公务员期刊网 精选范文 电源电路的设计范文

电源电路的设计精选(九篇)

电源电路的设计

第1篇:电源电路的设计范文

针对影响开关电源可靠性的环节,本文详细介绍了防浪涌软启动电路、瞬时过压抑制电路以及消除变压器直流偏磁电路的设计方案,并且对保护电路中元件的选型给出了计算方法。本文所介绍的保护电路专门针对输出空载电压70V,输出电流160A,频率20kHz,额定功率6kW的弧焊电源。

弧焊电源的电路结构

数字弧焊电源由主电路、控制电路两部分组成。其中,主电路由整流环节、滤波环节、逆变环节、变压整流滤波环节等部分组成。主回路的结构如图1所不。

整流部分采用三相全波整流模块,滤波部分采用两组并联和两组串联结构的工频滤波电容,滤波后的直流电送入逆变模块的输入端。逆变模块采用智能IPM模块。从电路形式上看,IPM与全桥逆变器结构相同,驱动器驱动两个对角元件同时导通,将输入电压交错叠加到高频变压器的初级,并且可以使用改变占空比的方法调整输出电压。高频变压器的输出经二极管和电抗器进行整流、滤波,输出稳定的直流。

工频整流后的直流输出电压Ud为537V。输出最大电流I0=160A。由于采用两个变压器串联的结构,每个变压器次级输出电流Id=I0/2,变压器原边的输入电流I=N2/N1×Id≈1/5×80=16(A),变压器原边的输入电压V=Ud/2≈270V,整流桥交流侧电流为:

弧焊电源保护电路的设计

1 防浪涌软启动电路的设计

电源的输入为电容器输入型,即采用电容器对直流输入进行滤波,因此一旦附加有交流脉动时,电容中就有电流流过。电源的三相输入电流在合闸瞬间,由于电容器上的初始电压为零,电容器在充电瞬间会形成很大的浪涌电流。特别是大功率开关电源,采用容量较大的滤波电容器,浪涌电流会达100A以上。在电源接通瞬间产生如此大的浪涌电流,重者往往会导致输入熔断器烧断或合闸开关的触点烧坏,整流桥过流损坏;轻者也会使空气开关产生打火现象,合不上闸。为此,要设置防止浪涌电流的软启动电路,以保证电源正常而可靠运行。

浪涌电流的值随着输入电压的增大而增大,当交流侧的输入电压相位达到900时为最大值。采用电容进行滤波通常导致输入电流的峰值Iacp约为Iac的3~4倍。如果能对浪涌电流进行有效的抑制,那么浪涌电流可以抑制到交流输入Iac的5倍以下。但是,如果过度抑制浪涌电流,电容器充分充电的时间增长,充电尚未结束前就产生振荡,有2次性的冲击电流流通,因此浪涌抑制电路中电阻的选择非常重要。软启动电路如图2所示。

根据(1)式的计算得出交流输入电流Iac=14A,则浪涌电流可以按交流输入的4倍来抑制I’=1/4×Iac=3.5A,输入相电压为220V,则输入相电压的峰值Eip为311V。

需要的电阻值为

R=Eip/Iac=89Ω (2)

电阻的瞬间功率为

PR(Eip)2/R=1087W (3)

电阻的瞬间过功率较大,为了保证电阻对浪涌电流能够起到有效的抑制作用,应选择绕线式水泥电阻,其耐瞬间过功率可高达额定功率的100~400倍。这里,可选择阻值为100Ω的限流电阻,功率为10W的水泥电阻。

2 直流偏磁消除电路

全桥逆变器的原理如图3所示。

驱动器驱动两个对角元件同时导通,同相的开关管不能同时导通,否则电源将被短路。因此两组触发脉冲应有一段共同处于低电平的死区时间,死区时间必须要大干开关管的最长导通饱和延迟关断时间。图3中,T1、T4与T2、T3交替导通时,a、b两点的电位根据开关管的导通而浮动。如果开关管具有不同的开关特性,那么在相同的基极脉冲宽度作用下,将会对a,b接点处的电压波形产生影响,如图4所示。

图4中,矩形A1中的反斜线代表了不平衡的工作特性。如果变压器原边的输入电压带有这种不平衡特性,将会发生偏磁现象,致使铁芯饱和并产生过大的集电极电流,从而降低了变换器的效率,使开关管失控。在变压器原边线圈的输入中串联一个耦合电容,则将直流偏磁滤掉。

耦合电容C与输出端的电抗器组成了一个串联谐振电路,其谐振频率为

其中,LR为折算到变压器原边的副边电感值。

为了使耦合电容充电为线性,要使谐振频率低于逆变器的开关频率。在设计中取谐振频率为逆变器开关频率的1/4。根据公式(4)可以算出电容值为

电容器在每半个周期充电或放电一次,充电电压为V,当电容的充电电压为反极性的V时,若电压过大则影响逆变器电压的调整率。

电容的充电电压Vc=I/Ct (6)

其中,I为变压器原边平均电流,t为电容充电时间间隔。

根据式(6)算得电容的充电电压VC>(10%~20%)V,通过计算可以看出VC的值过大,这将对逆变器产生不利的影响,因此要重新确定电容值。这里,我们确定耦合电容的值为4 μF。

3 瞬时过压抑制电路的设计

PWM调制的全桥电路的全波整流器如图5所示,D1、D2是快恢复二极管。

变压器副边的输出电压为Vs,则二极管D1、D2在截止时承受2Vs的反向电压。由于高频变压器的漏电感及整流管的结间电容在截止时形成一个谐振电路,导致瞬时过压振荡将二极管击穿,造成电源的输出端短路。因此要在电源的输出部分设置RC缓冲电路以保护快恢复二极管,提高电路的可靠性。对于大电流输出的电源,缓冲器RC要设置在每个整流管的两端。缓冲器的设计既要对二极管起到保护作用,又要尽量减小损耗。

第2篇:电源电路的设计范文

关键词:电路 延续教学 Multisim

中图分类号:G71 文献标识码:A 文章编号:1674-098X(2017)04(c)-0225-02

电路是高校电子与电气信息类的重要专业基础课。课程主要分析电路中的电磁现象,研究电路的基本规律和电路的分析方法。为学生学习后续的电子与电气信息类后续课程准备必要的电路知识,在整个课程体系中具有承前启后的重要作用。而随着课程教学改革的发展,在技术基础课程中也越来越强调对学生实验研究能力、动手操作能力、实践创新能力的培养。电路课程作为一门重要的技术基础课,在课程延续教学部分也应加强开展综合性复杂实验的教学。为此我们尝试将“多路直流电源设计”的综合性实验引入了电路课程延续教学中。

延续教学作为课程正常教学的有益补充,采用什么样的教学形式开展是教师们在设计教学方案时深深思考的问题。除了常规的通过习题课、答疑讲解加深对理论知识的理解,开展各种形式的实验教学也是十分有必要的。实验教学除了课内的基础实验、验证性实验,课后的延续教学部分进行一些电子设计制作,对锻炼学生的动手能力,提高学生的学习热情和积极性都是十分有好处的。

