公务员期刊网 精选范文 故障诊断方法范文

故障诊断方法精选(九篇)

故障诊断方法

第1篇:故障诊断方法范文

目前电气设备作为科技产品在生产中使用越来越广泛,而电气设备的数量和品种也越来越多,其维修方法和故障诊断技术也在不断的丰富和提高。复杂设备电气维修中的一个常见的问题是资料不全,往往只是有强电部分的电气原理图,或者再加上PLC程序。关于设备的控制系统部分的资料则非常少,最多只有一本操作手册。给维修工作造成了很大的困难,现结合自己的实际工作,对电气故障的诊断步骤与诊断方法进行探讨。

一、电气故障的诊断步骤。各类的电气设备故障的一般诊断顺序为:症状分析设备检查故障部位的确定线路检查更换或修后性能检查。

1.症状分析。是对所有可能存在的有关故障原始状态的信息进行收集和判断的过程。在故障迹象受到干扰前,对所有信息都应进行仔细分析。这些原始信息一般可以从以下三个方面获得:

1)访问操作人员。通过访问操作人员来获得设备使用及变化过程、损坏或失灵前后情况的第一手资料,还可以了解到一些过去类似的故障现象、原因以及采取的补救措施等方面的情况。

2)观察和初步检查。对设备进行全面的观察往往会得到有价值的线索。初步检查的内容包括检查监测装置(如信号台、显示器、指示灯、各种仪表指示、打印输出等)、检查操作开关的位置以及控制机构、调整装置及连锁信号装置等。

3)开动设备。一般情况下应要求操作人员按正常操作程序开动设备。这样的试运转可以帮助维修人员对故障的原始状态在个综合的印象。但是在这种情况下开动设备试运转需要慎重,对可能发生的意外情况要有紧急处理的预案。

这个阶段的目的在于收集信息资料,对现有实际情况作分析,并从中推导出最有可能存故障区域的线索,作为下一步设备检查的参考。

2.设备检查。根据症状分析中得到的初步结论和疑问,对设备进行更详细的检查,特别是那些被认为最有可能存在故障的区域。值得注意的是在这个阶段应尽量避免对设备做不必要的拆卸,同时应防止引起更多的故障。也不要轻易地对控制装置进行调整,因为一般情况下,故障未排除而盲目调整会掩盖症状,而且会随着故障的发展而使症状重新出现,甚至可能造成更严重的故障。

如果要拆卸设备的某些部分做试验,必须确保不会对其他方面造成不利影响,同时确保试验完后能将其恢复好。许多故障通过实验可以迅速地确定,但必须避免盲目性,防止因不慎重的操作使故障复杂化,避免造成症状混乱反而延长诊断故障的时间。

3.故障部位的确定。维修人员必须全面掌握系统的控制原理和结构。如果缺少系统的诊断资料,就需要人员正确地将整个设备或控制系统划分成若干功能块,然后检查这些功能块的输入和输出是否正常。在确定某一个功能块有问题后,才去关注该功能块内部的问题。

确定系统故障有许多方法,采用哪种方法合理依照系统的结构来定。由于复杂设备的系统错综复杂,一般不可能只用单一的方法,往往要使用多种方法来综合分析。如通过测试或模拟,经过逻辑检查分析,逐步缩小查找的范围,直到确定发生故障的部位。

4.线路检查和更换、修理。这两个步骤是密切相关的,线路检查可以采用与故障部位确定相似的方法进行,首先找出有故障的组件或可更换的元件,然后进行有效的修理。

需要注意的是,在找出了有故障的组件后,应该进一步确定引起故障的根本原因。例如当一只晶体管被烧坏后,单纯地更换一个晶体管是不够的,重要的是要检查出被烧坏的原因,并采取补救措施和预防措施。

一般来说,当停机损失较大时,维修人员可以用组件、部件、插板等备件来替换有故障的部分,不在现场做进一步的修理。而对于负荷量不大、停一段时间对生产影响不大的设备,直接在设备上进行现场检查、修理更有利、更方便。

