公务员期刊网 精选范文 含氟废水处理方法范文

含氟废水处理方法精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的含氟废水处理方法主题范文,仅供参考,欢迎阅读并收藏。

含氟废水处理方法

第1篇:含氟废水处理方法范文

关键词:治理方法 除氟机理 化学沉淀 絮凝沉淀 含氟水

氟是人体必需的微量元素之一,饮用水适宜的氟质量浓度为0.5~1 mg/L。当饮用水中氟含量不足时,易患龋齿病;但若长期饮用氟质量浓度高于1 mg/L的水,则会引起氟斑牙病[1];长期饮用氟质量浓度为3~6 mg/L的水会引起氟骨病[2]。我国含氟地下水分布广泛,尤其是在西北干旱地区,约有7000万人饮用含氟量超标的水,导致不同程度的氟中毒。工业上,含氟矿石开采、金属冶炼、铝加工、焦炭、玻璃、电子、电镀、化肥、农药等行业排放的废水中常含有高浓度的氟化物,造成环境污染。

对于这些含氟废水,目前国内大多数生产厂尚无完善的处理没施,所排放的废水中氟含量指标尚未达到国家排放标准,严重污染着人类赖以生存的环境。按照国家工业废水排放标准,氟离子浓度应小于10 mg/L;对于饮用水,氟离子浓度要求在1 mg/L以下[3]。含氟废水的处理方法有多种,国内外常用的方法大致分为两类,即沉淀法和吸附法。除这两类工艺外,还有冷冻法、离子交换树脂除氟法[4]、活性炭除氟法、超滤除氟法、电渗析[5],至今很少推广应用于除氟工艺,主要是因为成本高、除氟率低。本文对近年来国内外含氟水化学沉淀、絮凝沉淀、吸附三种处理工艺的研究现状及工程应用进行综述。

1 化学沉淀法

对于高浓度含氟工业废水,一般采用钙盐沉淀法,即向废水中投加石灰,使氟离子与钙离子生成CaF2沉淀而除去。该工艺具有方法简单、处理方便、费用低等优点,但存在处理后出水很难达标、泥渣沉降缓慢且脱水困难等缺点。

氟化钙在18 ℃时于水中的溶解度为16.3 mg/L,按氟离子计为7.9 mg/L,在此溶解度的氟化钙会形成沉淀物。氟的残留量为10~20 mg/L时形成沉淀物的速度会减慢。当水中含有一定数量的盐类,如氯化钠、硫酸钠、氯化铵时,将会增大氟化钙的溶解度。因此用石灰处理后的废水中氟含量一般不会低于20~30 mg/L[6]。石灰的价格便宜,但溶解度低,只能以乳状液投加,由于生产的CaF2沉淀包裹在Ca(OH)2颗粒的表面,使之不能被充分利用,因而用量大。投加石灰乳时,即使其用量使废水pH达到12,也只能使废水中氟离子浓度下降到15 mg/L左右,且水中悬浮物含量很高[7]。当水中含有氯化钙、硫酸钙等可溶性的钙盐时,由于同离子效应而降低氟化钙的溶解度。含氟废水中加入石灰与氯化钙的混合物,经中和澄清和过滤后,pH为7~8时,废水中的总氟含量可降到10 mg/L左右。为使生成的沉淀物快速聚凝沉淀,可在废水中单独或并用添加常用的无机盐混凝剂(如三氯化铁)或高分子混凝剂(如聚丙烯酰胺)。为不破坏这种已形成的絮凝物,搅拌操作宜缓慢进行,生成的沉淀物可用静止分离法进行固液分离。在任何pH下[8],氟离子的浓度随钙离子浓度的增大而减小。在钙离子过剩量小于40 mg/L时,氟离子浓度随钙离子浓度的增大而迅速降低,而钙离子浓度大于100 mg/L时氟离子浓度随钙离子浓度变化缓慢。因此,在用石灰沉淀法处理含氟废水时不能用单纯提高石灰过剩量的方法来提高除氟效果,而应在除氟效率与经济性二者之间进行协调考虑,使之既有较好的除氟效果又尽可能少地投加石灰。这也有利于减少处理后排放的污泥量。

由于氟化物不是废水中唯一要被除去的污染物,因此要根据实际情况选择合适的处理方法。例如含氟废水中溶有碳酸钠、重碳酸钠时,直接投加石灰或氯化钙,除氟效果会降低。这是因为废水中存在着一定量的强电解质,产生盐效应,增加了氟化钙的溶解度,降低除氟效果。其有效的处理方法是先用无机酸将废水pH调到6~8之间,再与氯化钙等反应就可有效地除去氟离子。若废水中含有磷酸根离子,则先用石灰处理至pH大于7,再将沉淀物分离出来。对于成分复杂的含氟废水,可用加酸反调pH法[9],即首先在废水中加入过量的石灰,使pH=11,当钙离子不足时补加氯化钙,搅拌20 min,然后加盐酸使废水pH反调到 7.5~8,搅拌20 min,加入絮凝剂,搅拌后放置30 min,然后底部排泥,上清液排放。

近年来有些研究者提出在投加钙盐的基础上联合使用镁盐、铝盐、磷酸盐等工艺,处理效果比单纯加钙盐效果好。如阎秀芝[10]提出氯化钙与磷酸盐除氟法,其工艺过程是:先在废水中加入氯化钙,调pH至9.8~11.8,反应0.5 h,然后加入磷酸盐,再调pH为6.3~7.3,反应4~5 h,最后静止澄清4~5 h,出水氟质量浓度为5 mg/L左右。钙盐、磷酸盐、氟三者的摩尔比大约为(15~20)∶2∶1。文献中[11]报道了一种用氯化钙和三氯化铝联合处理含氟水的方法,其工艺过程是:先在废水中投加氯化钙,搅溶后再加入三氯化铝,混合均匀,然后用氢氧化钠调pH至7~8。沉降15 min后砂滤,出水氟离子浓度为4 mg/L。氯化钙、三氯化铝和氟的摩尔比为(0.8~1)∶(2~2.5)∶1。钙盐联合使用镁盐、铝盐、磷酸盐后,除氟效果增加[12],残氟浓度降低,主要是因为形成了新的更难溶的含氟化合物,剩余污泥和运行费用仅为原来的1/10。如钙盐与磷酸盐合用时,会生成Ca5(PO4)3F沉淀[10];氯化钙与三氯化铝合用时形成有钙、铝、氟组成的络合物沉淀,其具体组成和结构尚待进一步研究[12]。

2 絮凝沉淀法

氟离子废水的絮凝沉淀法常用的絮凝剂为铝盐。铝盐投加到水中后,利用Al3+与F- 的络合以及铝盐水解中间产物和最后生成的Al(OH)3(am)矾花对氟离子的配体交换、物理吸附、卷扫作用去除水中的氟离子。与钙盐沉淀法相比,铝盐絮凝沉淀法具有药剂投加量少、处理量大、一次处理后可达国家排放标准的优点。硫酸铝、聚合铝等铝盐对氟离子都具有较好的混凝去除效果。使用铝盐时,混凝最佳pH为6.4~7.2[23~14],但投加量大,根据不同情况每 m3水需投加150~1000 g,这会使出水中含有一定量的对人体健康有害的溶解铝。使用聚铝后,投加量可减少一半左右,絮凝沉淀的pH范围扩大到5~8 。聚铝的除氟效果与聚铝本身的性质有关,碱化度为75%的聚铝除氟最佳,投加量以水中F与 Al的摩尔比为0.7左右时最佳[15]。铝盐絮凝沉淀法也存在着明显的缺点,即使用范围小,若含氟量大,混凝剂使用量多,处理费用较大,产生污泥量多;氟离子去除效果受搅拌条件、沉降时间等操作因素及水中SO42-,Cl-等阴离子的影响较大,出水水质不够稳定,这与目前对混凝除氟机理认识还很不够有关,研究絮凝除氟机理具有明显的现实意义。

铝盐絮凝去除氟离子机理比较复杂,主要有吸附、离子交换、络合沉降三种作用机理。

(1)吸附。铝盐絮凝沉淀除氟过程为静电吸附,最直接的证据是AC或PAC含氟絮体由于吸附了带电荷的氟离子,正电荷被部分中和,相同pH条件下ζ电位要比其本身絮体要低。另一证据是当水中SO42-,Cl-等阴离子的浓度较高时,由于存在竞争,会使絮凝过程中形成的Al(OH)3(am)矾花对氟离子的吸附容量显著减少。

铝盐絮凝除氟过程中生成的具有很大表面积的无定性的Al(OH)3(am)絮体,对氟离子产生氢键吸附。氟离子半径小,电负性强,这一吸附方式很容易发生,这已在铝盐除氟絮体红外光谱中得到证实[16]。不管是化学吸附还是物理上的静电吸附,只要是离子吸附方式,就会使铝盐水解阳离子所带的正电荷降低,从而使絮体的ζ电位值下降。AC和 PAC含氟絮体的ζ电位都比本身絮体的ζ电位低,说明铝盐除氟过程中离子吸附是一重要的作用方式。

XPS试验表明[17],絮体Al(OH)3(am)对NaF和HF的吸附为分子吸附。这两种吸附的具体方式尚有待于进一步研究,最有可能的是氟离子先以氢键或静电作用方式吸附到絮体上,然后钠离子和氢离子作为电荷平衡离子吸附到上面而构成分子吸附。

(2)离子交换。氟离子与氢氧根的半径及电荷都相近,铝盐絮凝除氟过程中,投加到水中的 Al13O4(OH)147+等聚羟阳离子及其水解后形成的无定性Al(OH)3(am)沉淀,其中的OH-与F-发生交换,这一交换过程是在等电荷条件下进行的,交换后絮体所带电荷不变,絮体的ζ电位也不会因此升高或降低,但这一过程中释放出的OH-,会使体系的pH升高,说明离子交换也是铝盐除氟的一个重要的作用方式[18]。

