公务员期刊网 精选范文 高压电容范文

高压电容精选(九篇)

高压电容

第1篇:高压电容范文

关键词:变压器;大容量;高电压;绝缘

DOI:10.16640/ki.37-1222/t.2016.03.184

0 前言

经济的快速发展要求机电行业适时的转变发展模式,摒弃不合时宜的高能源生产模式以顺应时展的要求[1]。在此背景下,绝缘技术从理论到具体的机电绝缘结构均得到了较大的发展与进步。绝缘技术的改进降低了火电投资比例,有助于低投入高效益的生产。其中,过电压与绝缘技术、防护技术、测试技术、绝缘结构、高电压和绝缘理论是研究高电压绝缘技术的主要内容。

1 绝缘材料分析

(1)绝缘胶材料。变压器使用的绝缘胶种类很多,具体包括环氧树脂胶、聚乙烯醇缩丁醛、聚乙烯醇、酚醛树脂、聚醋酸乙烯酯等。

(2)电工用塑料材料。填料、合成树脂、各种添加剂组成了电工用塑料材料,这种材料主要呈纤维状、粒状或粉末状,能够当作电缆电线绝缘保护材料使用。在一定的压力与温度条件下加工后可得电工设备绝缘零部件,且形状与规格多样[2]。塑料中的主要构成是合成树脂,合成树脂对塑料制品基本特性有决定性的作用。塑料可分为两种类型,热塑性塑料与热固性塑料,分类依据为树脂类型的不同。在热塑性塑料中,树脂分子的线型结构不会受热挤与热压影响,不会出现明显的化学、物理性质变化,可溶性依然良好。而热固性塑料则不同,树脂分子受热压影响会变为网状结构,得出不熔、不溶的固体。因此,热塑性塑料具有反复多次成型的特征。

(3)绝缘漆管材料。玻璃纤维与面纱是绝缘漆管的两种底材,绝缘漆管的树脂主要有硅橡胶浆、硅有机漆、改性聚氯乙烯树脂、醇酸清漆、油性绝缘清漆几种类型。

(4)气体绝缘材料。气体绝缘材料不但能够绝缘,还能够发挥保护、冷却、灭弧等作用,因此,气体绝缘材料在电气设备的使用比较常见,甚至气体在部分设备中属于主绝缘材料。液体固体绝缘中普遍存在气体空隙,只是不同绝缘中使用的量不同[3]。气体需具备来源丰富、价格低廉、惰性、热导率高、不燃、液化温度低、绝缘强度高等特点才能用作绝缘材料,其中惰性指的是不会同共存材料反应。

二氧化碳、氮气、空气、六氟化硫及混合气体等是气体绝缘材料的主要类型。气体电介质使用最广的是空气,廉价、分布广阔是空气的特点,用作混合介质的优势表现在物理化学性能稳定、击穿后能自愈、液化温度低等,因此,空气绝缘介质在断路器中使用较多。但空气中存在杂质较多,其氧化作用会在接触金属材料时发生腐蚀反应,而氮气在这方面的稳定性比空气更高,惰性且不会助燃,因此,在电气设备中气体电介质常使用压缩氮气作为材料。六氟化硫击穿场强很高,属于电负性气体,其绝缘强度在0.2MPa气体压力下与绝缘油相当。与空气相比,六氟化硫在均匀电场中是其2.5倍,且灭弧能力是其数10倍,灭弧性能优良。此外,纯净的六氟化硫耐热性与稳定性较好,无毒性,不会在500℃下分解,同卤素、碱、酸、水、绝缘材料不会在150℃条件下作用。因六氟化硫有诸多优点,在高压电气设备中的使用日益受到重视,使用越来越广泛。超过两种以上的气体组成了混合气体,纯六氟化硫与六氟化硫混合气体二者的电气强度相比,后者更优更明显,且价格更为经济,其中被认为有很大发展前景是六氟化硫与氮气的混合气体。

在放电电压以下,气体的绝缘电阻通常非常高,即使出现绝缘破坏也能自行恢复。其不足主要是绝缘屈服值较低,与固体相比较差。在电气设备中气体绝缘材料主要担负着绝缘任务,适用于高频、高压绝缘,主要是因为这一材料具有小损耗、小介电常数以及小电导。

2 技术类型分析

(1)少胶粉云母脂环氧VPI绝缘技术。少胶粉云母脂环氧VPI绝缘实际作用的发挥需要辅助使用VB2645树脂,并引进专门TMEIC绝缘,这一技术类型成品的获得需经过稀释、合成等操作,合成需有专门的工艺,成品获得过程通常需要使用浸渍树脂、固化剂。

(2)LD.F绝缘技术。这一绝缘技术有较多分类,主要得益于长期的发展与完善,其中包括抵压机电绝缘,以变频电机、同步电动机等作为低压机电绝缘的代表[4]。LD.F绝缘有非常明显的优势,如电气性能好、稳定性强、耐热性强、绝缘厚度非常薄等,其优势已然得到了普遍的认可,有助于降低安全隐患。LD.F绝缘工艺简单,运行可靠安全,易于掌握,能够实现净化生产与能源的节约,是对当下无污染生产要求的积极贯彻,自然得到了大力的推广与使用。在不断的实践与研究中,LD.F绝缘不断的提升、不断的创新,现阶段其发展的方向为向6kv和10kv减薄机缘厚度,理想的减薄厚度为1.0mm,而低于2.0mm 为10kv单边绝缘的理想厚度。现阶段,虽LD.F绝缘的使用有较好的效果,但市场需求并不会停滞不前,因此仍需不断的完善与发展,提高技术使用的适应性。

(3)多胶模压绝缘体技术。这一体系的主要构成是通过多胶粉云母带连续式绕包、模压成型,在交流电机行业中推行,效果较好。虽多胶云母有诸多种类,但以环氧多胶粉云母带使用最多,此外,VPI体系类型也较为常见。在我国,尤其是在机电制造业这一绝缘体非常受欢迎,国内大多数公司都选择使用这一绝缘体。在经济全球化影响下,技术合作交流增多,通过各国间的交流引进了不少关联技术,国内的不少绝缘材料都是来自于国外公司。在技术更新日新月异的时代,新产品更新换代非常快,以LD-F绝缘体系为例,LD-F绝缘体系使用的材料是少胶单面补强高定量鳞片,这种材料比较稀有,此外,补强材料为聚酯薄膜材料与的玻璃纤维材料两种。渗透性强、含量高是云母的优点,固化树脂效果较好,能有效防止流失,作为备选材料十分优良。

3 结束语

单靠传统的绝缘材料难以实现高压大容量变压器理想的稳定与可靠状、运行,因此,需积极应用新的绝缘技术与绝缘材料,加大研发力度与投入,不断的提高绝缘技术水平,优化绝缘体系性能,为高压大容量变压器运行的稳定与安全提供保障,更好的满足生活生产的需求。

参考文献:

[1]刘复林,韩延纯.大型电力变压器常见故障和状态检修要点[J].黑龙江科学,2015(03):21+25.

[2]常非,赵丽平.高压大容量五电平变换器在RPC中的应用[J].电力系统及其自动化学报,2014(09):40-45.