5.修后性能检查。修理完成后,维修人员应进行进一步的检查,以证实故障确实已经排除,设备能够运行良好。然后由操作人员来考查设备,确认设备运转正常。

二、电气故障的诊断方法。

1.控制装置自诊断法。大型的PLC、计算机以及电梯装置都配有故障诊断系统,由开关、传感器把油位、油压、温度、电流等状态信息设置成数百个报警提示,用以诊断故障的部位和地点。所以当出现故障时,应首先依靠自诊断提示的信息进行故障的分析处理。

1) 启动自诊断。主要诊断内置单元装置或设备。如果检查出某一部分有故障,则转向报警过程。

2)在线诊断。包括控制系统内部设置的自诊断功能、设备生产厂家二次开发的诊断功能以及用户自己设计的控制过程状态的监测与诊断系统,这些诊断在设备运行过程中监视设备的运行状态。一旦被监视的运行状态出现不正常,即可发出报警信息进行提示。在维修过程中应充分利用报警信息,经分析和进一步的测试,找出真正的故障原因。

3)离线诊断。其目的是查明故障和故障定位。这种诊断方法属于高层次诊断。具体做法是:停机后,将控制计算机和与之相连的设备断开,启动运行个控制部分的自诊断程序。诊断时,把整个系统按功能或按线路板划分为若干个诊断区,向诊断区发送测试码,观察被诊断对象的响应,与标准进行比较,判断有无故障,并进行故障定位。

2.常规检查法。依靠人的感觉器官并借助于一些简单的一起来寻找故障原因。这种方法在维修中最常用也是首先采用的。

3.备件替换法。将具有相同功能的两块板(一块是好的,一块怀疑是坏的)互相交换,观察故障现象是随之转移还是依旧,来判断被怀疑板有无故障。替换板可以是备件板,也可以是无故障区的相同电路板或模块。替换法的注意事项如下:

1)替换前应认真检查与其连接的有关线路和电器,确认无故障后方可进行,以防外部故障引起替换上去的部件损坏。

2)必须断电并确认电容器放电基本完成后,才能更换电路板或组件。

3)替换前要仔细核对两块板上的芯片、模块是否一样,要保证开关、跳线以及桥接调整电阻、电容等都应调整的和原板一样。调整前应做好记录,以便替换板下机后的恢复。

4.电路板参数测试对比法。系统发生故障后,采用常规电工检测仪器、仪表,按系统电路图及设备电路图,甚至在没有电路图的情况下,对可疑部分的电压、电流、脉冲信号、电区的相同电路板或备件电路板,或其他相同设备的相同部位电参数进行比较,从而判断可疑电路板是否有故障,进而找出故障点。

5.更新建立法。当控制系统由于电网干扰或其他偶然原因发生异常或死机时,可先关机然后重新启动。必要时,需要清除有关内存区的数据,待重新启动后对孔子参数重新设置,可排除故障。

6.升温实验法。因设备运行时间较长或环境温度较高出现的软故障,可用电热吹风或红外线灯直接对准可以电路板或组件进行加温。通过人为升温加速温度性能差的元器件性能恶化,使故障明显化,从而有利于检测出有问题的组件或元器件。

7.分段淘汰法。有时系统中的故障链很长,可以从故障链中部开始分段检查。查到故障在哪一般中,可以继续用分段淘汰法查,加快故障的排查速度。

8.隔离法。将某部分控制电路断开或切断某些部件的电源,从而达到缩小故障范围的目的。但是许多复杂设备的电气控制系统反馈复杂,采用隔离法应充分考虑其后果并采取必要的防范措施。

9.原理分析法。根据控制系统的组成原理,通过追踪与故障相关联的信号,进行分析判断,直到找出故障原因。使用本方法要求维修人员对整个系统和单元电路的工作原理有清楚的理解。

第2篇:故障诊断方法范文

【关键词】PLC,故障,诊断

一、总法则

对于PLC系统的故障检测法:一摸、二看、三闻、四听、五按迹寻踪法、六替换法。一摸:查CPU的温度高不高,CPU正常运行温度不超过60℃,因手能接受的温度为人体温度37~38℃,手感为宜;二看:看各板上的各模块指示灯是否正常;三闻:闻有没有异味,电子元件或线缆有无烧毁;四听:听有无异动,螺丝钉松动、继电器正常工作与否,听现场工作人员的反映情况;五寻迹:出现故障根据图纸和工艺流程来寻找故障所在地;六替换:对不确定的部位进行部件替换法来确定故障。