直流电源在原来的教学安排中我们是在模拟电子技术基础课程中介绍的。但实际上,学生对二极管的单向导电性在高中阶段就有所接触。在电路课程中学习过电容、电感特性,变压器原理后,向学生介绍直流电源的组成原理学生也比较容易接受。这时候在课后延续中引入多路直流电源设计的综合性实验,与实际联系紧密,在理论学习之后,将电路具体实现出来,学生兴趣比较大。电路课程与后续的模拟电子技术基础课程都属于电子电路,本就有着千丝万缕的联系。在电路课程中就开始学习Multisim软件仿真,对后续模电的学习也是十分有帮助的[1]。

1 原理介绍

在实验进行之前,教师需要对实验的理论基础即直流电压源的工作原理加以介绍。直流电压源通常由交流变压器、整流电路、滤波电路和稳压电路4部分组成,如图1所示。其中交流变压器负责降压,把220 V的交流电网电压降低到合适的交流电压值;整流电路的作用是将方向变化的交流电压变成方向单一的脉动直流电压;滤波电路则将脉动的直流电压转变为较为平滑的直流电压;最后的稳压电路负责清除电网波动及负载变化的影响,保持输出电压的稳定。教师可以重点讲解整流电路[2]。而整流电路的关键在于方向的变化,因此很容易引导学生想到利用二极管的单向导电性来实现整流。接下来主要介绍单相桥式整流电路的结构,讲解桥式整流电路4个二极管构成桥臂,两两交替导通的工作原理。滤波电路部分简单地使用电容元件进行滤波即可。稳压电路则采用三端集成稳压元件W7800和W7900系列来实现。

2 仿真

在学习完实验理论知识部分之后,学生还需要进一步熟悉实验使用的各种元器件,熟悉电路的工作原理和组成。电子分析的仿真软件在这里能够给我们带来极大的帮助。Multisim电路仿真软件是美国国家仪器(NI)有限公司推出的电路仿真软件,具有界面友好,元器件和测量仪器丰富,分析工具强大等优点,是进行电子设计分析的好帮手。学生通过在电脑上采用虚拟的电子元件连接电路,可以掌握常用电子元器件的功能作用、基本参数和测量方法。而且在软件中可以随时根据仿真结果调整电路参数,避免了实验失败带来元器件烧毁的风险。仿真软件提供了丰富的分析仪器,弥补了实验室可能缺少某些不常用仪器的不足。通过软件仿真,学生可以完成从电路设计、元件选取、测试优化、参数调整的一系列过程,锻炼了学生的动手能力和分析能力,也为实际电路的实现打下了良好的基础。多路直流电源的Multisim仿真电路如图2所示。

3 电路实现

学生在认真研究了电路原理并进行电路仿真之后,对每一个电路元件的作用、电路的组成结构都比较熟悉了,这时我们就可以进入实验室进行实物操作了。教师可以先向学生介绍一下面包板和各种电路元器件的使用注意事项。学生通过原理学习和电路仿真,对电路元件已经有了一个感性认识,通过实物操作,更增强了对电路的理性认识。电路逐级连接,逐级测试。遇到问题分析解决。哪一级电路不能出现仿真预计的结果,问题在哪里,需要通过学生自己动手分析解决,锻炼了学生分析问题解决问题的能力。而且由学生自己解决的问题,学生印象更为深刻。在解决各种繁琐问题的过程中,也培养了学生细致耐心的实验习惯。各种常用测量仪器,万用表、双踪示波器的使用,对学生后续电子课程会十分有帮助。原理学习、电路仿真、实物操作整个过程的完成,对培养学生的综合素质和创新意识、工程意识都会大有裨益。学生能够独立完成一个常用电路的制作,也是非常有成就满足感的,促进了学生对电路学习的兴趣。由学生自己连接的多路直流电源电路实物照片如图3所示。

4 结语

直流电源是模拟电子技术课程中很重要的一个知识点。我们在电路课程中开展多路直流电源设计的综合性实验,在电路课中就让学生对直流电源的基本原理和概念有所了解。而Multisim仿真的使用学习,早早接触电路仿真,对于学生后续课程模拟电子技术和数字电子技术课程的学习都很有好处。通过多路直流电源的综合性实验的原理学习、软件仿真、电路实现这样一个完整的过程,学生能够自己完成一个实用电路的制作,极大地激发了学生学习的热情和积极性,同时加深了学生对理论知识的理解,锻炼了学生的动手能力和操作能力,对理论教学也会起到良好的促进作用。

⒖嘉南

第3篇:电源电路的设计范文

北京工商大学计算机与信息工程学院 付 扬

【摘要】设计一种多路输出的直流稳压电源。通过对220V电网电压进行降压、整流、滤波,并以三端可调和固定输出的集成稳压器稳压,得到多路电压输出。设计中依据Multisim仿真,通过不断调试修改电路参数,取得了理想的设计效果。该电源可以满足多种工作电压系统的需求,并在实际中得到很好地使用,具有很强的实用价值。

【关键词】Multisim仿真;稳压电源;多路输出

1.引言

在电子电路和电子设备中常常需要各种不同电压的直流电源,但有些电源只有某一固定电压输出,或有些电源体积偏大,给一些便携式电子产品及小型的电子系统使用带来不变,基于此本设计研究一种多输出便于携带的直流稳压电源,它将电网交流电变为各种需要的直流稳压电源。

为保证设计实现,电路基于Multisim仿真进行设计。Multisim是美国国家仪器公司推出的原理电路设计、电路功能测试的虚拟仿真软件,它具有较为详细的电路分析功能,可以设计、测试和演示各种电子电路。

2.设计任务及方案

设计多路输出直流稳压电源,即输出±(1.25V~20V)任意可调电压;输出±12V电压;输出±5V电压。

设计的直流稳压电源由电源变压器、整流电路、滤波电路和稳压电路四部分组成,如图1所示。其各部分主要完成的作用是:电源变压器将交流电网电压u1变为合适的交流电压u2;整流电路将交流电压u2变为脉动的直流电压u3;滤波电路将脉动直流电压u3转变为平滑的直流电压u4;稳压电路清除电网波动及负载变化的影响,保持输出电压uo的稳定。

图1 直流稳压电源框图

3.单元电路设计

3.1 变压器降压和整流电路

220V交流电首先要降压,以得到合适的电压值,其降压和整流电路如图2所示。根据设计任务,需要降压电路具有2路输出,电源变压器可选一次输入220VAC,二次输出2个绕组均为20V,其A点仿真波形如图3所示,图中两条曲线分别为输入交流电压波形和降压后的波形,A点相位与输入相同,B点相位与输入相反。

图2 降压和桥式全波整流电路

图3 输入波形和A点降压波形

利用整流二极管的单向导电性,将降压后双向变化的交流电变成单向脉动的直流电,常用的整流电路有单相半波整流电路与单相桥式整流电路两种,本设计采用单相桥式整流电路,其仿真结果如图4所示,图中上面曲线为C点整流波形,下面曲线为D点整流波形。

