公务员期刊网 精选范文 超高层建筑抗震设计范文

超高层建筑抗震设计精选(九篇)

超高层建筑抗震设计

第1篇:超高层建筑抗震设计范文

关键词:超限高层建筑、抗震设计、超限审查

中图分类号:S611 文献标识码:A 文章编号:

随着国民经济发展,高层建筑除了满足建筑使用功能的要求,对建筑个性化的体现越来越重视,使高层建筑的平面、立面均极其特殊,各种新的复杂体形结构(如连体结构、主裙楼整体连接结构、大底盘多塔楼结构、立面多次收进退层结构及大悬挑结构等)、复杂结构体系(如各种类型的结构转换层、多重组合结构和巨型结构等)出现。

1超限高层的设计方法

复杂结构设计分析,采用多个相应恰当的、合适的力学模型进行抗震验算分析,不是用所谓截然不同的、不合理的模型进行比较分析。“抗规”要求的不同力学模型,还应属于不同的计算分析程序。分析结果具体体现在:结构与结构构件在地震作用下,抵抗地震作用的承载力具有客观存在性,在相应设计阶段主要振动周期、振型和地震作用最大受剪承载力(底部总剪力 V0)应出入不大。整体结构应进行弹性时程分析补充计算 (应注意地震波采集须符合规范要求);宜按弹塑性静力或弹塑性动力分析方法补充计算;受力复杂的结构构件,宜按应力分析结果校核配筋设计。

超限高层根据结构抗震性能设计,选择性能目标控制,选定性能设计指标。第一性能水准的结构应满足弹性设计要求(多遇地震),结构的层间位移、结构构件的承载力及结构整体稳定等均应满足规范规定;按设防烈度(中震)的结构,构件承载力在不计入风荷载作用、不考虑与抗震等级要求相关的内力增大系数时需要满足弹性设计和抗震承载力要求。第二性能水准的结构,在中震或预估罕遇地震作用下,与第一性能水准的结构的差别是,框架梁、连梁等耗能构件正截面承载力只需要满足“屈服承载力”设计,即采用构件材料标准值和重力、 地震作用组合标准值工况下的验算。第三性能水准的结构,在中震或预估罕遇地震作用下,允许部分框架梁、连梁等耗能构件正截面承载力进入屈服阶段,受剪承载力宜按“屈服承载力”设计,竖向构件及关键构件正截面承载力应满足“屈服承载力”设计的要求;整体结构进入弹塑性阶段,应进行弹塑性分析。第四性能水准的结构,应进行结构弹塑性计算分析,在中震或预估罕遇地震作用下,关键构件抗震承载力应满足“屈服承载力”设计的要求;允许部分竖向构件及大部分框架梁、连梁等耗能构件进入屈服阶段,但构件受剪截面应满足界面限制条件要求;结构的抗震性能必须通过结构弹塑性计算分析,在预估的罕遇地震作用下找出弹塑性层间位移角、屈服构件的次序和塑性铰分布、塑性铰部位的材料受损程度。第五性能水准的结构,应进行结构弹塑性计算分析,在预估罕遇地震作用下,关键构件抗震承载力宜满足“屈服承载力”设计的要求;应注意同一楼层的竖向构件不宜全部进入屈服并控制整体结构承载力下降的幅度不超过10%。

隔震与消能减震设计,是一种有效地减轻地震灾害的技术,在提高结构抗震性能上具有优势(即抗震设防目标能力有所提高)。隔震技术一般可使延长整个结构体系的自振周期达到使水平地震加速度反应降低60%左右(相当于常规抗震设计设防烈度降低1.0度~1.5度),从而达到大大降低地震作用,并能获得很好的经济效益。隔震设计计算分析方法一般为时程分析法, 强调隔震层设计与构造措施的重要性。消能减震通过消能器(分为速度型和位移型阻尼器)设置控制预期的结构变形、 增加结构阻尼达到减少地震反应,较好地发挥出经济效益。 设计计算分析方法一般为非线性时程分析法,与常规抗震设计设防烈度约降低 1.0 度设计。因此在部分楼层增设粘滞阻尼消能支撑(设计往往布置在计算分析层间位移角较大的部位,并注意两个主轴方向的均匀布置),通过提高结构的附加阻尼比来降低结构的位移反应。整体结构的非线性时程分析结果表明,在框架-抗震墙结构中增设消能支撑,可以较为经济地控制结构的楼层位移,提高结构的抗震安全储备。

建筑抗震性能化设计,根据设防目标立足于结构承载力与变形能力的综合考虑,具有针对性和灵活性(或对整个结构、或对某些具体部位或关键构件)设计分析方法达到预期的性能目标,分为构件或结构弹性分析、弹塑性分析,基于提高建筑抗震安全性(承载力、变形、构件延性)或满足使用功能的专门要求。

“小震不坏,中震可修,大震不倒”三水准目标,即第一水准按众值烈度或多遇地震影响时,结构抗震分析采用弹性反应谱进行弹性分析设计,主要是承载力验算,又称第一阶段线弹性设计;第二水准按基本烈度或设防地震影响时,考虑非线性弹塑性变形及承载力略有提高,属于第二阶段弹塑性变形验算;第三水准按最大预估烈度或罕遇地震影响时,主要通过概念设计和抗震措施满足结构设计要求,即第一阶段和第二阶段分析(通过静力非线性分析、又称静力推覆分析和动力非线性分析、又称弹塑性时程分析)过程,并采取相应的抗震措施。

2超限高层的抗震设计审查

根据《超限高层建筑工程抗震设防管理规定》(建设部111 号令)、《超限高层建筑抗震设防专项审查技术要点》(建质[2010]109 号通知),建设工程施工图设计审点应放在抗震概念设计上,是否符合现行工程设计标准、规范要求的基础上,施工图设计文件编制深度是否满足要求,认真分析结构计算模型及计算分析与实际情况的相符性、合理性,结构超限判断、抗震设防目标及抗震设防措施的准确性,力求审查过程以提高施工图设计质量为目的,不拘泥于传统的形式,应有前瞻性,跟进专业技术的新发展和趋势,专研技术疑难问题,认识新的结构体系、运用新的结构分析手段,设计方法和施工技术得到发展,推动了建筑行业科技进步的现实, 注重设计的合理性、经济性,促进建筑工程设计对公众安全、公共利益质量监督作用。通过工程超限高层审查专家组的审查意见,设计能够掌握和切中要点,反应全面和关键部位(如薄弱层、软弱层)采取结构抗震加强综合措施,提高结构能力水准。

工程设计送审审查资料一般从几个步骤入手,即工程概况、工程设计、结构计算结果及分析、结构不规则类型及超限的描述和判别、结构超限应考虑的问题及解决办法应对的加强措施,即内容应翔实,针对性强。《超限高层建筑工程抗震设防专项审查技术要点》详细规定了相关内容。

目前,视工程抗震专项审查项目的超限程度具体情况,超限工程专家组技术审查意见包括了省住房和城乡建设厅抗震办委托全国或省抗震专家提出的意见,不仅肯定了超限高层设计判别,同时进一步调整和补充了计算分析和采取抗震加强措施的要求的必要性,也是对工程设计的指导性意见、第二阶段施工图审查的审查依据参考之一。

3结语

总之,建筑结构抗震概念设计的不断发展,指导工程抗震设计重要性日趋显示出来。我们还可从文献[1]、文献[2]、文献[3]中关于建筑结构抗震设防审查工程看出 ,超限及不规则建筑工程结构的研究分析思路、设计与计算方法,对建筑超限判断、超限部分所采取更为严格的措施等,提高工程结构的防震救灾综合能力;文献[1]还强调了在内在的设计技术发展和创新、推进、完善和补充现行规范方面提出操作性较好的说明。这一切,恰好说明了建筑结构抗震概念设计作为基本设计和审查思路的必要性。

参考文献:

[1] 超限高层建筑工程抗震设防专项审查技术要点[S]. 北京:中国建筑工业出版社,2010.

[2] GB 50011-2010建筑设计抗震规范[S].,2011.