二、具体步骤

当PLC的软件不正常时,主要看CPU的RUN状态是否正常,不正常则进行CPU清除后重新下载控制程序。当PLC硬件不正常时则要按以下顺序进行检查工作:

1.查看PLC电源是否有电。有电则测量电压是否在+24V的±5%范围之内,有电且正常,则进行下一步。有电不正常则进行电源模块的输出端与输入端进行检测,若输出端不正常而输入端正常,则更换模块。若输入端不正常,则进行输入端的逆流法则进行相应检查,如进行24V交直流变压器的输入电压端的交流电压220V的±10%检查,正常,则更换直流24V变压器。无电则按迹寻踪,借助原理图+现场布置总图+接线图纸,检查给电源模块供电的各种电器器件的输出端的接线是否正确,不正确,重新接线。正确用万用表则检查空气开关的进线端与出线端有无正常供电,无正常供电,查明是外界还是自身原因,若为外界则是电压不足还是根本无电压,或负载过重,又或严重过流等等的分析,一直到将事故排除正常供电为止;若为本身器件坏则更换之。

2.了解CPU工作模式。高优先级有STOP、HOLDUP、STARTUP。低优先级有:RUN、RUN-P(PG/PC的在线读写程序)。查看CPU是在RUN模式,或是在STOP模式,又或是RUN模式的闪烁状态和STOP模式兼有的保持模式或叫调试模式。如果仅是RUN模式则CPU和各板为正常进行第3步。如果是保持模式出现,可能是运行过程中用户程序出现断点而处于调试程序状态,或在启动模式下断点出现,对此情况重新调试好程序,再次将控制程序下载到CPU中方可。

如果是STOP模式,目测引起STOP的原因分析:

A:无电,分析无电原因,是因为供电部门出问题,还是异常掉电(因有有1K3AH的UPS保证很少发生异常掉情况),通常情况下为检修拉电了,待检修结束后进行人工送电。再利用PLC的在线功能将CPU的工作模式从STOP转换为RUN。

B:CPU坏,更换新的好的同种类型同版本的CPU。

C:有板子坏了,有序进行板子的更换。对于硬件更换时要注意使用与原来的器件相同的产品同型号、同版本来进行,否则会造成实际的PLC配置与相应编程软件中硬件配置数据库中硬件配置不同而无法进行用户控制程序的正常循环执行。

3.检查通迅电缆和各LED灯。对于数字量输出模块上各点其实与现实生活上的电灯开关是一样的功能且为常开点,所以在线检修该模块的任一点时,只要在无接线时且该地址在控制程序不给输出信号时来检测其通不通就可以了,若通,则该点不正常,不通则正常;不正常时要进行硬件连接线的另选点重接工作;另外我们也可以用新模块进行更换后,对替换下来的模块的点进行测量通断状态,通,则该点坏,不通该点为好。对于数字量输入模块的点当于导通的线圈,为常闭状态,它可以在线或下线检测,用表检测若是坏点的话则是不通的状态,则换点重接线;好点则为通状态。对于模拟量输入模块是与数字量输入模块相同,每个通道都相当于一根导线形式,也就是说相当于常闭点,所以检测通道好坏的方法为用表的测通断功能来检测,当通状态时为好,断状态时为坏通道;模拟量输出模块的检测方法与数字量输出模块相同。若坏通道则对硬件接线需要更换通道与并同时替换控制程序中的相应3X或4X地址;另外对于模拟量模块则要进行量程块的选择的检查,保险丝是否断开的检查等工作。软件配置是否正常,一般为电压1~5V或电流4~20mA,这根据所用的传感器与智能转换器类型来选择。进行过硬件点或通道更换工作后条件允许的话均要STOP PLC的CPU,再重新下载程序,若条件不允许则直接用更新变化来下载变化的程序而不停CPU。对于不用的输入模块的好通道/好点与最后一个已用的一好通道/好点进行串联或在软件中进行特别设置。

