使用对称密码体制时,网络内任何两个用户都需要使用互不相同的密钥,只有这样,才能保证不被第三方窃听,因而N个用户就要使用N(N1)/2个密钥。对称密钥技术由于其自身的局限性,无法提供网络中的数字签名。这是因为数字签名是网络中表征人或机构的真实性的重要手段,数字签名的数据需要有惟一性、私有性,而对称密钥技术中的密钥至少需要在交互双方之间共享,因此,不满足惟一性、私有性,无法用做网络中的数字签名。相比之下,公钥密码技术由于存在一对公钥和私钥,私钥可以表征惟一性和私有性,而且经私钥加密的数据只能用与之对应的公钥来验证,其他人无法仿冒,所以,可以用做网络中的数字签名服务。

具体而言,一段消息以发送方的私钥加密之后,任何拥有与该私钥相对应的公钥的人均可将它解密。由于该私钥只有发送方拥有,且该私钥是密藏不公开的,所以,以该私钥加密的信息可看做发送方对该信息的签名,其作用和现实中的手工签名一样有效而且具有不可抵赖性。

一种具体的做法是:认证服务器和用户各持有自己的证书,用户端将一个随机数用自己的私钥签名后和证书一起用服务器的公钥加密后传输到服务器;使用服务器的公钥加密保证了只有认证服务器才能进行解密,使用用户的密钥签名保证了数据是由该用户发出;服务器收到用户端数据后,首先用自己的私钥解密,取出用户的证书后,使用用户的公钥进行解密,若成功,则到用户数据库中检索该用户及其权限信息,将认证成功的信息和用户端传来的随机数用服务器的私钥签名后,使用用户的公钥进行加密,然后,传回给用户端,用户端解密后即可得到认证成功的信息。

长期以来的日常生活中,对于重要的文件,为了防止对文件的否认、伪造、篡改等等的破坏,传统的方法是在文件上手写签名。但是在计算机系统中无法使用手写签名,而代之对应的数字签名机制。数字签名应该能实现手写签名的作用,其本质特征就是仅能利用签名者的私有信息产生签名。因此,当它被验证时,它也能被信任的第三方(如法官)在任一时刻证明只有私有信息的唯一掌握者才能产生此签名。

由于非对称密码体制的特点,对于数字签名的实现比在对称密码体制下要有效和简单的多。

现实生活中很多都有应用,举个例子:我们用银行卡在ATM机上取款,首先,我们要有一张银行卡(硬件部分),其次我们要有密码(软件部分)。ATM机上的操作就是一个应用系统,如果缺一部分就无法取到钱,这就是双因子认证的事例。因为系统要求两部分(软的、硬的)同时正确的时候才能得到授权进入系统,而这两部分因为一软一硬,他人即使得到密码,因没有硬件不能使用;或者得到硬件,因为没有密码还是无法使用硬件。这样弥补了“密码+用户名”认证中,都是纯软的,容易扩散,容易被得到的缺点。

密码理论与技术主要包括两部分,即基于数学的密码理论与技术(包括公钥密码、分组密码、序列密码、认证码、数字签名、Hash函数、身份识别、密钥管理、PKI技术等)和非数学的密码理论与技术(包括信息隐形,量子密码,基于生物特征的识别理论与技术)。

公钥密码主要用于数字签名和密钥分配。当然,数字签名和密钥分配都有自己的研究体系,形成了各自的理论框架。目前数字签名的研究内容非常丰富,包括普通签名和特殊签名。特殊签名有盲签名、签名、群签名、不可否认签名、公平盲签名、门限签名、具有消息恢复功能的签名等,它与具体应用环境密切相关。显然,数字签名的应用涉及到法律问题,美国联邦政府基于有限域上的离散对数问题制定了自己的数字签名标准(DSS),部分州已制定了数字签名法。密钥管理中还有一种很重要的技术就是秘密共享技术,它是一种分割秘密的技术,目的是阻止秘密过于集中,自从1979年Shamir提出这种思想以来,秘密共享理论和技术达到了空前的发展和应用,特别是其应用至今人们仍十分关注。我国学者在这些方面也做了一些跟踪研究,发表了很多论文,按照X.509标准实现了一些CA。但没有听说过哪个部门有制定数字签名法的意向。目前人们关注的是数字签名和密钥分配的具体应用

以及潜信道的深入研究。

参考文献:

[1]冯登国.密码分析学[M].北京:清华大学出版社,2000.