第2篇:高压电容范文

关键词:电容器;传感器;在线监测系统

中图分类号:TM85 文献标识码:A

1 现状概述

国外许多电力公司从上个世纪70年代就开始研究并推广应用变电设备在线监测技术,主要目的就是减少停电预防性试验的时间和次数,提高供电可靠性。

(1)带电测试阶段。这一阶段起始于70年代左右。当时人们仅仅是为了不停电而对电气设备的某些绝缘参数(如泄露电流)进行直接测量。设备简单,测试项目少,灵敏度较差。

(2)从80年代开始,在线监测技术从传统的模拟量测试走向数字化测量。

(3)从90年代开始,以计算机处理技术为核心的微机多功能在线监测系统。

在国内,在线监测技术的开发与应用始于上世纪80年代。计算机应用刚刚起步,当时的在线监测技术水平较低。到2000年后,随着在线监测技术的不断成熟及客观的需要,在国内很多地区的供电企业都已开展了这项工作。

2 典型案例

摘录官方统计的数据:

2004年10~110kV的开关的事故率0.011~0.022台次/百台年

2004年110kV及以上变压器的事故率为0.4台次/百台年

广东省2007年高压并联电容器的故障率为5台次/百台年

(1)1996年6月18日19:14贺州市电业公司八步变电站在人工分闸过程中,户外2#,5#电容器发生爆炸。

(2)1982年佳目斯局桦南变的三角型结线电容器组,单台装用低压保险,一台电容器发生爆炸后,将厂房和396台电容器全部烧毁。

(3)2001年4月30日8:54,某一变电站,在主控室,电容器的速断保护信号继电器动作挂牌,造成外侧10kVII段与电容器串联接地极击断,电抗器本体喷油着火,A,B相熔断器全部熔断。

3 存在问题

(1)瓷套管及外壳渗漏油

电容器是全密封的电气设备,由于制造工艺、运输等原因,密封不良出现渗漏,导致套管内部受潮,绝缘电阻降低。随着电容器运行电压、温度等变化,内部压力增加,渗漏油更为严重,使油面下降,元件上部容易受潮击穿而损坏。

(2)瓷绝缘表面放电闪络

电容器在运行中缺乏定期清扫和维护,其瓷绝缘表面因污秽严重,在电网出现内、外过电压和系统谐振的情况下导致绝缘击穿,局部放电,造成瓷套管闪络破损,响声异常。

(3)外壳鼓肚

当电容器内部元件发生故障击穿时,介质中将通过很大的故障电流,电流产生的电弧和高温使浸渍剂游离而分解产生大量气体,使得电容器的密封外壳内部压力增大,导致电容器的外壳膨胀鼓肚,这是运行中电容器故障的征兆,应及时处理,避免故障的漫延扩大。

(4)熔断器熔断

电容器内部元件发生故障击穿,熔断器安装接触不良发热,以及熔断器的额定电流选择不当,电容器合闸瞬间,由于电容器处于充电状态产生很大的冲击合闸涌流,涌流过大均能使熔断器熔断。

(5)电容器爆炸

运行中电容器爆炸是一种恶性事故,当电容器内部元件故障击穿引起电容器极间贯性短路时,与其并联运行的其他电容器将对故障电容放电,如果注入电容器的能量大于外壳所能承受的爆破能量,则电容器爆炸,如果电弧点燃的液体介质溢流,还会造成火灾。

4 原因分析

(1)电容器电容量的微小变化

电容器电容量出现微小变化是电容器事故前的最早征兆,表明熔丝已经切除了单个电容器。

(2)运行电压过高

电容器介质上的额定工作场强比其它电器高25~30倍,是高压敏感设备。电力行标DL/T 840—2003中规定为1.05倍额定电压。电容器过压保护及VQC均使用母线PT,不能直接测定电容器端电压及累计超出允许的幅值及持续时间。

(3)运行电流过高

运行规程对三相电流的控制有两个指标,一是不超过额定电流的30%,二是三相不平衡电流不应超过±5%。

(4)电容器的绝缘变化

电容器自身的介质损耗及其它发热元件引起本体温升,而温升又会反过来加大介质损耗,是一种恶性循环。

(5)电抗器的运行工况

电抗器匝间短路对运行电流及电容器端电压无明显影响,过流、速断、差压、不平衡电压、不平衡电流保护均不起作用,是电容器保护的死区。

(6)运行温度过高

温度过高导致tgδ迅速增加,降低介质的击穿强度。技术监督规程把室温超过35℃列入三级报警,超过40℃列入二极报警,当采取降温措施无效时电容器应退出运行。

(7)电容器投切瞬间工况

电容器在投入时会出现涌流,合闸弹跳及分闸重燃会在电容器端产生较高的过电压。

(8)高次谐波引起过电流

电容器正常运行时不希望电流中含有高次谐波,因此选择了不同电抗率的电抗器,以减弱谐波电流对电容器的侵袭;少量熔丝熔断后,电容器虽然可以照样运行,但有一个副作用,就是电抗率向减少方向发生漂移,有可能使限制的谐波电流进入放大的频率范围。电力电容器对谐波电流有一定的承受能力,规程把谐波电流含量统一纳入到1.3倍的额定电流之内。

(9)放电线圈运行工况

放电线圈除具有电容器放电功能之外,还向保护提供不平衡电压。

6 提升措施

高压并联电力电容器作为一种极为重要的无功电源,对于改善电力系统的结构、提高功率因数、改善电压质量、降低线路损耗起着重要的作用,在各种电压等级的变电站中得到了广泛的应用。因此对电力电容器运行状况进行在线监测是一种防止电力电容器发生事故的有效途径。系统运行时连续监测并存储高压并联电容器的运行工况,包括电容器运行电压、运行电流、电容量、介质损耗、绝缘状况、高次谐波、环境温湿度、投切次数及状态(涌流及重燃录波)、运行时间等数据。当电容器出现电压越限、电流越限、谐波超标、熔丝熔断、电容量变化越限、电抗器匝间短路、绝缘降低、室内超温等情况时启动录波并发出报警信号。

(1)传感器技术:根据现场电容器的实际容量、接线方式、安装方式等设计高精度电流、电压传感器,高精度的信号转换是电容器在线监测的基础。

(2)硬件技术:高压并联电容器在实际运行中,绝缘性能并不是瞬间变化的,故障都是经过长期缓慢的变化才形成的。系统的高配置部件是为了能够更加精确的采集电容器的运行数据。

(3)软件算法的实现:装置只采集高压电容器运行电流、电压、温度和湿度,需要经过一系列复杂的软件算法计算谐波电流、谐波电压、电容量、介质损耗因数、绝缘电阻、有功损耗等值,这些软件算法是实现电容器在线监测的软件基础。

(4)后台监控系统的设计:后台监控系统实现高压并联电容器的远方监控,可以在远方监控电容器的运行工况,分析运行状态,作为一个方便的人机界面,为电容器在线监测系统的应用提供了简便的操作平台。

(5)实时通信功能的实现:为了实现后台和装置的数据共享,在线监测装置提供三种通讯方式的实现,分别为RS485、以太网和GPRS无线通讯。这三种通讯方式可以满足现场数据传输的需要,实时将电容器的运行状况传输至不同地点的后台监控系统上。

结语

本文主要阐述高压电容器的研究现状,典型案例,存在的问题,原因分析和提升措施。并研制出了一套KZ160E高压电容器在线监测系统。

参考文献

[1]党晓强,刘念,蒋浩.电力系统中高压电容设备在线检测的研究[J].电工技术杂志,2003(10).

