公务员期刊网 精选范文 冶炼技术范文

冶炼技术精选(九篇)

冶炼技术

第1篇:冶炼技术范文

关键词:铜冶金;熔炼技术;闪速熔炼;熔池熔炼;铜硫吹炼技术;火法精炼技术

中图分类号:TF811

文献标识码:A

文章编号:1009-2374(2012)18

铜的用途十分广泛,一直是各行业不可缺少的原材料,随着社会经济和科学技术的不断发展,国内外对铜产品的要求越来越高。尤其在近几年来铜价的不稳定性,人们对铜冶金行业的技术越来越关注,火法冶炼制铜作为铜生产方法的重要组成而备受关注。由于各个铜矿山地区中的富矿和容易开采的矿石数量在逐渐减少,同时人们的环保意识在逐渐增强,而铜冶金技术面临的困难在不断加大,多年来各个地区的冶金工作人员普遍对冶金技术进行了研究和探讨,研发出一些新的工艺和技术。本文主要对火法冶炼铜技术的现状做了分析和探讨,并对其进行了论述和展望。

1 铜冶金行业技术发展的现状

1.1 熔炼技术

熔炼是火法冶炼铜最重要的冶炼过程。现代铜熔炼的共同特点是提高铜硫品位,加大过程的热强度,增加炉子单位熔炼能力。这些方法可以分为两大类:闪速熔炼和熔池熔炼。随着社会科技的不断发展,对熔炼系统技术的改进越来越重视,并不断对符合自身需求的先进熔炼技术和设备进行研究。

第一,闪速熔炼克服了传统方法未能充分利用粉状精矿的巨大表面积,将焙烧和熔炼分阶段的缺点,从而大大减少了能源消耗,提高了硫利用率,改善了环境。闪速熔炼技术的冶炼方法主要有:奥托昆普炉,炉和炉三种。闪速熔炼技术以其具有:可靠性强、热强度高、单炉处理量大、耐用性强、环保效果好等优点,在大、中铜冶炼厂中被大量运用,其中比较有代表性的贵溪冶炼厂采用的闪速炉冶炼取得不断成功。使单台炉子的铜产量从10万t/a提高到32万t/a,单炉生产能力也在不断的增强。

第二,熔池熔炼是让铜精矿颗粒在强烈搅动着的三相流体的熔池中发生强烈的氧化反应而实现其熔炼目的。熔池熔炼技术按照送风的方式可分为底吹、侧吹以及顶吹。其中底吹的方法为水口山法;侧吹的方法主要包括:白银法、诺兰达法、特尼恩特法和瓦约可夫法;顶吹的方法主要有:TBRC法、艾萨法和澳斯麦特法。诺兰达法熔炼技术在大型冶炼厂中运用较为广泛。目前较为先进的是由澳大利亚引进的芒特艾萨熔炼技术和澳斯麦特熔炼技术,由于其具备适应性强、处理较为简单、湿润度高、成本较低以及对入炉物料的要求不高等优点,从而在很多金属公司中被广泛采用。其中云南云锡公司采用奥斯麦特技术进行炼锡。云南铜业股份有限公司采用艾萨熔炼技术进行电炉熔炼,并逐渐取得良好的发展。云南铜业股份公司采用的艾萨熔炼炉能力不断增长到30万t/a,并不断实现了节能减排和资源的可持续利用。

1.2 铜硫吹炼技术

选硫过程完成了铜与部分或绝大部分铁的分离,最后要除去铜硫中铁和硫以及其它杂质,从而获得粗铜,还需要进行铜硫的吹炼。铜硫吹炼是硫化铜精矿火法冶炼工艺流程中的最后工序,在吹炼过程中金银及铂元素等贵金属几乎全部富集于粗铜中,为之后方便有效地回收提取这些金属创造了良好的条件。铜硫吹炼技术的吹炼方法主要分为转炉吹炼和连续吹炼炉。

第一,在对转炉进行操作的过程中,普遍采用的吹炼方法是25%的富氧吹炼和63%的高品位冰铜吹炼,从而能够不断强化吹炼的过程。在转炉的主要设备方面,普遍采用大型的转炉设备。其中贵溪冶炼厂运用的是¢4m×13.6m;葫芦岛有色金属集团有限公司在对铜冶炼系统进行改造中,把原来的两台30t转炉、一台50t和60t转炉的尺寸分别进行加大,对与其相配套的余热锅炉系统和制酸系统的能力不断增大,将转炉D450风机成功的进行高压变频技术改造,从而不断降低电能的消耗。总而言之,转炉吹炼技术的设备和操作技巧方面具有了很大的改善,但与此同时,操作过程中由于烟气量的增多、炉口漏风、烟气so2浓度较低,吊车运作次数频繁造成烟气对空气的污染问题亟待解决。

第二,由于连续吹炼炉具有:炉体封闭严实、出炉烟气浓度适宜、烟气量均衡等优势,并且当和封闭鼓风炉烟气混合进入制酸系统后,能够运用两转两吸的方式进行制酸,将尾气顺利的排放出来。所以在很多冶炼厂中被广泛采用。其中浙江的富春江冶炼厂、山东的烟台冶炼厂、辽宁抚顺红透山矿业公司冶炼厂和包头冶炼厂等都采用这种冶炼方法。但在冶炼的过程中由于密闭鼓风炉耗能高,且吹炼炉技术本身具有的环保方面的缺陷,所以不能长期持续的发展和运用。

1.3 火法精炼技术

粗铜铜含量一般为98.5%~99.5%,含有多种对铜性质产生了不良影响,降低铜使用价值的杂质,且其中某些杂质自身具有使用价值和经济效益,需要回收加以利用,从而为满足铜的各种用途要求,需将精铜精炼提纯,而粗铜火法精炼是粗铜精炼提纯的重要途径。对于粗铜的火法精炼采用的方式有:固定式反射炉和回转式阳极炉。

第2篇:冶炼技术范文

钨冶炼绿色分离面临的难题

实现钨与杂质的绿色分离和废水零排放必须废弃沿袭二百多年的黑、白钨矿碱(酸)浸出-铵盐转型冶炼工艺体系,开发新一代无酸碱钨冶炼工艺,实现钨冶炼无污染闭路循环。就可能实现废水零排放的钨冶炼工艺而言,国内外学者曾经开展过“钨精矿火法直接制取碳化钨”[6-9]和“熔盐电解直接制取碳化钨或金属钨”的工艺探讨,作者也进行了“黑、白钨矿铵盐不变体系闭路冶炼工艺”的深入研究。

1.钨精矿火法直接制取碳化钨

国内外学者曾经进行过铝热还原法制取碳化钨、熔盐萃取-碳化法制取碳化钨和钨精矿-碳还原法制取碳化钨的相关研究[6-9]。结果表明存在以下难以克服的问题:(1)制取的碳化钨杂质含量高,难以满足质量要求;(2)金属收率低于湿法冶炼,仅为90%左右;(3)获得的碳化钨必须用HCl酸洗除杂,才能在一定范围内提高纯度;(4)酸洗废液的排放造成环境污染。钨火法冶炼的相关研究结果证明:和其它金属冶炼一样,火法冶炼难以制取高纯金属,与湿法冶炼相比,在金属提纯和分离杂质方面存在难以克服的缺陷:(1)熔融状态的液相中,钨和杂质的浓度高,杂质熔入碳化钨固相的化学趋势更大。(2)熔盐液相的粘度大,固液相物理分离程度远比水溶液过程低。因此,受固有工艺特性的限制,钨精矿火法直接制取碳化钨的方法取代现行钨冶炼工艺、实现废水零排放的可能行较小。

2.熔盐电解直接制取碳化钨或金属钨

江西理工大学曾分别以钨酸钠和钨酸钙熔盐体系进行过电解直接制取碳化钨或金属钨的相关研究。结果表明,其与钨精矿火法冶炼相比具有相同的缺陷:即使经过HCl酸洗除杂,制取的碳化钨和金属钨纯度仅为95%左右。同样存在酸洗废液排放的问题。因此,熔盐电解直接制取碳化钨或金属钨方法难以取代现行钨冶炼工艺,也不能实现钨冶炼废水零排放。