[2]卢开澄.计算机密码学:计算机网络中的数据保密与安全(第2版)[M].北京:清华大学出版社,1998.

第7篇:加密技术论文范文

Abstract: An important goal of higher vocational teaching reform is to improve the quality of teaching, and thus improve students' practical ability. As new idea and method, case teaching and project design are oriented at practical application. It considers the course design, teaching content design knowledge depth design and so on. The main content of the new teaching idea is to elaborately design the teaching task and pass on the knowledge in a way that is easy for students to accept and learn.

关键词: 教学设计;加密技术;网络安全;课程改革;高职教育

Key words: teaching design;encryption technology;network security;curriculum reform;higher vocational education

中图分类号:G424.1 文献标识码:A 文章编号:1006-4311(2014)08-0250-02

0 引言

《计算机网络安全技术》课程是计算机网络技术专业的一门专业课,它是基于网络、操作系统、数据库、Web服务和信息等内容的综合知识,具有较强的理论性,同时需要大量的基础知识支撑,学习过程比较困难。网络安全技术包括多方面的内容,其中信息安全和加密技术又是主要的内容之一。

由于密码学是一个涉及广泛的学科,需要多个数学领域和知识,如数论、群论、环论、域论、线性代数、概率论以及信息论。正是需要用大量的数学知识做背景,导致了学生在一开始学习它就感到困难,对于高职的学生来说,兴趣根本无从谈起。

以往的《计算机网络安全技术》课程教学过程也主要是采用课堂讲授,板书与电子教案相结合,让学生对教学内容进行理解和记忆。但这种方法在实际教学中的效果并不明显,学生学完了之后,仍然会徘徊在密码与加密技术的大门之外,而且对于密码的神秘和难度只能处于“仰视”和“远离”的状态,难于将其理解和掌握。因此,不能取得好的教学效果。

1 巧设任务,化解教学难点

对于密码技术的学习,在课堂教学中以古典密码学为主要内容,让学生掌握加密技术和实现过程,包括替换密码、变位密码和一次加密等内容,这些既是重点,又是难点问题。因此,在设计和安排课程教学任务时,结合学生的实际情况,对密码技术这部分内容重新做了整理和安排,选取了多种学生易于接受的案例和方法,让学生在快乐中掌握难点知识,采用游戏任务将重点知识分解在几个小任务中,同时化解了难点内容。

以“跨入学习密码知识的大门”的教学任务为例进行分析,其设计如下:

任务主题:“你加密,我破解”。

任务内容分四项:将全班同学分为十个小组,每个小组成员各选一句话进行加密;然后由组长任选2个密文上交;从各组任选2名组员随机抽取密文对其解密;最后,全班同学一起查验各组的破解结果。

在此之前,学生通过阅读和查阅资料对简单的古典密码学做了初步的了解,现在,在学习了扩展知识之后,采用这样一种游戏任务的方式,让学生把新知识学习、消化和检验过程融在一起,既实现了教学目标,而且也提高了学生的兴趣,顺利跨入学习密码知识的大门。

为了便于引起学生的兴趣,消除惧怕密码难题的心理,还可将密码设为“OUT”、“GUESS”、“HAPPY”、“GAME”等内容。

通过试用,结果表明此类方法学生更易于接受,而且能把解决难点知识当做一种挑战自我的目标。学生们都能从兴趣出发思考问题、解决问题,同时,还能利用这种方式,培养学生在课内外乐于学习和捕获新知识的能力,养成良好的学习习惯。

2 巧借任务,训练综合能力

2.1 培养认真的学习态度

由于这个教学任务是要求全组学生各自选择明文内容进行加密,加密的正确性会直接影响下一个步骤能否顺利进行,最终会影响全组成员本次任务的考核成绩。因此,每位学生都是认真、负责地选择加密的内容,并认真完成加密工作。