[2]续利华.电力电容器常见故障的原因分析及相应处理[J].电力学报,2001(02).

第3篇:高压电容范文

关键词:感性负载 自动补偿 就地补偿 功率因数 电压叠加 补偿精度 步长

一、概述

在电力系统中,随着变压器和交流电动机等电感性负载的广泛使用,电力系统的供配电设备中经常流动着大量的感性无功电流。这些无功电流占用大量的供配电设备容量,同时增加了线路输送电流,因而增加了馈电线路损耗,使电力设备得不到充分利用。作为解决问题的办法之一,就是采用无功功率补偿装置,使无功功率就地得到补偿,尽量减少或不占用供配电设备容量,提高设备的利用效率。最常见的办法就是采用电容器组提供电容性电流对电感性电流给予补偿,以提高功率因数。目前,在配电系统中,已经普遍使用了低压电容集中自动补偿装置,根据需要,使低压无功功率就地得到补偿。而在高压系统中,目前使用比较多的补偿还是传统的固定式电容补偿装置,集中的自动补偿装置使用还很不普遍。由于传统的补偿方式存在安全性能差、补偿精度低和劳动强度大等问题,大家都希望有一种更加安全可靠、补偿精度更高、自动化水平更高的补偿装置供设计选用。

我们从1995年开始,在天津经济技术开发区二期雨、污水泵站;东海路雨、污水泵站;泰丰路雨水泵站和天津市月牙河雨水泵站等工程中试用6kV高压电容自动补偿装置。经过几年来的使用,证明补偿后功率因数达到0.95以上,自动化水平高,补偿效果满意。得到各使用单位的一致好评。本文结合工程使用情况,就高压电容集中自动补偿装置有关技术问题进行简单介绍。以作抛砖引玉。

二、补偿实施方案和补偿容量的确定

要想得到理想的补偿效果,首先要确定合理的补偿实施方案、准确计算需要补偿的容量。目前常见的补偿方法有传统的固定式电容器组人工插拔熔断器控制补偿容量法;单台设备随机就地电容补偿法和集中电容器自动补偿法。其中传统补偿方法简单,但补偿精度低,劳动强度大,危险性大,受人为因素影响太多。

单台设备就地补偿法就是针对单台设备在当地进行补偿,其优点是从设备需求点补偿,深入到需求补偿第一位置,补偿范围大。其缺点是确定补偿容量困难。既不能过补偿,又必须保证电路不得发生LC谐振和避免发生自激现象。因在计算无功电流时,无功电流主要成分是由电机励磁电流I0,满负荷运行时的无功电流增量ID1、欠载运行时的无功电流增量ID2等组成的。因为随着电动机运行状态的变化,上述各参数都在不停地变化,动态变量变化因素太多,很难确定准确的无功补偿需求量。不同的生产设备在选配电动机时的启动容量裕度各不相同,所以,在设备运行中其电动机的饱和程度各不相同,其欠载运行的无功电流增量ID2各不相同;其次,电动机的实际工作状态随时变化,如:水泵电机随着进水水位、出水水位的变化电动机负载率随时都在变化,无法确定准确的工况。而单台设备就地补偿法在补偿容量确定后,是以固定不变的补偿容量,去平衡随时浮动变化的动态工况,就很难得到满意的高精度补偿效果。

此外,在单台补偿的电容器装置中,补偿电容器是与主机一对一固定配套安装的,随着主机的运行而补偿电容器同时投入运行,当主机停止运行时补偿电容也一齐被切除,各机组之间的电容器相互独立不能互补,电容器得不到充分利用,增加了设备投资。而且,市政工程的特点是运行时间集中、设备容量较大;备用设备的运行利用率更低等。再者,由于补偿电容器随着主机的运行而一齐投入运行,则主机的启动电流与电容器合闸涌流是同时处于最大值,两个电流最大值相加增大冲击电流效应。

如果采用成组设备集中自动补偿法,则补偿容量可根据当时整体运行工况需要,自动投入所需容量,可以达到比较高的补偿精度。随着补偿设备的步长越短则补偿精度越高,如果步长为无级变化则功率因数从理论上讲可以精确到1,这将为高精度准确补偿打下基础。而且不论任何一台电机工作时,补偿电容器均可根据线路总体需要投入运行,使每组补偿电容器得到充分利用。

三、补偿设备步长划分与设备配置

虽然理论上无级自动补偿装置补偿精度可以达到1,但是在一般市政工程实际应用中,为了合理地利用有限的资金投入,并不要求理论上的最大值,只要满足工程精度需要就可以了。所以工程中大多数情况都是由多台设备并列运行,通常设备在4台以上时,如将所需最大补偿电容量分成6~8步等步长容量投入,就可以基本满足工程实际精度需要。如同目前常见的低压电容器自动补偿装置一样,一般分8步等容量投入方案的使用已经非常普遍,其理论可以推广到高压电容补偿装置中使用。但是在高压系统中如果沿用低压补偿的思路,对于采用高压真空接触器控制的方案,仍可采用等容量配置。而对于使用真空断路器的情况而言,则因为真空断路器价格相对较高,所以,在保证相同功能的基础上尽量减少真空断路器的使用数量,对节约投资是有着非常明显的作用的。工程中如果合理选用控制器,可以减少真空断路器数量,例如:对于采用等步长容量分配电容器组的设备组,7步补偿需要7台真空断路器,如果采用1+2+4的不等容量控制器的配置,只需3台真空断路器就可以达到7步等步长容量补偿的效果,其形式为1、2、1+2、4、4+1、4+2、4+2+1。这样既保证了补偿精度又将大大节约设备的一次性投资。

四、保护与控制

高压电容器自动补偿装置的保护和控制,除常规的保护和控制外,还有一些特殊的需要注意的问题。我们在实际工程中遇到的一些在保护系统设计和调试过程中容易忽略的问题,一并在此作简单介绍。在实际工程中,根据电动机数量,一般采用7~8步控制投入。保护系统除过电压、过电流等常规保护外,必须注意采用完善的三相保护,避免因单相故障造成的保护失灵和故障扩大。合理配置限制涌流的电抗器,严格防止电磁谐振现象造成的破坏。

另外,保护系统必须注意补偿电容器在自动投入时,电容器上的电压叠加问题,当一组电容器退出运行后,在再投入前,必须保证其充分放电后再投入运行。保证其在再投入时其上的残余电压值降低到允许的电压范围以内,避免由于再投入时残余电压与额定电压的叠加造成电容器上的过电压损坏。

其次控制系统中,特别需要注意的是工作电源、信号电源等检测量的相位的正确配置。正确的向量配置是设备调试能顺利进行的有力保证和最起码的要求,否则,会给调试工作带来不必要的麻烦和增加许多不必要的工作量,以至于有时可能会调不出正确结论。