(3)络合沉淀。F-能与Al3+等形成从AlF2+,AlF2+,AlF3到 AlF63-共6种络合物,溶液化学平衡的计算表明,在F-浓度为1×10-4~1×10-2 mol/L的铝盐混凝除氟体系中,pH为5~6的情况下,主要以AlF2+, AlF3,AlF4- 和AlF52-等形态存在,这些铝氟络合离子在絮凝过程中会形成铝氟络合物 (AlFx(OH)(3-x)和Na(x-3)AlFx)或夹杂在新形成的 Al(OH)3(am)絮体中沉降下来,絮体的IR和XPS谱图最终观察到的铝氟络离子AlFx(3-x)+一部分是络合沉降作用的结果,另一部分则可能是离子交换的产物[19]。

转贴于 3 吸附方式

用于除氟的常用吸附剂主要有活性氧化铝、斜发沸石、活性氧化镁,近年来还报道了氟吸附容量较高的羟基磷灰石、氧化锆等。利用这些吸附剂可将氟浓度为10 mg/L的废水处理到1 mg/L以下,达到饮用水的标准。这些吸附剂的基本情况总结于表1。表1列出的为原水氟质量浓度为10 mg/L左右和最佳运行条件下的常用氟吸附剂吸附容量变化范围。

表1 常用氟吸附剂的吸附容量变化范围 吸附剂种类 吸附容量(mg/g) 最佳吸附pH 斜发沸石[20] 0.06~0.3 7.3~7.9 活性氧化铝[21~22] 0.8~2.0 4.5~6 活性氧化镁[23] 6~14 6~7 粉煤灰[24] 0.01~0.03 3~5 羟基磷酸钙[25] 2~3.5 6~7 氧化锆树脂[26] 30 3.5~7

吸附法一般将吸附剂装入填充柱,采用动态吸附方式进行,操作简便,除氟效果稳定,但存在如下缺点:

(1)吸附容量低。由表1可见,常用的吸附剂如斜发沸石和活性氧化铝吸附容量都不大,在0.06~2 mg/g之间。新近报道的羟基磷酸钙的氟吸附量可达3.5 mg/g,活性氧化镁的氟吸附为6~14 mg/g,但使用过程中易流失。以稀土氧化锆为主制成的氟吸附剂的吸附量可高达30 mg/g。这些新型的吸附剂虽价格比较贵,但处理后,吸附容量下降缓慢,可反复使用,是一个发展方向。粉煤灰中含有活性氧化铝,也可用于处理含氟废水,可直接往废水中投加,以废治废,成本低廉,缺点是氟吸附量小,投加量大,通常需投加40~100 mg/L才能使出水氟含量达到排放标准[24]。

(2)处理水量小。当水中氟离子浓度为5 mg/L时,每kg吸附剂一般只能处理10~1000 L 水,且吸附时间一般在0.5 h以上。吸附法只适用于处理水量较小的场合,如饮用水处理。

活性氧化铝是氢氧化铝在一定的温度(400~600℃)下焙烧而成的一种r型氧化铝,与氟离子的交换反应如下:

Al2O3·Al2(SO4)3·nH2O+6F-

Al2O3·2AlF3·nH2O+3SO42-

若原水中氟浓度过高,活性氧化铝吸附处理效果急剧下降;若水中含有磷酸根和硫酸根时,影响脱氟效果。活性氧化铝吸附容量随pH的升高而降低,脱氟效果较好的pH为5~6.5[25];使用粒径一般采用0.3~0.6 mm为宜。使用后的活性氧化铝常用硫酸铝或氢氧化钠和硫酸再生。

对活性氧化铝除氟机理研究较多,但存在着不同的看法。主要观点有二:一种认为活性氧化铝除氟是吸附过程;另一种则认为活性氧化铝除氟是水中氟离子与除氟剂中的阴离子的交换过程。刘裴文等人[27]提出了吸附交换的过程,X光光电子能谱解析表明,初次用于水处理的活性氧化铝(包括再生后表面组成与其相同者)除氟本质上是分子吸附。化学分析表明,用硫酸铝再生的活性氧化铝除氟是吸附交换。

4 小结及讨论

(1)利用化学沉淀法可以处理高浓度的含氟废水,氟离子初始浓度为1000~3000mg/L 时,石灰法处理后的最终浓度可达20~30 mg/L,该法操作简便,处理费用低。但由于泥渣沉降速度慢,需要添加氯化钙或其它絮凝剂,使沉淀加速。设法提高钙离子浓度及保持高的 pH而使氟化钙沉降是降低氟离子浓度的主要途径。另外,联合使用磷酸盐、镁盐、铝盐等,比单纯用钙盐除氟效果好。

(2)絮凝沉淀法对高浓度含氟水除氟效果差,处理后水中硫酸根浓度偏高。

(3)吸附法适用于水量较小的饮用水深度处理,吸附剂大多起阴离子交换作用,因此除氟效果十分明显,但都要加特殊的处理剂和设置特定设备,处理费用往往高于沉淀法,且操作复杂。使用羟基磷灰石活性氧化镁稀土金属氧化物等新型吸附剂可提高处理效果。

(4)对于高浓度的含氟废水往往需进行两步处理,先用石灰进行沉淀,使氟含量降低到20 ~30 mg/L,继而用吸附剂处理使氟含量降到10 mg/L以下。

(5)鉴于含氟废水在种类、数量、氟含量及其它的污染物等方面差异甚大,因此在选择处理方法时,要根据实际,因地制宜。尤其注重以废治废的综合治理。

(6)含氟水处理过程中,各种除氟机理有可能同时发生。开展除氟机理的研究工作,有助于现有除氟工艺的改善和除氟新方法的开发。

参考文献

1 MachoyMokrzynska A. Fuorine in toxicology,medicine,and environment protection. Fluorine,1999,32(4):248~250

2 吴沈春.环境与健康.北京:人民卫生出版社,1990.367~368

3 国家环保局.水和废水检测分析方法.北京:环境科学出版社,1989.574~575

4 Reardon J. Limestone reactor for fluorine from the wastewaters.Environment Science & Technology,2000,34(15):3247~3253

5 Amor Z Bariou B.Fluorine removal from brackish water by electrodialysis.Desalination,2001,133(3):215~223

6 Parthasarathy N,Buffle J, et al. Conbined use of calcium sails and polymeric aluminium bysdroxide for defluoridation of wastewater.Water Research,1996: 29(4)443~448

7 唐锦涛,等.萤石矿高氟废水处理.环境化学,1990,9(3):20~24

8 李雪玲,刘俊峰,李培元.石灰沉淀法除氟的应用.水处理技术,2000,26(6):359~361

9 武丽敏,钱振华.含F工业废水处理的一种新方法.工业水处理,1995,15(3):20~22

10 阎秀芝.CaCl2磷酸盐法处理含氟废水的探讨.环境保护科学,1998,24(2):12~14

11 Saha S. Treatment of aqueous effluent for fluoride removal. Water Research, 1993, 27(8):1347~1350

12 Toyoa A Trata T.New method for treating fluorine waste water to reduce sludge and running costs.IEEE transaction on semiconductor manufacturing, 2000, 13(3):305~309

13 凌波.铝盐混凝沉淀除氟水.水处理技术,1990,16(6):418~421

14 卢建杭,刘维屏,王红斌.铝盐混凝法除氟离子的一般作用规律.化工环保,2000,20(6):7~11

15 刘士荣,杨爱云,等.硫酸铝混凝处理磷肥厂高氟废水数学模型.水处理技术,1992,18(2):96~101

16 Krossner M Scholz G, et al.Ab initio study of the AlX3…2H2O(X=F, Cl)and AlF3 complexes.J Phys Chem,1997,101:1555~1560

17 Bose O,Kemnitz,et al.XPS analysis of AlF3 phase ith Al successively substituted by Mg to used for heterogeneously catalyzed Cl/F exchange reactional Appl Surf Sci,1997,120:181~190

18 卢建杭.铝盐混凝剂水解聚合形态分析及混凝机理研究.杭州:浙江大学博士学位论文,1999

19 卢建杭,刘维屏,郑巍.铝盐混凝去除氟离子的作用机理探讨.环境科学学报,2000,20(6):709~713

20 李荣桂,肖举强,等.新型除氟材料--活化沸石.水处理技术,1994,20(3):173~176

21 曲长菱,姜兆春,等.饮水除氟的试验评估.环境科学,1994,15(4):19~22

22 Azbar N Turkman A.Defluridation in the drinking waters.Water Science & Technology, 2000, 42(1):403~407

23 王凤鸣,王东.含氟饮用矿泉水中氟的净化工艺.水处理技术,1996,22(4):223~226

24 马艳然,樊宝生,等.粉煤灰处理含氟废水.水处理技术,1993,19(6):355~359

25 陶大均,李易炜.高氟饮用水的脱氟技术.干旱环境检测,1997,11(3):163~165

26 李永明,李凤兰.新型氟离子吸附剂的研究.工业水处理技术,1997,17(6):11~12

第2篇:含氟废水处理方法范文

关键词:钙盐沉淀法;含氟废气;吸收液;配比

中图分类号:V261.4 文献标识码:A

随着我国建筑业的迅速发展,以砖瓦为基础材料的生产业随之扩大。砖坯在高温烧制过程中,坯土中的氟化物成为气态氟化物逸散到大气中,对人体和植物造成危害。

砖瓦厂排出的氟化物以HF为主,其次为SiF4。这两种氟化物均易溶于水,用水吸收净化法处理含氟废气的工艺可使氟吸收率达到95%以上。然而,在处理含氟废气的吸收液方面的研究目前还比较缺乏。