第2篇:超高层建筑抗震设计范文

【关键词】超高层建筑;钢筋混凝土;抗震设计

前言

随着我国社会经济的不断发展,我国的建筑业得到迅猛发展,超高层、超高层建筑越来越多,建筑结构造型和功能也越来越美观与先进,许多建筑采用底部大裙房、上部多座塔楼的建筑形式。然而这些复杂的建筑形式的出现也会带来一些问题,其中最重要的就是其结构造型给抗震分析以及抗震设计带来诸多新的问题。国外对钢筋混凝土超高层建筑结构抗震设计有了较为成熟的研究,也有许多建筑案例(如图1)。国内虽然经过数十年的研究分析,也已经出现包括分析软件TBSA和TAT等在内的超高层建筑设计分析软件,这些软件能够帮助建筑设计师或工作人员对建筑的抗震性能进行一定的研究,但设计中还经常会遇到许多程序、规范不能解决的问题,存在一定的局限性。这就需要结构工程师依据概念设计把复杂的问题通过科学分析简化。以适应社会发展的需要,同时也为结构工程师提供更多关于抗震设计的有参考价值的设计依据。

1超高层建筑结构抗震设计要点

1.1平面规则性超高层建筑结构抗震设计特点

平面规则性超高层建筑具有以下的特征:楼板的形状不规则且凹凸不平,楼板之间没有较强的联系、楼板的局部之间断断续续,结构扭转效应明显等。针对上述特点,这类的建筑结构的抗震设计需要注意以下几点:(1)如果楼板的形状凹凸不规则或楼板局部断断续续,则可以采用弹性楼盖模型,使其符合楼板平面内的实际刚度变化,或者按照分块刚性楼板与局部弹性板的原则进行计算,当然,扭转藕联效应也需要考虑进去。(2)对于楼板中应力集中部位以及连接较弱的楼板,可以适当加大楼板的厚度,具体的方法有双层双向配筋、配置45°斜向钢筋、配置集中配筋的边梁。(3)如果楼板之间没有较强的联系或者平面过于不规则,或建筑物过长,则可以通过调整变形缝来把其结构切成若干个子结构。如果一些超限高层的建筑物有明显的结构扭转效应,则应该尽量保证抗侧力构件在平面布置中的对称性,同时应该尽量加大竖向构件的抗侧刚度和强度。

1.2竖向规则性超高层建筑结构抗震设计特点

竖向规则性超高层建筑具有以下的特征:在立体上建筑呈现收进的状态,其主要存在形式为连体建筑,建筑内部转换层结构,大底盘多搭楼等,针对上述特点,这类的建筑结构的抗震设计需要注意以下几点:(1)当超高层建筑的立面收进超过一定限度时,应该保证结构的层受剪承载力大于相邻上一楼层的80%,并且合理控制结构的扭转效应。同时应该加强收进部位、竖向构件以及建筑内部的楼板。一旦立面收进产生偏差,建筑底部的结构就会因为扭转而产生较大内力,这就要求建筑底部结构的周边构件的配筋强度足够大。通常情况下,建筑设计师会采用台阶形多次内收的立面来改善这一困难。(2)对于连体建筑来说,其周边以及连接部位应该按照弹性板来计算,连接体与主体宜采用弱连接,并尽可能减少其重量,同时,钢结构可以优先考虑。连接体及与主体相邻的结构构件的抗震等级应尽量提高其等级。(3)对于带转换层结构的超高层建筑,应该尽量保持其上下主体的竖向结构连续贯通,并对其下部主体结构的刚度进行加强,而对其上部主体结构的刚度进行弱化,通过相应的措施来对转换层上下的等效刚度比进行合理的控制,同时,为了提高框支层的抗震能力与延展性,应该将框支柱承担地震剪力的比例进行增大。而为了减少转换层上下的等效刚度比,可以将上部各层刚度适当减小。一般来说,高振型影响与转换层的高度呈正比关系,即转换层越高,高振型影响越大,转换层上下层间位移角及内力突变也越明显,因此,需要合理控制转换层的高度。(4)在设计大底盘多塔楼的时候,应该尽量提高其底盘的承载力,其目的是防止结构在底部首先屈服。对于连接各塔楼的裙房屋面来说,要适当加大其刚度,其目的是使底部的裙房与上部的塔楼共同振动。然而,当底部加强时,薄弱层会发生上移,从而增大上部结构的位移,因此底盘承载力的的提高需要掌握好其度。在设计塔楼的薄弱部位的时候,应该全高加密该层柱箍筋,并增大箍筋的直径与剪力墙的水平钢筋。

2超高层混凝土建筑抗震影响因素

2.1建筑扭转效应

在对超高层混凝土建筑结构进行抗震设计过程中,为保证混凝土整移一致,同时得到最小和最大的位移结构刚度,应该对建筑物垂直向力及横向力进行防护,提高扭转力作用。因为地震的发生具有突发性和随机性,所以对地震发生的时间、强度难以预测准确,因此在分析建筑整体的抗震性能同时,要及时检查出建筑物内部的抗震隐患,科学分析,及时纠正,保证超高层混凝土建筑的抗震性能。

2.2建筑物建设位置

合理选定超高层混凝土建筑的建设位置是极其重要的,因为我国地处地震频发地带,所以在选址之前,要合理科学对建筑项目所在地的地质情况进行彻底的综合性分析,减少超高层混凝土建筑遭受地震的危害的几率,同时良好的建筑土质也能提高超高层混凝土建筑具有较强的抗震性能。所以为避免建筑位置为松软土质,也应该尽量远离电厂、变电所等工厂。

2.3抗震加固环节

超高层混凝土建筑结构在设计过程中,对建筑物进行抗震加固是非常有必要的,因为这样的设计可以满足建筑延伸性及刚度的要求。在实际的建筑施工过程中,由于超高层建筑物的钢筋混凝土重量大,所以底部柱轴力应该与建筑的高度呈正比关系,只有这样建筑主要构件才能有很好延伸性,在遇到强震时可以减少剪切性对墙体的破坏,这体现了对超高层混凝土建筑结构进行抗震加固设计的重要性。在实际设计过程中,建筑设计师会以强柱弱梁限值为依据,综合考虑框架柱的强剪弱弯和剪压比,才能使设计的柱子顶端的抗弯能力达到合格的质量标准。与此同时,螺旋复合箍筋的使用可以提高柱子的抗冲剪能力和短柱抗震性能,在地震强度不是很强时,保证短柱不对地震剪切力破坏。因为建筑的短柱具备的抗剪性能力低于抗弯能力,所以设计过程中要保障短柱承受抗弯的屈服强度。

3隔振、减振在超高层建筑结构抗震设计中的应用

隔振、减振是在超高层建筑工程上防止振动危害的主要手段。其中减振可分为主动减振和被动减振。在实际的生产生活中,相关设计工作人员会根据隔振、减振的原理,采用以下几种办法实现超高层建筑结构的有效抗震。

3.1粘弹性阻尼结构

通过大量试验和数据分析表明,粘弹性阻尼结构可以有效的将超高层建筑的地震反应减小40~80%,这在很大程度上可以保证建筑主体结构强震中的安全性,是高层结构的舒适度控制在科学合理的范围之内。粘弹性阻尼结构见图2。

3.2吸能减震

吸震减震是隔振减振在超高层建筑结构抗震的又一方法,这种方法的最大特点是,使建筑结构的震动在合理的范围内,发生一定的位移,从物理学角度来讲,就是使建筑结构的振动能量在原结构与子结构之间重新分配,以此达到减小结构震动的效果。当前,有许多吸震减震的装置运用于超高层建筑的抗震设计中:调谐质量阻尼器,调液(柱)阻尼器、悬吊质量摆阻尼器记忆质量放大器等。

3.3金属阻尼器

金属阻尼器能够起到抗震效果,主要是通过在框架中加屈曲约束支撑,在合理的荷载力下,对建筑物实现支撑的作用,当地震发生时,金属支撑能以自身的塑性变形来消耗地震的能量,从而对超高层建筑主体结构起到良好的作用。

4总结

在经济高速发展的今天,人们的居住水平不断提高,超高层建筑越来越多,而在对超高层混凝土建筑结构设计时,其抗震结构的设计就显得尤为重要。要以科学合理的方式增强建筑的抗震能力,切实保障公民的生命与财产安全。本文从我国目前钢筋混凝土结构抗震设计存在的问题与现状入手,简要概述超高层建筑结构抗震设计要点,并重点对隔振、减振在超高层建筑结构抗震设计中的应用进行分析,希望对钢筋混凝土超高层建筑结构抗震设计研究有一定的借鉴作用。

参考文献

[1]刘虎,李炳炎.超高层建筑钢筋混凝土结构抗震概念设计浅谈[J].城市建设理论研究:电子版,2015,5(12).

[2]代新博,袁芳.超高层钢筋混凝土建筑结构抗震延性设计[J].建材发展导向:上,2016,14(11):184~185.

[3]魏国.超高层建筑结构抗震设计要点探究[J].工业,2017(2):00137.