图4 整流电路仿真波形

设变压器副边电压为:

(1)

整流输出电压平均值Uo:

(2)

由于每个周期内,D1、D4串联与D2、D3串联各轮流导通半周,所以每个二极管中流过的平均电流只有负载电流的一半,二极管截止时,每个二极管承受的最高反向电压就是变压器次级交流电压u2的最大值。

3.2 滤波

整流输出的直流电压脉动分量比较大,为减小脉动,在整流电路之后加上滤波电路。本设计采用电容滤波,电容在高频时容抗小,和负载并联,从而达到减小纹波的目的,电容滤波电路如图5所示。

图5 整流滤波电路

若滤波电路负载开路,则输出电压为。接入负载后,其输出电压取决于时间常数RLC,RLC 越大,Uo越高,脉动越小,同时负载电流的平均值越大,整流管导电时间越短,二极管 iD的峰值电流越大,当时,工程上常取:

(3)

仿真波形如图6所示,滤波后输出电压的脉动程度大大减少,而且输出电压平均值U0提高了,上面曲线是C点波形,此时C为10μF电容,下面近乎直线是D点波形,C为4700μF电容滤波波形。

图6 10μF和4700μF电容滤波波形

3.3 稳压电路

稳压电路采用三端集成稳压器,三端集成稳压器只有三个引脚,即输入端、输出端、公共端。输出电压固定的三端集成稳压器有正输出(LM78××)和负输出(LM79××)两个系列,以上各型号中的××表示输出固定电压值,一般有5V、6V、8V、12V、15V、18V、20V、24V等8种。输出电压可调的三端集成稳压器有LM317、LM117(输出正电压),LM337、LM137(输出负电压),其最大输入电压40V,输出电压范围为⒈25~37V。

4.整体电路设计实现

整体电路设计如图7所示,输出±可调电压由LM317和LM337的E、F输出,其通过调节滑动变阻器RW,输出电压可调,其输出电压计算公式:

(4)

LM7812和LM7912输出G、H分别为±12V,LM7805和LM7905输出M、N分别为±5V,其正电压E、G、M点输出仿真如图8所示,负正电压F、H、N点输出仿真如图9所示,由仿真可见,实现了预期的设计。

图7 多路输出稳压电源电路

图8 分别为E、G、M点输出电压

图9 分别为F、H、N点输出电压

5.结论

基于multisim的实现了直流稳压电源的降压、整流、滤波和稳压设计,实现了多种稳压输出,其设计调试方便,达到理想设计。该设计已经使用到我们电子技能实训的各种电子系统中,使用方便,效果很好。

参考文献

[1]卞文献,何秋阳.Multisim10仿真软件在《模拟电子技术》理论课教学中的应用[J].电子世界,2012.13:162-163.

[2]雷跃,谭永红.用Multisim10提升电子技术实验教学水平[J].实验室研究与探索,2009(4):24-27.

第4篇:电源电路的设计范文

引言:

随着人们生活水平的提高和城市基础建设的加快,灯的用途早已不只是用于照明,在城市的亮化工程和各种大、小型的广告招牌中大显身手。

1、八路流水灯控制器的设计

本控制器的主要功能是完成八路彩灯(包括桥梁灯、护栏灯以及各种大型广告招牌的霓虹灯)的控制。本控制器电路可分为5V电源、555振荡电路、计数器、程序存储器EPROM、可控硅触发电流驱动电路。

555振荡电路如图所示,一个脉冲周期中高电平脉冲宽度T1=ln*(R1+R2)*C,低电平宽度T2=ln*R2*C,脉冲周期Tw=T1+T2。

用NPN型三极管9013放大可控硅的触发电流。D为高电平时9013饱和导通,电流经过可控硅的T1、G极和9013的集射极流向地端;低电平时9013截止,可控硅关断。为了使9013工作在开关状态,其基极限流电阻不宜取得过大,一般取100或200欧姆。为了减轻7805的负载,9013集电极电源VCC由变压器输出的9V电压经过4个二极管桥整提供,而不是由7805提供,集电极限流电阻为100欧,其消耗功率为P=(0.9*V)*(0.9*V)/R=0.64W,驱动电流I为0.81A,V为变压器输出电压9V。

2、霓虹灯的7彩渐变控制器的设计

7彩渐变的主要原理是,三基色混色实现7种颜色的变化,渐变则采用输出波形的脉宽调制,即霓虹灯导通的占空比,在扫描速度很快的情况下利用人眼的惰性达到渐变的效果。

第5篇:电源电路的设计范文

关键词:能源路由器;Buck-Buck型换流器;直流配电网

前言

伴随电网的用电负荷迅猛增加,原先的配电网系统将面对越来越多的各种问题。例如,分布式发电及储能技术发展迅速,如何将这些新兴电源有效地接入传统的交流电网?城市发展对电源建设和线路走廊的制约越来越多,导致负荷中心的无功电源更为不足;直流负荷或直流环节的负载日益增多,亟待发展更为有效的供电模式以满足负荷的快速增长。随着电力电子技术发展日趋成熟,重新探索直流方式配电的效果,可为当前日益发展的电网提供一条解决配网问题的新思路[1-2]。

直流配电网是以直流为主导的电能配送系统,具有解决现代配电系统面临挑战的潜力。直流配电的主要技术特征:(1)直流配电更为可靠:线路故障率较交流系统更低,可单极运行,响应快、恢复时间短;(2)直流配电效率更高:线路损耗低于交流配电,可直接为日益增多的直流负载提供电能;(3)可提高电能质量;(4)易于实现分布式发电互联[3-4]。

直流配电在提供高效电能转换与控制的同时,由于并列运行换流器的数量大、种类数量大,会面对可靠的性能、安全的性能等方面的种种问题,以及直流电力电子装置的体积、重量、维护和运行费用等问题。因此,考虑到目前直流配电存在的问题,需要一种新的直流配电网以解决信息可靠收集、能量有效流动等问题。

1 系统设计

图1为文章提出的一种基于能源路由器的直流配电网结构示意图,该配电网包括能源路由器单元、至少一个信息收集单元、至少一个能量信息转换单元、至少一个交流母线单元、至少一个AC/DC模块单元、至少一个交流负荷单元、至少一个光伏发电装置单元、至少一个储能装置单元、至少一个风力发电装置单元、至少一个电动汽车充电装置单元;其中,能源路由器单元的信息流信号和控制信息流信号基于Z-Wave无线通信技术进行传输,AC/DC模块单元包括一组双Buck型换流器和一个工频逆变桥。

2 系统各模块构成及作用

能源路由器单元:与交流电网、信息收集1装置、信息收集2装置、信息收集3装置、信息收集4单元、能量信息转换1单元、能量信息转换2单元、能量信息转换3单元、能量信息转换4单元连接;

交流母线单元:与交流电网、交流负荷1装置、交流负荷2装置、AC/DC模块1装置、AC/DC模块2装置、AC/DC模块3装置、AC/DC模块4装置相连;

AC/DC模块1单元:与交流母线单元、光伏发电装置单元连接;

AC/DC模块2单元:与交流母线单元、储能装置单元连接;