3.铵盐不变体系闭路湿法冶炼

钨的湿法冶炼是制取高纯钨的有效途径。由于难以找到Na+和Cl-经济有效的沉淀分离方法,要实现钨的无废水排放和闭路冶炼,钨湿法冶炼过程必须做到不使用含有Na和Cl的化合物,作者设想用铵盐浸出取代酸碱浸出,铵盐浸出白、黑钨矿直接得到钨酸铵溶液,并在同一体系进行净化除杂,进行铵盐不变体系闭路湿法冶炼的研究。用铵盐不变体系冶炼取代目前的碱(酸)浸出-铵盐转型冶炼工艺,实现无废水排放的闭路冶炼需解决如下关键技术:(1)pH值≤10的条件下,铵盐浸出黑、白钨矿的技术;(2)过剩铵盐浸出剂的高效回收和返回利用技术;(3)将钨酸铵溶液中的有害杂质以难溶化合物存留于固相渣中,实现绿色分离。1.铵盐浸出白钨矿的现状和难题:国内外曾经开展过铵盐浸出白钨矿的某些研究:(1)氟化铵浸出白钨矿国内学者曾提出过采用NH4F+NH4OH浸出白钨矿的设想[10],对氟盐溶液浸出白钨矿的热力学进行了分析,其主要反应原理为:CaWO4(s)+2NH4F(aq)=(NH4)2WO4(aq)+CaF2(s)由于NH4F受热或遇热水即分解成氨和氟化氢气体,同时CaF2的溶度积虽小于CaWO4但较为接近,也难以彻底浸出白钨矿。申请者曾经在密闭高压釜中用理论量8倍的NH4F浸出白钨矿,在180℃温度下,浸出率仅为20%。由于NH4F受热分解成氨和氟化氢气体,过量氟化铵难以用蒸发-冷凝回收,且回收成本高。同时,浸出所得钨酸铵溶液在氟化铵回收过程会结晶析出APT,也存在较大的工艺缺陷。(2)磷酸铵浸出白钨矿国外学者和作者曾采用(NH4)3PO4+NH4OH浸出白钨矿,其主要反应原理为:3CaWO4(s)+2(NH4)3PO4(aq)=3(NH4)2WO4(aq)+Ca3(PO4)2(s)高温下氨易挥发;由于NH4OH是弱碱,WO42-是弱酸,浸出条件下pH值≤10,(NH4)3PO4在水溶液中主要HPO42-存在,PO43-浓度较低,CaHPO4溶度积大于CaWO4,磷酸铵难以彻底浸出白钨矿。日本学者1972年曾采用理论量8倍的磷铵和13.8mol/L的氨水,200℃温度和6.5MPa下浸出白钨矿;作者也曾经用理论量8倍的磷铵和2mol/L的氨水浸出白钨矿,在180℃温度和2MPa下,浸出率仅为80%左右。为增大反应的平衡常数,必需寻找新的浸出反应和更难溶的化合物渣型。2.铵盐浸出黑钨矿的现状和难题:目前难以找到黑钨矿的铵盐浸出剂。作者曾用NH4F和(NH4)3PO4浸出黑钨矿,结果浸出率几乎为零。铵盐浸出黑钨和黑白钨混合矿是难以解决的科学难题,国内外尚未有相关的报道。3.铵盐浸出白、黑钨矿的突破方向:对于铵盐浸出白、黑钨矿应从以下方面寻找突破方向。1.铵盐浸出白钨:(1)在(NH4)3PO4-NH4OH浸出体系中,找到减少氨的挥发、维持pH值大于10的技术方法;(2)探索新的铵盐体系浸出白钨矿的工艺技术,增大反应的平衡常数;(3)解决(NH4)3PO4在水溶液中主要以HPO42-存在,PO43-浓度较低,难以彻底浸出白钨矿的关键问题。2.铵盐浸出黑钨:(1)找到黑钨转变为WO3的火法冶炼方法和熔剂,后用氨水浸出获得钨酸铵溶液;(2)探索能将黑钨低成本地转变为白钨的技术途经,再用铵盐浸出。

铵盐体系钨与杂质元素绿色分离的可能性

1.铵盐浸出白钨过程:铵盐浸出白钨过程同时是个净化除杂过程。Ca2+可与铵盐形成各种难溶的钙化物固相而分离。pH=10条件下,重金属元素大部分存留于渣中分离;部分Fe、Ni、Co、Cr、Cu、Pb、Mn、Zn以NH3为配位体进入溶液,降低铵盐浸出液的温度和NH3的浓度,配合物发生离解,以氢氧化物、砷酸盐以及硅酸盐等难溶化合物沉淀分离;除微量Na、K、P外,S、As、Si、Al、Mg、Cu、Fe、Co、Ni、Pb、Zn等21个杂质可以大部分除去。2.选择性除钼过程:现行除钼过程中[11-12],硫化试剂可与Mg、Fe、Co、Ni等反应生成溶度积更小的硫化物固相沉淀,可更彻底地将金属杂质净化除去。传统的磷酸铵镁盐法可以彻底除去P。3.Na、K的控制:由于难以找到Na、K的固相沉淀物,可以通过控制原辅材料的Na、K含量实现铵盐闭路冶炼过程Na、K的平衡,并生产出符合GB/T101162007《仲钨酸铵》0级国标的APT产品。4.氨氮回收利用:铵盐不变体系白钨闭路冶炼使用含有氨氮的浸出剂,因此可实现APT结晶氨尾气和结晶母液氨氮的完全回收使用。结晶氨尾气和结晶母液氨氮回收技术已日趋成熟[13-16],可组合应用于工艺体系。#p#分页标题#e#

铵盐不变体系黑白钨无酸碱闭路冶炼进展

第3篇:冶炼技术范文

关键词:冶炼;烟气制酸;污酸处理;技术应用

0 引言

有色冶炼过程中产生的含二氧化硫烟气是生产工业硫酸的主要原料之一。冶炼烟气制酸系统净化工序采用半封闭稀酸洗涤流程,烟气中的矿尘、三氧化硫、挥发性物质在洗涤过程中进入到稀硫酸中,随着洗涤过程的进行,这些杂质逐渐富集,为保证稀酸的洗涤效果,需要排出部分稀酸至污酸处理站处理,排出系统的这部分稀酸称为污酸。

污酸中含有多种杂质成分,其中例如砷、氟、氯、不溶性烟尘等,并且随着烟尘还会有铅、锌、铁、铜等重金属元素,这些杂质对人和自然的污染十分之大,并且重金属元素在自然界中很难生物降解,会长久的存在并且互相发生反应和转化,在污酸处理中需要充分重视,目前常用的污酸处理方法是化学沉淀法。

1 污酸处理常见方法

1.1 硫酸亚铁―石灰法

优点:硫酸亚铁―石灰法是用石灰中和污酸并调节pH值,利用硫酸亚铁中的铁能与砷生成难溶盐、铁的氢氧化物具有强大的吸附和絮凝能力的特性,达到去除污酸中砷、镉等有害重金属的目的。

缺点: 硫酸亚铁―石灰法处理污酸容易产生大量的废渣,在废渣中重金属分布较为分散,造成回收工作困难,另外,废渣的无泄漏永久存放也难以实现,容易发生二次污染。

1.2 硫化法

优点:硫化法是用可溶性硫化物与重金属反应,反应之后生成的硫化物难溶,从而能够去除,并且在污酸中杂质去除的同时能够进行有效的重金属回收,但是,目前来说虽然有些公司处理后的污酸中砷含量可以控制在10mg/L以下,但不能达标排放,因此,硫化法目前实际是一种预处理方法,用它将大部分重金属取走,并富集在渣中,使后续的达标排放处理难度降低。

另有研究表明,经过磁场处理后较未经磁场处理的同样的含砷工业污酸(As:7.14g/L;SO42-:24g/L;Fe2+:0.6g/L;Zn2+:0.6g/L),硫化钠耗量较低,且溶液含砷急剧下降到0.018 g/L以下,而对比未经磁化处理的仅降至0.21 g/L,相差12倍之多。

缺点:若要实现达标排放,还需配合石灰―铁盐法,成本较高。

2 污酸处理的发展和难点

在污酸处理的发展中,党的十提出坚持节约资源和保护环境的基本国策,坚持节约优先、保护优先、自然恢复为主的方针,着力推进绿色发展、循环发展、低碳发展,形成节约资源和保护环境的空间格局、产业结构、生产方式、生活方式,从源头上扭转生态环境恶化趋势,为人民创造良好生产生活环境,为全球生态安全做出贡献。在不断的发展过程中污酸处理的政策也在不断完善,其中在2015年新实施的《环境保护法》增加规定“保护环境是国家的基本国策”,并明确“环境保护坚持保护优先、预防为主、综合治理、公众参与、污染者担责的原则。” 要求推进生态文明建设,促进经济社会可持续发展。新政策的实行为污酸处理提供了新的标准和依据,更好地促进了污酸处理工作的顺利进行。