[4]辛小娟.超高层混凝土建筑抗震结构设计方案研究[J].江西建材,2017(7):22.

第3篇:超高层建筑抗震设计范文

关键词:大底盘双塔;超限高层;抗震性能化设计;弹塑性分析

中图分类号:TU973文献标志码:A文章编号:2095-2945(2018)14-0093-03

引言

基于性能的抗震設计是建筑抗震设计的发展方向,文章以实际工程为案例,进行抗震性能化设计,采取多种分析方法对结构体系和构件进行分析计算,并提出加强措施,使得建筑物达到“小震不坏、中震可修、大震不倒”的抗震设防目标。

1工程概况和设计参数

项目位于佛山市南海区,建筑物由1座(45层)、2座(44层)和大底盘裙楼(4层)组成的产业及配套用房用途公共建筑,地下两层车库,两栋单塔以裙楼中轴为对称布置,总建筑面积约16.8万m2。1座和2座建筑结构高度190.5m,裙楼为21.6m。

本工程正负0至裙楼屋面部位为重点设防(乙类),其余部位为标准设防(丙类)。抗震设防烈度7度,II类场地,设计地震第一组,地震加速度值0.1g,特征周期0.35s,设计使用年限50年,安全等级二级,重要性系数1.0,地基基础甲级。风荷载基本风压0.5kN/m2,地面粗糙度B类,体形系数1.4。

2结构体系和基础选型

建筑物高宽比为6.4,结合建筑功能用途,选用钢筋混凝土剪力墙结构体系,其中裙楼部分为框架结构,局部存在框支转换结构和大跨度框架结构,楼盖选用钢筋混凝土梁板体系,典型结构布置见图1和图2。计算嵌固层选定为地下室顶板。

场地地基岩土种类复杂、不均一,起伏变化大,通过对各勘探孔进行土层厚度分析,结合超高层墙柱底荷载大的情况,选用旋挖成孔混凝土灌注桩基础,以微风化岩(frp=15MPa)为桩端持力层。

图2典型标准层结构布置图

3结构超限情况及抗震性能目标

根据文献[2]及[3]的有关规定,本工程属于高度超限建筑(超B级高度限值),存在楼板不连续、尺寸突变、构件间断和穿层柱等不规则项。综合建筑结构体系和超限情况,结构抗震性能目标选定为C级(1、3、4),各构件抗震性能目标见表1。结构层间位移角限值为:小震弹性1/1000,大震弹塑性1/120。

4计算分析及结果

根据性能目标,分别采用不同软件和不同的计算方法对结构进行分析论证。以SATWE为主要计算主程序进行小震、中震和大震等效弹性分析,采用YJK进行小震弹性校核对比和弹性时程补充分析,同时补充了大震作用下的PUSH&EPDA静力推覆和STRAT动力弹塑性分析论证。

4.1小震弹性分析

本工程进行了多塔和单塔的弹性分析计算,考虑偶然偏心地震作用、双向地震作用、平扭耦联及施工模拟3等主要参数。计算结果见表2,剪重比在底部部分楼层不满足,通过增加计算振型数和放大地震剪力系数调整后可满足要求,其余各主要指标均满足现行规范要求。

根据文献[2]的要求,选取了5组天然波和2组人工波补充弹性时程分析。地震波有效峰值加速度(36cm/s2)和持续时间(结构基本自振周期的5~10倍,且大于15s)均满足规范要求,且前三个周期的平均地震影响系数与反应谱结果相差不超过20%。每条地震波计算的结构底部剪力不小于反应谱计算结果的65%,七条波计算的结构底部剪力平均值不小于反应谱计算结果的80%。时程分析的剪力、弯矩、位移和位移角曲线与反应谱计算所得的曲线相似,指标结果均满足规范要求。

4.2中、大震作用下弹性和不屈服分析

按性能目标对结构进行中、大震作用下的等效弹性计算。随着地震力增大,构件塑性铰陆续开展,计算时适当考虑结构阻尼比增加和连梁刚度折减,不考虑与抗震等级有关的构件内力调整系数。弹性分析和不屈服分析时,材料强度分别为设计值和标准值。

由计算分析可见:(1)中震作用下,关键构件和普通竖向构件均满足抗弯不屈服和抗剪弹性,耗能构件抗弯和抗剪均不屈服。其中部分剪力墙的抗弯计算配筋和抗剪计算配筋比小震时要大,部分框架梁和连梁的抗剪计算配筋比小震时要大。(2)大震作用下,底部加强区剪力墙可满足抗剪不屈服,其余剪力墙满足抗剪截面,框支转换梁和转换柱均满足抗弯不屈服和抗剪不屈服,耗能构件大部分屈服。其中部分剪力墙的抗剪计算配筋比小震和中震时要大。(3)剪力墙的剪应力满足性能目标要求。(4)中震不屈服作用下,局部墙肢出现拉应力。

4.3大震弹塑性分析

采用PUSH对单塔进行静力推覆分析,结果见表3,在结构性能点处最大层间位移角均满足限值1/120,可实现“大震不倒”的抗震设防目标。经查小、中、大震性能点处的结构损伤分布图,小震时保持弹性工作状态,中、大震时部分耗能构件的塑性铰陆续开展。由表3基底剪力对比分析可见,大震作用下结构体系通过构件屈服进入弹塑性阶段的屈服,起到较好的耗能作用,表明本结构体系具有一定的延性。底部结构转换处,转换梁、转换柱在小、中、大震性能点均处于弹性状态,无损伤。

为清晰揭露大底盘双塔的整体抗震受力状况,还采用STRAT对多塔进行了动力弹塑性分析,模型分析中梁柱墙采用纤维单元,楼板采用分层壳纤维单元,由基本纤维的拉压非线性本构特性(单向/二维),实现构件的非线性性能及整体结构的非线性性能。选取了2组天然波和1组人工波进行分析计算,所选地震波满足文献[2]及[3]的要求。

计算结果显示:(1)X方向最大层间位移角为1/196(塔1)和1/235(塔2);Y方向最大层间位移角为1/188(塔1)和1/149(塔2)。大震作用下结构处于稳定状态,满足“大震不倒”的抗震设防目标。(2)结构在X、Y方向基底剪力最大值为182343kN和193914kN,对应的剪重比为5.94%和6.32%。(3)X、Y两个方向顶点位移的平均值分别为0.63m(塔1)和0.72m(塔1)、0.47m(塔2)和0.80(塔2)。大震下整体响应指标满足规范设计要求。

通过时程波历时过程分析可见:(1)核心筒连梁屈服出

现早、范围大、程度深,有效耗能;框架梁大面积屈服,有效耗能。(2)核心筒底部墙肢,局部轻微抗弯屈服。(3)剪力墙底部,局部轻微抗弯屈服。(4)外框柱柱底均未出现拉力。(5)框支转换梁端出现轻微损伤,框支转换柱无损伤。(6)裙楼屋顶大跨度部位结构梁柱未见损伤。(7)裙楼楼板应力局部较大,局部部位屈服。

4.4樓板应力分析

裙楼结构平面尺寸约为52m×142m,裙楼中部未设分缝,应用PMSAP程序按弹性板6进行分析,揭露大底盘裙楼楼板在中震不屈服作用下的应力分布。同时,考虑由温度变化(温差绝对值为20℃)而引起裙楼楼板的应力变化情况,裙楼屋面25.2米双向大跨度结构在重力作用下的楼板应力情况。

由分析结果可见:(1)在中震不屈服作用下,在开洞角部、塔楼核心筒角部、塔楼框架柱部位楼板明显应力集中。(2)在温差变化工况作用下,在建筑边角部、开洞角部、塔楼核心筒角部、塔楼框架柱部位楼板明显应力集中。其中裙楼中部楼板在温升工况作用下出现局部压应力,楼板应力水平不高;在温降工况作用下出现较大拉应力,楼板应力水平较高。中部结构梁和结构柱配筋,在温升和温降工况作用下均在性能目标小震弹性计算结果包络以内。(3)重力作用下大跨度部位楼板的压应力值较高,而受大跨度结构影响的两端相邻跨部位出现较大的拉应力。

4.5大跨度屋面舒适性分析

裙楼屋面25.2米双向大跨度处,上部设置游泳池,为保证其舒适性使用,采用了STRAT进行舒适度分析。选用竖向地震反应谱和人行加速度时程波输入,经分析:(1)在竖向地震反应谱作用下,最小频率3.8Hz。(2)采用时程分析计算,其加速度最大值0.018m/s2。(3)在恒载和活载作用下,大跨度结构梁在长期刚度下的挠度最大值为24mm,挠度与跨度比值1/1050。主要指标均满足规范限值要求。