2.2 培养科学、严谨的工作作风

对明文加密时,每位组员都要借助于密码,如:任务中由教师指定的“HAPPY”、“GAME”等。在这个实战过程中,替换密码的明文和密文对照表是至关重要的,如果有误,就会影响每个人的加密结果,当然也会影响下一个游戏环节——解密。

2.3 培养相互合作的团队精神

为了保证加密解密的正确性,要安排学生进行相互间的交流,保证每个同学都掌握破解密码的方法。

在任务实施之前,有些学生会因为缺乏主动性没有完成预习任务,没有学会加密。做为教师,不能因为这个原因让学生退出游戏,相反更要督促此类学生参与到整个学习活动中来。为了实现教学目标,在任务设计中可以安排10分钟左右的时间让学生自我检查,相互帮助,通过在本组中选择密文进行解密练习,确保每位同学都掌握方法。因此,大多数学生可以借这个讨论过程加深对加密和解密知识的理解,同时团队互助和合作精神也得以锻炼。

3 巧续任务,处理新的教学难点

以上过程完成之后,可以给学生继续布置新的任务——如,让学生借助网上资源,查阅有关资料,以“实现一个ASP程序的加密”为目的,把程序设计和加密技术的使用结合起来,完成加密的应用,这样,就可以顺利的让“密码知识和加密技术的应用”这一教学目标得以实现。

把难于理解的教学概念穿插在预习任务、教学任务和课后作业中,又紧密结合密码学,每一个任务的学习和完成,都是为后续知识的学习打下必要的基础,贴近实际,使枯燥的数学概念变得妙趣横生,便于学生实践和掌握;学生能在快乐、宽松的学习环境中接受知识。这样,密码知识变容易,不再是难题了。与以往的教学过程相比,学生也比较乐于接受并能主动学习,难点不再“难”,只是一个新的目标而已。

参考文献:

[1]王洪龄,周.用任务驱动模式编写教材的研究探索[J].中国培训,2007(07).

[2]孙雁.任务驱动型教材:让技能和知识“骨肉相连”[J].中国培训,2008(05).

[3]李建萍,胡华中.基于任务驱动的条码技术实践课程研究[J].广州番禺职业技术学院学报,2009(02).

[4]沈建国.工学结合培养模式下高职院校的课程改革[J].职业教育研究,2008(5).

第8篇:加密技术论文范文

关键词:混沌理论;密码学;混沌加密

随着时代的不断变化,计算机网络技术已经广泛的应用在各行各业当中,给人们提供了大量的数据信息,让人们可以足不出户,就可以清楚的了解到自己想要的信息。但是,由于网络的基础协议无法达到信息安全管理的效果,因此可以使得一些没有进行特别加密的信息数据,在网络上传的过程中,就很容易直接发放在网络上,给人们带来巨大的损失。所以为了避免这样的现象出现,人们在数据传递的过程中,就要对数据验证进行一定的安全加密,从而有效的保障信息数据的安全。

1 密码学概述

密码学具有很强的综合性和保密性,而且由于它是多门学科组成的,因此这对其进行理解学习的时候,就需要长期的知识积累和创新思维。目前,密码技术已经不在仅仅局限政治、军事以及其他重要方面信息的安全保护的过程中,已经广泛的应用到人们的生活和生产当中。

2 混沌的基本原理

所谓的混沌理论就是一种将量化分析理念和质性思考相结构的一种理论方法,通过对各种动态的系统进行讨论,来完成对整体、连续的数据信息之间的关系进行相关的解释和预测。由此可见,混沌理论是一种复杂的系统演化理论,主要将系统数据从有序的状态下转变成无序的状态模式。对确定性系统的内在随机变化情况进行相关的讨论。因此,在实际应用的过程中,混沌理论主要有以下几个特征:第一,混沌系统的行为主要是由多个有序分量组合而成的,但是却不能对其每个有序分量起到一定的主导作用;第二,虽然混沌系统是采用随机的方式对其进行调节的,但是这些部分都是确定的;第三,初始条件对混沌系统的发展有着十分重要的意义,如果在两种不同初始条件下存在着相同的混沌系统,那么这两个相同的混沌系统就会很开的操着不同的两个方向发展。