4.输出模块检查。对大量输出模块的板子上的电源模块在正常生产状态时是不能断电的,因为此时断电的话,将使继电器柜中的常开继电器变为常开状态,容易发生错误,因此要对此类的输出模块进行检测时,要与现场操作人员进行联系,进行该部分相关设备进行手动操作后,再撤去数字量输出模块的供电线后对模块测点工作。

5. 各类开关类的检测。如继电器、接近开关、空气开关等器件的检测工作,是根据开关的类型是常闭型还是常开型来区分,用表来检测其通与不通的状态,其状态与好器件状态相反,则该器件坏了,更换之。对于电路大部情况利用常开型,它们是用来人工控制或自动控制电流的接通与断开的;对于常闭型主要用在保护电路中。借此可以知道开关类和保护类器件的正常状态为如何而正常识别器件的好坏。

6. 通迅模块的检测。是利用简单的用好的新的通迅模块进替换来识别板上的正在使用的模块是否正常。

7. 导线的检测。通过检测通断方法进行。可以利用已知通的导线来检测不知是否好坏的导线,方法是将好的导线与未知导线连接起来后测通断状态。

8.电阻检测。带电状态时检测电压,不带电时检测相应的电阻。

通过以检测可以排除工作中的大部分故障,另外由于本工作涉及到交流单相电220V与直流电24V的交叉作业,工作时要注意积累安全用电知识与常识,以及在工作时的安全防范措施和设备安全规程,以确保安全作业。

参考文献:

[1]刘福禄. PLC程序设计的选择技巧[J]. 科学咨询(科技管理),2010(7)

[2]邱公伟.可编程控制器网络通信及应用[M].北京:清华大学出版社,2011.

第3篇:故障诊断方法范文

【关键词】故障诊断;误诊断;信息不可靠;研究

故障确诊率的提高一直是研究的热点,故障的误诊却没有引起人们足够的重视。为了系统地阐述机械故障诊断中的误诊问题,给出了误诊的含义及分类;按照机械故障诊断推理过程的环节,详细分析了误诊产生的机理和具体的原因,针对这些误诊的潜在原因,提出了减少误诊的方法和措施。提高机械故障诊断的可靠性,降低误诊率,在保证诊断数据准确无误的同时,必须使诊断系统合理,同时具有开放性和可扩充性,使诊断知识不断得到丰富和充实。

1.机械误诊断的原因从诊断的结果与诊断对象客观存在的差异来看,故障诊断的结论可分为确诊、误诊和漏诊,确诊即为对诊断对象的故障判断是准确无误的

漏诊则是对故障的遗漏。而误诊,顾名思义,就是错误的诊断,也可称之为误判。漏诊实质上也可归为对设备的误诊。

1.1故障的复杂性

在故障诊断过程中,诊断对象的故障过程是复杂多变的,在故障发展过程中,由于引起故障的因素在性质、特点及作用方式上是不同的,机械功能状况和所受损害的具体情况也不同,使得故障征兆和演变具有不同形式,诊断中往往难以迅速准确地认识故障的性质,导致误诊,具体表现在以下几方面:

(1)故障的发展过程中,一种故障可能表现出多种不同故障征兆。如液压系统故障诊断中,电磁换向阀故障可能导致系统压力、流量不满足要求,脉动可能加剧,还可能导致系统工作温度升高等。而对不同诊断对象,即使是同一种机械,对同一种故障的反应也是有差异的。一个对象的反应可能快,另一个对象反应可能慢,一个对象的某征兆对某故障反应可能剧烈,而另一个对象反应可能较平稳等。

(2)不同故障在发展过程中,可能出现相似的征兆,同种征兆可能对应多种故障形式。如回转机械中,各种故障的发生,往往都伴随着振动的加剧,而且在频域分析时,在相同倍频上,不同故障可能会有相似的表现形式。这种故障征兆的相似性,使我们在故障诊断中容易产生混淆。