2.1 污酸处理的难点

污酸处理中重要的一个难点就是防止二次污染。在污酸的主要成分中,重金属和氟都具有不可降解的特性,这就需要在处理过程中充分注意,避免在处理中经过反应之后的废水废渣生成另外一种污染的形式。

重金属污染的回收方式要注重资源化的回收,从而实现变废为宝循环利用,对于硫酸的处理要首先保证无害化,进而考虑资源化的处理方式。

污酸中具有多种有害成分,单一的药剂和手段很难短时间进行去除,尤其是在污酸中有害重金属的去除工作中,多种药剂进行应用但是效果并不理想,随着科技的发展和研究现行的污酸处理要求工艺技术先进,另一方面要求污酸经处理后循环使用,即采用污酸闭路循环处理工艺实现废水零排放。

2.2 污酸闭路循环处理

在对SO2尾气除尘除SO3烟雾的净化工艺中会产生污酸,污酸闭路循环处理的基本原理就是应用化学方法去除污酸中的杂质,这种情况容易造成水硬度的增加,会积累无机盐,影响净化效果;水硬度的增加容易造成管路设备的结垢甚至堵塞,这也是如何实现全封闭循环的主要困难因素,通过不断的研究和实验得到,少量聚丙烯酸或马丙共聚物等对水垢等晶种表面具有吸附作用,可抑制此类结晶生长,但是阻垢剂能否在二氧化硫尾气闭路循环洗净水的处理中很好地发挥阻垢作用值得进一步研究,特别是无限闭路循环工艺。

2.3 PM―PL膜法

PM―PL膜法处理污酸,可以在酸性条件下除去污酸中的铅、砷、镉等,处理后液体中重金属含量得到国家排放标准。

PM―PL膜法处理污酸新工艺,是一种集多种过滤技术优点为一体的高性能分离装置。它采用目前先进的纳滤和超滤膜分离技术以及阴、阳离子膜净化技术对污酸进行精制。该工艺在污酸处理过程中具有优越性。

2.4 热风浓缩+硫化法

某公司自主研发的热风浓缩技术能够回收污酸中的硫,避免产生石膏渣、砷酸钙渣等二次污染物。该方法已经投入运行并且取得了良好的效果,该技术具体操作是采用制酸系统转化过程的余热将净化工序排出的废酸进行浓缩提高其硫酸浓度,并吹除污酸中的氟、氯等有害杂质,采用硫化法去除浓缩液中的铜、砷等重金属,沉淀后的上清液经普通薄膜过滤器过滤去除悬浮物后进入干吸系统补水。大幅度降低了干吸补充新水量,能够对硫进一步回收,防止了二次污染的产生。是一项值得推广的技术。

3 结语

目前有色冶炼制酸行业污酸处理工艺基本满足国家规定的排放标准,但是酸和重金属渣的二次污染以及出水硬度等指标仍不够完善,所以我们仍要不断的研究新兴技术,完善污染处理措施,提高废水排放标准,促进企业的可持续发展。

参考文献:

[1]陈雄.冶炼烟气制酸污酸处理技术研究[J].科技创新与应用,2015(7):25-26.

第4篇:冶炼技术范文

关键词:铟;冶炼锌;萃取;浸出;富集回收

中图分类号:TF843 文献标识码:A

根据美国地质局的调查资料信息,世界铟的已探明储量为1.1万t,而我国铟储量占世界铟储量的73%,其主要分布于内蒙、云南、广西等地区。由于因矿物主要伴生存在于硫化锌类的矿物当中,并在硫化锑矿、硫化铜矿、氧化铅矿、锡矿、方铅矿等矿物中伴生存在,因此,从锌冶炼中进行铟的富集和回收就成为目前主要的铟收集方法。

一、阐述锌冶炼过程中铟的走向与分布

当前,在锌冶炼中我国主要采取的工艺方法包括湿法与火法两种,其中,湿法又分为常规浸出法与热酸浸出法、直接浸出法3类,而在实际的锌湿法冶炼过程中通常将湿法与火法相互结合;火法主要是铅锌密闭的鼓风炉熔炼方法(简称ISP),另外还有竖罐炼锌、电炉炼锌等。

(一)锌湿法冶炼中铟的走向和分布

在采用黄钾铁矾法来进行锌的湿法冶炼过程中,超过95%的铟会溶入到浸出液当中,并在之后的沉矾阶段中会随着沉淀物一同进入到铁矾当中去,从而实现铟的富集,因此铁矾渣能够当做铟的提取原料。此外,在采用此法进行锌冶炼时,还需在还原预中和上清液当中进行中和剂的添加,以实现铟的沉淀,从而使铟渣成为铟提取的原料;或是直接于上清液当中进行萃取剂的添加,以实现铟的萃取回收。

(二)锌火法冶炼中铟的走向和分布

闪锌矿作为锌冶炼中的通常处理矿物,考虑到其同方铅矿之间的共生关系,因此在进行锌冶炼的实际操作中通常会伴有铅冶炼情况的发生。在采用ISP进行锌的冶炼时,铟主要存在于精馏的底铅当中,约为28%;剩余部分大多分布于硬锌当中,约有18%;粗铅火法除铜精炼的反射炉渣当中约占14%;反射炉的烟尘当中约存4%;剩余部分多在主流程中分散,这部分约占36%。这是因为在ISP的锌冶炼过程中,由于其主流程较为分散,造成富集和回收的流程较长,且在冶炼物质进入到密闭的鼓风炉后,其熔渣中的铟难以回收,这就造成了铟的流散。

根据锌冶炼中铟的走向和分布发现,锌的浸出渣、铁矾渣、底铅、硬锌、烟尘、炉渣等物质中均可作为铟的主要提取原料。

二、锌湿法冶炼中富集与回收铟方式分析

(一)通过常规浸出渣的直接还原挥发实现铟的富集和回收

袁铁锤等研究者对传统的从含铟的锌精矿当中实现了对铟提取方法的改进。在铟提取原料经由中性浸出、酸性浸出之后,对浸出渣添加还原剂,然后经制团和干燥以及高温还原挥发过程,实现铟在挥发物中的富集,最后再对其加以回收。进行试验的最佳条件如下所示:使用质量分数在15%~20%的还原剂,还原温度保持在1250℃,加料的速度控制在5kg/h,这时铟挥发率高达97%。此挥发物在经过酸性浸出以后,铟的浸出率可达93.38%,其总体的回收率明显提升。因此,通过浸出渣的直接还原挥发实现铟的富集和回收的工艺方法,能够有效缩短铟冶炼的工艺流程,并有效提高铟的回收率。

(二)通过锌浸出的高温硫化挥发实现铟的富集和回收

吕伯康等研究者通过锌浸出渣的高温硫挥发实现了铟的富集和回收。这个实验证明,采用高温硫挥发富集的新工艺来进行锌浸出渣的处理具有低成本、高适应性、流程短的优势特点,具备较高的工业生产应用价值。在锌渣的浸出渣、石灰、煤粉、碳粉、硫化物之间的配比为100∶20∶8∶8∶2时,使其在1100℃的温度l件中硫化挥发两个小时,铟挥发率就能超过90%,具备较高的铟回收率。

(三)通过“浮选、还原焙烧、磁选”的联合方法实现铟银的提取

黄柱成等研究者通过由中南大学所开发出的“浸锌渣的还原焙烧、磁选分离”的工艺方法的改进,即在对浸出渣采取化学物相的研究分析基础上,经由浮选、还原焙烧、磁选的联合工艺法,对其中所包含的铟、银等其他元素进行了综合性的回收。经过试验证明,经由一次粗选和一次精选以及一次扫选的流程来对浸锌渣实施银浮选的处理作业,以Na2S作为调整剂,以XY-1和丁基黄药的混合物作为捕收剂,以松醇油作为起泡剂,控制浮选溶液的pH值为5,即能获取品位是3902.1g/t的银精矿,而银的回收率达到77.75%;当控制焙烧温度在1100℃,对浮选尾矿进行2h的还原焙烧,以义马煤作为还原剂,此时铟、铅和锌的挥发率都超过96%;再对焙烧冶炼渣进行磁选,使尚未回收的银富集进入磁选铁粒,进一步得到回收;从而实现了银、锌、铟等元素的综合性回收。