AC/DC模块3单元:与交流母线单元、风力发电装置单元连接;

AC/DC模块4单元:与交流母线单元、电动汽车充电装置单元连接;

光伏发电装置单元:与AC/DC模块1单元、信息收集1单元连接;

储能装置单元:与AC/DC模块2单元、信息收集2单元连接;

风力发电装置单元:与AC/DC模块3单元、信息收集3单元连接;

电动汽车充电装置单元:与AC/DC模块4单元、信息收集4单元连接;

信息收集1单元:与光伏发电装置单元、能量信息转换1单元连接;

信息收集2单元:与储能装置单元、能量信息转换2单元连接;

信息收集3单元:与风力发电装置单元、能量信息转换3单元连接;

信息收集4单元:与电动汽车充电装置单元、能量信息转换4单元连接。

3 Buck-Buck型换流器拓扑设计

图2为文章配电网系统所采用Buck-Buck型换流器拓扑示意图[4]。图2中C表示电容,D表示二极管,S表示开关,T表示绝缘栅双极型晶体管,R表示电阻,L表示电感;T1、T2、T3、T4、T5及T6共同组成IGBT的ABC桥型电路。图2中Sa、Sb、Sc为两向开关,其频率为50Hz的2倍左右。S1、S2一般运行在较高的频率,S1、L1、D1及S2、L2、D2综合起来组成最终的Buck-Buck型换流器。基于具有逆变作用的桥型电路,以及频率高于50Hz数倍的两向开关,将拓扑结构分开为两个Buck-Buck换流器,从而实现了实际电路电流的有效控制。 4 Z-Wave无线传输技术

Z-Wave是由丹麦公司Zensys一手主导的无线组网规格,该技术的参数如下表所示。不同于ZigBee能同时运用于医疗、安全等多种领域。ZigBee是建置于IEEE802.15.4上的协议,应用层面较广。

该系统构建于射频技术、成本小、功耗小、可靠性能优良、适于网络的无线通信Z-Wave技术实现信息流、控制信息流的有效传输,可将光伏发电装置、储能装置等的实时能量信息快速、可靠地传送至能源路由器,从而有助于实现直流配电网间以及内部的能量流进行实时监控和信息传输,有助于实现多个分布式能源网间的能量进行有效交换。

5 结束语

与现有直流配电网的系统相比,文章提出的直流配电网具有以下优势:(1)该系统提供的基于Z-Wave的信息交互单元是一种无

线组网规格,基于射频的、低成本、低功耗、高可靠、适于网络的短距离无线通信技术实现信息的交互,可靠性大为提升;(2)该系统可使实时信息得以高效传递,使电网中的能量高质量地进行流动,使系统的成本得以大幅降低;(3)通过Z-Wave无线技术实现直流配电

网间以及内部的能量流进行实时监控和信息传输,可及时反馈能量流状态,控制电力电子装置进行相应的能量转换,实现多个分布式能源网间的能量进行有效交换。

参考文献

[1]杜翼,江道灼,尹瑞,等.直流配电网拓扑结构及控制策略[J].电力自动化设备,2015(1):139-145.

[2]徐通,王育飞,张宇,等.直流配电网发展现状与应用前景分析[J].华东电力,2014(6):1069-1074.

第6篇:电源电路的设计范文

关键词:背光源;发光二极管;动态;降低功耗;驱动电路

中图分类号:TN141.9 文献标识码:A

The Matrix LED Dynamic Backlight and Drive Circuit's Design

ZHENG Xiao-bin, YAO Jian-min, LIN Zhi-xian, XU Sheng, LI Yuan-kui, RUAN Kai-ming, GUO Tai-liang

(College of Physics and Information Engineering Fuzhou University, Fuzhou Fujian 350002, China)

Abstract: Because of its non-luminous, the liquid crystal needs backlight. At present majority use the Cold Cathode Fluorescent Lamp(CCFL) as backlight. But the brightness is not easy to be controlled and response slow and so on disadvantages of CCFL, it results the energy wasted and motion blur of the liquid crystal display. This study introduced a structure of direct dynamic backlights based on LEDs, in which the light emission of every LED was restricted to a smaller area on the diffuser film and every LED was only responsible to illuminate one part of LCD. Designed the drive circuit of dynamic backlight, the LED backlight achieves the corresponding brightness by the analysis to the demonstration picture to obtain the parts of different best brightness and using the way of dynamic controlling the brightness. Using Matlab software simulation LED backlight, results show that the dynamic backlight can effectively reduce power consumption and improve image contrast.

Keywords:backlight; LED; dynamic; reduce the power consumption; drive circuit

引 言

液晶显示(liquid crystal display,LCD)已在众多领域迅速取代了传统阴极射线管(cathode ray tube, CRT) 显示技术[1],使LCD显示器成为了家电市场的主导产品。由于液晶本身不发光,需要通过背光照明,因此目前大多数产品采用阴极射线荧光灯(CCFL)作为背光源。但因CCFL的亮度不容易控制,而液晶电视是采用调节LCD的控制电压,改变液晶的透过率来实现对LCD总体亮度的控制,这种方式在很多情况下造成了背光模组的光能和电能的浪费。另一方面,随着世界各国对环保的重视以及RoHS法规的实施,近年来LCD厂商正积极地寻求冷阴极荧光灯的替代方案。

过去数年,LED已得到广泛应用,其中成长最快的应用领域是LCD的背光应用。且数年间LED已在小尺寸显示屏的背光应用领域得到普及,已取代了CCFL,而在中大尺寸的应用中,LED取代CCFL也正成为趋势[2]。LED背光已开始迈入需要更高性能和更长工作时间的中大尺寸显示屏背光的应用中。采用以色彩还原好、省电、寿命长为优点的LED背光源,是高端液晶电视的趋势。文中所做项目攻克了背光源模块过厚、传统LCD背光散热量大、工作时间过长和高温下亮度和色彩易漂移的技术难题,使其色域范围超过 110% NTSC[3]。

1 点阵式LED动态背光源

LED(light emitting diode)即发光二极管,是一种能够将电能转化为可见光的固态半导体器件,它可以直接把电转化为光。同时LED是一种电流型器件,即它的工作状态是以通过它的电流为标准的,其工作电流在20mA左右,管压降在1.8~4V。一般在20mA工作电流时,LED能发挥最大的光电效率,超过这一电流值,虽然其亮度还能增加,但二极管的功耗和发热激增,寿命会大大缩短。为了将LED的工作电流控制在20mA,过去大都采用串联电阻的方法――限流电阻法,而现在一般采用集成电路恒流源。

点阵式LED背光,就是LED均匀地分布在整个背光面上,各个LED所照射出的光均匀地投射在整个背光膜上。点阵式LED如图1所示。我们知道,单独控制液晶的每一个像素点的点亮是难以实现的,但是可以通过尽量细分对液晶的照明区域,使单个LED 只负责为液晶的部分区域提供背光照明,这样就可以最大程度地提高LCD的显示质量。