在20世纪60年代,美国相关气象学家开始将混沌理论应用到气象分析上,从而得出结论:天气气候具有不可预测的特性,但是人们可以对简单的热对流现象进行分析,产生不可思议的气象变化,从而产生了所谓的“蝴蝶效应”。随后,在人们的不断探索的实验的过程中,人们也将混沌理论应用到各个方面,并且取得了不错的效果。

2.1 混沌理论的定义

目前,对混沌理论还没有进行明确的定义,而且在不同的学者眼中,对混沌理论的定义也存在着很大的不同。其中最为常用的李-约克混沌定义、devaney混沌定义以及melnikov混沌定义。下面我们就以李-约克混沌定义为例,给大家进行简要的介绍。

设(x,f)是紧致系统,d是x的一个拓扑度量。设x0x非空,如果存在不可数集合s x0,满足:

1.limn∞supd(fn(x),fn(y))>0,x,y∈s,x≠y;

2.limn∞infd(fn(x),fn(y))>0,x,y∈s,x≠y。

称f在x0上是在李-约克意义下混沌的。这里的s亦称作“f的混沌集”,s中不同的两点称作“f的混沌点偶”。

“敏感初条件”就是对混沌轨道的这种不稳定性的描述;拓扑传递性意味着任一点的邻域在f的作用之下将“遍历”整个度量空间v,这说明f不可能细分或不能分解为两个在f下不相互影响的子系统;周期点集的稠密性,表明系统具有很强的确定性和规律性,绝非一片混乱,而是形似紊乱,实则有序,这也正是混沌能够和其他应用学科相结合走向实际应用的前提。

2.2 混沌系统示例

此处以经典logistic映射xn+1=1-ux2n为例,对有关混沌吸引子刻划的一些数值计算结果进行分析,从而将混沌加密方法分成两种不同的研究对象:一种是将混沌同步技术作为系统保密技术的核心内容;另一种则是通过混沌系统将加密技术分成各种不同形式的密码。

虽然混凝土密码作为一种新型的密码体制,在实际应用的过程中并不成熟,但是由于这种密码体制中存在着强大的吸引力,可以给信息数据提供相关的安全保护,而且在使用过程中,混沌密码中所具有的安全强度不受到计算机技术的影响,因此这种保密技术具有先天的优越性和良好的发展前景。

3 混沌在加密算法中的应用

混沌和密码学之间具有天然联系和结构上的某种相似性,利用混沌系统,可以产生数量众多、非相关、类似噪声、可以再生的混沌序列,这种序列难于重构和预测,从而使密码分析者难以破译。所以,只要加以正确的利用,就完全可以将混沌理论用于序列密码的设计中。混沌的轨道混合特性对应于传统加密系统的扩散特性,混沌信号的类随机特性和对系统参数的敏感性对应于传统加密系统的混乱特性。可见,混沌具有的优异混合特性保证了混沌加密器的扩散和混乱作用可以和传统加密算法一样好。另外,很多混沌系统本身就与密码学中常用的feistel网络结构是非常相似的,例如标准映射、henon映射等。所以,只要算法设计正确合理,就完全可能将混沌理论用于分组密码中。

但是混沌毕竟不等于密码学,它们之间最重要的区别在于:密码学系统工作在有限离散集上,而混沌作在无限的连续实数集上。此外,传统密码学已经建立了一套分析系统安全性和性能的理论,密钥空间的设计方法和实现技术比较成熟,从而能保证系统的安全性;而目前混沌加密系统还缺少这样一个评估算法安全性和性能的标准。表1给出了混沌理论与传统密码算法的相似点与不同之处。

通过类比研究混沌理论与密码学,可以彼此借鉴各自的研究成果,促进共同的发展。关于如何选取满足密码学特性要求的混沌映射是一个关键问题。l.kocarev等在文献中给出了这方面的一些指导性建议。选取的混沌映射应至少具有如下3个特性:混合特性、鲁棒性和具有大的参数集。需要指出,具有以上属性的混沌系统不一定安全,但不具备上述属性而得到的混沌加密系统必然是脆弱的。