(四)通过低酸浸出的还原液中实现铟的萃取

李秋爱与马荣俊等研究者在热酸浸出针铁矿法进行锌冶炼的工艺流程中,直接通过低酸浸出的还原液中采用P2O4实现铟的萃取回收。研究证明,此法中铟的萃取率高达99.8%,其反萃达99%,而置换率为98%,当中铟的回收率高于96%。此工艺方法操作简单,运行可靠,且铟萃取的效果明显,在萃取过程中也不易出现乳化现象,具有较高的铟回收率。

三、锌火法冶炼渣及副产品中富集与回收铟技术分析

(一)通过锌火法冶炼的副产品当中实现铟的富集和回收

1.通过硬锌实现铟的富集回收

硬锌作为火法冶炼锌工艺流程当中的副产物,它含有锌、铅、铟、锗等物质,在实际操作中往往会使用真空蒸馏法从硬锌当中实现铟的富集回收,同时这个过程也是从硬锌当中综合回收其他有价金属的工艺方法。李淑兰等研究者通过真空蒸馏法得出了锌与铅锌合金,此时,铟也在蒸馏残渣当中富集。硬锌的真空蒸馏的真空度保持在66Pa~106Pa,温度为1000℃,在这种条件下进行40min~100min的恒温蒸馏,此法的铟富集比超过9.5倍,直接回收率高于90%。

2.通过氧化锌的烟灰实现铟的富集回收

锌湿法冶炼过程中的浸出渣,再经由火法冶炼挥发窑焙烧挥发后会产生氧化锌,此物质具有含有较高的氟氯,然后再经由多膛炉实现氟氯的脱除作业,再通过中浸、低浸、铟水解,从而获取富铟渣。氧化锌在焙烧浸出过程中主要采用中性和酸性两种浸出工艺,然后利用纳米氧化锌实现铟的水解富集。要获取传统的富铟渣大多使用锌粉的置换方法来进行,而在此过程中会使酸浸液中超过一半的砷作为砷化氢的形态向外部逸散,从而威胁到生产工人的生命健康,因此现在大多使用水解法实现铟渣的生产。薛永健等研究者对铟绵的生产工艺方法进行了改进调整,即于氧化锌的料仓当中进行变频器添加来控制下料,从而对氧化锌各槽的pH值加以严格控制,然后调节低浸酸度与时间,并于中和水解沉铟时进行氧化锌的分批添加,在使用此法改进后,铟渣的品位提高至两倍以上,在对纳米氧化锌的加入量控制后,铟渣的品位提高、数量减少,这就减少了生产精铟的压力,使得铟回收率增长。

(二)通过锌火法的冶炼渣当中实现铟的富集和回收

1.通过富铟渣实现铟的富集回收

火法富铟渣包括锌火法冶炼过程中产生的锌渣、硬锌、脚锌等废渣在仅有真空蒸馏法进行锌的提取后所获取的成分特殊的含铟渣。而刘大春等研究者从酸度、浸出时间、液固比等影响因素入手对富铟渣的铟浸出率进行了研究。该研究结果证明,通过对工艺条件的合适控制,也就是中性浸出的液固比为6∶1~8∶1,温度为80℃,浸出时间4h~6h;而酸性浸出的液固比为8∶1,温度为80℃,浸出时间8h~10h;锌粉的置换时间为72h,使置换前pH值控制在1~1.5之间,而锌粉的粒度在80~120目之间,即可实现铟的高效提取。在实践生产中,此法的铟回收率高于85%。

2.通过锌精馏炉的浮渣当中实现铟的富集回收

锌精馏炉的浮渣是在锌火法冶炼中精馏炉产生的一类浮渣物质,其主要成分是金属锌。由于在铟的提取过程中,Zn主要作为金属锌的形式出现,若用常规搅拌浸出铟,一方面,搅动难度高;另一方面,这会对设备造成严重的磨损状况。而在其中又包含少量As,这会导致在浸出的工艺流程中生成剧毒气体AsH3,这就需要增添AsH3的吸收设备。针对这种情况,谈应顺等研究者采取了堆浸提取铟的手段,即用硫酸对锌精馏炉的浮渣堆浸,再用次氧化锌对浸出液的pH值进行调节,达成铟的水解沉淀,再经过过滤程序,使得铟与锌分离,用硫酸使含铟渣浸出,并采取P2O4对酸浸液进行萃取,用锌板将反萃液中的海绵铟置换出来,再将海绵铟经过压团、浇铸阳极和电解以及精炼除杂后得到标准的铟锭;将铟和锌分离之后的含锌溶液做成硫酸锌;在堆浸过程中生成的气体需经由硫酸铜溶液,使得溶液能够对其中的剧毒气体AsH3进行充分吸收。这种工艺方法能够实现铟和锌的完全分离,且渣量低,铟的回收率较高,并且能够对浸出过程中生成的剧毒气体实现有效控制。

3.通过铅浮渣的反射炉烟尘实现铟的富集回收

王辉等研究者通过反射炉处理铅浮渣的烟尘实现铟的富集回收,并对烟尘中包含的铟的相关物In2O3与In2(SO4)3的特点及性质进行了分析,有针对性地提出采取二段硫酸浸出方法,并用P2O4对浸出液萃取,再用硫酸对其进行洗涤,用盐酸反萃取,再用锌板进行置换,通过压团熔铸和电解铸型的工序实现铟的提取。@种方法流程简单,铟回收率较高。

结语

综上所述,本文主要通过对锌冶炼过程中铟的富集与回收技术的分析和研究,熟悉了铟成熟的工艺流程,而萃取效果与浸出条件是铟富集比与回收率的关键要素,萃取剂通常使用P2O4,这就使得新型萃取剂的研发成为铟提取的未来发展方向。

参考文献

[1]姚艳清,刘四清,董旭,等.铟的富集分离工艺技术现状及展望[J].金属矿山,2016,45(9):132-136.

第5篇:冶炼技术范文

【关键词】余热利用 冶炼 节能

一、前言

节能减排是我国经济和社会发展的一项长远战略方针,也是一项极为紧迫的任务。我国经济快速增长,各项建设取得巨大成就,但也付出了巨大的资源和环境被破坏的代价,这两者之间的矛盾日趋尖锐,群众对环境污染问题反应强烈。这种状况与经济结构不合理、增长方式直接相关。不加快调整经济结构、转变增长方式,资源支撑不住,环境容纳不下,社会承受不起,经济发展难以为继。只有坚持节约发展、清洁发展、安全发展,才能实现经济又好又快发展。

余热属于二次能源,如果可以再次利用物料燃烧或融化所产生的热,那么将加大能源的利用率,减轻企业的成本。针对棕刚玉冶炼行业来说,冶炼时会产生大量的热量,而这部分热量一般企业都没有加以利用,而是经过除尘后将其排掉,而企业又需要热源来进行采暖或需要淋浴用热水,如果将能将这两部分更好的结合起来,那么就能为企业带来效益,同时也实现了节能减排的目的,企业和国家实现了双赢。

二、余热利用方式

我们所说的余热主要是工业余热。工业余热主要指工矿企业热能转换设备及用能设备在生产过程中排放的废热、废水、废气等低品位能源,利用余热回收技术将这此低品位能源加以回收利用,提供工业、生活热水或者为建筑供热,不仅可以减少工业企业的污染排放,还可以大幅降低工业企业的原有能源消耗[1]。

余热资源是在现有条件下可以实现回收利用但尚未利用的这部分资源。一般来说从其来源可以分为高温烟气余热和冷却介质余热等几类。在我国,各企业生产部门的余热资源回收率不足40%,可以说我国的余热资源回收潜力巨大。因此,更好的利用余热资源是现实节能减排、清洁发展、安全发展重要方法之一[2]。

由于使用的生产方法、生产工艺、生产设备以及原料、燃料条件的不同和工艺上千变万化的需要,从而给余热利用带来很多困难。

但是如何能更好的利用余热,使其发挥其应有的效应,一致是人们所关心和发展的方向,余热热源随着生产工艺和使用条件的不同,也对其更好的回收利用产生一定的阻碍,针对棕刚玉冶炼行业的特点及余热产生的方式来说,余热利用往往存在以下两个难点:

(1)热源不稳定。这主要是与制备工艺有关。例如:棕刚玉的生产是周期性的,并且生产过程中热源提供的热量也会随着生产的波动而波动。

(2)烟尘中含尘量大。尤其是炉烟温度高、含尘量大时,更容易粘结、积灰,从而对余热回收的设备有可能产生严重磨损和堵塞的后果。

余热资源按其温度划分可分为三类:高温余热(温度高于500℃的余热资源),中温余热(温度在200-500℃的余热资源),低温余热(温度低于200℃的烟气及低于100℃的液体)。

余热资源由于本身属于二次能源,因此在使用过程应降低其一次能源消耗一次能源消耗,减少不必要的能量转换次数。在实际使用中多是通稿换热器进行直接的换热,通过余热将水加热或将物料烘干去除水分。

三、常用换热器类型及特点

管式换热器:2种不同流体在管壳内进行换热,1种在管内流动,1种在管外流动。特点是结构坚固,适应弹性大,材料范围广。余热温度范围允许入口烟气温度达1000℃以上,出口烟温约600℃,平均温差约300℃。

板式换热器:主体结构由换热板片以及板间的胶条组成,应用于液体-液体之间的换热。特点是传热系数约为管式的2倍,传热效率高,结构紧凑,节省材料。余热温度范围是入口烟气温度约700℃,出口温度达360℃。

陶瓷换热器:一种新型的列管式高温热能回收装置,主要成分为碳化硅。导热性能好,强度高,抗氧化、抗热震性能好。寿命长,维修量小,性能可靠稳定,操作简便。允许1550℃废热进入换热器,可以将助燃空气预热至815℃。

热管换热设备:一种高效的导热元件,通过全封闭的真空管内工质的蒸发和凝结相变过程和2次间壁换热来传递热量,将热量储存和换热合二为一。导热性优良,传热系数高,具有良好的等温性,可控温度、热量输送能力强。热管的工作温度分布广泛,在实际应用中用于工业余热回收的热管使用温度在50~400℃。

蓄热式热交换器:相变潜热储能设备热量输出稳定,换热介质温度基本恒定,换热系统运行状态稳定。显热储能热交换设备,适合于450~1100℃及以上的高温余热回收。相变潜热储能设备适合于低温余热回收。

四、应用实例

电弧炉冶炼棕刚玉工程中会产生大量的高温烟气,高温烟气余热占总能耗的20%左右,目前国内冶炼厂家很多,但对棕刚玉冶炼余热利用的基本没有,究其原因主要有以下几点,棕刚玉冶炼产生的热量很大,但不稳定,刚进行投料时温度低,热量少,后期精炼时温度高产生的热量大。二是粉尘细,长时间运行会影响换热器效率。

棕刚玉冶炼产生的余热主要采用不改变余热能量的形式,只是通过换热设备将余热能量直接传递给下道工艺的耗能流程,降低一次能源消耗,可统称为热交换技术,这是回收工业余热最直接、效率较高的经济方法,相对应的设备是各种换热器[4],针对棕刚玉冶炼自身的特点,下面介绍两种应用实例。

1.利用余热进行全厂采暖及淋浴用水

利用余热进行采暖或加热淋浴用水是目前行业内较常见的一种余热利用方式。这种换热方式一般都需先经过一段沉降室将烟气中的粉尘先沉降下来,避免粉尘粘在换热装置上,影响换热效果。

山西某厂目前已采用这种方式进行余热利用。厂区地势存在高差,设计时充分利用高差,换热器位于厂区高点合成厂房内,位置标高比厂区办公楼采暖最高点要高。采暖系统的定压膨胀由热水箱解决,采暖设2台循环泵,一用一备。采暖供回水温度按95/70℃,当地水质硬度比较大,卫生热水采用二级换热,不直接从烟道里换热,防止烟气温度高换热器内结垢,在热水箱里采用沉浸式换热器。从水箱里的换热器换成卫生热水50℃,供浴室用。厂区采暖热负荷按约700KW考虑,洗浴热负荷为600kW。采暖系统采用上供上回双管同程式系统。烟气换热器换热面积为220m2,换热器排管采用不锈钢管材质。烟气换热器外母管采用无缝钢管。烟气换热器整体采用保温,外保护层为彩钢板。换热系统水管及采暖管道采用无缝钢管,管道均做保温。通过这种余热利用方式解决厂区冬季采暖及工厂洗浴热水的问题。

2.利用余热对物料进行加热

棕刚玉冶炼能耗较高,利用余热先将矾土加热,这样就可以节省部分电能。该装置主要是利用换热器将三层料仓物料加热。换热器位于料仓内,通过烟气换热将物料加热,烟气不与物料直接接触,这样可避免烟气中粉尘再次随物料进入系统,避免加料时产生二次粉尘。该方式投资不大,同时直接将余热用于了生产,节能效果明显。

四、结论

利用棕刚玉冶炼过程中产生的热量,可以提供工业、生活热水或者为建筑采暖,不仅可以减少工业企业的污染排放,还可以大幅降低工业企业的原有能源消耗,实现节能、减排、增效的目的。

参考文献:

第6篇:冶炼技术范文

关键词:工业炉;有色冶金;新型炉窑

中国恩菲工程技术有限公司(以下简称“恩菲”)经过几十年有色冶炼经验的积累和总结,厚积薄发,近年来在铜、铅、锌、镍等有色金属的火法冶炼技术和炉窑装备上实现了一系列创新和比较大的突破,包括以下几个方面:

一、底吹连续吹炼技术和装备

最近比较热门的底吹炼铜技术,恩菲已经在底吹熔炼的基础之上,开发出了新的连吹工艺和设备,以底吹连续吹炼炉取代传统的P-S转炉。多个采用底吹连续吹炼炉的铜冶炼项目已经达产达标,正在设计的多个大型国内外铜项目都将采用底吹连续吹炼工艺。

二、新一代底吹连续炼铅技术及装备

底吹炼铅技术形成了氧气底吹熔炼-液态渣直接还原-强化挥发的三连炉短流程工艺工艺,已投产7家以上。其它方面还包括:顶吹炉的创新设计,恩菲所创新设计的顶吹炉首次应用于镍精矿冶炼,而且是当时乃至现在世界上最大的顶吹炉;闪速炉的创新设计包括全水冷反应塔,铜钢复合冷却水套等;以及用于红土矿冶炼的大型镍铁电炉的开发,恩菲所开发的镍铁电炉是国内功率最大、电压最高、熔池面积最大的电炉;用于多种物料处理的各种规格卡尔多炉、用于杂铜处理的大型倾动炉,已投产使用的均为国内规格熔炼最大的。

最近恩菲正在实施和开发最新的技术及装备,主要有钒钛磁铁矿的综合回收,锌冶炼装备的节能环保及大型化,采用节能环保的方法从废铅酸电池中回收铅,镍冶炼渣贫化回收镍钴等贵金属,煤基直接还原镍铁,用热废冶炼渣制作建材用的渣棉渣板等技术装备。

(一)钒钛磁铁矿综合回收。目前钒钛磁铁矿的综合回收主要走预还原-电炉熔分流程。此流程能同时回收铁、钒和二氧化钛。预还原设备可以有多种选择,主要有竖炉、回转窑、转底炉、多级流化床等,而后面的熔分电炉是关键。恩菲近期为四川龙蟒矿业设计的强制冷却熔分电炉已顺利投产。

(二)锌冶炼装备的节能环保及大型化。近年来,恩菲在锌冶炼技术方面取得了很大的发展,自西北铅锌冶炼厂第一台109m2流态化焙烧炉自1992年投产以来,为我国锌冶炼整体水平提高一个新的平台作出巨大贡献。经历了整整20余年生产,积累许多宝贵经验。为实现节能环保及规模化集约化生产的需要,恩菲为西北铅锌冶炼厂设计了目前为止最大规格的152m2流态化焙烧炉,目前项目已经进入施工阶段。

(三)采用侧吹浸没燃烧熔池熔炼技术从废铅酸蓄电池中

回收铅。目前废铅酸电池的处理方法主要是首先对铅酸电池进行破碎分选,分选出的铅合金一般采用转炉熔炼生产粗铅,分选出的铅膏以及转炉熔炼过程中产生的铅灰传统的处理方法是采用反射炉熔炼或者回转短窑熔炼。反射炉熔炼虽然对炉料的适应性强,结构简单,投资小,操作容易掌握,但是反射炉的生产率和热效率比较低;回转短窑熔炼传热传质好,从而提高炉子的生产效率,但是回转短窑不能实现连续操作,对大规模的生产企业就需要较大的场地以及更多的设备。