控制系统的设计随着使用元件不同结构略有差异。例如:补偿装置的接触器,若使用电磁式真空接触器,开/停为一个信号的1—0状态,若使用机构式接触器或者采用真空断路器时,其开/停必须是两个独立的信号。两种控制各有优缺点,从节能、噪音等不同角度各有不同结论。仁者见仁,智者见智。设计可根据工程具体情况采用经济、合理、实用和技术先进的设备配置。采用机构式接触器或者采用真空断路器时的控制原理见《电容器自动补偿装置控制原理图》。

五、结论

第4篇:高压电容范文

铝电解电容的设计缺陷

AC-DC电源转换器,要实现交流到直流的变换,首先需要将交流电压经过整流滤波后形成一个稳定、平滑的直流电压给自身及外部器件供电。而电解电容由于具有单位体积内电容量大、额定容量大(可实现法拉级)、价格低廉等优点,常成为常规开关电源中整流滤波的关键器件。电解电容是由铝圆筒做负极,里面装有液体电解质,插入一片弯曲的铝带做正极制成,电解液在高温和低温等极端条件下,非常容易漏液和干涸,从而使其电气属性发生变化,最终导致电容失效。一旦铝电解电容失效,因其剧烈反应形成压力,就会释放出易燃、腐蚀性气体,导致AC DC模块电源失效。

根据铝电解电容的物理结构,可以用图1中所示的电路等效,其中CAK代表两电极问的理想电容量;Rp是并联电阻,代表了电容的漏电流成分;Rl代表了电容引出端及电极部分的串联电阻成分;L代表了引出线和连接处的等效串联电感成分。

铝电解电容的性能主要依赖其中介质部分,即阳极金属氧化膜部分。除受初始工艺的影响外,在工作过程中,电解液也会不断修补并增厚该氧化膜,随着阳极金属氧化膜的不断增厚,铝电解电容等效电路模型中的电容值C会不断下降,等效串联电NESR会不断增大,同时阴极反应产生的氢气又加速了电解液的挥发,这些便是引起铝电解电容退化的主要因素。

因而,虽然电解电容有着其他类型的电容无法替代的优势,但还是具有内部损耗大、静电容量误差大、漏电流大、高低温特性差等缺陷。故采用电解电容设计的常规AC DC电源模块在高低温特性、可靠性、使用寿命等方面具有明显的劣势。

那么,如果AC-DC电源设计中不使用电解电容,电源产品将会怎样呢?无电解电容的AC-DC电源模块是否可避免上述致命缺陷?

无电解电容产品的优势

与电解电容相比,陶瓷电容具有极低的ESR和ESL,能降低因寄生参数而引起的损坏风险;同时,因陶瓷电容的电解质在高低温等极限条件下不易挥发、凝固,容量相对稳定,能长时间保持电容的电气特性,从而极大地提高了电源产品的高低温性能和长期使用的可靠性。

1 高效、环保

LN系列采用填谷电路进行设计,利用高压陶瓷电容完美替代铝电解电容,增加了整流管的导通角,使输入电流波形从尖峰脉冲变得更接近正弦波,从而大幅度提高电源的功率因素(如表1所示),提高电源的转换效率,更加利于环保节能,显著降低总谐波失真(见图1)。

以下所有表中旧方案为采用电解电容的产品,新方案为采用填谷电路无电解电容的新产品。

2 产品寿命的提升

电源本身是一个功率器件,在正常工作时功率损耗通过热的形式散发到外部,其内部的变压器、开关器件、整流二极管等都是发热器件。除内部因素外,大部分电源需应用在较高的环境温度中,这些都会导致电解液的挥发,降低电解电容的使用寿命。

陶瓷电容采用特性最稳定的陶瓷材料作为介质,特别是一类陶瓷电容(NOP)能实现55~+125℃的工作环境温度,容量变化不超过±30×10-6/℃。电容温度变化时,容值很稳定,即具有温度补偿功能,适用于要求容值在温度变化范围内稳定和高Q值的线路以及各种谐振线路中;二/三类陶瓷(X7R)实现55~+125℃的工作温度范围内,容量最大的变化为±15%。

从高压陶瓷电容的介质与铝电解电容的电解液介质本身的特性可以看出,陶瓷电容能够承受更严格的环境要求,对电源产品的寿命、可靠性的设计都有着重要的意义,能够很大程度地提高电源产品的使用寿命以及可靠性。

无电解电容AC-DC电源模块LN系列通过采用填谷电路,利用高压陶瓷电容成功替代铝电解电容,能够有效避免电解电容因内部电解液导致的高低温性能差问题;避免因电解液的挥发导致电容容值下降、电源产品寿命降低问题;甚至可以避免因电解液的剧烈喷发或者漏液引起的安全问题。

3 稳定的高低温特性

目前,大多数常规电解电容的额定工作温度为105℃,但因电解电容在高温条件下电解液易挥发,电源本身发热较大等原因,常规采用电解电容的AC-DC电源只能工作在70℃的环境条件下。要提高电源的工作环境温度,必须采用价格更昂贵、体积更大的电解电容,或者以降额的方式实现高低温条件下的应用,图3为金升阳常规AC-DC电源产品在高低温环境下的降额要求。

LN系列能在成本、体积变化不大的情况下实现高温工作,能满足-40~+70℃条件下无任何降额要求,可应用在环境温度较高/较低,且对电源产品的可靠性、使用寿命较高的场合,如路灯控制、LED等行业。

4 高EMC特性

金升阳无电解电容LN系列产品,充分考虑到不同应用场合、不同的设计要求,对产品的EMC性能进行了全面的升级优化。在模块内部通过PCB设计、采用多级EMC滤波等方式实现在无任何防护器件的情况下EMI满足CLSS B,防浪涌能力达4级。

第5篇:高压电容范文

摘要:BAMHL11-7200-1×3W是在总结以往充气集合式高电压并联电容器产品优点的基础上,为优化大容量产品结构,提高绝缘可靠性和设备技术经济性能而开发的项目。本文着重介绍该产品的内部结构、外壳筋板结构和混合气体绝缘等几点改进。

第6篇:高压电容范文

【关键词】井下;供电电网;电容电流;中性点绝缘系统

随着计算机技术以及高新技术的高速发展,煤矿企业已经摆脱了传统的生产模式,形成了高度机械化的生产模式。在煤炭生产的各个环节都普遍应用了大型的机械设备。因此供电网络在煤炭企业中也不断的扩大,煤炭企业对供电网络的供电可靠性和安全性也有了更高的要求,供电网络的安全性直接关乎到煤炭生产的安全性,尤其是井下供电网络的安全性更为重要。当供电网络出现故障时,就可能会引起供电电流和电容过大,对井下生产作业造成严重的安全隐患。根据国家的相关规定,在井矿中使用的高压电网,其单相接地电流电容必须在20安以下。这关乎到作业人员的生命安全,也关乎着煤炭企业的经济效益。因此企业必须严格控制井下高压电网的电流电容,使其严格按照国家煤炭生产安全的规定进行运作。