(3)在很多情况下,随着故障的发展,还可能引起继发性故障,这种继发性故障可能会掩盖原来的故障,或原来的故障掩盖继发性故障,这都将造成故障诊断的困难。如液压系统中,由于某种原因引起油液污染程度增加,这可能引起液压泵运动副的严重磨损,磨损的颗粒混人油液中,进一步加剧油液污染,液压泵磨损将引起液压系统失效,泵的失效是油液污染这种原发性故障所引起的,而原发性故障和泵磨损这种继发性故障混在一起,相互促进,造成恶性循环,这增加了查找原发性故障的难度。为克服故障征兆的复杂性给故障诊断带来的困难,必须开阔思路,不拘泥于典型故障一征兆的狭窄思路,从系统角度出发,进行由环境到机械,由局部到整体,由阶段到过程的具体分析,将征兆、原因、故障机理有机结合起来加以研究,减少误诊率。

1.2诊断知识的不确定性

各种机械设备,由于复杂程度不同,工作环境各异,使我们获得的有关故障的知识往往有不确定和不完善的一面。一般来说,我们不能等待某种故障完全发生后再得出结论,而必须实施早期诊断,及时采取措施避免故障的进一步发展,这样,我们必须依据故障的部分征兆或无任何征兆情况下作出诊断,这不可避免地带来误诊。 由于故障诊断资料不足,对故障的认识受到较大限制,给明确诊断带来困难,有时不能将其有类似征兆的故障完全排除,有时所怀疑的故障的一般规律与故障征兆不完全相符,另外排除了一种故障的可能,又缺乏对某种故障作出识别的足够依据,因此故障诊断的推理过程往往也是模糊的,具有一定程度的不确定性。针对这种情况,充分研究故障诊断对象,建立合理的模糊知识体和模糊推理机,利用现代人工智能原理实施诊断更符合故障诊断的性质,将提高诊断的可靠性。

1.3理论的相对性

任何理论与实际的故障过程相比,总有局限性,机械设备作为一个与环境和人共同组成的有机体,是有差异的,理论只能大体概括故障诊断实践中的具体情况,同时,理论又受到一定科学技术条件的限制,还存在尚待认知的领域。

1.4获取数据的不准确性在实施故障诊断过程中,首先应获取机械系统运行的有关数据

机械运行过程中,往往受外界环境及各种随机因素影响,使获取的数据具有某种程度的不准确性,容易造成误诊。因此须采取必要数据预处理手段,减少随机因素的影响,剔除其中的趋势项、奇异项等,提高数据准确性,这也是降低误诊率的必要条件。

1.5诊断人员不专业诊断人员的素质也决定了诊断结论的正确程度

诊断人员的理论知识、实践经验、方法知识以及执行故障诊断时的态度都可能导致误诊。同时,诊断人员在综合运用知识、理论联系实际、善于解决实际问题等方面的能力也会影响诊断结论。

2.机械故障诊断中信息提取

2.1信息提取不可靠

机械故障诊断分为直接诊断和间接诊断,但由于受到设备结构和工作条件的限制,直接诊断往往难以进行。因而,多采用间接诊断,即通过二次诊断信息来间接判断设备中关键零部件的状态变化。而诊断测试便是获取二次诊断信息必备的关键环节。最常见的是振动测试(位移、速度、加速度)和声音测试。然而,由于各种原因,获取的数据可能发生偏差。体现在3个方面:(1)数据没有正确反映客观存在;(2)数据的信噪比低;(3)数据的不完备性。如果把这些不准确的数据当成有效数据来分析,就很可能发生误诊。

2.2信息处理不准确

能够快速、有效地提取反映机器故障信息的特征是机械故障诊断的关键。诊断特征主要通过对设备采集来的信号进行分析和处理获取。

2.3信息不完美对于一个诊断对象,如果其运行状态较复杂,由于客观条件和手段的限制等原因,可能使获得的信息难以确切地给出诊断结论,主要体现在以下3个方面

(1)信息不完备。在诊断实践中,故障与诊断信息之间并非一一对应的关系。1个信息对应多个不同的故障,而1个故障也表征为多个不同的信息。这就需要掌握充分的有用信息来区分不同的故障。否则,就可能出现误诊。(2)信息不一致。诊断信息不一致在诊断实践中也是较常见的现象。这些信息之间存在一定程度上的冲突。也就是说,某些信息很大程度上支持故障F1,否定故障F2;相反,另一些信息则支持故障F2,而否定故障F1。此时,误诊也容易发生。(3)信息不确定。来自于诊断对象的诊断信息经历了许多传输途径,其不确定性可能较小,也可能很大,如传感器、传输线等均影响其确定性。此外,还有定性与定量信息之间转换导致的不确定性。