本文类比含氟废水的处理方法用传统钙盐沉淀法来处理含氟废气的吸收液,通过处理模拟含氟废水和处理含氟废气吸收液两实验的对照,以去除率和处理后溶液pH为控制,研究混合钙盐沉淀法处理含氟废气吸收液的最佳配比。为砖瓦厂含氟废气吸收液的处理提供参考和理论依据。

1材料与方法

1.1 实验原理

吸收液中的氟主要以F-形态存在,向吸收液中加入钙盐,F-和Ca2+生成难溶的CaF2沉淀,达到除氟的目的。但若是只用CaO进行反应,由于CaF2的饱和溶解度较高,处理后吸收液中的F-含量仍超出综合废水排放一级标准。因而加入CaCl2等易溶性钙盐,利用同离子效应,减少处理出水中F-的含量,使出水水质符合国家有关排放标准。

1.2 实验材料

仪器:721型分光光度计;精密酸度计;中流量采样泵;聚乙烯烧杯。

模拟含氟废水:用NaF配制成0.01mol/L的标准溶液,贮于聚乙烯瓶中备用。

含氟气体吸收液:采集含氟气体中的氟化物,用水吸收处理后,贮存于聚乙烯瓶中备用并测定其中氟含量。

1.3 实验内容与方法

分别向模拟含氟废水和含氟废气吸收液中加入不同配比的混合钙盐,利用沉淀法处理含氟废液,并不断搅拌,反应2小时,过滤后测定反应后溶液的pH和用分光光度法测定处理后氟含量,计算去除率,控制出水pH达标,探究最佳的混合钙盐配比。

2结果与分析

2.1 模拟含氟废水处理结果分析

在8个聚乙烯烧杯内,加入200ml模拟含氟废水,控制Ca总量为0.4mol,分别投加CaCl2/Cao配比为10:1、7:1、5:1、3:1、1:1、1:3、1:5、1:10的混合钙盐粉末,搅拌1h,沉淀1h后测定溶液含氟量和pH。实验结果见图1、图2,从图1中可知,混合配比在2以内的去除率较高,当配比增大后处理率随之降低,到达6左右出现最低点,继续增加CaCl2后去除率有所升高,但是结合经济效益来考虑,继续增加CaCl2不适合实际工程。从图2 可知,随着CaCl2的增加pH不断降低,主要是CaO的减少造成的。综合图1和图2,在出水pH在7左右的情况下,混合钙盐对F-的去除率较低,并不满足工程要求。

2.2 含氟气体吸收液处理结果分析

在8个聚乙烯烧杯内,加入200ml含氟气体吸收液,控制Ca总量为0.4mol,分别投加CaCl2/Cao配比为10:1、7:1、5:1、3:1、1:1、1:3、1:5、1:10的混合钙盐粉末,搅拌1h,沉淀1h后测定溶液含氟量和pH。实验结果见图3、图4,从图3中可知,随着CaCl2的增加,混合钙盐对F-的去除率逐渐升高,到10以后趋于平缓,此时再增加CaCl2变化不明显。从图4可知,随着CaCl2的增加处理后溶液的pH不断降低,pH到达6做自由趋于平缓。综合考虑F-去除率和出水pH,当CaCl2/Cao为7:1时去除率为94.14%,pH为6.48,处理效果比较理想。

2.3 模拟含氟废水与含氟气体吸收液样品处理结果对比分析与讨论

从图5、图6的实验结果对比中可以看出,混合钙盐的配比对F-的去除率和出水pH都有较为显著的影响,主要因为加入氯化钙不仅提供了Ca2+,还可以控制溶液的pH。同时将混合钙盐沉淀法应用于处理含氟气体的吸收液与含氟废水的处理结果有明显的差异。

从图中可以看出,随着CaCl2的不断增加溶液的出水pH不断降低,但是模拟实验中的pH始终保持在10以上,pH变化较小,F-去除率的变化却十分明显,主要是在CaO较多的时候溶液中的HF发生解离,使F-的浓度增加,降低了F-的去除率[8]。当模拟实验中的CaO减少后,在pH>10的情况下主要存在OH-和F-的竞争,水中的F-含量高于OH-后,F-与Ca2+的结合机率较大,形成CaF2沉淀,F-去除率又上升,但继续增加CaCl2又会降低经济效益。说明在模拟含氟废水的处理实验中要严格控制处理溶液的pH,可以用酸反调pH值,否则F-的去除率和出水pH将很难达到要求。

然而在处理含氟废气吸收液的实验中,pH变化范围较大,随着混合配比的增加,pH不断降低并逐渐趋于6,F-去除率不断增加并趋于平缓。主要是此时Ca2+浓度很高,根据同离子效应促使CaF2沉淀的方程式正向进行,CaF2沉淀增加,去除率升高[10]。而且虽然样品实验中pH的变化范围大,但是F-去除率的变化幅度却远远小于模拟实验,说明混合钙盐处理含氟废气吸收液中对于pH的控制并不需要像处理模拟含氟废水那么严格,只需要控制在6~7之间。

利用混合钙盐处理模拟含氟废水和含氟废气吸收液实验中,不仅对pH控制要求不同,同时对混合钙盐的配比也有一定的影响,在已有实验中,模拟实验中最佳配比为1:1,样品实验中最佳配比为7:1。主要因素是含氟废气吸收液为中含有小颗粒悬浮物易附着Ca2+同时被CaF2沉淀覆盖,因而需要更多的CaCl2来提供自由的Ca2+[11]。混合钙盐沉淀法在配比为7:1时对F-有较高的去除率,说明该方法在处理含氟废气吸收液方面有一定的可行性。

结论

(1)混合钙盐处理含氟废气吸收液在CaCl2/Cao为7:1时去除率为94.14%,pH为6.48,处理效果较好,说明混合钙盐在处理含氟废气吸收液方面有一定的可行性

(2)混合钙盐沉淀法处理含氟废气吸收液在pH控制方面没有处理含氟废水严格,在实际操作中比较简单易行

(3)为砖瓦厂含氟废气吸收液的处理提供理论依据,但不同工艺中含氟废气的成分可能不同对实验结果有一定的影响。

参考文献

[1]刘咏.我国砖瓦厂氟化物的排放及其污染治理研究进展[J].四川环境,2003,22(5):19-21.

[2] 王瑾.工业含氟废气的净化与利用[J].无机盐工业,2010,42(7):5-8.

[3] 占其军.含氟废水的处理及应用[J].化肥工业,2011,38(2):24-32.

[4] 李雪玲,刘俊峰,李培元等.石灰沉淀法除氟的应用[J].水处理技术,2000,26(6):359-361.

[5] 徐应兴,魏艳,陈红梅等.Fe3+磺基水杨酸显色分光光度法测定水中氟含量[J].清洗世界,2010,26(7):26-28.

[6] 崔佳丽,王增长.含氟废水处理试验研究[J].太原理工大学学报,2006,37(6):634-636.

[7] 徐宏建,潘卫国,郭瑞堂等.脱硫废水深度降氟机理及工艺优化的实验研究[C].//贯彻“十二五”环保规划创新火电环保技术与装备研讨会论文集.2011:161-171.

[8] 张希祥,王煤,段德智等.氧化钙粉末处理高浓度含氟废水的实验研究[J].四川大学学报(工程科学版),2001,33(6):111-113.

[9] 薛力,呼世斌.钙盐沉淀法处理农村含氟饮用水试验[J].中国农学通报,2010,26(20):353-356.

[10] 刘海波,左文武,林文周等.化学-混凝沉淀法处理低浓度含氟废水研究[J].中国给水排水,2008,24(11):76-79.

第3篇:含氟废水处理方法范文

关键词:含氟废水 PH值 加药量 沉淀时间

1.问题与研究重点

目前,国内外高氟废水处理方法主要有化学沉淀法、反渗透法、混凝沉淀法、吸附法、电化学法等,其中化学沉淀法、混凝沉淀法以及吸附法应用最广泛,传统的工艺流程就是化学沉淀法加混凝沉淀法,也有研究在此基础上增加吸附法。本试验以陕西省某太阳能电池生产企业产生的含氟废水处理采用两级除氟工艺,具体如图1所示,一级用氢氧化钙将废水pH调节到11及以上以沉淀氟离子,二级用硫酸铝反调pH控制到7左右混凝沉淀除氟。

该工艺经试运行后发现,含氟废水进水水质波动大,在200-2000mg/L变化,pH为2-3,该类废水水质变化情况如图2,由于进水水质变化大、处理过程控制难导致氟离子稳定达标难,因此需要对工艺进行分析和优化,目前,国内外针对两段除氟工艺怎样应对进水水质波动剧烈下稳定达标排放的研究鲜有报道。本研究针对存在的问题,采用一级以pH为控制指标、二级以硫酸铝投加量为控制指标的技术思路,对该处理工艺操作参数进行了优化研究。

2.试验方法与过程

取含氟废水0.8L于1L烧杯中,30mm×10mm磁力搅拌子搅拌,转速600转/min; pH酸度计检测pH,试验模拟现场实际工艺情况,设置二级除氟体系,第一级为钙盐除氟,即加入不同量氢氧化钙溶液,搅拌,再加1mg/mIPAM2ml,静置,检测上清液氟离子浓度,第二级为铝盐除氟,在一级反应上清液中加入不同量硫酸铝溶液,搅拌,再加1mg/mIPAM2ml,静置,检测上清液氟离子浓度。

试验过程中,采用控制变量法,通过改变搅拌时间、沉淀时间、pH、药剂投加量,确定最佳搅拌时间,沉淀时间,pH及药剂投加量。

3.钙盐除氟操作参数优化

3.1 搅拌时间与沉淀时间对除氟效果的影响

取0.8L高浓度含氟废水,用氢氧化钙溶液调pH到9,分别于搅拌5,10,20,40min取样检测氟离子浓度,搅拌结束后加PAM再搅拌均匀,取静置10、20、40、80min的水样,检测氟离子浓度,其结果见表1,由表1可以得出沉淀时间对氟离子浓度几乎没有影响,而搅拌时间在10min以上都是合适的。