采用亮度动态控制的方式可以很方便地通过调节LCD背光源电源电压或输入电流的大小,从而改变LCD的发光强度,可使电视在LCD较低能耗条件下工作。亮度动态控制就是通过对显示的画面进行分析,得到不同区域的最佳亮度的同时控制LCD背光达到相应的亮度。采用动态背光源能有效地改善目前LCD所存在的两大问题:动态模糊(motion blur)和对比度低。

整体背光的亮度随着影像内容个别进行亮度调变,动态背光模块驱动模式所展现的并不是恒定亮度均匀光源,而是提供一个类似影像内容调变的动态的背光源,此模式可有效解决暗室漏光问题,大幅提升影像动态对比度[4]。由于主动式动态背光模块驱动模式所展现的并不是恒定亮度均匀光源,而是提供一个类似影像内的主动式动态背光源,因此功耗大小随不同影像内容有所差异。因此动态LED背光模块的平均功耗将会比传统 CCFL 背光模块低,达到省电节能的功效,同时也可有效降低 LED 热源的产生,解决一般 LED 背光源模块所面临的问题。因此,可使LED将不再需要额外的风扇及特殊散热结构,即可有效降低整体材料及制造加工成本,同时由于 LED 低功耗将可进一步提高LED产品寿命与可靠度。同时借由动态驱动电路设计,可进一步提升影像的画面质量,消除普通液晶显示在显示快速移动物体时出现的拖影现象。

2 驱动电路设计

LED动态背光原理框图如图2所示。视频源信号是由计算机DVI显卡接口输出的分辨率为1024×768、刷新率为60Hz的视频信号。视频接收单元的解码芯片采用Silicon Image公司的SiI161芯片,其解码输出24bits的RGB像素数据。控制模块的作用是由FPGA接收、缓存及处理数据,并驱动VGA转换电路和LED背光源驱动电路。数据缓存采用数据乒乓存储机制,将RGB三色数据存储在数据缓存单元中的两部分SRAM中。FPGA将处理后的数据送到VGA转换电路模块,驱动LCD显示屏。同时,FPGA通过对灰度数据的采样与计算,传递给LED背光源驱动电路所需要的数据和控制信号。LED背光源的驱动电路主要包括集成灰度调制电路和行后级放大单元电路。

2.1 集成灰度调制电路

LED灰度级显示的方法目前有很多,包括幅值法、空间法、时分法,其中较为常见的是PWM法(脉宽调制法),也叫占空比法。这种方法是在扫描脉冲对应时间内,从数据脉宽中划出的一个灰度调制脉冲[5]。数据脉冲的宽度可以划分为多个等级,不同的宽度等级代表不同的灰度信息,从而可以使被选通的像素实现不同的灰度等级。PWM方式根据数据大小的不同,在一个周期内输出灰度调制脉冲的占空比将产生相应的变化。以8位数据为例,如图3所示,输出的脉宽信号与数值大小成比例关系。当数据最大时(脉冲1,11111111),脉冲高电平占满整个周期,达到全占空比;当数据为最大数据的一半时(脉冲2,10000000),则脉冲高电平占整个周期的一半,以次类推,当数据为0时,则整个周期内脉冲为低电平。这种灰度调制方法可以很容易地通过数字电路控制将灰度数据信息携带在列信号脉冲上,是平板显示器中常用的灰度实现方案,尤其是电流型器件,如LED、OLED、FED的驱动电路中均有采用[6]。

本系统集成灰度调制采用PWM灰度调制芯片BHL2000。BHL2000专用集成电路芯片是由北京北方华虹微系统有限公司开发的具有自主知识产权的超大规模集成电路,广泛应用在LED大屏幕和其它类型的显示屏系统上。它采用双端口SRAM技术,解决了其它芯片数据传输会占用可贵的显示时间的突出问题,保证了图像的亮度和灰度[7]。BHL2000采用PWM调制方式,主要由译码器、比较器、SRAM、计数器等部分构成,其内部结构框图如图4所示。

BHL2000芯片内部采用双端口SRAM技术,数据的写入和读出操作分别由不同的时钟和地址控制,因此数据的写入和读出互不影响。在写入时钟WR驱动下,数据从DIN0~DIN7输入,在内部移位寄存器中串行移位16次后,由级联口SHIFT0~ SHIFT7移出。行、场控制信号HS、YS则确定数据在存储器中的存储位置,最多可以存8×16×32个字节。输出行、场控制信号HCLK、CLR确定取数位置,在读出时钟CLK控制下进行灰度调制,输出脉宽信号O0~O15。BHL2000的16路漏级输出接上拉电阻可产生最大80mA的驱动电流[8],同时串有8路级联信号到下一个芯片。本系统中为了点亮一个48×32的LED点阵,需要三片BHL2000级联。

2.2 行后级驱动单元

行后级驱动单元实现的是行扫描功能。利用FPGA送给行后级驱动单元的32路行信号可实现对LED背光的逐行扫描和隔行扫描。

本系统采用48×32点阵LED作为背光源,因此每显示一行需要的电流是比较大的,假如每颗高亮度LED灯的额定电流是25mA,则驱动一行所需要的电流是25×48=1.2A,一般的驱动放大芯片无法满足要求。因此,需要采用有较大驱动能力的MOS管,在本系统中使用的是STM4953。STM4953是双P沟道增强型场效应管,输出电流可达4.5A,完全可以满足系统的要求。

其内部有两个CMOS管,1、3脚为VCC,2、4脚为控制脚,2脚控制7、8脚的输出,4脚控制5、6脚的输出,只有当2、4脚为“0”时,7、8、5、6脚才会输出,否则输出为高阻状态。

3 系统仿真

本系统采用FPGA对整个系统控制。FPGA控制模块是整个系统的时序产生控制电路部分,它通过产生相应的控制信号,分别对数据缓存及处理单元、集成灰度调制驱动单元、行后级集成驱动单元进行控制。FPGA控制电路产生SRAM的控制信号和相应的地址信号来实现对数据缓存单元的控制,同时 FPGA控制电路对集成灰度调制驱动单元的控制,是通过产生BHL2000的灰度调制控制信号来实现。而 FPGA控制电路对行后级集成驱动单元的控制,是通过产生1/32的行脉冲信号并送到STM4953来实现。图5是 FPGA产生的控制信号的总体流程图。

根据系统输入、输出信号的要求,本设计采用Cyclone公司的EP1C6 为目标芯片,以quartus为开发工具,Verilog语言为开发语言,进行FPGA设计。本设计对集成灰度调制和行后级采用模块化设计,如图6所示。BHL2000模块的功能是送给BHL2000芯片所需的控制信号wr、hs、vs、hclk、clk、clr及8位串行灰度信号。row模块的功能是向行选驱动模块提供32位并行的行信号 row[31..0]。

4 实验结果

为了验证点阵式动态背光源的效果,本设计采用Matlab进行模拟图像所需的背光源,试验中选用了2幅1024×768像素的8bit灰度图像。如图7所示为仿真试验结果图。测试图像自左至右依次为测试图1、测试图2;图(a)为原始图像;图(b)为LED背光仿真图;图(c)为基于LED影像背光的试验结果图。