4.6穿层柱分析

本工程存在主要受力结构柱首~二层穿层的情况。应用MidasGen2014进行模拟分析,选择相应的穿层柱,在柱顶端施加单位集中力,求得穿层柱屈曲模态,再得出相应临界荷载系数值。然后,应用欧拉失稳公式Pcr=π2EI/(μL)2,反算出计算长度μL,以此求得穿层柱的计算长度系数。将各穿层柱的计算长度系数输入整楼模型中,进行大震作用下考虑P-Δ作用效应的验算,验算结果显示,强度和稳定满足规范要求。

5主要加强措施

通过上述论证分析,本工程结构能满足竖向荷载和风荷载作用下的有关指标,且能满足抗震设防目标。结合各构件性能目标要求和薄弱部位的加强方向,采用如下加强措施:(1)剪力墙底部加强区提高墙身分布筋最小配筋率至0.50%。(2)转换梁和转换柱构件内设置型钢加强构件的承载能力和延性性能。(3)提高中震不屈服作用下受拉墙肢的墙身竖向分布筋最小配筋率至0.5%,提高暗柱的纵向配筋率,满足墙肢受拉力要求。(4)裙楼二~五楼板板厚加强至

150mm,配置双层双向10@150,裙楼屋面25.2米双向大跨度结构梁及相连结构柱均设置型钢,相邻跨部位延伸2/3跨范围内均设置钢骨混凝土结构梁,加强其强度和刚度。

6结束语

第4篇:超高层建筑抗震设计范文

关键词:复杂高层 ;超高层建筑 ;建筑结构 ;设计 ;

中图分类号:TU97 文献标识码:A 文章编号:

我国复杂高层及超高层建筑不断崛起,建筑企业为了提高自身企业在建筑市场中的竞争力,对复杂高层及超高层建筑结构设计也有了更高的要求。复杂高层及超高层建筑结构设计中包含了诸多设计方面及影响因素,在设计施工前要根据高层建筑规范要求及实际情况进行科学合理的设计分析,确保建筑结构设计施工的科学性合理性,从而提高复杂高层及超高层建筑的安全性能,促使建筑企业走向一个新的里程碑。

复杂高层及超高层建筑结构设计中的抗震设计分析

复杂高层及超高层建筑相对于普通建筑而言,具有一定的特殊性,复杂高层及超高层建筑结构较为繁杂,且具有一定的高度,若出现紧急情况或者是地震自然灾害等不易救援,在这种情况下在复杂高层及超高层建筑中进行抗震设计就显得尤为必要。评价一个复杂高层建筑或者是超高层建筑结构抗震设计是否合格,可以从以下两方面进行分析:

1.抗震设计时要保证其为弹性状态

复杂高层建筑及超高层建筑倘若出现地震自然灾害由于其海拔过高必然会影响到周围的建筑物,给城市带来一定高的灾害,对其进行抗震设计是防患于未然的一种措施,在抗震设计中保持其为弹性状态,能够降低地震对建筑物的损坏率。

抗震倒塌设计

在复杂高层建筑及超高层建筑结构抗震设计中,要对建筑所能承受的地震振动侵害的大小,对其最大地震振动进行计算分析,能够在一定程度上降低地震灾害的侵害程度。其次,对于地震结构设计中的延性构件进行合理设计,其非弹性变形的能力不得超过其本身的变形能力,而对于非延性构件,其承受地震自然灾害的抗压力应该大于其本身建筑所能承受的压力,不论是复杂高层建筑结构设计还是超高层建筑结构设计,都要对其构件进行合理的控制,保持抵抗地震自然灾害的弹性。

复杂高层及超高层建筑结构设计要点分析

复杂高层及超高层建筑在建筑施工中相比普通建筑而言,具有一定的难度,其工程量较大,楼层较高,所以在建筑结构设计中要遵循一定的施工要求,准确把握施工要点,这样才能提高施工质量,保证复杂高层建筑及超高层建筑的安全性及稳定性,以下笔者根据诸多建筑企业进行复杂高层及超高层建筑结构设计施工中所总结的建筑结构设计要点:

重视建筑结构概念设计,着眼整体

复杂高层及超高层建筑其施工程序较为繁杂,在对其进行施工设计时,需要全面把握其结构概念,重视复杂高层及超高层建筑结构的概念设计,要做好复杂高层及超高层建筑结构概念设计,首先,应该从建筑的规则性及均匀性着手,在实际施工中要重视建筑施工中的对称性,保证建筑整体的美观;其次,结构设计中需要多个施工人员的配合,所以在建筑结构概念设计中要注重传力途径的建设,要保证施工中有一条清晰直接的通道实现传力,在传力途径建设中主要从结构竖向传力及抗侧立传力两方面出发;再者,在建筑结构设计施工中,要把握好复杂高层及超高层建筑的整体性,它在一定意义上直接体现了建筑企业的施工水平,另外我国提倡节能减排,建筑企业要想适应这一形势,在超高层建筑结构设计施工中就要融入节能减排的理念,在建筑物内部安装节能设备。

合理选择抗侧力结构体系

抗侧力结构设计是复杂高层及超高层建筑结构设计中的重要组成部分,良好的抗侧力结构设计能够提高复杂高层及超高层建筑的安全性能,为用户提供良好的居住或办公环境,因此在建筑结构设计施工中一定要合理选择抗侧力结构体系。选择合理的抗侧力结构需要了解建筑的实际高度进行科学的分析选择,另外在整个结构设计中要尽量使抗侧力结构体系中的各构件紧密连接在一起,保证其内部构件的整体性。结合建筑实际状况对每种抗侧力结构体系进行分析,了解其在建筑结构设计中所发挥的作用,根据复杂高层及超高层建筑的不同特点及当地的地理环境从而选择正确的抗侧力结构设计方法。

注重抗震设计各个环节的把握

抗震设计是复杂高层及超高层建筑结构设计的重中之重,它直接关系着建筑整体的安全性及稳定性,是确保建筑安全的重要环节,因此在复杂高层及超高层建筑结构设计中一定要严格把控抗震设计中的各个环节,提高抗震设计各个环节的合理性与科学性。在抗震设计中对抗震材料的选择是十分重要的,它在一定程度上直接影响了抗震设计的抗震性能,选择抗震材料要根据复杂高层或者是超高层建筑的特点进行购买,针对不同的高度选择抗震性能等级不同的材料。在建筑结构抗震设计施工前,要拟定行之有效的设计方案,确定建筑结构的变形弹性,在抗震施工中对其变形弹性的把控需要符合地震预期要求,另外还需要合理控制地震作用下的层间位移,进行层位位移在一定程度上能够降低地震给建筑带来的侵害。

全面了解所要设计的建筑结构特点才能准确把握结构设计的要点,在抗震设计中要科学对建筑结构的变形及结构位移进行科学的研究分析,精确两者之间的连带关系,从而更好的进行抗震结构设计,提高复杂高层及超高层建筑的安全性能,延长复杂高层及超高层建筑的使用寿命。倘若该建筑处于地震灾害的常发地区,应该进行多方面抗震设计,提高其抗震延性,增强复杂高层及超高层建筑的抗压力,减少因地震灾害而出现建筑倒塌事件的发生。

建筑结构抗震设计的质量及方法从一定意义上来讲直接决定了其抗震能力及效果,在整个建筑结构抗震设计中,设计人员一定要按照高层抗震设计的相关规定,而后再结合超高层及复杂高层建筑所在的具置,周边环境进行分析,从而制定出符合建筑结构施工要求的抗震设计方案,以便后期施工人员抗震结构设计施工的顺利进行。抗震设计对复杂高层及超高层建筑结构设计具有重要的意义,良好的抗震性能能够降低降低地震自然灾害对建筑的侵害,确保建筑的安全,从而保证住户的人身安全。

总结

复杂高层及超高层建筑与普通建筑相比,施工难度大,注意事项较多,所以要做好复杂高层及超高层建筑结构设计,要结合复杂高层建筑或者超高层建筑所在的地理位置及特点进行全方位的结构概念设计,制定科学合理的设计方案,从而保证设计人员顺利进行结构设计施工建设,提高复杂高层及超高层建筑的结构设计水平,从而确保整个建筑的安全质量,为住户或者办公者提供良好的建筑环境。

参考文献:

[1]陈惠信.对超高层建筑结构设计技术要点的探讨[J].中国建筑工业出版社,2012,10(5):116-118

[2]陈天虹;林英舜;王鹏种.超高层建筑中结构概念设计的几个问题[J].建筑技术,2011,10(5):357-359

[3]黄鹤.复杂高层与超高层建筑结构设计要点探讨[J].才智,2012,6(12):45-48

第5篇:超高层建筑抗震设计范文

关键词:超限高层结构;抗震设计;改进方法

1超限高层结构中基于性能的抗震设计思路

超限高层结构基于性能的抗震设计思路,是本着确保人们的生命和财产安全为目标的。在我国的抗震规范设计思路上,要求结构要具有对抗小震的强度验算及对抗大震的薄弱层控制的技术和方法,做到小震不坏,中震可修,大震不倒。因此,遵照这个原则,基于性能的抗震设计方法有了大量的研究和实践成果。基于性能的超限高层结构设计,主要包括的内容有结构的设计原则、结构的布置、结构的质量把握、维修维护等内容。具体落实包括从设计到可行性研究、施工质量管理等各个环节[1]。基于性能的结构抗震性能水平指的是对结构的破坏程度进行预期的评估,根据评估出来的构件可能遭到的破坏以及内部设施能够用于地震设防的作用等进行全面的考虑,将被破坏的状态、经济影响因素等加以预估,以保证人们的人身和财产安全得到最大程度的保护。关于结构抗震性能的规定从2011年就开始进入实施阶段,内容囊括了结构抗震性能的设计,其中包含了四个等级的结构抗震目标的划分以及五个结构抗震性能水准设定。新规定克服了旧有规范在抗震设计思想中的种种不足,引进了新结构体系、设计方法以及材料的应用,使得超限高层建筑的构件的承载力和变形等要求有了更加合理的参照标准和规范[2]。如对于超限高层结构的抗震性能水准的规定包括:在地震作用下,结构应保持基本完好,人员不会受到伤害;结构的个别构件如果发生损伤,可以经过修复后继续使用;结构中的薄弱环节和部位能够保持完好,如果个别部位发生微裂缝等问题,则通过修复可以恢复使用;在强震作用下,构件发生中等程度以上的损坏后,结构可能会发生严重的损伤,但是不能对人造成伤害,不允许局部和整体发生倒塌。

2工程案例

重庆市某超高层建筑(见图1),占地面积11346m2。分为地下5层和地上48层,采用框架剪力墙结构。该建筑所处地段频临江边,地理位置优越,沿江部分采用斜向45°的剪力墙作为转换层的正交布置。标准层和转换层的平面布置严格按照高层建筑混凝土结构的技术要求施工。该设计理念使结构的布置不规范,转换层的结构包含了主次梁的转换,整个工程属于较为复杂的超限高层的建筑,具有竖向凹凸不规则、楼板局部不均匀、竖向不连续等超限问题[3]。根据该工程的特点,应业主要求,在施工中针对不同水平的地震作用进行了预估计,对地震作用下的性能指标进行了设计。在地震作用下的结构构件弹性的设计,按照行业规则,首先对荷载组合中最不利的部分进行了设计,主要设计的内容包括了承载力的要求、构件的系数调整、内力的增大等。见表1。除了楼板等结构构件的承载力之外,根据建筑中抗震性能的类型进行了相关荷载组合的设计,考虑的因素主要包括构件内力的增大、系数的调整等。对于罕见强震的结构构件中的竖向、转换构件以及首层以及转换层的薄弱部分、地基承载力的荷载等的设计[4]。见表2。1)地震作用下的设计参数分析。该工程在抗震防烈度上被设计为6级,按照地震的加速度值进行了分组,场地类别为II级。在对地震波的分析中,采用了阻尼比的分析方法。见表3。对于地震作用下的结构设计,该工程采用了中科院的结构抗震设计软件进行了计算,计算的内容包括地震周期、作用、折减系数、刚度影响等。经过计算,结合实际,只要结构设计符合地震作用下的抗震规范要求,能够使得剪力的平均值小于震型分解反应中的结构内力要求,就可以保证建筑结构对抗地震的破坏。2)建筑结构在遇到罕遇地震的结构分析。根据建筑结构的弹塑性静力分析,建筑结构的非线性可以按照弹塑性动力时程的原理进行计算。例如本工程中的自由度高柔体系为5S,那么弹塑性静力推覆可能需要的周围不能大于2S,因此,根据有关结构弹塑性动力分析的规定,结构构件中的内力和变形、位移等,需要采用弹塑性动力分析的方法对震波进行研究。将地震波最终计算得到的结构的平均值作为设计的依据,按照弹塑性实程的方法,对结构的抗震性能进行设计。工程中结构平面的45°斜向正交布置的结构方法,使得弹塑性时程分析要对结构地震相应地进行地震波的分析、补充验算。得到的结论是,当结构在45°的地震作用下,结构的响应度应保持在0°和90°为最佳设计思路[5]。因此,根据计算的分析,工程选用了两种度数作为主要分析的方法,将最大层间的位移角和转换层的层间位移角的抗震性能以及目标进行了设计,针对罕遇地震作用的剪力和倾覆弯矩的设计能够对抗大型的地震,使得结构进入了弹塑性极端。3)工程的主要构件的抗震性能的分析。楼板的抗震性能通过地震增大系数法,对于地震作用下的楼板应力进行了分析。首先是得出在弹性大地震作用下的转换层楼板的应力计算图,得到转换层在地震作用下不屈服的性能指标,然后根据标准层薄弱部分的截面法的分析结果,得到楼板的合成剪力、转换层对框、支柱、加强区的剪力墙等部位的内力分析结果。见表4。

3结语

关于超限高层建筑的抗震设计思路,随着科学技术水平的不断提高,已经实现了以实际震害为背景的抗震设计,而且随着国际研究领域的重视程度的提高,在充分把握结构、变形、受力等特征的基础上,不断注重结构整体抗震性能的设计目标的整体分析和优化[6]。当今的结构设计已经在结构弹性分析和弹塑性分析的基础上,能够整体确立结构的基本特征,布置结构平立面,验算出结构构件在地震反应下的性能目标,给予设计准确的计算结构的指导,同时经过振动台的实验给予论证,高层建筑结构设计的思路还将不断得到扩展。

参考文献:

[1]朱海强.对建筑装饰装修工程施工管理问题的全面探究[J].中国房地产业,2013,29(3):285.

[2]孟宁.浅议如何提高建筑装饰装修的施工管理水平[J].山东工业技术,2015,34(7):112.

[3]欧立坚.浅析建筑装饰装修工程中的施工管理[J].技术与市场,2012,33(10):123-124.

[4]孙逊.刍议超限高层建筑结构设计中要注意的问题[J].中华民居,2014,7(6):37-38

[5]庄磊.海南路10号地块超限高层建筑结构设计[J].结构工程师,2013,29(5):17-22.

第6篇:超高层建筑抗震设计范文

关键词:高层建筑;结构;抗震;设计

在建筑结构设计中,建筑结构必须遵循合理的抗震分析,并且进一步的进行完善,同时保证建筑结构性和地基的材料特性,通过动力响应和理论分析,采取最为稳定的设计方法,针对建筑结构中的常见问题进行总结,以满足建筑的整体抗震要求。

1 建筑结构在抗震设计中面临的问题

1.1 建筑高度过高

目前,我国常见的高层建筑设计中,对于防震强度和抗震结构所采取的形式都是以建筑的总体高度为基础的,只要建筑在规范的高度范围之内,就能够有效的保证抗震能力。但是在我国的建筑设计中,往往会忽视这一点,很多地区对形象工程的追捧,导致建筑超高现象严重,这使这些建筑的抗震能力大幅度的被减弱,并且在结构设计上也违反了相关标准并且加大了工程的整体预算。

1.2 建筑位置选择的随意性的

我国过程的共同特点在于人口较多,城市空间狭小,这使城市建筑中的土地资源异常珍贵,建筑的建设根本没有选择的余地,高层建筑要想增强其抗震性,就必须在选址上下功夫,要避免老旧河道、多层土交汇点、断层、滑坡、地陷等位置,这样才能适当提高其抗震能力。

1.3 建筑结构体系不合理

建筑的结构体系是保证整体抗震性的关键,建筑材料和结构在选择上必须得到人们的重视。建筑结构在整体上多为框架和框剪结合的建筑,以钢筋混凝土的结构位移作为整体的基准性,而建筑材料为钢筋混凝土,这就使其带有一定的弯曲性,如果单一的依靠建筑的结构刚度来降低侧移,不仅会加大整体结构的负担,而且会增加很多结构物,这使建筑的成本不断扩大。