3.2 除氟最佳pH

除氟的最佳PH值如下图3所示,由图可知,除氟最佳PH值在7-9之间。

3.3 氢氧化钙最佳投加量

由于进水水质波动大,且没有氟离子浓度在线监测仪的条件下,以氢氧化钙投加量作为控制指标是不可行的,因此初步确定以pH作为控制参数,用氢氧化钙将不同浓度氟离子溶液调到7-9,检测反应结束后上清液氟离子浓度。

根据进水水质变化的区间,分别控制初始氟离子浓度为200mg/L左右,700ml/L左右及1500mg/L左右,用氢氧化钙调节pH至7~9,分别考察不同初始氟离子浓度下的除氟效果,试验结果如表2。

由表2分析可知,无论氟离子初始浓度为多少,将pH控制到7~9,反应后的氟离子浓度总低于40mg/L,此浓度的含氟废水进入二级铝盐除氟阶段是合理的,因此,建议一级钙盐除氟以pH作氢氧化钙投加量的指征,这样可有效防止钙盐投入过大而产生过量污泥。

4.铝盐除氟操作参数优化

4.1 搅拌时间与沉淀时间

取0.8L含氟废水,初始pH控制为7~9,测得初始F-为79mg/L,投加硫酸铝至200mg/L,再加入氢氧化钠调节pH为7左右,搅拌10min、20min、40min时取样检测氟离子浓度,搅拌结束后加PAM再搅拌均匀,取静置5、15、25min的水样测量氟离子浓度,其结果见表3。

由表3可以看出搅拌时间对铝盐除氟几乎没有影响,沉淀时间需控制在15min以上。

4.2 最佳pH

分别取0.8L含氟废水于4个烧杯中,硫酸铝投加量为375mg/L,分别用氢氧化钠溶液调节pH为6、6.5、7.5、8.5,搅拌10min,静置20min,测得上清液氟离子浓度与pH的关系如图4。

由图4分析可知,硫酸铝除氟的最佳pH为6.5到7.5,pH偏酸的效果优于偏碱。

4.3 最佳投加量

由以上研究结论可知,一级反应池出水氟离子浓度可达40mg/L左右,为保守起见,本研究选取氟离子浓度50mg/L左右及80mg/L左右的含氟废水,投加不同含量的硫酸铝,用氢氧化钠调pH到6.5-7.5,分别考察不同铝盐投加量下的除氟效果,试验结果如表4。

由上表可以看出,当铝盐投加量为20OOmg/L时,不管初始浓度为45mg/L还是85mg/L,氟离子都可以降到10mg/L以下,实际应用时,硫酸铝的投加量必须大于2000mg/L,药剂成本过高,邸秋莺在研究用硫酸铝处理氟离子浓度为60mg/L的废水时发现,仅用200mg/L的硫酸铝就能将氟离子降到10mg/L以下。傅秋生等在对钢管厂冲洗废水进行处理过程中发现,氟离子的形态会影响氟离子的去除率,络合态相对离子态更难处理,因此,本试验废水中氟离子除了以离子态存在,可能还存在其他形态,唐丽萍在对太阳能电池生产过程产生的废水进行阐述时提到,氢氟酸不仅应用于硅片的表面制绒过程,还用于去磷硅玻璃,这也是含氟废水的产生来源,在去磷硅玻璃工序中,氢氟酸溶解硅片表面形成的一层含有磷元素的二氧化硅,即磷硅玻璃,二氧化硅与氢氟酸生成易挥发的四氧化硅气体,当氢氟酸过量,反应生成的四氧化硅会进一步与氢氟酸反应生成可溶性的络合物六氟硅酸,由此可以推断,硫酸铝投加量过大很可能与六氟硅酸有关。因此,不能一味的增加硫酸铝的投加量,可行的方案是在二级铝盐除氟阶段后增加吸附阶段。

5.结语

(1)对于进水氟离子变化大的水质,建议一级钙盐除氟系统以pH作为控制参数,通过pH的控制,达到稳定除氟目的,建议pH控制在7~9。

第4篇:含氟废水处理方法范文

关键词:稀土工业;生产工艺;污染源;污染治理技术

中图分类号:F062 文献标识码:A

稀土素有“工业维生素”之称,可广泛应用于多个行业,是国民经济发展过程中不可或缺的战略资源。随着科技的不断进步,稀土在高新技术领域的应用逐渐增加。根据中国稀土学会年鉴的数据,2013年,稀土在我国冶金、机械、石油化工、玻璃陶瓷等传统领域的应用量占总应用量的37.2%,而在荧光材料、液晶抛光、永磁材料、贮氢材料等新材料领域的应用量已经达到总量的62.8%。

我国是稀土大国,资源储量居世界首位。根据2010年美国地质调查局公布的《矿产品摘要》,我国稀土资源储量为3600万t,占世界总储量的36%。同时,我国也是稀土生产、出口和消费的大国。从2003年开始,我国稀土矿产品产量已达到世界总产量的95%以上。我国稀土工业经过多年的发展,在取得了众多成就的同时,也造成了严重的污染问题。2013年,堆浸工艺生产的离子型稀土精矿已经被列入我国环保部的《高污染、高环境风险产品名录》(简称“双高”产品名录)中。2015年,稀土氧化物也被增补进“双高”产品名录中。为了促进稀土工业的清洁生产,本文对稀土工业污染来源以及污染治理技术进行了综述分析。

1.生产工艺

我国稀土工业开发利用的矿物主要有3种:包头混合型稀土矿、四川氟碳铈矿和南方离子吸附型稀土矿,其中前两种矿物为轻稀土,后一种为中重稀土。由于矿物种类、成分和结构不同,所采用的生产工艺也不一样。

混合型稀土矿是我国储量最丰富的稀土矿物,其储量占我国稀土资源总储量的84%。该矿主要分布在内蒙古包头市的白云鄂博地区,是我国特有的大型复合稀土矿物。该稀土矿为氟碳铈矿和独居石的混合矿物,并含有少量铁矿物、萤石、重晶石以及磷灰石等矿物。此外,该矿还含有约0.2%的放射性元素钍。目前可供工业上使用的混合型稀土精矿的稀土品位为50%~60%。混合型稀土精矿中由于含有高温下十分稳定的独居石,常温下难以用酸分解,目前在工业中广泛使用的方法只有浓硫酸强化焙烧和氢氧化钠溶液分解两种。氢氧化钠溶液分解法工艺要求稀土精矿品位达到60%以上,而浓硫酸焙烧法仅要求稀土精矿品位达到50%,甚至低于50%,因此,目前浓硫酸焙烧分解法占90%左右份额,氢氧化钠溶液法占5%~10%。

氟碳铈矿主要分布在我国四川省,是我国第二大稀土资源。氟碳铈矿是稀土碳酸盐和稀土氟化物的复合化合物,其中以轻稀土元素为主。选矿后的精矿中,稀土品位可达到50%~70%,但矿石中同时含8%~9%的氟以及0.2%的放射性元素钍。目前,氟碳铈矿主要采用氧化焙烧-盐酸浸出法为主干流程而衍生出来的化学处理工艺生产稀土产品。该工艺是将氟碳铈矿氧化焙烧后,三价稀土采用盐酸优解得到少铈氯化稀土溶液,四价铈、钍、氟进入渣中,然后经过烧碱分解除氟,得到的富铈渣或用于制备硅铁合金,或经还原浸出生产纯度为97%~98%的二氧化铈,少铈氯化稀土经过氨皂化的P507萃取分离单一稀土或复合稀土化合物。

离子型稀土矿主要分布在广东、福建等南方7省,属于中重稀土。离子型稀土矿属外生淋积型矿床,主要赋存于花岗岩风化壳中,原矿中大部分的稀土呈离子状态吸附于以高岭土为主的硅铝酸盐矿物上,易开采、易提取加工。离子吸附型稀土精矿的分解和分离工艺为:首先将离子吸附型稀土精矿经盐酸溶解、除杂得到混合氯化稀土料液,然后采用氨皂化的P507和环烷酸等进行萃取分组或分离,得到单一稀土或复合稀土化合物溶液,经碳铵或草酸沉淀、灼烧,得到稀土氧化物。

2.污染源分析

对于混合型稀土精矿,浓硫酸高温焙烧或高温强化焙烧工艺具有工艺简单,流程短,便于大规模生产的优点,但其废渣、废气、废水产生量大,且治理的难度较大。混合稀土精矿中含萤石,用浓硫酸高温焙烧分解精矿时产生氟化氢、二氧化硫、三氧化硫等含尘烟气。每处理1t包头稀土矿产生约60000m3的焙烧废气,且焙烧尾气治理过程产生高氟废水。每焙烧1t稀土精矿约产生600kg干渣,属Ⅰ级低放射性废渣,需建库贮存。碱法分解工艺无废气排放,但其酸浸工序和碱浆水洗工序产生大量高氟的废水,其产生的废渣需要转入硫酸强化焙烧体系回收稀土和固定钍。

氟碳铈矿选矿后的精矿中含8%~9%的氟以及0.2%的放射性元素钍。精矿中的氟在整个生产过程中,只有极少量进入产品,其余都作为污染物排入环境,这不仅污染了环境,还极大地浪费了氟资源。氧化焙烧过程以氟化氢形式进入尾气的氟占精矿中氟含量的3%左右。氟对人体与生态环境的主要危害在于氟污染具有强的穿透性和不可逆转性。因此,如何对氟碳铈矿中氟进行客观有效的利用,提高稀土矿的利用率是稀土科研工作者亟待解决的问题。另外,处理每吨氟碳铈矿产生约100m3含氟碱性废水,该废水除氟效果有限,废水中的氟很难稳定达标排放。