由试验结果可以看到,当原始图像的像素灰度数值越小时(如测试图2与测试图1比较时),背光亮度可降低的幅度越大,因此能更有效地降低背光源的功耗;仿真结果图像(c)与原始测试图像(a)相比,整体亮度会有所降低,不影响图像的显示质量,但基于动态背光源所显示的图像比恒定的背光源能更有效地降低功耗,另外图像的对比度也有一定的提高。

5 结 论

本文提出了一种基于点阵式LED的动态背光源结构,将单个LED发出的光投射区域限制在散光膜的单一区域,即每个LED只负责液晶部分区域的背光照明。并设计了动态背光源的驱动电路,通过对显示的画面进行分析,采用亮度动态控制的方式可以得到不同区域的最佳亮度,同时驱动LED背光达到相应的亮度。本文利用Matlab软件仿真LED背光源,结果表明采用动态背光源能有效地降低功耗,提高图像对比度。

参考文献

[1] 刘佳尧,钱可元,韩彦军,罗毅.基于LED的直下式动态LCD背光源[J ]. 液晶与显示,2008,4(23):448-452.

[2] Folkerts W. LED backlighting concepts with high flux LEDs[J]. SID Symposium Digest, 2004, 35 (1):1226-1229.

[3] 梁 萌,王国宏,范曼宁等. LCD-TV用直下式LED背光源的光学设计[J ]. 液晶与显示,2007,22 (1):42-46.

[4] Seyno Sluyterman. 动态扫描背光使LCD电视呈现活力[J]. 现代显示,2006,63:18-21.

[5] 文冠果,何刚跃,何 剑,赵 琮.采用PWM和FRC混合算法实现256K彩色LCD驱动芯片的灰度调制[J]. 液晶与显示,2005,(1):72-77.

[6] Kasahara M, Ishikawa M, Morita T, et al. New Drive System for PDP with Improve Image Quality: Plasma AI.SID′99.

[7] 林志贤,张 莉,郭太良. 平板显示器驱动电路的原理和应用[J]. 龙岩师专学报,2001,(3):20-22.

第7篇:电源电路的设计范文

1 概述

在各种形式的开关变流器中,为了减小功率管的电流、电压及热应力,降低损耗,提高变流器效率,减小电磁干扰,提高开关频率和增加变流器功率密度,广泛采用了软开关技术。作为软开关技术的一种,无源无损缓冲电路通过在主电路中附加电容、电感及二极管等无源元器件,使主开关具有零电压、零电流开关条件,并且由于能将缓冲电路上的储能全部传递给负载,从理论上讲缓冲电路是没有损耗的,这也有利于提高变换器的效率。

    图1中所示的是一种新颖的无源无损缓冲电路拓扑,可分别应用于Buck电路和Boost电路,特别是在高开关频率和中大功率场合。该缓冲电路能使主开关S在零电流开通(ZCON)和零电压关断(ZVOFF)条件下工作,极大降低了开关管在这种同时处于高电压和大电流换流条件下的电路中所承受的应力,而且还能有效地抑制主二极管D的反向恢复电流。这种缓冲电路拓扑相对简单,使用的元器件数目较少,具有较强的工程实用价值。2无源无损缓冲电路工作过程分析以Buck电路为例,图2和图3分别描绘了该无源无损缓冲电路各阶段的工作过程与相应波形。

图2

    阶段1〔t0,t1〕——零电流开通t0时刻S导通,由于缓冲电感Lr的存在,开关管中的电流缓慢上升,S获得了零电流开通(ZCON)条件。该阶段中,输入电压直接施加在Lr上,其电流线性下降,因此S中的电流线性上升。另一方面,阶段1也是D进行反向恢复的过程。由于Lr的存在,极大抑制了D的反向恢复电流,并使反向恢复过程中的电压尖峰大大削弱。在分析中不考虑反向恢复过程,t1时刻当Lr中的电流下降到零时D截止,阶段2开始。

    阶段2〔t1,t2〕——Cr复位t1时刻Cr上电压为Vin,Cs上电压为0,通过Lr的电流为0。在由S,Lr,Cs,Ds2,Cr构成的谐振回路中,Cr中的电荷将通过Cs和Lr释放掉,Cs上电压开始上升,D开始承受反向压降,其变化规律满足式(1),即

vD=Vin-vCr+vCs    (1)

t2时刻Cr上的电压降为0,为S的零电压关断(ZVOFF)创造条件,这时通过S的电流达到最大值,即

同时Lr上的电流也达到反向最大值。

阶段3〔t2,t3〕——Lr复位t2时刻当Cr上的电压降为0后,Ds1导通,此时Lr上的电流最大。Lr和Cs通过Ds1及Ds2构成谐振回路,存贮在Lr中的能量通过谐振释放到Cs中,Cs上的电压继续上升。由于Lr仅同Cs进行谐振,因此阶段3的持续时间要长于阶段2。t3时刻当Lr中电流降为0,Ds1及Ds2截止,谐振过程结束。Cs上的电压达到最大值,即

在此阶段中,D所承受反向电压的变化规律为

vD=Vin+vCs    (4)

阶段4〔t3,t4〕缓冲电路停止工作,电路进入正常的PWM开通阶段。与普通硬开关PWMBuck电路导通阶段不同的是,由于在本阶段开始时D承受的反向电压达到峰值并大于输入电压Vin,这并不是一个稳定的状态,这部分多余的能量将通过D的结电容与Lr经Vin构成谐振回路而释放掉,vD振荡下降,到t4时刻稳定在输入电压Vin。

阶段5〔t4,t5〕——零电压关断t4时刻vgs=0,由于Cr的存在,S获得了零电压关断(ZVOFF)。S关断后,电流I全部转移到Cr中,其端电压迅速上升。t5时刻当其电压上升到(Vin-vCs?peak)时,本阶段结束,阶段6开始。

阶段6〔t5,t6〕t5时刻Ds3导通,Cs开始放电,通过Lr的电流逐渐增大。同时Cr继续充电。为了在下一个开关周期中使S获得零电流开通条件,Cr的端电压必须在本阶段中达到输入电压Vin,为此需要满足式(5),即

若式(5)中的I=Imin,则式(5)转换为

(Imax/Imin)<kc    (6)

t6时刻当vCr等于Vin时,Ds2导通,本阶段结束,阶段7开始。

阶段7〔t6,t7〕本阶段中,Cs继续放电,使通过Lr中的电流继续增大。同样,为了在下一个开关周期中使S获得零电流开通条件,通过Lr的电流必须在本阶段中达到I,这需要满足式(7),即

t7时刻当缓冲电感电流iLr达到I时,Ds1及Ds2截止,本阶段结束。

阶段8〔t7,t8〕本阶段中,通过Lr的电流iLr恒为I,Cs继续放电,其端电压线性下降。t8时刻当vCs降为0时,Ds3截止,D导通,本阶段结束。

阶段9〔t8,t0〕缓冲电路停止工作,电路进入正常的PWM关断阶段,直到S下一次开通。

设ωr=,Zr=,则S导通过程中缓冲电路工作时间ton=t3-t0,即

3 无源无损缓冲电路参数设计

缓冲电路的参数设计思路及过程如下。

当S在硬开关条件下开通时,由于D的反向恢复过程造成较大的电流和电压过冲,使得S的损耗大大增加。加入缓冲电路后,因Lr的存在使得通过S的电流在开通时缓慢上升,另一方面,开通过程中其漏源电压也不再被嵌在Vin,从而能降低损耗。假设S漏源电压在时间ton内线性下降到0,则开通损耗可以用式(10)表示,即