1.4 抗震强度等级较低

我国的建筑抗震等级一直低于国际标准,随着汶川、玉树等地区的地震灾害事件,我们必须合理提高建筑的抗震强度,尤其是加大对于中型和较低地震强度的控制,要针对地区性地震监测来进行,并以较频发的地质强度等级作为标准,以提高建筑的抗震要求

2 高层建筑结构抗震设计

2.1 建筑抗震设计理念

我国针对建筑的抗震设防被划分为“三水准、两阶段”,其中三水准指的是“小震不坏,中震可修,大震不倒”。在进行第一设防强度的设计中,震感要普遍低于本地区的历史地震等级,并且使在地震发生后建筑物可以不被损坏,并且能够正常使用,所以在进行第一设防强度计算中要根据建筑的承载力极限状态为基础,保证弹性的变形限值。其次是进行第二设防强度的计算中,所取值尽量符合本地区的常见设防强度,并且使结构弹性能够符合弹性变形值,在这一设计中要保证建筑在受到破坏的状态下,不修复依然能够继续使用,这就要求建筑的延性能力不发生变形和脆性破坏。最后是第三设防强度的计算,这要求抗震强度要高于地震的设防强度,在结构发生破坏后,仍然能够根据结构的变形性不倒塌,同时不发生能够威胁生命财产的破坏性,最大程度的争取人员安全,同时提升建筑必须具备加大的变形能力,并且其弹塑形变不会超过规定的弹塑性变形限值。三个水准强度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2~3%,重现期平均约为2000年。

2.2 高层建筑抗震设计标准和措施

在建筑设计中抗震形式是在三个水准上进行设计的,但是需要通过两阶段来实现设计方法,在很多方法步骤的设计中,两个阶段都有其自身作用。首先第一个阶段要根据第一步骤采取与水准强度相应的地质动参数,现在线性结构上计算出弹性状态下所需要的地质效应。然后针对风、重力等多种荷载进行组合,以得出承载力需要调整的抗震系数,在进行构件设计中要满足第一水准清的要求后在进行第二步的地震动参数计算。在这个计算的过程中要根据层间的位移角度,进行计算,并且不使其超过抗震所规范的固定值,同时根据其抗震构造措施来进行足够的延性变形,并保证变形能够满足第二水准的要求。在第二阶段的设计中要将三水准所涉及的参数与建筑结构相互融合,通过对地震震动参数的计算,来计算出结构中的软弱层和抗震的薄弱环节。以此来确定抗震规范的具体限值。并且艺术进行必要的抗震结构设计,使其能够满足第三水准中的房屋前度要求。

在抗震措施的选择上要针对其设计概念,抗震经验,地震记录等进行综合设计,要控制好建筑的基础高度,并且通过结构的延性来在结构类型和材料方面进行总结。在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,使结构建筑在地震状态下能够取得十分良好的经济性和抗震性,并且保证抗震设计的基本规范并且最大提高强柱弱梁、强剪弱弯和强节点弱构件的使用性能。

2.3 高层建筑结构的抗震设计方法

《建筑抗震设计规范》(GB50011-2001)对各类建筑结构的抗震计算应采用的方法作了以下规定:高度不超过40m,以剪切变形为主且质量和刚度沿高度分布比较均匀的结构,以及近似于单质点体系的结构,可采用底部剪力法等简化方法;所以在进行建筑结构分析的过程中容易采取振型分解的方法,并且在结构相对复杂的建筑中更要限制高层建筑,并且要采取实时分析法并且,在地震较多的情况下进行补偿设计,可以直接参考多条曲线线路的选择结果,并且在平均值的取样上选取较大值。

3 结束语

在当今地震的预测几乎没有成功的案例,所以要想通过预测手段来完成地震预测是非常困难的,为了降低地震所带来的危害,就要在建筑结构上下功夫。在建筑工程设计过程中,必须从建筑的整体宏观性上出发,结合建筑的结构性和功能性,进行建筑抗震的整体设计。同时采用先进的技术手段和新型材料,最大程度的提高其性能,以满足实际的抗震需求。

参考文献

[1]张玉石.关于高层混凝土建筑结构的抗震设计探讨[J].科技创业家,2013(17).

[2]季韬,郑忠双.关于框架节点抗震设计中若干问题的思考[A].第九届全国结构工程学术会议论文集第Ⅲ卷[C].2000.

第7篇:超高层建筑抗震设计范文

【关键词】 抗震设计 高层建筑 扭转效应 问题 对策

随着当前人们生活水平不断上升,对居住环境要求也越来越高,高层建筑普及率大幅度提升,成为建筑工程中占据比例最高的建筑种类。高层建筑在设计时必须考虑到抗震因素,做好抗震设计,以此来确保建筑的安全性。高层建筑抗震设计中要确保钢度、强度、延性与耗能力等达到设计标准,解决诸如结构体系、构件延性和刚度分布等问题。下面我们结合高层建筑设计谈下抗震设计中存在的若干问题,探究解决对策。

1 高层建筑抗震设计中存在的问题

高层建筑抗震设计中面临着不少问题。设计初期,施工现场工程地质勘查资料不全是引发问题的重要因素,现场勘查精确度较差,对岩土地质情况把握不准,给设计工作带来难度,准确资料的缺乏致使设计无法最大限度的解决安全隐患,设计好建筑地基。对高层建筑而言,地震对其结构的影响与结构本身的质量成正比关系,建筑结构质量越大,地震带来的损害程度就越严重,反之则损害较轻[1]。所以,相同条件下,建筑材料的选择要严格考虑抗震需求,比如楼板、框架、墙体、隔断、屋面构件以及围护墙等,都要尽量选择一些质量较轻钢度与强度满足需求的轻质材料,如硅酸盐砌块、空心塑料板材、多孔砖、陶粒混凝土等,提升建筑物抗震性能。

在设计高层建筑结构时,过于复杂的平面布置和设计会影响刚心与质心的重合,面对地震时会发生扭转效应,加剧对高层建筑的损害,在近几年发生的汶川地震、青海玉树地震中就有不少实际案例,高层建筑因结构平面不规则在地震过用下发生严重扭转效应继而倒塌,并损害周围相邻建筑。在高层建筑的抗震设计中,其立面、平面布置要考虑对称和规正,以确保建筑质量和刚度的分布与变化成均匀状态,否则应该考虑其带来的不利影响。比如有些平面设计严重不对称,一边大开间一边小房间,一边为柱承重一边为落地承重墙,造成刚度分布不均衡,在面临地震时,抗震能力受影响。有些高层住宅平面设计为L、π形等不规则平面,造成纵横向刚度不均。

根据高层建筑情况,有些必须通过设置防震缝来达到抗震效果,在国家颁布的《钢筋混凝土高层建筑结构设计与施工规程》中规定了应该设置防震缝的三种情况,比如房屋有较大错层、部分结构刚度与载荷相差悬殊且缺乏有效改善措施、未进行抗震设计或设置抗震措施的高层建筑等,防震缝的设置能够有效解决以上三种情况带来的地震威胁[2]。高层建筑结构抗震等级的把握是设计时的重要指导原则,对抗震等级把握不准是设计大忌,影响抗震等级的有建筑高度、场地岩土类型、结构类型、设防烈度等,对这些因素评估不准会影响结构抗震等级的把握和抗震设计。

面对以上这些存在的典型问题,高层建筑在抗震设计中必须予以重视,以消减地震来临时可能造成的损害,降低安全隐患,提升建筑抗震性能。

2 解决高层建筑抗震设计问题的对策

高层建筑的抗震设计要考虑结构规则性,符合抗震概念设计要求,对建筑进行合理布置。有研究表明,地震灾害中抗震效果最好的结构类型为平立面简单且结构对称的建筑,这种设计结构容易估计模拟地震反应,在采取相对应的抗震措施方面也较为方便,易于对细节部分加强处理。结构设计中考虑规则性就需要在承载力的分布、平立面外形与尺寸、抗侧力构建布置等多个方面进行设计研究,以达到抗震设计需求,结构钢度、建筑质量分布均匀,且有足够的扭转钢度消减扭转效应,满足竖向上重力荷载分布需求,最大限度的减少高层建筑结构内应力和竖向构件间差异变形带来的不利影响。高层建筑的高宽比一般都较大,地震与风力作用下会产生较大的层间位移,有些甚至超过位移限值。目前建筑理论研究认为这些位移限值的大小主要与建筑材料、结构体系、侧向荷载等因素密切相关,如钢筋混凝土的位移限值就比钢结构要更为严格,风力荷载限值比地震限值更加严格。因此,抗震设计时要深入分析并考虑高层建筑所处的地理位置和设计情况,确保其刚度满足需求的情况水平荷载作用带来位移不会超过限值以影响建筑的稳定性、承载力和使用功能。