1 井下高压电网电流电容的危害

1.1 供电中性点绝缘系统

按照相关安全规定,井下供电变压器严禁中性点接地。在正常供电过程中,供电系统有着良好的绝缘性时,供电系统三相导线和对地电容是相等的,即负载对称。大地的电位和中性点的相等,各相对地电容电流相等,矢量和是零。当任何一相绝缘损坏接地时,就会导致其它两相电压发生很大的变化,产生危害。

1.2 煤矿井下高压电网容易产生的危害

(1)产生人身触电。在矿井下,接地电网的电阻通常是2欧姆,按照相关规定,其单相接触电容电流不能够超过20安,这样才可以保证地网电压值在40伏以下,不会引起人身触电现象的产生,但是如果不严格进行控制或者控制不合理等,就会造成电流强度大于20安,这样电网电压就高于40伏,对人身安全造成很大的威胁,会引发人身触电伤亡的事故,因此要严格进行电容电流的控制。

(2)接地电压升高。在电网供电过程中,会出现电力系统中某相绝缘发生损坏接地的现象,由于单相接地,这时该相中对地电压就变为零,另外没有出现故障的相就会分担故障相的电压,导致这两相的电压高于正常工作状态时的电压。

(3)接地电弧过高压。电网供电过程中,由于发生绝缘损坏接地现象,就会造成电容电流增大,电流增大后接地电压就会随之增大,因此在接地点处就会产生电弧,这种电弧为断续式。由于断续电弧的作用,接地电容和电感构成的电路就要发生振荡现象,产生系统过压的状况。经过相关的假设计算可以知道,当高频电流过零点时,电弧就会熄灭。但是也不能完全确定,电弧的不断持续就会引发系统过高压相对严重。在供电系统中存在着相互电容,并且电弧中也有电阻存在,加上系统自身的消耗,电路振荡就会逐渐的衰减。通常情况下,系统过压值会达到正常状态的三倍。

(4)电弧无法自熄。电网电压以及节点电流电容的大小都和电弧的大小相关,并且随着电流电容的升高,电弧的破坏作用也随之加大。电弧能否自熄关系到电力设备的安全,如果长时间燃烧就会破坏电器设备,造成相间短路。

(5)引发瓦斯爆炸。在我国,每年都会发生多起煤炭矿井瓦斯爆炸的事故,这严重威胁了工作人员的生命安全以及企业的经济利益。由于高压电网电流电流的故障,很容易引发井下瓦斯爆炸,造成重大的人员伤亡。

2 控制措施

(1)严格按照国家规定,矿井供电电网的的建设中,严禁井下的配电变压器中性点接地。井上发电机或者变压器的中性点直接接地时,同样也不能向井下供电。将是中性点接地的供电系统进行改造,安装消弧线圈,从而进行接地保护措施。消弧线圈能够产生电感性电流,该电流可以和单相接地导线产生的电容性电流发生相互抵消。这样就会削弱单向接地产生的电容电流,使单相接地的电流值小于或者等于20安。这样引单相接地产生的电弧就会随着电容电流的减少而自行熄灭,从而避免了因电弧长时间燃烧而使电力设备受损的情况,保护了电力系统。

(2)技术改造。在原有的消弧线圈作用原理上进行技术改造,进行全面的漏电保护。设计可靠性高、性能好的漏电保护装置。这套装置是采用三相五柱式消弧线圈,突破了传统的构造方法,它将消弧线圈和接地变压器有效的结合在一起,提高了设备的工作效率,并且在安装和保养方面也十分便利。下图为三相五柱式消弧线圈的补偿原理:

这种装置没有机械转动部分,它的跟踪调节速度很快,运用可控硅技术和单片微机技术实现这种功能。经过实践研究,这种装置能够使接地故障产生的电流大大减小,减少了单相接地产生的事故发生率。

使用这种装置进行中性点添加消弧线圈的设置,可以进行人为增加电感电流,对电容电流进行补偿。这时,单相接地电流的大小就变得很小,仅为经过补偿后的残余电流。同时也能够抑制电弧重燃,降低过电压的发生率。

(3)当单相绝缘损坏后可能出现接地极导线和带有危险电压的构件、支架以及电气设备的外壳和屏蔽护套等形成接地网。按照相关规定,接地网的电阻值应该小于或者等于2欧。

(4)向矿井中供电的井下中央变电所以及地面上的变电器等,在它们的高压馈线上的单相接地保护装置应该安装具有选择性的;在低压馈出线上,为了保证在出现设备绝缘损坏接地或者发生了触电等危险情况下,能够自动切断故障馈电线路,需要安装具备选择性的漏电保护装置以及能够进行检漏的装置;在高压馈线上,应该装具有选择性的动作跳闸单相接地保护装置。

第7篇:高压电容范文

关键词 供电企业;高压电气;试验;绝缘

中图分类号TM83 文献标识码A 文章编号 1674-6708(2011)38-0100-02

0 引言

高压电气试验是考核电气设备主绝缘或电气参数是否满足安全运行的一个重要手段。然而,高压电气试验的结果往往会受到一些不为人们所注意的因素所干扰,造成试验结果与实际情况不符合,甚至得出错误的结论。比如,被试设备的缺陷没有被反映出来,造成设备带病运行;也可能把合格的设备判断为不合格,从而造成不必要的损失。笔者对多年来在高压试验中所碰到的一些问题,进行归纳、分类和分析,并对如何避免和解决这些问题,提出了相应的措施。

1 试验设备和被试设备的接地问题

1.1 高压TV及TA二次回路不接地造成测量数据错误

在测量高电压和大电流时,必须使用TV和TA进行变换。理论上,TV或TA的变比应遵循电磁感应定律,即它们的变比决定于一次绕组的匝数和二次绕组的匝数。然而,在实际应用中,如果高电压下的TV或TA的二次绕组没有将一端接地时,实际上反映出来的变比就会偏离铭牌值,所测量出的数据也是错误的。例如,对1台30mW水轮发电机进行交流耐压试验时,采用1台35 kV/100 V的TV和1块150 V的交流电压表测量电压,在第1次试验时发现电容电流比往年小得多,显然是试验电压没有达到预定值,所测量的电压是一个虚假的数据。经检查发现TV二次没有接地。将TV二次绕组一端接地后,数据恢复正常。试验数据见表1。

表1TV二次绕组不接地和接地的数据比较

如果按照电流与电压成正比的关系反过来计算第1次试验电压,应为:(21/38)×23.8=13.15(kV),这一电压与预定试验电压相差甚远。对于高压TA,我们在实验室也做过同样的试验,当高压TA二次绕组不接地时,电流的变比同样会产生严重的偏差。

无独有偶,在做1台电力变压器的空载试验时(试验电压10 kV),第1次试验所测量的空载电流和空载损耗与出厂试验数据不吻合,经检查也是TV和TA二次绕组没有接地所造成。

由于高压TV,TA的一次绕组和二次绕组与大地之间存在着分布电容,如果二次绕组不接地,二次绕组上的感应电压就会通过表计与大地之间产生杂散电流,从而产生错误的指示值。

通过对这一问题的分析,笔者认为以下两件事情在高压试验中必须重视:

1)高压TV和TA的二次绕组,不论是从安全的角度还是从测量的准确度来考虑,都必须将其中的一个端子可靠接地;

2)在进行交流耐压试验时,应同时测量试品的电容电流,因为可以从电流的大小来判断试验电压是否正常。

1.2 被试设备接地不良造成介质损耗增加

这种问题主要发生在电容量较大的设备上,比如耦合电容器或CVT(电容式电压互感器)。在变电站里,线路CVT或耦合电容器通常都与线路直接连接,在检修时为了保证线路检修人员的安全必须将CVT或耦合电容器的顶端接地,通常是将线路的接地开关合上或挂上临时接地线。如果接地开关或临时挂接的地线接触不良,相当于在电容器上串联了一个附加的电阻。如果电容量为C,电容器的介质损耗因数tgδ与等值串联电阻R有如下关系:

tgδ=ωCR

从上式可知,当电容器串联的电阻一定时,电容器的电容量越大所产生的损耗越大。在实际试验中,已经多次发生因接地开关或接地线接触不良而造成被试品介质损耗超标的问题。表2是一个500kV直流中继站耦合电容器的测量实例。

当怀疑接地开关或接地线接触不良时,可以在被试品上直接挂上另外的接地线,并保证接触良好。

1.3 滤波器接地开关没合上造成测量数据异常

这种情况发生在测量耦合电容器(或带通信端子的CVT)上,如图1所示。由于耦合电容器顶部接地,所以在测量C1的介质损耗时通常采用反接屏蔽法,也就是将测量装置的屏蔽端子接于C2的下端,这种接法似乎是把C2以下的元件全部屏蔽掉了,而事实上并非如此。表3是一个测量实例,从表3数据来看,当接地开关打开时,不同的测量仪器所呈现的异常情况不尽相同,只有当接地开关合上后,才能测出正确的数据。这种情况说明异常现象还与仪器的测量原理有密切的关系。

因此,在测量耦合电容器的介质损耗时,应首先将结合滤波器的接地开关合上。

2 试验电压不同所引起的问题

2.1 对介质损耗因数测量的影响

在一次500 kV直流中继站的耦合电容器预防性试验中,由于耦合电容器电容量较大,为了避免仪器过载,采取降低试验电压的方法进行测量。在36台耦合电容器中其中有1台测量结果不合格,见表4序号1。为了查找试验不合格的原因,试验人员采取了各种各样的方法,如改变试验接线、擦拭外套等等,但测量结果仍不合格。第二天用另一型号的测量仪进行测量时,发现在0.5kV的电压下测量结果仍然不合格,但随着试验电压的提高,介质损耗却越来越小。然后再用回原来的仪器复测,在同样的试验电压下测量结果也已经正常,测量结果见表4中序号2~7。这种现象显然与绝缘材料中存在杂质有关。之所以出现这种现象,我们分析原因可能是:多元件串联的耦合电容器中存在连接线氧化接触不良的问题,在低电压下氧化层未击穿,呈现较大的接触电阻,所以介损变大;当试验电压提高后,氧化膜击穿,接触电阻下降,介损变小,这时即使降低试验电压,氧化膜仍保持导通状态,介质损耗不再增大。

2.2 对测量直流电阻的影响

某厂1台发电机在进行预防性试验时,用双臂电桥测量转子绕组的直流电阻,测量结果与历年数据相比显著增加。为了慎重起见改用外加直流电压电流法,测量结果却与历年试验数据接近,然后改用不同的仪器测量,数据变化很大。根据对测量方法和结果的分析,我们判定转子绕组已经存在导线断裂的问题。导体断裂后,在断裂面形成一层导电性较差的氧化膜,当用双臂电桥测量时,由于电桥输出电压较低,氧化膜不击穿,所以呈现较大的电阻;而采用外加电压电流法时,由于输出电压较高,所以氧化膜击穿导电,测量的直流电阻就变小。经拔护环检查,该转子绕组端部存在5处断裂的缺陷。

以上例子说明,对于与直流电阻有关的试验,采用输出电压低的仪器更容易暴露设备存在的缺陷。

2.3 对测量直流泄漏电流的影响

导体表面所产生的电晕电流在导体的形状、电压极性、导体间的距离确定以后,就与电场强度的大小有关。当外施电压小于一定的数值时,电晕电流很小,对泄漏电流的测量影响可以忽略,而当试验电压超过一定的数值后,电晕电流要比绝缘的电导电流大得多,这时就要采取措施减小电晕电流的影响。

1)实例1:徐州某电厂300mW发电机交接试验时,在30kV电压以下三相泄漏电流大致平衡,在60 kV电压下B相泄漏电流只有55μA,而A相达到355μA,C相超过1 000μA,我们分析是电晕电流所致。经检查发现中性点的软连接线相间及对外壳距离太近,经增加绝缘板隔离后复测,在60 kV电压下三相泄漏电流已基本平衡。

2)实例2:徐州某电厂300mW发电机检修后试验,在60 kV电压下,A相泄漏电流达到92μA,而B,C两相均小于20μA。经分析数据发现48 kV以下三相泄漏电流基本平衡,所以,我们认为也是电晕电流所致。用绝缘材料将出线导电杆全部包扎后复测,在60 kV下三相电流已基本平衡。

3 环境温度所引起的问题

在某厂1台发电机转子的预防性试验中测得转子绕组的直流电阻不合格,正准备进行处理,为慎重起见,先用原仪器进行复测,却发现数据是合格的。在后来的几天里,这种情况总是反复出现,所测得的数据有时合格,有时又不合格,令人费解。后来经详细分析,发现凡是白天测量的数据都是合格的,而晚上测量的数据都是不合格的。进一步分析发现,该电厂所处的地区白天和晚上的温差较大,极有可能是转子绕组导体存在裂纹,白天温度高时,由于导体膨胀,裂纹被顶紧而完全导通,所以直流电阻合格;而到了晚上,由于温度降低,导线收缩,裂缝被扯开,所以直流电阻增大而不合格。经拔护环检查,证明这一分析是正确的。

4 引线所引起的问题

4.1 绝缘带的问题

在一次测量500 kV断路器断口电容器的介质损耗因数时,所测得的数据总是不合格,为了找出原因,试验人员尝试了各种各样的方法,最后发现只有当取消固定试验引线的塑料带后,所测得的数据才是合格的。经用兆欧表测量,所用的塑料带绝缘电阻竟然只有几百兆欧,而被试设备的绝缘电阻均大于10 000MΩ,用这样的塑料带固定试验引线,无疑是在试品上并联了一个电阻,增加了试品的介质损耗。这种现象确实非常罕见,为了保证试验结果的准确性,检查所使用的绝缘塑料带的绝缘电阻还是很有必要的。

4.2 避雷器的引线问题

某厂1台500 kV主变中性点避雷器在预防性试验中,检修人员仅将引线的主变侧断开,引线保留在避雷器上,用塑料绝缘带固定并与周围设备保持足够的距离。然而,在试验中75%直流参考电压下的泄漏电流总是在70μA~80μA之间,大于50μA,按规程规定属于不合格。厂里只好打算更换。为了慎重起见,在拆下避雷器的引线后进行复测,泄漏电流已小于20μA。由此可见,在进行避雷器试验时,高压部位的引线必须全部拆除,而且高压直流发生器的屏蔽线必须直接接到避雷器的高压端,以防止引线所产生的电晕电流流入微安表造成测量偏差。