最近的年产再生粗铅8万t的废铅酸蓄电池工程已于近期顺利投产。该侧吹炉炉型为长方形,分为氧化段和还原段。在氧化段和还原段的侧墙均设有喷枪,向炉内喷吹天然气和富氧空气,提供反应所需的热量,同时搅动熔体,强化炉内的化学反应,在同一炉内完成氧化还原反应。采用侧吹炉处理废铅酸电池的方法与传统的处理方法相比,具有熔化速度快、连续作业、机械化程度高、操作方便、操作环境好等突出优点。

第7篇:冶炼技术范文

关键词:契丹/矿产/冶炼

契丹民族是中国北方的一个历史比较悠久的民族,有先进的金属开采、冶炼和制造技术,契丹民族在长期的生产生活中创造了自己的金属冶炼和制造技能,同时在自己的手工业基础上广泛的吸收和采用了中原的先进技术,使其金属冶炼和制造技术有了很大的发展。契丹境内矿产种类较多,储量丰富,为契丹的矿业开发和金属冶炼打下了良好的基础。

1 辽代的矿产资源概述

契丹民族的金属冶炼和铸造业历史很早,早在耶律阿保机之前,契丹民族就有了自己的采矿和冶铁及制造技术,有曷术部落,其地多产铁,“曷术”即契丹语铁的意思,根据《辽史》记载,契丹民族有金、银、铜、铁等矿产资源。并且“部置三冶:曰柳湿河,曰三黜古斯,曰手山”[1]的开采记载和管理机构。

契丹民族的矿产资源开采的历史很早,早在公元900年左右就开始开采和利用金属矿产。耶律阿保机在占领室韦的领土之后,“坑冶,则自太祖始并室韦,其地产铜、铁、金、银,其人善作铜、铁器”《辽史·食货志》,室韦在契丹的东北部,在现在的黑龙江省境内,但根据契丹国志记载,应该是蔑劫子,“其国三面皆室韦,一曰室韦,二曰黄头室韦,三曰兽室韦。其地多铜、铁、金、银,其人工巧,铜、铁诸器皆精好,善织毛锦”[2]。“太祖并诸蕃三十六国,室韦在其中”(《契丹国志·诸蕃记》),蔑劫子也应该在其平定之列。耶律阿保机在平定北方诸国之后,不但取得了其地的矿产资源,也得到了冶炼和制造技术,并且设立了专门的“铁坊”、“军器坊”等管理部门。

渤海国在辽宁和吉林的东部,公元907年,耶律阿保机征服了渤海国并取得了其地的铁矿资源,《续文献统考》和《辽史》都记载“神册初,平渤海,得广州,本渤海铁利府,改日铁利州,地亦多铁,东平县,本汉襄平县故地,产铁矿,置采炼者三百户,随赋供纳”[3],就是现在的鞍山和辽阳一带,考古挖掘也证实了在鞍山市首山“现炼铁炉址和炼渣,堆积厚达一米多。辽初已具备了一定的金属冶铸技术和原料等条件”[4]。

在燕山山麓的北部,即现在的平泉、宽城、滦平、隆化等县也发现大规模的辽代采矿和冶炼遗址,辽史记载“太祖征幽、蓟,师还,次山麓,得银、铁矿。命置冶”(《辽史·食货志》),可能即是此地。据河北省承德地区文管所调查,有银矿、铜矿、铁矿等开采和冶炼遗址多处。

辽史记载“泽州,采炼陷河银冶”(《辽史·地理志》)即位于此处,“辽泽州即今平泉县会州故城,陷河,即今平泉、宽城两县境内的瀑河,陷河银冶所指是分布在陷河两岸的多处银矿,我们共发现古矿洞26眼”[5]。另外还发现了大量的居住址和冶炼遗迹,有生活用具、辽代的砖瓦、冶炼炉渣和金属块。

1993年10月,在龙烟铁矿矿区发现的古炼铁遗址(在河北省赤城县田家窑乡境内),经国家考古部门鉴定,为距今900多年前的辽代炼铁遗址。“龙烟铁矿地处河北省赤城县、宣化县境内,因赤城县龙关、宣化县烟筒山在同一矿脉上,这一绵延百余里的铁矿得名龙烟铁矿。‘其矿层之厚、铁质之佳,亦足为世界太古纪以后,水成铁矿之罕见者,且水成铁矿之属元古界者,推龙烟为首创,肾状、鲕状矿并生,亦为它矿所未有。’并在遗址上采集了炉渣和渣铁标本,经宣钢中心化验室鉴定,渣铁中含有7%的 Fe2O3,属用赤铁矿冶炼,含硅18%,全铁54%,正与辛窑一带的矿质、品位相同”[6]。并测定其年代为964±60年,为公元1020—1170年,应属辽、金时代的炼铁遗址。

契丹人除了开采金属矿床,也开采砂矿床,“柳河馆,河在馆旁,西北有铁冶,多渤海人所居,就河漉沙石,炼得成铁。”(《契丹国志·王沂公行程录》)

除了上述矿产之外,《辽史》还记载有其他矿产地,在“圣宗太平间,于潢河北阴山及辽河之源,各得金、银矿,兴冶采炼”(《辽史·食货志》)。

2 辽代矿产资源的开发和金属冶炼

契丹民族的矿产资源的开发和金属冶炼技术总体上讲,已经和中原的冶炼水平相当,这可能与大批的中原技术流入契丹有关,契丹民族无论对开采、冶炼还是锻造分工十分明确,有专门的开采、冶炼等部落和管理机构。有专门的“打造部落馆。惟有番户百余,编荆为篱,锻铁为军器。”《契丹国志·王沂公行程录》从现在考古情况推断,辽代的冶炼地多在矿产地附近,但也有在异地的。现已发现冶炼遗址多处,有铜、铅、铁等冶炼遗址和打造遗址。

根据河北文馆所调查,在隆化县隆化镇辽北安州故城北侧,发现铜作坊一处,曾出土了作为原料的残破铜300余斤和大量的炊具。在宽城县龙须门乡王家店村,发现铅锭五块,在隆化县隆化镇北,发现大面积的铸铁遗址,残存有熔炉的部分残体,在隆化县韩麻营村出土有完整的辽代铁锄,并有铁砧子等铁器出土[5]。其他的考古发掘也证实“辽上京附近坑冶遗址规模相当大,鞍山市首山、河北平泉罗杖子、赤峰辽祖州、饶州、中京遗址都有发现炼铁炉址和炼渣,堆积厚达一米多”[4]。

3 辽代矿产资源的利用

辽代的金属制品种类较多,从现今的考古发现辽代制造的金属产品主要有生产工具、生活用品、军事武器等几大类,主要以农业生产工具为主,还有手工工具、生活用具及兵器,其中铁制工具占很大比重。生产工具类:生产工具是契丹民族利用金属制品的主要方面,主要以铁制品为主,现今的考古发现,在承德地区发现有大量的生产工具,如铁犁铧、铁锄、铁镰、铁刀、铁铲、铁镐、铁槌、铁砧子、铜犁铧、铁凿等。考古工作者在中国东北地区出土了大量辽代的镐、锄、铧、镰、铡刀、叉等铁制农具。在北京地区(辽南京)也有辽代铁制农具出土,“通县东门外,顺义大固观、上辇,怀柔上庄,房山焦庄等处出土过几批,多是农具和生活用具,有铧、犁镜、耘锄、镐、镰、铡刀、禾叉……”[7]。生活用具类:此类物品的金属种类较多,有金、银、铜、铁等,考古发现的物品也比较丰富,出现在生活的各个方面,如铁锅、铁炉、铁剪、铁熨斗、铁提梁壶、三足铁鼎、六折金铁釜、铜锅、铜釜、铜壶、铜盆、铜铃、铜车川、带钩、铁勺、铁锁、铁铃、铜镜等。其他如:刀、斧、钩、钳、刀斗勺、漏勺、双耳釜、叉、矛、甲片、锤、镐、马蹬、脚镣、铁链、熨斗、剑刀、剪刀、锁、锄、犁等,应有尽有。特别是随葬品类:有鎏金银冠、银碗、鎏金银琢、铜琢、银琢、银盖脸、铜盖脸、铜盂、铜丝网、鸡冠壶以及辽代的碗、碟、杯、盘等瓷器[5]。辽代的兵器类制品以铁制品较多,如铁剑、铁刀、铜骨朵、铁镞、铁棘藜等。

契丹民族在长期的生产实践中逐渐的掌握了金属开采、冶炼和金属制造技术,无论从历史文献记载和现今的考古发掘来看,契丹的金属开采规模很大,冶炼和制造技术先进。所制造的物品以兵器类、生产工具类和生活用具类为主。

参考文献:

[1](元)脱脱.辽史[M]北京:中华书局,1974.