S关断时,对于MOSFET而言,由于Cr的存在使相当一部分电流从缓冲电容Cr中流过,即

is=I-Cr(dvds/dt)    (11)

有效降低了关断损耗。由米勒效应可知

dvds/dt=ig/Cdg    (12)

式中:ig=(Vt+I/gfs)/Rg;

Cdg为米勒电容;

Vt为MOSFET开启阈值电压;

gfs为跨导;

Rg为栅极驱动电阻。

因此,MOSFET关断损耗可以用式(13)估算,即

Woff=(ICdg/ig-Cr)Vin/2-Wcd    (13)

式中:Cr<ICdg/ig-2Wcd/Vin,否则Woff=0;

Wcd是漏源寄生电容中存储的能量。

忽略漏源寄生电容中存储的能量Wcd,加入该无源无损缓冲电路后主开关MOS管的损耗即可按式(14)估算,即

因此,从减小MOSFET开关损耗的角度考虑,缓冲电容Cr可以取得最优值,即

Cropt=(ICdg/ig)=(IRgCdg/Vdrive)    (15)

式中:Vdrive为驱动电路输出的驱动信号高电平值。

据式(14),缓冲电感Lr增大,MOS管的开关损耗变小;另一方面,由式(8)和式(9)可知,在其它条件不变的情况下,Lr越大,缓冲电路在MOS管开通和关断过程中工作的时间ton与toff就越长,为保证电路正常工作,须满足

ton≤DminTs,toff≤(1-Dmax)Ts    (16)

因此,缓冲电感Lr的取值应在保证适当的ton及toff的条件下尽可能的大,以降低S损耗。式(8)中当I=Imax时ton最大,式(9)中当I=Imin时toff最大,即为缓冲电路工作时间的最差情况,在该条件下将式(8)及式(9)代入式(16),可求得谐振角频率ωr的最大值,记为ωrm。于是,可知缓冲电感Lr的最优值Lropt为

Lropt=1/wrmCropt    (17)

式中:ωrm为ωr的最大值;

Cropt为Cr的最优值。

综上所述,该无源无损缓冲电路的参数可以按照下面的步骤进行设计。

1)设Zr=,式(7)得以满足,这是为了在阶段7中使Lr中的电流能恢复到I,以保证S在下一次开通过程中获得零电流开通条件。

2)可取x=Cr/Cs=0.05,x的取值须满足式(6),x<kc=4.5,同样是为了保证S的ZCON条件。较小的x值使得该条件更容易满足。另一方面,由式(3)及式(4)可知,较小的x值还有利于降低D的电压应力。

3)按照前述的方法求出满足ton≤DminTs,toff≤(1-Dmax)Ts条件的最大的ωr值ωrm。

4)按照式(18)、式(19)和式(20)计算经过优化后的Cr,Cs和Lr参数,即

Cropt=IRgCdg/Vdrive    (18)

Lropt=1/wrmCropt    (19)

Csopt=Cropt/0.05    (20)

4 实验结果

一个400V输入,110V/10A输出的带有该无源无损缓冲电路的Buck变换器验证了其工作原理和优点。

该变换器的规格和按照前述方法设计的缓冲电路的主要参数如下:

输入电压Vin400V;

输出电压Vo110V;

输出电流Io0~10A;

开关频率fs100kHz;

满载效率94%;

主开关SIRFPS37N50A;

整流二极管DDSEI30-06A;

滤波电感L300μH;

辅助二极管Ds1~Ds3HFA25TB60;

谐振电容Cr3.3nF,Cs66nF;

缓冲电感Lr1μH。

图4给出了样机在1000W输出时缓冲电感Lr上的电流波形,可以看出,与图3中分析的理论波形一致,S实现了ZCON。所设计的缓冲电路的状态仅在S换流过程中发生改变,其持续时间并不影响主电路正常的PWM工作模式。图5所示为S栅极驱动电压和漏源电压对比波形,由图5中可以看出,在S关断过程中,首先栅极驱动电压下降到S的开通阈值,在此过程中漏源电压几乎保持不变,然后S关断,此时漏源电压迅速上升,从而实现了ZVOFF。图6中为D两端的电压波形,由于Lr的存在抑制了D的反向恢复电流,使D关断时的电压尖刺被大大削弱,在实验波形中几乎已看不到。D反偏时端电压的振荡和开通时存在的电压缓降过程与图3中的理论分析一致。

第8篇:电源电路的设计范文

关键词:电源模块 保护电路 应用

中图分类号:TN4 文献标识码:A 文章编号:1672-3791(2017)04(a)-0045-02

随着微电子技术的发展,要求计算机的性能更加安全可靠,而计算机电源系统是否稳定,关系到整个计算机的工作状态及性能,为了确保计算机电源系统输出电压稳定和计算机电源自身的安全,计算机电源设计中保护电路的应用设计日趋重要。

1 保护电路介绍

1.1 保护电路构成

保护电路一般由故障检测电路、电压翻转电路、保护执行电路三部分组成,有的包含有保护显示电路[1]。故障检测电路对保护电路的电压或者电流进行检测,并将检测结果送到翻转电路,当检测到的电压或者电流超过设定值时,故障检测电路将检测到的故障信息送到翻转电路。产生保护控制电压,驱使保护执行电路动作,使保护电路退出工作状态或进入相应的保护状态,达到保护目的。常用保护电路构成如图1所示。

1.2 保护电路种类

保护电路种类划分方法较多,根据故障检测电路的检测方式分为过流检测保护电路、过压检测保护电路、失压检测保护电路及IC内部检测保护电路;根据保护电压翻转电路的类型可分为三极管电压翻转保护电路、可控硅电压翻转保护电路、模拟可控硅翻转保护电路和IC内部电压翻转保护电路;根据保护执行方式可分为待机处理保护电路、小信号处理保护电路、电源震荡驱动保护电路、稳压处理保护电路和保护电路直接执行保护的保护电路。

2 电源模块保护电路设计

某计算机电源设计可利用空间较小,在230 mm×200 mm的印制板上需要将220 V交流电转换成+5 V、+12 V、-12 V等多种稳压直流电源。为了避免因电源故障造成对其他部件损坏,需要电源保护电路设计。(如图2)

2.1 输入电源检测电路设计

输入~220 V的保护电路分三种,选用压敏电阻并接输入电源零火线两端,当输入电压超出压敏电阻的耐压值时,压敏电阻击穿短路,导致保险丝烧断而起到保护作用,选用热敏电阻串入输入电源火线上,因短接等原因导致电流过大超出热敏电阻指标时,热敏电阻烧断而切断电源,起到保护其他组件的作用;采集交流整流滤波后的直流300 V,将300 V分压后送人比较器MAX973输入断,和比较器MAX973另一输入端的基准电源进行比较,在电压要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