第8篇:高压电容范文

一、干式自愈式高压并联电容器的概述

1.1 干式自愈式高压并联电容器的工作原理

干式自愈式高压并联电容器所用元件为自愈式电容器元件,其介质为单层聚丙烯膜,表面蒸镀了一层很薄(低于1/100um)的金属作为导电电机。当施加电压时聚丙烯膜电弱点被击穿,击穿电流将穿过击穿点。由于导电的金属化镀层的电流密度急剧增大,并使金属化层产生高热,使击穿点周围的金属导体迅速蒸发逸散,形成金属镀层空白区,击穿点自动恢复绝缘。介质膜产生一个非常小的孔洞,直径约几微米,自愈过程消失的金属化镀层面积直径约几毫米。

1.2 干式自愈式高压并联电容器的运行要求

(1)注意运行电压

干式自愈式高压并联电容器额定电压一般取系统额定电压的1.1倍,如果电容器串联了限制谐波放大作用的电抗器(电抗率在6%及以上),由于串联电抗器的作用会造成干式自愈式高压并联电容器运行电压高于母线运行电压。干式自愈式高压并联电容器过电压能力比较差,在1.1倍额定电压每天运行不得超过12h,这种情况下可以选择高一级额定电压产品(如1.2倍系统额定电压产品)。

(2)限制合闸涌流

干式自愈式高压并联电容器的元件采用端部喷金,喷金部位导电能力比较差,研究结果表明高幅值多次冲击容易造成端部接触质量降低,喷金脱落。因此干式自愈式高压并联电容器应采用并联电抗器来限制合闸涌流,不考虑限制谐波放大时,串联1%的电抗器就可以。

(3)夏季通风散热的强化

温度对干式自愈式高压并联电容器的寿命影响很大,干式自愈式高压并联电容器在城市中一般安装于比较狭小的空间,散热和通风条件都比较差,夏季高温季节要特别重视电容器室的通风,必要时可以选择高一级温度类别的产品。

二、一起典型的干式自愈式高压并联电容器事故

2.1 事故的描述

2010年1月15日,南京某公司35kV变电站内10kV干式自愈式高压并联电容器发生爆炸,导致电容器被烧毁。该35kV变电所有人值班,所烧毁的干式自愈式高压并联电容器于2000年12月投运,当日值班人员在14:30分左右听到放电声就立即进行排查,结果发现10kV干式自愈式高压并联电容器冒烟。此后值班人员立即拉开电容器116开关,拉开开关时电流指示约为120A,保护未动作,由于烧毁的10kV干式自愈式高压并联电容器室为独立房间,因此电容器的爆炸没有对10kV高压开关室造成影响。

2.2 事故的原因分析

南京某公司35kV变电站于1987年正式送电,此次爆炸所使用的干式自愈式高压并联电容器是2000年投运并经过技术改造的,该电容器由***电容器厂制造,型号为:TBB(SH)10-2400/400-B1,额定电流:126A,接线方式:Y-Y,出厂日期:1999年10月。该干式自愈式高压并联电容器保护有:速断,定值590A;过流,定值210A;过电压,定值120V;低电压,定值66V;差流,定值8A;CT变比,200/5A。

发生爆炸时,该干式自愈式高压并联电容器116开关没有跳闸动作,该保护于2009年4月校验,现场检测116开关均能在定值内正确动作。为了准确分析导致干式自愈式高压并联电容器发生爆炸的原因,技术人员认真查找相关资料和请教其他技术人员,最后认为导致此次爆炸事故发生的原因为:自愈式高压并联电容器的元件是多串段构成,元件的某一段失效并不会引起大的电流变化,当发生故障时故障点周围的金属层将被蒸发,故障点的等效电阻取决于炭化通道和弧道电阻,可以从几十到数千Ω,故障点的电流值远小于非自愈式击穿点的电流,故障电流很有可能不被发现而造成事故。在多串段元件某一段失效的情况下,无论是过度过程电流、电压还是稳态电流、电压变化都不大,很难判断元件是否处于故障状态。

2.3 事故的防范对策

在认真分析此次干式自愈式高压并联电容器爆炸发生原因的基础上,技术人员认为,要避免此类爆炸事故的再次发生,必须重点做好如下方面的工作:

第一,用电检查人员应认真做好高压电容器投运前的设备验收,设备必须经过型式试验和省级以上技术鉴定,验收检查时特别注意接线的正确性和保护熔丝的布置方式。

第二,客户变电站电气值班人员应对高压电容器加强运行监视,严格控制电容器的运行电压和电流,防止电容器出现超过最高允许电压、允许过电流运行。

第三,客户变电站电气值班人员应对电容器室的散热和通风条件进行检查,确保电容器室保持良好的通风条件。变电所可以在电容器室内安装排风设备,留设进风口和出风口,确保室内通风良好,防止室内温度过高而影响高压电容器的正常使用和寿命。

第四,客户变电所运维人员要认真检查高压电容器的连接处是否牢固,一旦出现松动现象要立即处理;强化高压电容器的检查和维护,利用红外测温仪等先进设备对电容器、连接点等处的温度进行测量,避免因熔断器过热而造成误动。

第五,客户变电所电气值班人员一旦发现高压电容器发生爆炸事故,要立即切断高压电容器和电网的连接。通常高压电容器内,每个电容元件上都串有一个熔丝来作为高压电容器的内部短路保护。某些高压电容器设有放电电阻,当高压电容器和电网断开后,通过放电电阻放电,通常在10min后高压电容器的残压就可以降低到75kV以下。

第六,按有关资料显示,在2000年左右由于电容器制造厂家的制造水平和产品质量等原因,市场上此类电容器产品合格率不高,根据江苏省电力公司苏电生[2000]48号文“关于慎用干式自愈式高压并联电容器的通知”精神,请客户认真吸取事故教训,抓紧整改。同时要求用电检查员对其他客户开展排查和此类隐患治理。

第七,督促客户加强电容器的巡视和检查,重视电容器渗漏油、鼓肚、熔丝熔断、爆裂等隐患缺陷处理,避免电容器带伤运行,有问题尽早整改,防范事故发生。以漏油事故为例,其处理方法如下:采用正确的搬运方法,认真进行检查,一旦发现裂纹要立即更换设备;加强对高压电容器的巡视和检查,发现油漆剥落要及时修补;运行过程中,重视高压电容器温度的调节。

三、小结

干式自愈式高压并联电容器作为电力系统的无功电源之一,能够有效提高电网的功率因素,因此其安全和可靠运行是电网提供经济且优质电能的重要保障。本文以一起典型的干式自愈式高压并联电容器爆炸事故为例,对事故发生的原因进行了深入探讨,并针对性提出了几点预防此类事故再次发生的建议,以期为促进干式自愈式高压并联电容器的稳定运行,提供一些有益的参考和借鉴。

参考文献

[1]芮静康.常见电气故障诊断与维修[M].机械工业出版社,2010.