大量实际案例表明,扭转效应在地震中带来的建筑损害十分巨大,所以抗震设计中必须控制扭转效应,此类效应更容易发生在平面布置不规则且钢心与质心不重合的高层建筑中,扭转效应不仅导致水平位移和扭转性破坏,甚至会引发建筑整体倒塌,所以设计时计算扭转系数并予以修正十分关键。高层建筑在扭转作用力下各片抗侧力结构层间变形不同,位移不同,刚度变化与刚度中心的变化也会带来巨大差异,所以,要分别针对各层的扭转系数进行计算并修正,以规避各层结构的偏心距和扭矩发生改变[3]。计算中要严格控制位移比和周期比两个指标,在无法满足结构参数时进行分析调整。面对周期比不能满足要求的情况可适当通过加大抗侧力构建界面或增加构建数量的办法予以解决,消减钢心和质心的偏差,增大建筑结构的抗扭刚度。减少地震能量输入的设计在高层建筑中应用较为普遍,这种设计能够满足地震作用下高层建筑的变形要求,符合位移限值和位移延性比要求,满足结构位移和构件变形需求,消减地震对建筑的损害作用。在建筑结构设计中,要选择合理的结构类型,满足抗震需求前提下保障建筑结构性能,尽可能的设置多道抗震放线,以最大限度的吸收和耗散地震能量,提升建筑抗震性能,减少地震带来的损害[4]。

总之,高层建筑的抗震设计方法和技术处在不断进步中,要结合建筑实际情况设计抗震结构,以消减地震作用力,增强建筑抗震性能。

参考文献:

[1]郭霞飞.高层建筑结构抗震设计思想与工程实例分析[J].四川建材,2010(3).

[2]徐培福,戴国莹.超限高层建筑结构基于性能抗震设计的研究[J].土木工程学报,2012(1).

第8篇:超高层建筑抗震设计范文

[关键词]高层建筑 抗震因素 结构特点 建筑材料

中图分类号:TU973.31 文献标识码:A 文章编号:1009-914X(2015)26-0130-01

一、高层建筑抗震结构设计的基本原则

高层建筑抗震设计的基本原则是小震不坏,中震可修,大震不倒。结构构件应具有必要的承载力、刚度、稳定性等性能,对于结构相对薄弱的部位,应采取提高抗震能力的措施。

尽可能设置多道抗震防线,伴随着强烈地震之后,会发生多次余震,如果仅仅设置一条防线,可能在第一次被破坏之后,再遭遇余震,这样则会导致房屋伤痕累累,甚至有倒塌的危险。设置多条抗震防线,可以防止余震对房屋带来的多次伤害,使结构能耗散大量的地震能量,提高结构抗震性能,避免在大地震的时候,发生房屋倒塌。

针对可能出现的薄弱部位,应采取措施提高其抗震能力,但应注意的是,不要加强了局部的抗震能力,而忽略了整个结构各部位刚度、承载力的协调,在抗震设计中有意识、有目的地控制薄弱部位,使之有足够的变形能力又不使薄弱部位发生转移,有效的提高结构总体的抗震性能。

抗震设计应尽量避免平面形状或刚度不对称的设计,防止平面形状或刚度不对称使建筑物产生严重的扭转,加重灾害的破坏程度。设计时也应注意尽量少用凸起屋面的塔楼设计,塔楼设计的建筑物在发生地震时容易发生鞭梢效应,使其房屋遭受严重破坏。

二、高层建筑在抗震设计中常见的问题

2.1部分建筑物高度过高

依照高层建筑混凝土结构技术的相关规定,参考建筑本身的结构类型以及设防烈度,混凝土结构的高层建筑需要有一个合理的高度,只有在这种高度下,抗震设计才会安全稳定。这个高度应与我国当前的经济发展、施工技术和整个土建规范体系相协调。就我国目前高层建筑来看,建筑超高问题严重,存在着潜在危险,当遇到地震时,会发生严重的破坏变形,因而会降低建筑物的抗震性能。随着建筑物高度的超出延性要求、材料性能等指标也相对超出范围,会诱发出其他的不良因素。

2.2地基选取的不合理

现代城市的不断发展,人口也是与日俱增,城市的人均面积却越来越少,但是开发商为了自身利益,往往会忽略这一问题,他们会选择利润空间较大的区域,进行高层建筑的建设。相关单位缺乏岩土工程勘察资料或是资料不全面,若没有这些资料,设计就缺少了必要的依据。在高层建设之前,开发商应该对该区域进行实地考察,了解其土地的质量,适合高层建筑的土地必须保证土地的坚硬或密实均匀,不能垮在两类土壤上,避开不利的地形,地基的选择直接影响到抗震的能力。

2.3结构体系与材料的选用问题

在地震多发地区,结构体系的设计和建筑材料的选择,受到人们的广泛关注和重视。目前,我国建筑物大部分是由钢筋混凝土组成的,变形的控制与设计必须以钢筋混凝土结构的位移限值为准。当钢筋混凝土弯曲变形时,侧移会较大,虽然利用钢框架会减少位移,但同时会增加钢筋的负荷,无明显辅助效果,为避免造成不利的影响,应尽可能降低它们的刚度。

2.4短柱与轴压比问题

在高层建筑中,钢筋混凝土结构建筑容易出现柱断面较大的问题,这主要是控制柱轴压比造成的,而柱断面尺寸不会因为使用高强度混凝土而显著性减小。如果柱的塑性变形能力小,结构延性就很差,在发生地震的时候,由于吸收地震能量与耗散少,就很容易发生结构破坏。所以在超高层建筑的抗震设计中应慎用钢筋混凝土。

三、解决高层建筑抗震设计问题的对策

首先,对于高层位置的选择,开发商要在建筑前,对土地质量及周边位置要进行严格考察,查看建设高层的区域是否适合建筑,不能一味只顾自己眼前的利益,也要考虑到建筑的安全因素。建筑相关部门对建筑的审批也要认真负责,严格控制建筑中超高的问题,若房屋在发生地震时,不会发生较大的变形或破坏,保障人民群众的生命财产安全。

在高层建筑中,结构体系与材料优选是一个极为重要的问题,在建筑时,确定短柱并采取相应对策,可以使用复合螺旋箍筋,达到强剪弱弯、强柱弱梁的特点。对于短柱来说,抗剪承载力不及抗弯承载力,一旦发生地震,会因剪力而失去作用,抗弯强度的作用也不能发挥出来,这时就必须人为的地降低抗弯强度。对于材料的选择,可以对材料参数随机性的抗震模糊可靠度进行分析,综合考虑材料参数的变异性,可以尽量选混凝土材料。

从地基承载力来看,在同样的地基条件下,减轻结构自重意味着在不增加基础或地基处理造价的情况下,可以增加层数。发生地震时,如果结构质量增加,也会引起地震力的增加,高层建筑由于高度较高,其重心也过高,受到的危害也很大,设计时对高层建筑物的填充墙及隔墙应采用轻质材料。

高层建筑在结构上应设置多道抗震防线,在大地震发生之后,往往会伴随多次余震,如果仅仅设置一道防线,可能在强烈地震作用下,这条防线会遭到破坏,此时再发生余震,使防线又遭到重创,此防线可能无法承受,建筑物就面临倒塌的危险。设置多道防线,可以抵挡后续的地震的冲击,分散了地震的威力,使房屋更加有保障。高层结构形式应采用具有及壁式框架剪力墙,剪力墙框架简体,筒中筒等多道抗战防线结构体系。

积极采用基于位移的结构抗震设计,进行定量分析,使结构的变形能力满足在预期的地震作用下的变形要求。提高结构阻尼,采用高延性构件。提高结构的耗能能力,减轻地震作用,减小楼层地震剪力。建造高层建筑最好选坚硬的场地土,可以减少地震能量输入,减轻对建筑的破坏程度。

四、结语

在高层建筑结构设计时,要充分考虑到抗震设计,应透彻了解抗震设计的基本原则,在房屋建筑结构设计中抗震设计占有重要的地位,严格遵照抗震设计规范,对抗震设计中存在的问题应重视起来,并及时改正。随着高层的抗震设计方法和技术在不断进步,结合建筑实际情况,设计合理的抗震结构,只有从高层建筑物内部实施结构抗震,才能从根本上提高高层建筑的抗震能力,确保实际工程中的抗震质量,以防止地震带来巨大的损失和危害,保护人民群众的生命和财产安全。

参考文献

[1] 来晓慧、郎春雨.浅谈高层抗震设计常见问题及其对策[J].科技风.2012.