[2](宋)叶隆礼.契丹国志[M]上海:上海古籍出版社,1985.

[3]张鸿钊.古矿录[M].北京:地质出版社,1954.

[4]马利清.从铸币业的发展看辽代经济的盛衰[J].内蒙古大学学报(人文社会科学版),2001,33(3):32—35.

[5]田淑华,石砚枢.从考古资料看承德地区的辽代矿冶业[J].文物春秋,1994,(1):76—78.

第8篇:冶炼技术范文

【关键词】 转炉 少渣冶炼 留渣操作 脱磷

【Abstract】 In this paper, it experimented on less slag steelmaking to explored its technology systems in connection with the practical production conditions of the 120t converter steelmaking in the No.2 Steelmaking Plant of Sanming Iron and Steel Group. The results showed that the remaining slag operation can significantly reduce the amount of lime and effectively reduce consumption of slag. Under the same conditions, compared to?traditional double steelmaking, the lime consumption on less slag steelmaking is low 8.7kg / t, metallic material consumption is low 1.9kg / t; and steel yield can be improved, the reduction of the loss per ton steel is nearly 28kg.

【Key words】 converter less slag steelmaking remaining slag operation dephosphorization

1 少渣冶炼的研究背景及意义

面对钢铁行业产能过剩的巨大挑战,市场需求相对疲软,为了适应行业发展形势,降低生产成本,提高钢种质量,福建三钢闽光股份有限公司(以下简称三钢)结合二炼钢120t转炉实际生产情况,开展少渣冶炼探索试验,以期掌握其工艺特点和规律、工序成本等方面的情况,为今后全面推广转炉少渣炼钢打下坚实的基础。同时也致力于为三钢优质品种钢的生产提供技术支持,进一步减少炉料消耗、降低生产成本,提升企业核心竞争力。

2 少渣冶炼的现状

少渣量炼钢技术是80年代初在世界流行起来的一种造渣工艺,即在脱磷期结束后倒掉部分脱磷渣,从而使脱碳期在渣量大大减少的情况下进行冶炼。其目的在保证炼钢要求的前提下,降低石灰和总造渣材料消耗。这项技术以日本较为领先。日本君津钢厂使用“三脱”铁水少渣炼钢,实现显著的经济效益,石灰消耗得到大幅降低,渣料消耗降至7.2kg/t钢。NKK福山钢厂开发的少渣炼钢技术,渣量控制在30kg/t钢。我国宝钢集团自行创新的转炉少渣炼钢技术,石灰单耗达到11.3kg/t,总渣量也减少为常规渣量的1/3。

近来三钢入炉铁水磷、硫含量越来越高,脱磷更是成为转炉操作的难点。铁水成分见表1。

采用少渣冶炼模式其特征在于,少渣冶炼方法包括脱磷期和脱碳期,其中在脱磷期,以脱磷剂(包括石灰、轻烧白云石和云母矿等)和上一炉钢留下的脱碳渣作为造渣材料来进行脱磷冶炼,在脱磷期结束后倒掉40~60%的脱磷渣;在脱碳期,重新造渣来进行少渣吹炼,并且将产生的脱碳渣进行溅渣操作后循环利用。一是转炉终渣具有一定的碱度,有利于提高渣中的CaO含量,减少冶炼过程石灰的用量;二是可以充分地利用脱碳渣所携带的热量和较高的FeO含量,能加快下一炉初期渣的形成,造出流动性好的顶渣,有利于前期脱磷、脱硫。此外,留渣操作能减少造渣矿石的加入量,又提高金属收得率,降低生产成本。

3 少渣冶炼试验工艺制度

试验在三钢二炼钢120吨的三座转炉上进行的,冶炼铁水未经预处理,由炼铁厂直接提供。选择在同一炉座先后进行脱磷脱碳的单炉双联少渣冶炼的方法,其工艺流程如图1所示。

为了探索转炉少渣冶炼的适用性和广泛性,试验对钢种没有限制。在13炉次的试验中,涉及多个钢种,包括了低碳钢、中碳钢和高碳钢,这些钢种基本代表了三钢二炼钢的品种和能力。

3.1 供氧模式与枪位制度

对于少渣冶炼操作,脱P期过程枪位控制采用“低一高一低”的模式较为合理,开吹保持低枪位以利于熔池升温、脱硅,待炉内反应3min后适当高枪,控制炉内温度缓慢上升和碱性氧化渣的快速形成,以增加渣中氧化铁含量,创造较佳的脱P反应的热力学条件。后期根据化渣情况进行压枪操作,加强炉内搅拌,促进渣钢分离效果,使反应达到平衡。针对入炉铁水温度较高,热值好的炉次,可适当的再提高一点枪位。与传统双联冶炼相比,少渣冶炼脱P前期氧气流量适当提高,前3min供氧强度24000~26000m3/h;3min~4.5min供氧强度21000~23000m3/h,供氧时间约5.5~6min;吹炼后期加大底吹流量有利于减少铁损。脱C期点火成功后,枪位、供氧制度与传统双联冶炼近似相当:供氧强度约31000m3/h。

3.2 造渣制度

针对不同铁水成分,转炉少渣冶炼造渣材料的用量见表2所示:

石灰及其它造渣材料在吹炼开始时投入,若是铁温高,热值好,石灰加入的时机可适当提前。考虑到萤石对炉衬的侵蚀,一般不加萤石来辅助化渣,如遇转炉化渣不良时,可投少量萤石帮助化渣。脱磷期倒渣量控制在总渣量的40~60%,炉渣碱度一般控制在2.0~2.6之间,炉渣TFe含量控制在10%~12%之间;脱碳期终点炉渣碱度一般控制在2.5~3.0之间,炉渣TFe含量控制在12%~20%之间。

3.3 温度制度

采用少渣冶炼吹炼温度制度的控制关键在于合理选用适当的热补偿方法,以弥补因铁水温度和发热元素(Si、S、P、C等)含量的降低而造成的热量不足。本试验仅以减少造渣料和冷料用量就实现了试验条件下的热平衡;针对铁水硅过高,可在吹炼过程中多加冷料。少渣吹炼时脱磷期平均停吹温度为1350~1400℃;脱碳期平均停吹温度为1580~1630℃。

4 少渣冶炼试验结果与讨论(冶金效果)

4.1 脱磷

在少渣冶炼条件下,铁水平均脱磷率均高于传统双联冶炼和常规单联冶炼,试验数据见表3所示。这是因为少渣操作时成渣快、渣层薄、炉渣的流动性好,炉渣脱磷能力过剩;加之熔池搅拌促进钢渣充分反应,从一定程度上改善了脱磷反应的动力学条件,使脱磷反应更趋于平衡。

影响脱磷反应的因素很多,从热力学角度分析,根据脱磷反应的平衡条件和磷的分配系数,影响脱磷主要的影响因素是炉渣成分和温度。炉渣成分对脱磷主要反应在渣中氧化铁含量和炉渣的碱度上。生产实践表明,在保证出钢温度的前提下,把渣中(TFe)和炉渣碱度控制在11.5%和2.5以上,可以使平均终点[P]控制在0.030%以下。

4.2 脱碳

从氧化物的分解压力图可知,在1673K以下CO的分解压力高于MnO,1796K以下CO的分解压力高于SiO2。说明在冶炼前期硅先被氧化,待熔池温度上升后,碳氧反应慢慢加剧。冶炼过程和末期的脱碳速度主要取决于[O]和[C]扩散,由于少渣冶炼时的渣层较薄,顶吹氧气的动量可高效率地传输到熔池,增强熔池的搅拌作用,促进熔池中[O]和[C]的扩散,从而有效的加快脱碳反应速率并缩短冶炼时间。在实际试验期间,由于少渣吹炼脱磷负荷较小,有效的缩短前期化渣脱磷的时间,单炉平均冶炼时间为15.3min,比传统双联冶炼提早了1.5min,为进一步实现高效生产提供依据。