4 混沌序列密码的加密原理

众所周之,加密的一般过程是将明文的信息序列变换成可逆的类随机序列。解密过程是对数学变换逆变换的猜测处理过程,将得到的类随机序列还原为明文。而混沌加密主要是利用由混沌系统迭代产生的序列,作为加密变换的一个因子序列,混沌加密的理论依据是混沌的自相似性,使得局部选取的混沌密钥集,在分布形态上都与整体相似。混沌系统对初始状态高度的敏感性,复杂的动力学行为,分布上不符合概率统计学原理,是一种拟随机的序列,其结构复杂,可以提供具有良好的随机性、相关性和复杂性的拟随机序列,使混沌系统难以重构、分析和预测。

结束语

随着信息化时代的到来,人们也逐渐的意识到了信息安全的重要性,开始对各种新型的保密进行研究,这不仅有效的推动了社会经济的发展,还对人们相关的数据信息起来了一个良好的保护作用。目前,虽然混沌保密技术在人们的生活还没有进行广泛的推广,但是这种保密技术存在良好的优先性,因此我们有理由相信这种保密技术,在未来的经济发展过程中,可以得到更加广泛的发展。

参考文献

[1]张向华,韦鹏程.混沌理论在密码学中的应用[J].重庆工商大学学报(自然科学版),2008(3).

第9篇:加密技术论文范文

[关键词]门限E CC电子商务安全加密签名

证书签发系统:负责证书的发放,如可以通过用户自己,或是通过目录服务。目录服务论文器可以是一个组织中现有的,也可以是PKI方案中提供的。PKI应用:包括在W eb服务器和浏览器之间的通讯、电子邮件、电子数据交换(E DI)、在Internet上的信用卡交易和虚拟专业网(VPN)等。应用接口系统(API):一个完整的PKI必须提供良好的应用接口系统,让用户能够方便地使用加密、数字签名等安全服务,使得各种各样的应用能够以安全、一致、可信的方式与PKI交互,确保所建立起来的网络环境的可信性,降低管理和维护的成本。

基于PKI的电子商务安全体系电子商务的关键是商务信息电子化,因此,电子商务安全性问题的关键是计算机信息的安全性。如何保障电子商务过程的顺利进行,即实现电子商务的真实性、完整性、机密性和不可否认性等。PKI体系结构采用证书管理公钥,通过第三方的可信机构,把用户的公钥和用户的其他标识信息(如用户身份识别码、用户名、身份证件号、地址等)捆绑在一起,形成数字证书,以便在Internet上验证用户的身份。PKI是建立在公钥理论基础上的,从公钥理论出发,公钥和私钥配合使用来保证数据传输的机密性;通过哈希函数、数字签名技术及消息认证码等技术来保证数据的完整性;通过数字签名技术来进行认证,且通过数字签名,安全时间戳等技术提供不可否认。因此PKI是比较完整的电子商务安全解决方案,能够全面保证信息的真实性、完整性、机密性和不可否认性。通常电子商务的参与方一般包括买方、卖方、银行和作为中介的电子交易市场。首先买方通过浏览器登录到电子交易市场的W eb服务器并寻找卖方。当买方登录服务器时,买卖双方都要在网上验证对方的电子身份证,这被称为双向认证。在双方身份被互相确认以后,建立起安全通道,并进行讨价还价,之后买方向卖方提交订单。订单里有两种信息:一部分是订货信息,包括商品名称和价格;另一部分是提交银行的支付信息,包括金额和支付账号。买方对这两种信息进行双重数字签名,分别用卖方和银行的证书公钥加密上述信息。当卖方收到这些交易信息后,留下订货单信息,而将支付信息转发给银行。卖方只能用自己专有的私钥解开订货单信息并验证签名。同理,银行只能用自己的私钥解开加密的支付信息、验证签名并进行划账。银行在完成划账以后,通知起中介作用的电子交易市场、物流中心和买方,并进行商品配送。整个交易过程都是在PKI所提供的安全服务之下进行,实现了真实性、完整性、机密性和不可否认性。综上所述,PKI技术是解决电子商务安全问题的关键,综合PKI的各种应用,我们可以建立一个可信任和足够安全的网络,能够全面保证电子商务中信息的真实性、完整性、机密性和不可否认性。