[2] 葛振军、李彬.抗震设计常见问题浅析[J].工程质量.2007.

[3] 李志德.抗震分析与设计在高层建筑结构中的应用研究[J].科技创新导报.2008.

第9篇:超高层建筑抗震设计范文

关键词: 地震; 中小学教学楼; 砌体结构; 抗震设防; 构造措施

中图分类号:TU352.1+1

文献标识码:B

文章编号:1008-0422(2008)09-0031-03

1前言

5・12汶川特大地震,国人心中永远的痛!地震造成许多砌体结构的中小学教学楼(以下简称教学楼)倒塌,众多学生遇难,未倒塌的教学楼也都受到了不同程度的破坏,震中60%以上的教学楼成了危房,需要拆除重建。

2震害原因分析

2.1 抗震设防烈度

5・12汶川特大地震,震级为M8.0级,震中地震烈度相当于10~11度,已远远超过了抗震设计方面的现行国家规范规定的抗震设防烈度。《建筑设计抗震规范》GB50011-2001[1]中,明确了对各地的抗震设防等级划分。本次特大地震主震区,如茂县、汶川、北川最高抗震设防烈度只为7度,而绵阳、广元抗震设防烈度只为6度。

2.2教学楼结构特性

本次特大地震中倒塌或严重损坏的中小学教学楼一般都为砌体结构。砌体结构是一种脆性结构,其抗拉和抗剪能力均较低。而教学楼多为两道纵墙,多道横墙,另加一外挑走廊。横墙间距为教室的长,纵墙间距为教室的宽,纵墙因采光需要,开洞较多,而且不均匀,如图1。在强烈地震作用下,这种砌体结构更易于发生脆性的剪切破坏,从而导致房屋的整体破坏和倒塌。

2.3 抗震构造措施

震区倒塌的教学楼大多还是80年代甚至更早以前的建筑,抗震设防标准低,抗震构造措施严重不足。绝大多数教学楼为砖砌体加预制混凝土楼板结构,圈梁和构造柱设置数量严重不足。在强烈地震作用下,墙体脆性受剪破坏,本身未有多少破坏的预制楼板,因与墙体(圈梁)缺少可靠连接,预制楼板垮塌下来,造成教学楼整体倒塌。

3应对措施

3.1提高抗震设防分类标准

我国现行的《建筑工程抗震设防分类标准》GB 50223-2004[2]中第6.0.8条规定:“教育建筑中,人数较多的幼儿园、小学的低层教学楼,抗震设防类别应划为乙类。这类房屋采用抗震性能较好的结构类型时,可仍按本地区抗震设防烈度的要求采取抗震措施。”按该条文的条文说明,仅把单体建筑学童人数超600人的小学和人数超过200人的幼儿园、房屋层数不超过三层的砖混结构教学楼列为乙类建筑,其余中小学建筑的抗震设防分类仍为丙类。本次特大地震中小学建筑破坏的严重后果,中小学教学楼作为特殊的人员集中场所,应提高该类建筑物的抗震设防分类标准。

3.2抗震验算

3.2.1教学楼因使用功能要求,多采用外廊式单跨体系,该体系抗震性能相对较差。因此,平面结构布置宜规则,立面宜简洁,上下楼层横墙应基本对齐,结构质量中心与刚度中心相一致,避免结构的扭转效应。对于复杂形体的教学楼,应设置防震缝,以形成较规则的独立结构单元。

3.2.2教学楼的总层数与高度不能超过《建筑设计抗震规范》中第7.1.2条规定。抗震设防烈度为6度时,总高度不能超过18m,层数不能超过六层;抗震设防烈度为7度时,总高度不能超过15m,层数不能超过五层;抗震设防烈度为8度时,总高度不能超过12m,层数不能超过四层。抗震横墙的间距不能超过《建筑设计抗震规范》中第7.1.5条规定。

3.2.3教学楼抗震计算,可采用底部剪力法,可只选择从属面积较大或竖向应力较小的墙段进行截面抗震承载力验算。墙段的地震剪力按墙段的层间等效侧向刚度进行分配。支撑大梁的墙肢还应进行竖向承载力和局部受压承载力验算。

3.3抗震构造措施

3.3.1砌体结构是一种脆性结构,应设置适当数量的圈梁和构造柱,增加砌体结构的延性,提高抗震性能。构造柱应严格按照《建筑设计抗震规范》中第7.3.1条设置构造柱。当外纵墙洞口宽度大于2m时,洞口两侧应增设构造柱;女儿墙内应按间隔不大于2m设置构造柱。圈梁应每层设置,并且闭合,圈梁高度应不小于180mm。本次特大地震中,窗下墙多出现十字交叉剪切裂缝,外纵墙窗台部位应增设通长圈梁,圈梁高度宜为120mm,增强窗下墙体的抗剪强度。

3.3.2楼、屋盖结构是各片抗侧力结构间传递水平力的主要构件,通常作刚性楼面假定进行结构简化计算。因此选择正确的楼、屋盖结构,保证楼屋面的整体性、连续性和平面刚度,是保证结构设计计算正确合理的重要措施。楼、屋盖结构应采用钢筋混凝土现浇板结构,增强教学楼的平面刚度。除走廊现浇板外,现浇板的厚度不应小于110mm,不宜小于120mm。

3.3.3每间教室大多为二或三开间,两开间交界设横梁,横梁支承在纵向窗间墙上。窗间墙原本就很薄弱,却要承受由横梁传来的集中荷载以及由此荷载引起的地震作用。虽然在窗间墙部位设置了砖壁柱,但砖壁柱与翼墙仍为脆性构件。本次特大地震中,一、二层砖壁柱与翼墙大多出现十字交叉剪切裂缝,如图2。砖壁柱应设计成组合砖砌体,并且在砖壁柱与翼墙间,每间隔5皮砖,设两根通长拉接筋,如图3。

3.3.4砌体结构房屋的抗震能力与墙体横截面积及砂浆强度等级高低成正比,提高墙体面积、砂浆强度等级能有效地提高房屋的抗震能力。教学楼外纵墙的开洞率不宜大于50%,不应大于60%。教学楼底部一、二层承受的地震作用力较大,是薄弱层,本次特大地震中,教学楼外纵墙在一、二层部位受剪破坏尤为严重,如图4。因此外纵墙在一、二层部位选用370mm厚Mu10砖砌筑M10混合砂浆墙体,能增强一、二层结构的抗剪承载力,从而提高结构整体抗震能力。

3.3.5走廊栏板是教学楼的关键安全构件。本次地震中,走廊栏板多处出现整体垮塌,如图5。走廊栏板应优先采用现浇钢筋混凝土栏板。当采用120厚砖墙栏板时,应每开间设置混凝土构造柱,构造柱断面应不小于240x240,栏板顶部应设置钢筋混凝土压顶,构造柱钢筋应锚固于压顶,120厚砖墙应每间隔5皮砖,设两根通长拉接筋,钢筋锚固于构造柱。

3.3.6教学楼楼梯间不应设置在端开间,当建筑要求楼梯间必须设在端开间时,楼梯间除在楼层设置圈梁外,在半跑的楼梯平台处还应设钢筋混凝土圈梁,在楼梯间四角和平台梁处均应设置构造柱。突出屋顶的楼梯间,构造柱应伸到顶部,与顶部圈梁连接。

3.3.7为了避免因个别小墙肢因抗剪能力不足首先破坏,如图6、图7,导致整片墙逐个破坏,进而造成结构整体破坏甚至倒塌。教学楼结构中墙肢的局部尺寸限值应满足《建筑设计抗震规范》中第7.1.6条的要求,承重外墙尽端至门窗洞边的最小距离和承重窗间墙的宽度应比规范中要求更高。当不能满足规范限值要求时,应通过洞口边增设构造柱或将小墙肢改为配筋砌体,提高小墙肢的抗剪能力。

4结束语

“学校是第一避难所”。中小学教学楼在今后一段时间仍将大面积采用砌体结构体系。本文根据在汶川

特大地震中中小学教学楼破坏情况的统计分析,重点从抗震构造措施方面提出了提高砌体结构的延性,增强中小学教学楼抗震能力的几项措施,希望能给同行一些启发。

参考文献:

[1] 徐正忠,王亚勇,王迪民等.GB 5001I一2001建筑抗震设计规范 [S].