离子型稀土矿开采先后经历了池浸、堆浸和原地浸矿3种不同的工艺技术,池浸和堆浸的地表剥离面大,严重破坏地表植被,容易造成矿区水土流失以及尾砂库溃坝、植被覆盖率低、地表水污染等环境问题。因此,堆浸工艺生产的离子型稀土精矿是稀土工业最早被列入“双高”名录的产品。原地浸矿不开挖山体,对生态环境影响较小,但技术难度较大,如因注液不当,导致浸出液的泄漏、山体滑坡和毁坏农田等问题。

混合型稀土矿、氟碳铈矿以及离子吸附型稀土矿皂化萃取分离以及碳沉过程中均产生大量高浓度氨氮废水。氨氮废水处理难度大,很难达标排放,是制约稀土行业能否持续、健康发展的主要因素。

3.污染治理技术分析

3.1 废气治理技术

对于氟碳铈矿焙烧过程产生的含粉尘废气,设置引风系统进行收集,经除尘系统后排放。对于氟碳铈精矿浸出工序产生的酸雾,采用废碱液进行喷淋中和。对于混合稀土精矿浓硫酸高温焙烧工艺产生的大量含有氟化氢、二氧化硫和硫酸的尾气,通常采用水喷淋工艺以回收尾气中的酸性物质。但回收后的产品为混酸,而且浓度低,需要进行浓缩、分离等工艺才能得到应用。

3.2 废水治理情况

对于含氟酸性废水,目前各企业一般均采用石灰中和的办法来处理。此法操作简单,处理工艺短,石灰来源广泛,价格低,故处理费用低,但此法的最大缺点是:石灰或钙盐用量大,一般实际用量是理论用量的2~5倍,故沉渣量很大,废液碱度升高,硬度加大,管道结垢,往往会造成二次污染。同时,产出的氟化钙价值低,且含有硫酸钙等杂质,因此难以回收氟资源。一般经石灰或钙盐处理后,废水仍需进行进一步的深度处理才能达标排放。

含氟碱性废水主要采用石灰或电石渣除氟,其除氟效果有限(除氟率约90%),需要结合磷酸盐沉淀工艺进行深度除氟。但生产中容易产生氟化物胶体,为了提高固液分离效果,常加入铝盐和铁盐无机絮凝剂,在水中水解形成吸附能力很强的絮凝氢氧化物沉淀,可以吸附废水中的氟离子。目前倾向采用聚合硫酸铁、聚合铝作为简单的铝铁盐替代品,除氟效果较好。

氨氮废水是稀土分离厂产生的最大最严重的污染源,处理氨氮废水的方法主要有蒸发浓缩法,折点氯化法,膜法,氨吹脱法,磷酸铵镁法(MAP)等。蒸氨浓缩法成本较高,低浓度废水需先进行浓缩,产品销售困难;折点氯化法处理低浓度氨氮废水效果好,但要防止二次污染产生;膜法回收氨氮废水虽然效果较好,但运行成本较高,处理量有限;氨吹脱法效率不高,氨的回收困难。因此,这几种方法仍处在研究阶段。MAP法处理量大,运行成本低,沉淀可作为肥料回收,具有较大的实用前景,但由于磷酸盐成本较高,所以目前企业尚难以接受。

尽管氨氮可以采用不同方法进行处理,但靠一种方法很难达到排放标准,而且造成大量的人力、物力及能源消耗,处理成本高。因此,为了降低稀土工业对水环境的影响,各科研院所和企业陆续研发了非皂化或氧化镁(钙)皂化萃取分离工艺、钠皂化萃取分离工艺和无氨氮沉淀结晶工艺,这些工艺可完全消除氨氮废水的产生。另外,模糊萃取/联动萃取分离工艺可降低30%~50%的氨氮和盐排放。

3.3 废渣治理情况

对于低水平放射性废渣,须建立渣库妥善存放,以确保不污染环境,达到国家规定的安全与卫生要求。但如此大的贮存量将占用大量土壤,处于被动管理。碱法产生的含钍废渣中稀土含量高,需要转入硫酸强化焙烧体系回收稀土和固定钍。

参考文献

[1] U.S. Geological Survey, Mineral Commodity Summaries, 2010, 1.

[2]吴文远,边雪.稀土冶金技术[M].北京:科学出版社,2012.

第5篇:含氟废水处理方法范文

中图分类号:TV文献标识码:A文章编号:1672-3791(2012)04(a)-0000-00

1 含氟地下水的现状

氟广泛地存在于地下水中。地下水流经富氟岩矿,如磷灰石3Ca3(PO4)2·CaF2、水晶石Na3ALF3、萤石CaF时,经过长年的物理、化学作用,氟由固态迁移入地下水,一般地下水含氟≤1mg/L。由于地理、环境、地质构造等因素的影响,我国部分地区特别是矿区地下水含氟超标,其含量为1.1mg/L到15mg/L不等,其中以≤10mg/L居多。

1.1 氟的危害

氟和其他元素一样,过量和不足都对人体健康有害,过量的氟会导致氟中毒,表现为以侵犯牙齿和骨骼为主的全身性慢性损害。主要临床表现为氟斑牙和氟骨症。氟斑牙既不美观,又影响咀嚼及消化功能,并可导致牙齿过早脱落。氟骨症对骨骼及其他软组织的损害,可表现为腰、腿及全身关节麻木、疼痛、关节变形、出现弯腰驼背、功能障碍乃至瘫痪、丧失劳动力、生活不能自理。

氟化物可通过简单扩散分布到机体所有组织中,氟离子也能迅速穿透细胞膜,分布到骨骼、心肌、肝、皮肤、红细胞。

综上所述,过量氟化物的长期摄入严重威胁人体健康。

1.2 高氟地下水的现状

天津市涉及高氟水的共有11个区县、110个乡镇、1652个村。在涉及高氟水的1652个村中, 含氟量在1~2 mg/L之间的有793个村, 占总数的48%;含氟量在2~5 mg/L之间的有859个村, 占总数的52%。农村共有生活机井3518眼, 其中高氟区生活机井1 375 眼。该市涉及高氟水的11个农业区县总人口372.45万, 其中高氟区总人口193.17万、占农业总人口的51.86%。另外, 有10.95 万头大牲畜饮用高氟水。高氟水已严重影响广大农村人民群众的身体健康。

2 处理含氟地下水的意义

地下水作为水资源的重要组成部分,其开发利用必然会对生态环境产生巨大影响。水资源的价值是其有用性和稀缺性决定的。因此,加强对有限资源的科学、合理地评价和预测,包括对地下水资源科学、合理地评价和预测是十分必要的,已成为水资源可持续利用,人口、资源、环境和经济社会协调发展的迫切要求。

2.1经济意义

我国是一个水资源严重短缺的国家,不仅表现为资源性缺水,还突出地表现为水质性缺水,而且地下水资源的污染也越来越严重,这更加剧了我国水资源短缺的态势。水资源污染的主要原因之一,是人们长期以来,受到“环境资源无价值”错误观念的影响,把水这种资源当作无价值的资源开发利用,而不计入生产成本。

2.2 社会意义

许多资料表明,除氟改水控制氟中毒的发生已成为现实。同时为了控制肠道传染病的流行也起到了重要作用。氟中毒病区往往都是贫困地区,群众长期处于因病致贫,贫病交加的恶性循环之中,严重制约农村经济的发展。国家也采取了治因治本的措施,对含氟地下水的处理与整治,不仅保护了高氟地区人民的健康,促进当地经济的发展,而且也为我国农村实现世界卫生组织提出的“2000年人人享有卫生保健”的规划目标提供了可靠的保障。

2.3 生态意义

地下水水质的好坏不仅取决于其本身的物理性质、化学组成及生物特性,而且与其具体用途有关。某些地下水对某种用途可能是不合格的,但对另一种用途可能是优质水。

浅层地下水是重要的水资源。我国北方6流域片平原区地下水平均年可开采量合计为1022.72亿m3,约相当两条黄河的年径流量。改善高氟地区地下水的水质,适当的开发浅层地下水,进行灌溉,对农业发展具有深远的意义。

3目前含氟处理工艺

近二、三十年来,国内外对含氟水的处理进行了大量的研究,对除氟工艺及相关的基础理论的研究也取得了一些进展。目前,含氟水的除氟方法主要有吸附法、电凝聚法、反渗透法、离子交换法、化学沉淀法和混凝沉降法等。这些方法中,离子交换法费用高,且对废水水质要求严格;电凝聚法及反渗透法装置复杂,耗电量大,因而都极少采用。经常采用的是吸附法、化学沉淀法和混凝沉降法。下面就这几种方法的研究进展情况进行介绍。

3.1 吸附法

用于除氟的常用吸附剂主要有活性氧化铝、斜发沸石、活性氧化镁等,近年来还报导了氟吸附容量较高的羟基磷灰石、氧化锆等。利用这些吸附剂可将氟质量浓度在10mg/L以下的天然水处理至1.0mg/L以下,达到饮用水标准。这些吸附剂的基本情况总结于表1。由于吸附剂的吸附容量随原水中氟含量和运行条件的不同会有所变化,表1列出的为原水氟质量浓度为10mg/L左右和最佳运行条件下的吸附容量变化范围。

用浓度为1.0mol/L的HCl溶液浸泡,然后用水冲洗 至中性

吸附法一般将吸附剂装入填充柱,采用动态吸附方式进行,操作简便,除氟效果稳定,但存在如下缺点:

(1)吸附剂吸附容量低。由表1可见,常用的吸附剂如斜发沸石和活性氧化铝的氟吸附量都不大,在0.06~2.0mg/g之间。用质量分数2%的H2SO4溶液对斜发沸石进行浸泡活化处理,可提高其氟吸附容量和再生性能。新近报导的羟基磷酸钙的氟吸附量可达3.5mg/g,活性氧化镁的氟吸附量可达6~14mg/g,但使用过程中易流失;以稀土氧化锆为主制成的氟吸附剂的吸附容量可高达30mg/g。这些新型的吸附剂虽价格较贵,但再生处理后,吸附容量下降比较缓慢,可反复使用。粉煤灰中含有活性氧化铝,也可处理含氟水,可直接往废水里投加,以废治废,成本低廉,缺点是氟吸附量小,投加量大,通常每升废水需投加40~100g才能使出水氟质量浓度达到排放标准,就近有粉煤灰时才适用。

(2)处理水量小。当水中氟质量浓度为5mg/L时,每千克吸附剂一般只能处理10~1000L水,吸附时间一般都在半小时以上。吸附法只适用于处理水量较小场合,如饮用水的除氟处理,一般不用于含氟量较高的工业废水的处理[11]。

3.2 化学沉淀法

对于高浓度含氟工业废水,一般采用钙盐沉淀法处理,即向废水中投加石灰和可溶性钙盐(硫酸钙和氯化钙等)使F-和Ca2+生成CaF2沉淀而除去。

用水溶性较好的CaCl2除氟,其用量一般也需维持在理论用量的2~5倍。这主要是因为:Ca2+和F-生成CaF2的反应速度较慢,达到平衡需较长的时间。为使反应加快,需加入过量的Ca2+,使投加的钙盐与水中F-的摩尔比达2倍以上,CaCl2的投加量常高达500~1200mg/L。

3.3 混凝沉降法

铁盐和铝盐是最常用的两类无机混凝剂。据我们的实际工作经验,对氟质量浓度为20~50mg/L的废水,铁盐混凝剂的除氟率较低,在10%~30%之间,而铝盐混凝剂可达50%~80%。铁盐要达到较高的除氟率,需配合Ca(OH)2使用,最后用酸将pH调至中性才能排放,工艺复杂。而铝盐则可在接近中性的条件下除氟。铝盐投加到水中后,利用Al3+与F-的络合以及铝盐水解中间产物和最后生成的Al(OH)3(am)矾花对F-的配位体交换、物理吸附、卷扫等作用去除水中的氟离子。与钙盐沉淀法相比,铝盐混凝沉降法具有药剂投加量少、处理水量大、成本低、一次处理后出水即可达到国家排放标准的优点,适用于工业废水处理。

4 结论

(1)高氟水对人体的牙齿和骨骼等方面都造成损害,严重影响广大农村人民群众的身体健康。

(2)目前存在的针对高氟水的处理方法主要有吸附法、化学沉淀法、混凝沉降法。其中吸附法中的活性氧化铝法具有吸附容量较高,强度好,耐磨,使用寿命长,性能稳定,除氟后的水质符合国家规定的卫生标准。

(3)活性氧化铝的吸附交换容量EW为1.2~2.0 mg/g (Ev为960~1 600 g/m3)。粒径级配以0.5~2.5 mm为宜,滤料不均匀系数K≤2。滤料层厚度宜采用H=700~1 000 mm。接触时间一般以不小于20 min为宜,过滤速度v=2~3 m/h。除氟装置的工作周期T,一般为2~4 h。

(4)针对1万人的用水进行了工艺方案,日设计产水量为96 m3/d,高峰时的小时供水量为16 m3/h,除氟池面积为1.6 m2,滤料层厚度宜采用H=1000 mm,除氟器的吸附交换工作时间160h。同时从经济投资上分析人均投资为20.6元即可建设该处理站。

第一作者简介:

作者:苏昌发,男,生于1976年3月,于1996年7月毕业于天津市水利学校,现技术职务工程师,行政职务副科长,从事水利工作。联系地址:蓟县杨庄水库管理处(蓟县罗庄子镇杨庄村北),邮编:301913 联系电话:13820116756单位电话:29728028

参考文献

[1] 杨克敌.环境卫生学.北京:人民卫生出版社, 2004

[2] 刘昌汉.地方性氟中毒防治指南[M].人民卫生出版社.北京.1998.

第6篇:含氟废水处理方法范文

【关键词】含氟废水,反渗透 , 氢氟酸

【 abstract 】 photovoltaic industry hydrofluoric acid wastewater is water volume, the characteristics of high pollution, this paper through the test demonstrates photovoltaic industry wastewater reuse with fluorine of the new method, the new path, in lower emissions at the same time as the enterprise economy of operation cost.

【 key words 】 containing fluorine wastewater, reverse osmosis, hydrofluoric acid

中图分类号:TU74文献标识码:A 文章编号:

随着国际国内对能源需求量的不断增加,清洁环保的可再生能源在能源需求总量中所占的比例不断增大,可再生能源以核能、太阳能和风能为主要代表,太阳能以其普适性备受青睐。太阳能光伏是一个高能耗、高污染、用水量大的行业,以100MW多晶生产线为例,每天用水量在1500吨左右。但是其生产过程需要大量新鲜水。光伏产业要提高用水效率,除了节约用水、杜绝跑冒滴漏和提高水的二次使用率外,最直接、最经济的方法就是将废水处理后回用。

光伏企业的废水分为两部分:含氟废水和有机废水,其中含氟废水站废水总量的70%左右。本文讨论的就是含氟废水回用问题。

污水来源、水质

设计源为保定某光伏企业电池车间排放的氢氟酸废水,主要产生于制绒工序的酸槽冲洗水、碱槽排碱、碱槽冲洗水、清洗用纯水、刻蚀工序的酸槽冲洗水和清洗用纯水。

平行取样五组,其水质化验结果如下:

因为车间生产使用的是纯水,原水可以看成纯水中加入了生产使用的酸、碱以及它们和硅反应的生成物。在第一种方案中,除氟处理工艺中大量使用电石渣、氯化钙、片碱、聚合氯化铝和聚丙烯酰胺,给水中带来大量盐分,悬浮物和有机物。降氟处理中主要发生Ca2++2F-CaF2的反应,为了使氟离子浓度达标,根据同离子效应和盐效应,钙离子的浓度处于饱和甚至过饱和状态,这样就增加了钙镁离子的浓度。这种情况下,为了能保证反渗透系统的正常运行,预处理需要有以下三个作用:1.降低处理水的钙镁硬度,需要增加离子交换软化树脂;2.降低处理水中的悬浮物含量,需要增加多介质过滤器的冲洗和缩短滤料的更换周期;

3.需要增加去除有机物的工艺,比如MBR等。在第二种方案中,原水直接进入中水回用系统,避免了悬浮物、有机物和钙镁硬度的引进,预处理费用大大减轻,只需要调节进水的PH值即可。两种方案比较看来,第二种方案可行性,经济性都比较强。

3.实验部分

3.1具体工艺流程的调整

工艺流程调整为:

3.2实验过程

中试共进行了5个月左右,其中前两个月是按照最初工艺流程进行的。原水先调节PH值到6.5~7,通过超滤,经过两次反渗透,出水达到要求,回用到冷却水系统。通过对两个月的实验数据进行分析总结,出水水质完全能达到电导率保持在30 us/cm以下,出水含氟量保持在2mg/l以下。然而经过计算产水吨水成本在6.4元左右,通过对原水进行滴定和对实际用药量进行统计,每调节1吨原水需要1.2公斤氢氧化钠,按每吨氢氧化钠2000元计算,折合到产水吨水药剂费用3.69元。

为了减少NaOH的用量,将这时处理工艺调整为最终工艺流程。进水先经过超滤和一级反渗透,然后将产水PH值调节到6左右,,进入二级反渗透,出水即能达到标准。后面三个月时间,按照最终工艺流程进行试验。由于原水PH值太低,考虑到反渗透膜对低PH值的耐受程度,分别用现有的反渗透膜和海德能公司提供的特种膜进行了试验,出水水质变化不大,现有的反渗透膜稍好于特种膜。特种膜的优势在于需要提供的压力比较低和使用寿命较长,是以牺牲一部分脱盐效率为代价的。

3.3实验数据分析

对最终工艺流程的数据进行了简单的处理,

图一是经过一级反渗透后的产水氟离子浓度和原水氟离子浓度的对比,直观的可以看出一级反渗透对氟离子的脱除效率只有65%左右。

4.成本核算和效益分析

吨水处理成本包括药剂费用、设备运行费用和膜更换费用。

最终工艺和最初工艺成本的主要差异就在于氢氧化钠的使用量。按照实验所得结果,计算最终方案吨产水氢氧化钠成本为0.8元,最初方案吨产水氢氧化钠成本在3.7元,光氢氧化钠一项,吨水处理成本就相差2.9元左右。

运行费用方面,所采用的设备相同,膜组件也相同,由于在低PH值下运行,为了达到设计产水率,所需压力有所提高,所以运行成本有所提高,估计吨水成本会增加0.3元左右。

膜更换费用,由于一级反渗透膜使用寿命由原来的四年调整为三年,吨水处理成本会增加0.16元左右。由于原水中钙镁离子含量很少,且在偏酸性条件下运行,所以清洗费用和阻垢剂费用大大降低。

总体核算,最终工艺比最初工艺吨水处理成本低2.42元。最终处理工艺的药剂费用在1.20元左右,运行成本在1.75元左右,膜更换费用为0.49元,吨产水处理成本在3.24元,低于自来水4.2元每吨,有实际的推广意义。

5.主要问题分析

氢氧化钠用量分析

氢氧化钠的用量远高于通过PH值计算得来的用量。原因是进水中由于含有缓冲物质氟硅酸盐和亚硝酸盐等,氢氧化钠大部分用来中和这些缓冲物质,并破坏其缓冲能力。破坏缓冲溶液需要氢氧化钠的实际量为理论用碱量的两倍以上,造成氢氧化钠用量过高。