[2]谭渡渡,谭晓天.10kV并联电容器电压保护二次回路接线分析比较[J].湖南电力,2003,23(6).

(作者单位:江苏省电力公司南京供电公司)

第9篇:高压电容范文

关键词:变压器;过电压;原因;保护措施

变压器运行时,如果电压超过它的最大允许工作电压,称为变压器的过电压。过电压往往对变压器的绝缘有很大的危害,甚至使绝缘击穿。过电压分为内部过电压和大气过电压两种。输电线路直接遭雷击或雷云放电时,电磁场的剧烈变化所引起的过电压称为大气过电压(外部过电压);当变压器或线路上的开关合闸或拉闸时,因系统中电磁能量振荡和积聚而产生的过电压称为内部过电压。变压器的这两种过电压都是作用时间短促的瞬变过程。

内部过电压一般为额定电压的3.0~4.5倍,而大气过电压数值很高,可达额定电压的8~12倍,并且绕组中电压分布极不均匀,端头部分线匝受到的电压很高。因此,必须采取必要的措施,防止过电压的发生并进行有效的保护。

过电压在变压器中破坏绝缘有两种情况,一是将绕组与铁心(或油箱)之间的绝缘高压绕组与低压绕组之间的绝缘(这些绝缘称为主绝缘)击穿;另一种是在同一绕组内将匝与匝之间或一段绕组与另一段绕之间的绝缘(这些绝缘称为纵绝缘)击穿。

由于过电压时间极短,电压从零上升到最大值再下降到零均在极短的时间内完成,因而具有高频振荡的特性,其频率可达100kHz以上。在正常运行时,电网的频率是50Hz,变压器的容抗很大,而感扩ωL很小,因此可以忽略电容的影响,认为电流完全从绕组内部流过。但对高频过电压波来说,变压器的容抗变成很小,而感抗变成很大,此时电流主要由电容流过,所以必须考虑电容的影响。

CFe—绕组每单位长度上的对地电容;C''''—高低压绕组之间每单位长度上的电容;Ct—绕组每单位长度上的匝间电容;L''''—过电压时绕组每单位长度上的漏电感;R''''—绕组每单位长度上的电阻。

下面简单说明两种不同类型过电压产生的原因:

1内部过电压

我市电网中,绝大多数是降压变压器,下面就以降压变压器空载拉闸为例说明内部电压产生的原因。

根据变压器参数的折算法可知,把二次侧(低压侧)电容折算到一次侧(高压侧)时,电容折算值为实际值的(1/K2)倍,所以二次侧电容的影响可以略去不计。这就是说,空载时可以忽略二次侧的影响。就一次绕组来说,由于每单位长度上的对地电容CFe是并联的,故对地总电容为:CFe=ΣCFe

由于一次侧单位长度上的匝间电容Ct是串联的,故它的匝间总电容为:Ct=1/(Σ1/Ct)

在电力变压器中,通常CFe>>Ct,所以定性分析时,匝间电容的影响也可略去不计。当再忽略绕组电阻R1时,可得空载拉闸过电压时的简化等效电路:

其中L1是一次绕组的全自感。

把空载变压器从电网上拉闸时,如果空载电流的瞬时值不等于零而是某一数值Ia,这时相应的外施电压瞬时值为Ua。于是在拉闸瞬间,电感L1中储藏的磁场能量为1/2L1i2a,电容CFe上储藏的电场能量为1/2CFeU2a。由于这时变压器的电路是由电感L1和电容CFe并联的电路,故在拉闸瞬间,回路内将发生电磁振荡过程。在振荡过程中,当某一瞬间电流等于零时,此时磁场能量全部转化为电场能量,由电容吸收,电容上的电压便升高到最大值Ucmax。当不考虑能量损失时,根据能量守恒原理有

CFeU2cmax=L1i2a+CFeU2a

故得,Ucmax=■

上式表明,当拉闸电流和电容上的电压一定时,绕组的电感愈大,对地电容愈小,则拉闸时过电压愈高。电力系统中,拉闸过电压通常不超过额定电压的3.0~4.5倍。

2大气过电压

大气过电压是输电线路直接遭受雷击或雷云放电时,电磁场的剧烈变化所引起的。当输电线路直接遭受雷击时,雷云所带的大量电荷(设为正电荷)通过放电渠道落到输电线上,大量的自由电荷向输电线路的两端传播,就在输电线上引起冲击过电压波,称为雷电波。雷电波向输电线两端传播的速度接近于光速,持续的时间只有几十微秒,电压由零上升到最大值的时间只有几微秒。雷电波的典型波形如图3。

曲线由零上升到最大值这一段称为波头,下降部分称为波尾。如果把波头所占时间看成是周期波的四分之一周期,则雷电波可看成是频率极高的周期性波。这样,当过电压波到达变压器出线端时,相当于给变压器加上了一个频率极高的高电压。这一瞬变过程很快,一开始,由于高频下,ωL很大的,1/ωC很小,电流只从高压绕组的匝电容和对地电容中流过。由于低压绕组靠近铁心,它的对地电容很大,(即容抗很小),可近似地认为低压绕组接地。可雷电波袭击时,沿绕组高度上的电压分布取决于匝间电容Ct和对电容CFe的比例。在一般情况下,由于两种电容都存在,过电压时,一部分电流由对地电容分流,故每个匝间电容流的电流不相等,上面的匝间电容流过的电流最大愈往下面则愈小,随着电压沿绕组高度的分布变为不均匀,见图4:(图中UAX是过电压波加在变压器两端的电压)。

从图4中可见,起始电压分布很不均匀,靠近输电线A端的头几匝间出现很大的电压梯度,因此,在头几个线匝里,匝间绝缘和线饼之间的绝缘都受到很大的威胁,这时最高匝间电压可能高达额定电压的50~200倍。

3过电压保护

为了防止变压器绕组绝缘在过电压时被击穿,必须采取适当的过电压保护措施,目前主要采用下列措施:

(1)避雷器保护。在变压器的出线端装设避雷器,当雷电波从输电线侵入时,避雷器的保护间隙被击穿,过电压波对地放电,这样雷电波就不会侵入变压器,从而保护了变压器。

(2)加强绝缘。除了加强变压器高压绕组对地绝缘外,针对雷电波作用的特性,还要加强首端及末端部分线匝的绝缘,以承受由于起始电压分布不均匀而出现的较高的匝间电压。这种方法效果有限,而且加厚绝缘使散热困难,同时减少了匝间电容,增大了匝间电压梯度。目前只在35kV及以下的变压器中采用。

(3)增大匝间电容。匝间电容相对于对地电容愈大时,则电压的起始分布愈均匀,电压梯度越小,因此增加匝间电容是有效的过电压保护措施。过去常采用加装静电板或静电屏的方法,现在在110kV以上的高压变压器上,广泛采用纠结式线圈。纠结式线圈制造工艺简单,不增加材料,与连续式线圈相比能显著增大匝间电容,所以现在高压大型电力变压器的高压绕组大多数采用了这种绕线法。