4.3 脱硫

转炉渣为氧化性渣,反应过程中对硫去除难度较大,当铁水硫高时,在冶炼过程中缓解降低;当铁水硫低时,在吹炼过程几乎不脱硫。试验结果表明转炉少渣冶炼与常规冶炼过程脱硫能力近似相当,在此就不多作讨论。

4.4 辅料消耗

采用少渣冶炼时钢水收得率比传统双联冶炼高,终点磷含量也进一步降低,钢水成分能够满足冶炼工艺要求,更大程度地提高了钢水的纯净度。下面从冶炼终点成分、辅料单耗、炉渣量和吹损率等方面,将转炉少渣冶炼的试验数据与传统双联冶炼、常规单联冶炼实绩进行对比分析,详见下表4所示。

由于少渣冶炼采用留渣操作,造渣用的石灰加入量大幅减少,有效的降低渣料消耗。同时,脱碳期因渣量少、渣层薄,顶吹氧气利用更充分,吹炼终点钢水中的氧含量低,残余锰高,进而提高合金收得率,达到降本增效的功效。由表中试验数据可知,少渣冶炼石灰耗比传统双联石灰耗低8.7kg/t,金属料耗低1.9kg/t;比常规单联冶炼石灰耗低7.2kg/t,因脱磷倒渣等导致的损耗,使其金属料耗不及常规单联冶炼。

4.5 吹损

与常规冶炼相比,少渣冶炼采用高枪位操作,会增加渣中铁珠和FeO的含量,但由于石灰、镁球等造渣料的减少,进而使渣量的减少(吨钢渣量减少25~32kg);加之,留渣量的大幅增加,综合分析,从一定程度上有效降低冶炼过程的吹损率,钢水收得率得以提高。由表可知,与传统双联冶炼相比,少渣冶炼过程吹损率降低0.21%,相当于吨钢损耗减少近28kg;与常规单联冶炼相比还有一定的差距,这也是今后要亟待进一步研讨的问题。

4.6 经济效益

通过实验比较分析,少渣冶炼采用留渣操作有利于溅渣层覆盖炉体,可减轻炉衬的侵蚀程度,延长其使用寿命。经计算,少渣冶炼与传统双联冶炼相比,按公司年产钢550万吨计算,其中二炼钢转炉普钢生产成本预计可降低530万元。同时,对今后扩大钢种和致力于生产优质钢提供有力的技术支持,有着深远的价值和意义。

5 结语

(1)通过转炉少渣试验,可有效降低终点磷含量,对今后扩大钢种和生产优质钢提供技术支持。(2)采用少渣-留渣操作,大幅减少造渣料的加入量,石灰耗降至31.4kg/t,金属料耗1097.5 kg/t。(3)少渣冶炼与传统双联冶炼相比,能减轻炉衬的侵蚀,同时可降低转炉生产成本约530万元。

参考文献

[1]魏寿昆.冶金过程热力学.上海:上海科学技术出版社,1980:221.

[2]苏天森等.转炉溅渣护炉技术.北京:冶金工业出版社,1999:232-268.

[3]赵素华,潘秀兰,梁慧智.少渣炼钢工艺的进步与展望[J].鞍钢技术,2008(6)13-24.

[4]王新华.钢铁冶金炼钢学[M].北京:高等教育出版社,2007,6:113-123.

第9篇:冶炼技术范文

关键词:ASTM/A743A CK3MCuN钢冶炼

1 概述

ASTM/A743 CK3MCuN是为美国所生产导流壳铸件的钢种,技术要求极高,验收标准按ASYM/743M-06标准执行。此钢种是超低碳-低硫-铬镍钼-奥氏体不锈钢,我公司首次接触此钢种牌号,自我公司1994年引进了AOD氧氩混吹精炼炉以后,我们在冶炼超低碳奥氏体和双相不锈钢技术取得了发展,十几年中我公司共为军工,核电站生产出大量铸钢件,在我们生产的几十种超低碳不锈钢中,一般来说钢中S含量大部分小于0.030,利用AOD炉精炼技术能使合金含量在15.0-18.0%的钢种S可控制在0.030%以下,当合金含量超过20.0%则去硫相当困难,该钢的化学成分% C

2 设计工艺方法

依具该钢的化学成分规格,我们首先计算它是否有铁素体含量,利用舍菲利而图表法,ASTM/800-1标准计算方法,经过对比得出该钢的铁素体含量仅有1-3%,属于奥氏体不锈钢,由此我们在研究制定工艺则完全按奥氏体不锈体的冶炼方法考虑思路,确定各元素的比例关系,计算并确定各元素的最终控制目标,根据控制目标确定采取双联法和双渣法的冶炼工艺,利用AOD炉吹氮的条件提高氮元素含量,可节约氮化铬合金的加入,每吨钢可节约50KG的氮化铬合金,每吨可节约1000元,理清思路后,研究工艺方法相对轻松了许多。

2.1 原材料的要求

2.1.1 冶炼此钢必须选用优质低S、P的碳素废钢,各种铁合金的S、P含量必须符合工艺要求。

2.1.2 造渣所用的CaO必须选用含S较低的优质冶金石灰。

2.1.3 调整成分所用的铁合金必须经严格烘烤。

2.2 操作原则

2.2.1 炉料在全熔化后,取样分析各元素是否满足工艺要求,C>0.60 S17.00 Mo>6.00。

2.2.2 熔化期禁止吹氧助熔,减少铁合金的损失。

2.2.3 扒除氧化渣,造新的碱性渣,降低钢液中S含量。

2.2.4 当钢液温度>1600,各元素达工艺要求即可出钢。兑入AOD炉精炼。

2.2.5 按AOD炉的操作程序进行精炼,使钢液中C

2.2.6 采用AI/FeSi还原法进行还原操作。注意氮元素的变化,便于后期的充氮。

2.2.7 全部程序结束,取样,进行最后成份微调,计算氮气充入量。

2.2.8 要求化学成分必须达到控制规格,出钢前10分钟内进行充氮操作。

2.2.9 温度符合工艺要求即可出钢。浇注铸件。

3 实际熔炼方法

为确保钢液的去S效果,解决高合金钢脱S难的问题,我们把重点放在脱S的工艺研究上,根据脱S的冶金反应原理,硫在钢液与炉渣中均以FeS形态存在,钢液中的[FeS]与炉渣中的(FeS)可以通过扩散互相转移,在一定温度下,两者质量分数比是一个常数,脱S过程,就是利用这一原理。在钢液脱氧还原充分的条件下,促使炉渣中的(FeS)与Ca作用形成CaS,减少渣中的(FeS),从而导致钢液中的[FeS]往渣中扩散,来达到钢液脱S的目的,其反应式为:(FeS)+(CaO)=(CaS)+(FeO)。因此,做好脱硫工作注意以下方面:①钢液脱氧越充分越好,钢液在还原期必须做好脱氧工作,这是脱硫的必要前提条件。②增加渣的碱度,以使渣有足够的(CaO)参与反应。炉渣碱度以2.5-3.5为最佳。③提高钢液的温度可以降低炉渣的黏度,有利于FeS的扩散,提高脱硫效率。④加强钢液与渣的搅拌作用,脱硫过程是缓慢的扩散过程,利用AOD炉混吹条件增强钢液与炉渣的接触面积是提高脱硫效率的最有效的措施。⑤采用双渣法是最大限度脱除钢液中硫的一种有效措施。

4实际检验结果

按此冶炼工艺我公司于2009年7月进行了正式生产,由于首件生产时没有采购到优质冶金石灰,所以在冶炼中去S的效果不理想,导致S元素略高于规格0.003,到11月份,我公司共冶炼5炉CK3MCuN钢,在冶炼过程中,化学成份全部按控制目标进行控制,经成品分析结果全部符合用户的技术要求,钢水量达80余吨,生产铸钢件产值近400万元。

5 结论

经过公司技术人员和操作人员的共同努力,成功冶炼出超低碳低硫奥氏体不锈钢,填补了我公司冶炼低硫不锈钢技术空白,也为我们沈阳铸锻工业有限公司开辟了新的发展领域,没有挑战,就没有进步。通过我们在冶炼CK3MCuN钢的过程中,确定合理的、科学的冶炼工艺,是解决冶炼超低碳低硫不锈钢的关键。同时优质的原材料和精心的操作,是确保产品质量的保证。

参考文献:

[1]铸钢手册编写组.铸钢手册[M].机械工业出版社.1985.

精选范文推荐