PH值跳跃的分析

用氢氧化钠滴定源水,测得当PH值5左右时形成缓冲溶液。打破缓冲平衡,PH值直接跳跃到9左右,超过了控制要求,导致自动加药无法实现。

一级反渗透脱盐率的分析

由于PH值过低,造成一级反渗透膜的脱盐率、产水率都有所下降。根据经验数据,一般PH值降低1,脱盐率降低5%左右,这样脱盐率应该在75%左右。一级反渗透产水的电导率在2.5ms/cm左右,单纯计算来看脱盐率不到60%左右,由于氢离子的存在,造成电导率虚高,实际电导率应该在1.8ms/cm,实际脱盐率应该在75%左右,与经验数据基本相似。

6.总结

此次中试确定的含氟废水回用的工艺流程无论在技术上,还是在经济上都是切实可行的。下面估算一下所产生的环境效益,以该公司实际含氟水总量为每小时200m3,则回用水量为每小时130 m3,每年减少新鲜水用量110多万吨,同时排放水量减少了,氟离子的排放标准还执行原来的20mg/L,则氟离子排放量减少了2.2吨。这对于一个严重缺水而且水系比较封闭的北方城市而言,是极其重要的。

第7篇:含氟废水处理方法范文

1.1冲灰水肿悬浮物的处理方式

冲灰水中包含的悬浮物的含量主要受到沉降时间与沉降池大小的影响。如果沉降池越大,沉降的时间越长,则冲灰水肿的悬浮物含量则越少。因此,在处理冲灰水的过程中,要合理安排沉降池的大小及沉降时间的长短,在最大程度上降低悬浮物的含量。

1.2中和冲灰水酸碱值的处理方式

一方面可以通过加酸的方式降低冲灰水的酸碱度,当使用酚酞指示剂检测时,无色说明酸碱中和。其中,中和所用的酸可以使用硫酸、盐酸等在火力发电厂生产过程中的废酸。这样降低酸碱值得方式,不仅操作简单,而且进一步实现了废物的重复利用,但是会不可避免造成废水中硫酸、盐酸的二次污染,因此需要一种合适的酸来降低冲灰水的酸碱度;另一方面,可以利用火力发电厂生产过程中产生的二氧化碳、二氧化硫等与水反应生成的酸与冲灰水反应,不仅能有效解决废气的排放,同时增加了火电厂的经济效益。

1.3冲灰水中氟的处理方式

一方面可以利用钙盐沉淀原理进行除氟处理,在冲灰水中加入含钙离子的化合物,生成氟化钙沉淀进而达到出去氟离子的目的。应用钙盐沉淀原理成本低且操作简单,但是会在一定程度上提高冲灰水的碱性,使得后期需要加入酸进行中和,同时要控制好加入含钙离子化合物的量;另一方面,可以在冲灰水中加入粉煤灰,充分利用粉煤灰表面积大、活性基因多的特点,对冲灰水肿的氟进行吸附、凝聚、沉淀等。利用粉煤灰除氟的方式工序简单、吸附率高,但是如果冲灰水的量过大,会导致粉煤灰的吸附率降低,因此需要加强对粉煤灰的研究,帮助提高其粘结作用。

2处理含油废水的方式

2.1利用絮凝剂的处理方式

在处理含油废水的过程中,利用絮凝剂能够对污染物通过吸附、中和等方式进行聚集,在最大程度上减少污染物的含量。同时,利用絮凝剂处理方式,其使用成本低且操作简单,因此选择合适的絮凝剂能够达到有效去除废水中污染物的作用。

2.2利用气浮法的处理方式

气浮法是将空气通入到含油废水中,形成水-气-粒三相混合体系,去油效果好且效果好。在利用气浮法的过程中,油与气泡会粘结成比重小于水的物质,浮在水面上。但是在使用过程中,如果气泡数量多、体积大,则会导致气泡内外压强不平衡,使得气泡出现破裂情况,使得油与气泡的粘结效果降低,失去去油功效。因此,在实际利用气浮法的过程中,要控制好压力的大小,以免影响其使用效果。

2.3利用生物法的处理方式

生物法是利用微生物的代谢对废水中的石油烃类进行降解,使得有机物质转化为无机物质,最终完全无机化的方法。生物法通过物理、化学及生物相结合的方法,通过一系列反应将废水中的油污净化,从而达到废水处理的目的。利用生物法处理废水中的油污,不会对废水造成二次污染,起到很好的保护环境的作用,但是由于其成本高,对降解菌类的了解并不充分,因此需要加强对石油烃类及降解菌类的研究,实现环境效益的最大化。

3处理脱硫废水的方式

一方面可以在废水中加入石灰等物质进行化学反应生成氢氧化物沉淀,操作简单,不仅能够达到脱硫效果,而且中和调整酸碱度,降低废水的酸性;另一方面在脱硫废水中增加硅胶、粉煤灰等吸附性好的物质,不仅能够提高去除率,而且大大降低了废水处理成本,值得被广泛应用。另外,反渗透法也是一种较好的技术处理方式,即以反渗透膜两侧的静压差为动力,允许溶剂通过但是离子留下,操作设备简单且效率高,但是在实际操作过程中,容易造成二次膜污染,当反渗透膜堵塞时,会降低其渗透效率,因此要积极研究反渗透膜的处理工艺,达到提高其渗透效率的目的。

4处理生活污水的方式

火力发电厂的生活污水主要为电厂工作人员的在生产生活中产生的生活废水,在处理时需要在氧化池中将其与惰性材料充分接触,充氧后,微生物将废水中的有机物进行分解,进而实现净化生活污水的目的。

5结语

第8篇:含氟废水处理方法范文

焙烧污水治理技术自最初引进国外技术,经过国内多年生产实践及实验研究已趋于成熟,国内已先后建成6套系统。本次焙烧污水治理工程总结吸收了已有企业生产经验及实验成果,设计时对流程中的部分环节进行了针对性改进,改进后的污水处理流程已于1998年10月投入运行。

一、污水的来源及水质

处理的污水由阳极焙烧烟气洗涤塔排出的部分洗涤液和成型机沥青烟气净化系统喷淋洗涤沥青烟气排出的废水组成,污水总量为20m3/h。

1、焙烧烟气净化洗涤污水水量及水质

污水量:17m3/h

F-:470mg/l

SO2-4:2058.8mg/l

焦油:294.1mg/l

粉尘:823.5mg/l

2、成型工段沥青烟气处理污水水量及水质

污水量:3m3/h

焦油:340mg/l

混合污水水质:F-:400.01mg/l

SO2-4:1749.98mg/l

焦油:301mg/l

粉尘:699.98mg/l

二、污水处理机理及处理流程

1、处理机理

烟气净化污水处理采用化学沉淀法,投加化学反应剂CaCl2和助凝剂PAM及Fe-Cl36H2O,污水中所含F-及部分 SO2-4转化为溶解度较小的CaF2和 CaSO42H2O,在不同性能的两种助凝剂作用下,形成絮凝团沉降。(略)

三、系统及运行操作要求设计改革

本次阳极焙烧污水处理工程针对以上分析,在流程配置、防腐、药剂使用、废水回用、运行管理等方面进行了以下改进:

1、增加污水预处理

由于污水中含有大量焦油及粉尘等易沉物,直接进入化学处理系统,不但增加药剂用量,而且将会降低处理效果,同时焦油会增大箱式压滤机的维护工作。故在污水进入反应槽之前,增加预处理设施非常必要,本次设计污水首先进入沉淀池,设置撇油刮渣设备,同时设置旁流除油污水过滤器进一步除油,为后续化学反应提供较单纯水质,减轻负荷。沉淀池污泥燃值较高可返回生产工艺流程或锅炉焚烧。

2、助凝剂使用

采用近年使用效果较稳定的两种助凝剂PAM及FeCl36H2O代替单一的PAM助凝剂。

3、贮罐、剂量泵、管道防腐

由于FeCl36H2O溶液及CaCl22H2O溶液腐蚀性较强,系统又要求在中性或弱酸性条件下,本次设计在防腐处理上进行改进。FeCl36H2O溶液、CaCl22H2O溶液以及PAM溶液的计量泵在与设备厂联系后确定分别采用Hastelloy C 型、Hastelloy B型和1Cr18Ni9Ti型材料防腐。贮罐(槽)采用5mm厚的玻璃钢防腐,管道采用钢衬聚丙烯复合管,阀门采用聚氯乙烯阀门,管道、设备连接均采用特制法兰连接,接口处严格密封,以充分保证防腐质量。

4、废水回用

经处理后的废水考虑返回焙烧烟气净化洗涤塔循环使用,以避免废水的二次污染。由于废水因用为首 采用,运行中可能存在预计不到的问题,设计中废水按可回用及直接排放两套措施设计,以保证正常生产。

废水回用可能存在的问题:废水回用将使阳极焙烧烟气净化整个系统(含烟气洗涤循环系统)总盐份增加,使处理系统必须重新建立污水污物、水处理使用药剂量与水处理排出污泥携带污物相互之间的平衡,形成平衡后的循环水质,该循环水质对系统的影响尚须在实际生产中逐步研究。直观分析处理后废水水质远优于烟气净化系统自循环水质,该部分废水将可以用于循环使用。

5、污泥压滤系统改进

过去设计当中污泥直接泵入压滤机,压泥管无回流管,由于泵与压滤机能力的不完全匹配,易出现压滤机冒槽现象。本次设计设置污泥泵送泥返回管路,污泥由泵可直接送压滤机,也可部分或全部返回泥浆槽,可随意调节压滤机上泥量和上泥压力,从而保证压滤机PLC控制系统运行更可靠。

6、运行要求

由于系统在去除氟污染的同时,考虑部分去除硫化物,为提高处理效率和有利于废水的回用,要求系统必须在中性或弱酸性条件下运行,而焙烧烟气净化洗涤系统循环用水希望PH值高,实际生产中需要逐步摸索,确定合理的运行PH值点。