3.提高信息可靠度、减少误诊断的措施

3.1提高诊断测试的准确性提高诊断测试的准确性是保证诊断数据可靠性的重要前提。可以从以下4方面着手:

(1)对传感器进行定期检验。

(2)可考虑用多个传感器测量。 (下转第253页)

(上接第179页)(3)采用可靠的传输线。

(4)正确设置采样参数。

3.2提高诊断系统的可靠性随着设备运行与维护的需要,各种在线、离线、远程等诊断分析系统以及人工神经网络、贝叶斯网络、专家系统等智能诊断系统逐渐用于机械故障诊断,为确诊故障带来了许多便利之余,也增加了机械故障误诊的可能性。开发合理完善有效的诊断系统,提高它们在特征提取或诊断推理方面的可靠性,有利于减小误诊率。

3.3加强诊断信息描述的客观性。 [科]

【参考文献】

[1]屈梁生,何正嘉.机械故障诊断学.上海:上海科技出版社,1986,2.

[2]刘振华,陈晓红.误诊学.济南:山东科学技术出版社,2001,3.

第4篇:故障诊断方法范文

关键词:汽车发动机;故障诊断;信号处理;模糊故障诊断

随着现代汽车电子使用过程不断地优化,提高了汽车性能的同时也让汽车整体控制系统的结构和功能变得更加复杂,一旦发生故障的时候,诊断跟维修也会变得特别的难,同时也考验维修人员的知识跟经验。随着发展的需要,维修人员不断提升自身的技术和能力,可以利用计算机技术建立一个完善、统一、系统的汽车发动机诊断维修技术方法,提高维修的效率。和世界各国研究机构投入大量的人力物力进行汽车发动体系故障的研究不同,对于我国来说进行发动机故障诊断的理论和方法的研究对改进和提高我国的汽车故障诊断技术是非常重要的,因为汽车工业我国起步的晚,这方面要远远落后于其他国家。

1根据信号处理发动机故障诊断方法

对于汽车发动机故障诊断方法的要领,实际就是两点,一个是模式的辨认识别,另一个是分类的问题。从这主要的两点来看,发动机故障诊断的方法主要可概括为提取特征,模式的识别和获取发动机的数据信息。在根据信号处理的汽车发动机故障诊断的方法中,最重要的方法之一就是利用信号模型来进行诊断;诊断方法主要有主元分析法和小波分析法等。(1)主元分析法对发动机故障的诊断与研究。主元分析法是通过对数据的压缩分析,提取其中的关键信息,根据提取的相关数据进行故障诊断,利用提取的历史数据进行研究和分析,建立一个主元模型,然后开始测量发动机实际运行信号,一旦出现汽车发动机实际运行信号跟主元模型的信号产生排斥,就说明汽车发动机发生故障,然后就可以判断故障的发生。通过分析得到的数据,分离出发动机的故障,然后解决问题。因此主元分析法对分离数据中的大量冗余信息处理非常有效;主元分析法对于数据的处理性很强,可以作为有效的故障监测和管理方式。(2)小波分析方法对发动机故障的诊断与研究。小波分析法就是对发动机运行状态下发生的时频进行数据分析,总结参数的变化数据进而判断汽车发动机的故障。小波分析法是通过对多项参数变化的采集,来推断汽车发动机是否发生故障。如图1所示为小波测试系统示意图,将发动机和波形分析连接,并将运行效果和采集波形的系统进行关联,这样能够监测发动机运行过程中的波动,然后记录发动机运转中的参数变化,通过小波分析进行参数研究,将结果进行对比。通过小波测试的数据对比显示,可以将如表1所示的数据进行分析对比,可以发现,当发动机油缸断油时,喷油脉宽增加,在油耗和点火角保持不变的前提下,发动机的转速基本保持不变的,这是因为发动机在断缸后,转速下降,为了维持这种不正常的运行状态,电脑会指令增加喷油脉宽,由于总供油量不变,所以转速基本不变,因此造成供油量变化与转速变化不同步,造成发动机运转不稳定的现象。