计算机通信技术的蓬勃发展推动电子商务的日益发展,电子商务将成为人类信息世界的核心,也是网络应用的发展方向,与此同时,信息安全问题也日益突出,安全问题是当前电子商务的最大障碍,如何堵住网络的安全漏洞和消除安全隐患已成为人们关注的焦点,有效保障电子商务信息安全也成为推动电子商务发展的关键问题之一。电子商务安全关键技术当前电子商务普遍存在着假冒、篡改信息、窃取信息、恶意破坏等多种安全隐患,为此,电子商务安全交易中主要保证以下四个方面:信息保密性、交易者身份的确定性、不可否认性、不可修改性。保证电子商务安全的关键技术是密码技术。密码学为解决电子商务信息安全问题提供了许多有用的技术,它可用来对信息提供保密性,对身份进行认证,保证数据的完整性和不可否认性。广泛应用的核心技术有:1.信息加密算法,如DE S、RSA、E CC、M DS等,主要用来保护在公开通信信道上传输的敏感信息,以防被非法窃取。2.数字签名技术,用来对网上传输的信息进行签名,保证数据的完整性和交易的不可否认性。数字签名技术具有可信性、不可伪造性和不可重用性,签名的文件不可更改,且数字签名是不可抵赖的。3.身份认证技术,安全的身份认证方式采用公钥密码体制来进行身份识别。E CC与RSA、DSA算法相比,其抗攻击性具有绝对的优势,如160位E CC与1024位RSA、DSA有相同的安全强度。而210位E CC则是与2048比特RSA、DSA具有相同的安全强度。虽然在RSA中可以通过选取较小的公钥(可以小到3)的方法提高公钥处理速度,使其在加密和签名验证速度上与E CC有可比性,但在私钥的处理速度上(解密和签名),E CC远比RSA、DSA快得多。通过对三类公钥密码体制的对比,E CC是当今最有发展前景的一种公钥密码体制。

椭圆曲线密码系统E CC密码安全体制椭圆曲线密码系统(E lliptic Curve Cry ptosy stem,E CC)是建立在椭圆曲线离散对数问题上的密码系统,是1985年由Koblitz(美国华盛顿大学)和Miller(IBM公司)两人分别提出的,是基于有限域上椭圆曲线的离散对数计算困难性。近年来,E CC被广泛应用于商用密码领域,如ANSI(American National Standards Institute)、IE E E、基于门限E C C的《商场现代化》2008年11月(上旬刊)总第556期84少t个接收者联合才能解密出消息。最后,密钥分配中心通过安全信道发送给,并将销毁。2.加密签名阶段:(1)选择一个随机数k,,并计算,。(2)如果r=O则回到步骤(1)。(3)计算,如果s=O则回到步骤(1)。(4)对消息m的加密签名为,最后Alice将发送给接收者。3.解密验证阶段:当方案解密时,接收者P收到密文后,P中的任意t个接收者能够对密文进行解密。设联合进行解密,认证和解密算法描述如下:(1)检查r,要求,并计算,。(2)如果X=O表示签名无效;否则,并且B中各成员计算,由这t个接收者联合恢复出群体密钥的影子。(3)计算,验证如果相等,则表示签名有效;否则表示签名无效。基于门限椭圆曲线的加密签名方案具有较强的安全性,在发送端接收者组P由签名消息及无法获得Alice的私钥,因为k是未知的,欲从及a中求得k等价于求解E CDL P问题。同理,攻击者即使监听到也无法获得Alice的私钥及k;在接收端,接收者无法进行合谋攻击,任意t-1或少于t-1个解密者无法重构t- 1次多项式f(x),也就不能合谋得到接收者组p中各成员的私钥及组的私钥。

结束语为了保证电子商务信息安全顺利实现,在电子商务中使用了各种信息安全技术,如加密技术、密钥管理技术、数字签名等来满足信息安全的所有目标。论文对E CDSA方案进行改进,提出了一种门限椭圆曲线加密签名方案,该方案在对消息进行加密的过程中,同时实现数字签名,大大提高了原有方案单独加密和单独签名的效率和安全性。

参考文献:

[1]Koblitz N.Elliptic Curve Cryprosystems.Mathematicsof Computation,1987,48:203~209

[2]IEEE P 1363:Standard of Public-Key Cryptography,WorkingDraft,1998~08

[3]杨波:现代密码学,北京:清华大学出版社,2003

精选范文推荐