第9篇:含氟废水处理方法范文

关键词:多晶硅电池片;大气污染;酸性废气;有机废气

DOI:10.16640/ki.37-1222/t.2016.10.037

1 引言

太阳能作具有清洁、安全、资源丰富等优势,有关机构预测,2030年全球光伏装机目标1000 GW,中国2050年光伏装机目标100GW,太阳能光伏产业发展潜力巨大。作为光伏产业重要组成部分的太阳能电池片生产近年发展迅速,其中多晶硅电池片发展成熟,产量约占全部光伏电池的80%以上,在全国多地均有布局。多晶硅电池片通常以上游合格多晶硅切片为原料,经制绒、刻蚀、印刷烧结等工序处理后供应给下游光伏电池组件企业制成光伏电池成品。多晶硅电池片生产过程产生氟化物、氮氧化物、盐酸雾、Cl2、硫酸雾、NH3、非甲烷总烃等多种大气污染物,如控制不当可能对当地大气环境和周围人群健康产生不利影响。

2 生产工艺简述及大气污染物排放特征

2.1 生产工艺简述

太阳能电池片生产工艺通常包括硅片清洗、制绒、碱洗、酸洗、磷扩散、边缘刻蚀、等离子化学气相沉积(PECVD)、丝网印刷干烧结、检测包装等工序,简述如下:

(1)超声波清洗。去除硅片上的污物,把硅片放入超声波清洗器中清洗,如进厂前已经清洗过,可直接进入制绒工序。

(2)制绒。太阳能电池片采用硝酸、氢氟酸、异丙醇等制绒,与硅片反应生成H2SiF6和NOX。反应方程式:Si +2HNO3 +6HFH2SiF6 + NO2+ 3H2O + NO+ H2。此工序产生含HF、NOX、H2、非甲烷总烃的废气。

(3)制绒后清洗:多晶硅太阳能电池制绒后采用纯水喷淋清洗。

(4)碱洗:多晶硅太阳能电池制绒清洗后,再采用KOH进行碱洗。

(5)碱洗后清洗:碱洗后采用纯水进行喷淋清洗。

(6)扩散前酸洗:碱洗后采用10%~20%的HCl进行酸洗,此工序产生含HCl废气。

(7)酸洗后水洗:酸洗后多晶硅太阳能电池采用纯水喷淋方式进行清洗。

(8)扩散前酸洗:HCl清洗后采用10-20%的HF进行酸洗,此工序产生HF废气。

(9)酸洗后水洗:酸洗后多晶硅太阳能电池采用纯水喷淋方式进行清洗。

(10)磷扩散:磷扩散是在硅片表层掺入纯杂质原子的过程,工艺采用液态扩散源。过程反应为:C2H3Cl3 + 2O2 3HCl+ 2CO2。该工序将产生含HCl、Cl2的酸性废气。

(11)边缘刻蚀:利用HNO3、HF和硫酸的混合溶液对硅片边缘进行腐蚀,去除硅片边缘的PN结,具体的反应式为:Si + HNO3 + HF H2SiF6 + NO2+ H2O + NO+ H2。

此工序产生含HF、NOX、硫酸雾的酸性废气。

(12)刻蚀后清洗:刻蚀后采用纯水进行清洗。

(13)碱洗:刻蚀后采用NaOH进行清洗,以去除表面的H2SiF6。

(14)清洗:碱洗后采用纯水进行清洗。

(15)去PSG:该工序是对刻蚀后硅片上的污物及在扩散中产生的SiO2用HF和HCl清洗的方法进行清除。该工序产生含氢氟酸和HCl的废气。

(16)清洗:去PSG后采用纯水进行清洗和吹干。

(17)等离子化学气相沉积(PECVD)

PECVD被用来在硅片上沉积氮化硅材料,将硅片装在石墨舟上,通过化学反应产生氮化硅。典型化学反应为:3SiH4+4NH3Si3N4+12H2。该工序产生含CF4、SiF4、SiH4、NH3及H2的碱性废气。

(18)丝网印刷干烧结。通过丝网印刷机将银浆、铝浆及松油醇调配成导电材料印刷在硅片上,作为太阳电池导电的主要通道;烘干后再经过高温(电加热)烧结成合金。该工序产生有机废气。

(19)分类检测。成品入库前使用检测系统对产品进行检测,将产品分等级包装入库待售。

2.2 大气污染物来源及排放特征

(1)电池片生产线酸性废气。电池片生产线酸性废气为含HF(以氟化物计)、氮氧化物、HCl、Cl2、硫酸雾的混合酸性废气,主要包括制绒工序产生的含HF、氮氧化物废气、扩散前酸洗过程产生的含HCl废气、磷扩散过程产生的含Cl2废气、去PSG过程产生的含HF、硫酸雾废气,废气初始浓度HF(以氟化物计)、氮氧化物、HCl、Cl2、硫酸雾分别为2.1mg/m3、72mg/m3、0.25mg/m3、14.7mg/m3、6mg/m3。

(2)电池片生产线碱性废气。电池片生产线硅片PECVD过程产生含NH3、CF4、SiF4的混合废气,设计采用经PECVD设备附带的废气燃烧器焚烧,燃料为天然气, 燃烧后的废气主要含 烟尘、NH3、SO2、氮氧化物、氟化物,燃烧废气初始浓度烟尘、NH3、氮氧化物、SO2、氟化物分别为300mg/m3、7mg/m3、10mg/m3、12mg/m3、1.55mg/m3。

(3)电池片生产线有机废气。电池片生产有机废气为污染物为非甲烷总烃,主要包括丝网印刷、烘干烧结、单晶制绒过程中加松油醇、异丙醇而产生的有机废气,废气初始浓度非甲烷总烃为60mg/m3。

3 大气污染控制措施

(1)电池片生产线酸性废气净化。电池片生产线酸性废气为含HF(以氟化物计)、氮氧化物、HCl、Cl2、硫酸雾的混合酸性废气,主要包括制绒工序产生的含HF、氮氧化物废气、扩散前酸洗过程产生的含HCl废气、磷扩散过程产生的含Cl2废气、去PSG过程产生的含HF、硫酸雾废气,上述酸性废气经管道收集后设计采用酸雾碱液喷淋洗涤系统进行收集处理,HF(以氟化物计)、氮氧化物、HCl、Cl2、硫酸雾设计净化效率分别为80%、50%、90%、49%、85%,净化后的废气通过高排气筒排放,废气排放浓度HF(以氟化物计)、氮氧化物、HCl、Cl2、硫酸雾分别为0.42mg/m3、36mg/m3、0.025mg/m3、7.5mg/m3、0.9mg/m3,满足《大气污染物综合排放标准》(GB16297-1996 )二级标准要求。

电池片生产线酸性废气净化系统处理系统由碱液喷淋洗涤塔、排风机、喷淋装置、吸收液供给装置和排气筒组成,其工艺流程参见图3-1所示。

(2)电池片生产线碱性废气净化。电池片生产线硅片PECVD过程产生含NH3、CF4、SiF4的混合废气(G4),设计采用经PECVD设备附带的废气燃烧器焚烧,燃料为天然气, 燃烧后的废气主要含烟尘、NH3、SO2、氮氧化物、氟化物,燃烧后的废气通过碱性废气喷淋洗涤系统进行收集处理,设计喷淋液为稀盐酸,烟尘、NH3、氮氧化物、SO2、氟化物设计净化效率分别为90%、80%、50%、50%、80%,净化后的废气通过高排气筒排放,废气排放浓度烟尘、NH3、氮氧化物、SO2、氟化物分别为30mg/m3、1.4mg/m3、5mg/m3、6mg/m3、0.31mg/m3,满足《大气污染物综合排放标准》(GB16297-1996 )二级标准要求及《恶臭污染物排放标准》(GB14554-93)二级标准要求。

该废气净化系统由PECVD燃烧器、酸液洗涤塔、排风机、喷淋装置、吸收液供给装置和排风管等组成,其工艺流程参见图3-2所示。喷淋液为稀盐酸,与碱性废气发生反应生成水和盐,进而除去废气中的碱性气体。

(3)电池片生产线有机废气净化。电池片生产有机废气为污染物为非甲烷总烃,主要包括制绒、丝网印刷、烘干烧结过程中加入异丙醇、松油醇而产生的有机废气,该废气经管道收集后设计采用活性炭有机废气吸附塔进行收集处理,废气初始浓度非甲烷总烃为60mg/m3,净化效率80%,净化后的废气通过排气筒排放,废气排放浓度非甲烷总烃为12mg/m3,满足《大气污染物综合排放标准》(GB16297-1996 )二级标准要求。

该有机废气净化系统由活性碳纤维筒吸附装置、排风管和排风机、排气筒等组成,处理工艺流程参见下图3-3所示。

4 结语

太阳能晶硅电池片生产工序多、工艺复杂且涉及硝酸、氢氟酸、盐酸、硫酸、异丙醇、松油醇等多种化学品,生产过程产生氟化物、氮氧化物、HCl、Cl2、硫酸雾、NH3、非甲烷总烃等多种大气污染物,通过分析各类大气污染物的来源、成分、初始浓度等污染特征,按照技术成熟、经济合理、达标排放等大气污染物控制原则,对生产中产生的各类废气设计了相应的处理措施,净化后的外排废气可满足国家相关排放标准要求。

参考文献:

[1]卢兰兰等.光伏太阳能电池生产过程中的污染问题[J].中国科学, 2013(06):687-703.

[2]瞿露,汪诚文等.我国太阳能电池板生产中的环境污染问题[J]. 环境工程,2013(31):398-400.

[3]龚伟等.9家晶硅太阳能电池企业职业病危害调查[J].环境与职业医学,2014(12):957-960.