2.2 输出电源检测电路设计

采集+5 V输出直流电源,分压后送人比较器输入端,和比较器输入的基准电源进行比较,+5 V电源在要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

采集+12 V输出直流电源,分压后送人比较器输入端,和比较器输入的基准电源进行比较,+12 V电源在要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

采集-12 V输出直流电源,分压后送人比较器输入端,和比较器输入的基准电源进行比较,-12 V电源在要求范围之外时,比较器翻转,最终使DC/DC模块的输入电源断开而起到过压和欠压保护作用。

2.3 翻转电路设计

将MAX973输出端接入光电耦合器一端,光电耦合器输出端和+5 V、+12 V、-12 V检测比较器电路的输出端并接到比较器负端,和接在比较器正端的基准电源进行再次比较,输入电源和三路输出电源检测电路中任何一个电源电压值超出预定范围,则翻转电路输出电压开始翻转,将翻转后的电平送到执行电路输入端。

2.4 执行电路设计

该电源模块借用DC/DC直流稳压模块自身具有的软启动保护功能,当输入端保护端管脚为低时,DC/DC直流稳压模块停止工作。翻转电路送出电平为0~5 V,而DC/DC直流稳压模块输入电源为300 V,为了防止模块损坏对翻转电路造成逆向损坏,在翻转电路输出端和DC/DC直流稳压模块输入保护端之间增加光电耦合器进行隔离。

3 应用效果

该计算机电源模块完成设计、生产、调试后,对其保护电路的各项保护功能进行测试,均达到预定目标,满足了使用要求。

参考文献

[1] 孙铁强.进口彩电保护电路原理与维修[M].中国水利水电出版社,2010.

第9篇:电源电路的设计范文

【关键词】强电部分;车站负荷;低压配电设计

1建筑概况

吉布提铁路工程(Galile-Nagad段)新建AliSabieh火车站位于AliSabieh市郊,交通便利。本次设计参照中国铁路设计标准和规范,在AliSabieh站设置100人旅客站房,建筑面积1248.90m2,并沿站台设置站台雨棚。

2负荷情况

车站的用电负荷等级按现行《铁路电力设计规范》(TB10008—2006)及相关国家规范分类。供电负荷主要分布于AliSabieh车站、综合工区和货场。一级负荷主要包括:与运营管理密切相关的通信、信号、信息化设备;电力各所操作电源等负荷。二级负荷主要包括:消防设备;红外轴温探测设备;检修和整备设备;车站给排水设备;为通信、信号主要设备配置的空调以及公共区照明等负荷。其余均为三级负荷。

3配电系统设计

3.1电源情况

吉布提国内电力资源紧缺,电力主要来源于邻国埃塞俄比亚。埃塞俄比亚电力供电系统电压,高压系统为400kV、230kV、132kV;中压系统为66kV、33kV、20kV;低压系统为0.4kV、0.22kV。

3.2供电方案

一级负荷由2路独立电源供电。二级负荷一般由2路电源供电。三级负荷采用1路电源供电[1]。根据吉布提电网情况以及本项目负荷分布特点,对全线供电采取分散供电方案,即吉方向AliSabieh车站提供2路独立20kV电源,为车站各负荷供电。

3.3照明配电

照明设计主要根据《建筑照明设计标准》(GB50034—2004)、《铁路电力设计规范》(TB10008—2006)。候车厅采用嵌入式大功率筒灯,光源为紧凑型节能灯(横插式)。售票厅、办公室及设备用房等采用嵌入式格栅荧光灯,沿吊顶均布,售票窗口预留局部工作照明电源。咖啡厅采用嵌入式筒灯,光源为紧凑型节能灯。站台雨棚采用金卤筒灯,安装在次檩上,灯具底边与次檩底边平齐。一般办公照明采用高光效、高显色性节能荧光灯;走廊、楼梯间及卫生间等处采用环管或H管节能荧光灯。货场厂库采用150W金卤库房灯,沿顶棚敷设。

3.4线路选择及敷设方式

站房,通信、信息和信号设备房屋等场所内的电线、电缆、光缆及其防护材料均应采用阻燃型或采用阻燃防护措施。其中,站房的电缆,还应具有低烟无卤性能。货物仓库的照明应选用安全型灯具和铜芯线缆,导线明敷时应采用金属管或者金属槽板保护[2]。

4区间光纤直放站供电方案

根据通信专业提供的资料,于全线区间设置光纤直放站。用电点分散,用电容量很小。

4.1国内外区间光

纤直放站供电方案国内铁路采用接触网电源供电方案:贯通线+杆架变电台直接供电。国内的一些专用线铁路及偏远地区铁路的车站采用接触网电源供电,作为通信、信号设备的备用电源。国外铁路供电模式:西班牙,当铁路区间无2路电源的情况下自接触网供电;法国、匈牙利,接触网提供备用电源;埃塞俄比亚和坦桑尼亚既有铁路部分采用太阳能供电和柴油发电机供电。

4.2本工程区间光纤直放站工程供电方案

由于吉布提铁路区间电网并不发达,无法就近提供中低压电源。而吉布提全国大部分地区均属热带沙漠气候,全境终年酷热少雨,日照充足。因此,采用太阳能供电为可考虑的方案。然而,吉布提大部分产品靠进口,本国生产水平低下,并且需要单独对太阳能发电站维护人员进行技能培训,提高了使用和维护的成本。吉布提铁路全线采用电力牵引供电,并设有牵引变电所,由吉布提方提供220kV电源,区间都能提供27.5kV的高压电源。因此,采用接触网电源供电,设置27.5/0.23kV杆架变电台直接供电的模式较为可行。但是,接触网电压存在波动大、谐波含量高等电源质量差的技术缺陷,这些对设备的损伤较大,特别是通信设备对于电源质量要求较高。针对这个技术问题,采用设置交直交电源净化装置解决接触网取电电源质量差的问题。交直交电源净化装置是专为电气化牵引铁路系统设计制造的产品(也称接触网取电装置)。其电源主电路由整流器、直流滤波器、高频逆变器、交流滤波回路及输出变压器等部件组成。输出波形稳定净化,消除电网干扰,解决接触网取电技术问题。目前,采用交直交电源净化装置接触网取电模式,国内技术较为成熟,已在既有铁路广泛使用。相对太阳能发电运行成本低,对于吉布提铁路是较为适用的方案,杆架式变电台配电系统如图1所示。

5结语

随着非洲铁路迅速发展,车站的功能和技术设施越来越综合化、高度集约化,对电气设计提出了更高的要求。本文根据国内外站房设计经验,介绍吉布提站房电气特点,并从电力负荷、配电系统及区间光纤直放站供电方案等几个方面阐述了设计过程中应重点注意的问题及解决方法。

【参考文献】

【1】TB10008—2006铁路电力设计规范[S].