2模糊故障诊断方法

模糊诊断法主要是对数据进行大概的模糊的分析跟判断,对发动机的故障进行大致判断,可作为初步的判断,将故障大致确定在一定的范围内,然后重点对这个区域进行重点技术分析,然后继续缩小排除范围,从而提升故障诊断的效率。例如,发动机出现有声无转的现象,初期判断的时候不能分析出其具体原因,这种情况下可以通过模糊故障诊断法将故障范围大致缩小到发动机的轴、转动齿轮等然后故对这些部位进行重点排查分析继续将故障范围进行缩小,有利于提高发动机的故障诊断效率。

3基于知识的故障诊断方法

随着现代化技术的不断发展更新,人工智能及计算机技术为汽车发动机的故障诊断提供了不少新的理论方法,产生了不少新的诊断方法,例如用计算机采集故障发动机的信息后,计算机会利用所收集的数据运行各种规则进行推断,有时甚至还可以调取应用程序,在运行的过程中还可以向商户索取一些必要的信息,然后就可以快速诊断出发动机故障或者最有可能的故障。

4专家系统故障诊断法

专家系统对汽车发动机的故障诊断法主要是指在通过对被诊断发动机进行计算机信息采集,然后通过计算机相关的逻辑分析系统将数据进行处理,然后通过知识进行推理诊断故障可能发生的原因,然后再由用户去证实。

5汽车发动机故障诊断法的展望

随着社会经济的发展以及汽车技术的日益发展汽车,发动机的故障问题也会越来越复杂化,不仅仅存在于单方面的问题,必定会对现存的汽车发动机的诊断造成困难。目前很多研究人员试着将故障诊断的方式进行整合,也就是通过多种诊断渠道联合起来对发动机进行诊断,这种方法不仅体现出了成果性,同时更具全面性。通过对所有诊断方法的整合,可以更好地进行互补作用,更充分的对汽车发动机进行更加全面的故障诊断。其次也可以通过增加故障诊断工具来提高故障诊断效率,还可探讨新的故障诊断功能。根据新的诊断方法,可以结合前面提到的诊断方法,全面提高诊断效率。

6结语

文章仅针对汽车发动机故障的诊断方法进行了研究与分析,了解了汽车发动机的故障诊断方法种类的多样化,应该结合实际具体的情况采取针对性的方法。不拘泥于单一的诊断方法,全面检测才能够诊断出最好的诊断效果,通过理论结合实践的不断总结,在故障诊断中还可以借助一些新的仪器进行诊断。随着汽车工业技术的不断发展,在未来的汽车发动机技术的诊断中,计算机诊断将起到举足轻重的地位,既节省人力又能提高诊断的有效性。

参考文献

[1]张开智.汽车发动机故障诊断的理论和方法[J].中国新技术新产品,2014,(10):40-41.

第5篇:故障诊断方法范文

关键词:现代模拟电路;故障诊断;方法探讨

模拟电路故障,就是在模拟电路运行过程中,因为电路中器件某个参数发生变化致使电路无法正常运行。模拟故障主要分为两类:硬故障和软故障。硬故障是在电路运行中出现的开路或短路等状态。软故障就是指电路的某个器件的参数发生变化致使电路运行不正常的故障。

1 模拟电路故障诊断中遇到的困难有哪些

⑴模拟电路出现的故障情况不尽相同,而且其本身参数(输入激励与输出响应及网络中各元件的参数等)是连续量,造成故障模型比较繁琐,难以量化。⑵因为参数误差、非线性、或环境造成的干扰等多项因素,使得电路工作特性发生偏移,导致输入与输出关系复杂,从而使得一些故障诊断方法失去了其准确性。⑶非线性问题在模拟电路中广泛的存在,伴随着电路规模的线性增大,使得计算量大大增加;现在在电路中存在着大量的反馈回路,而这也同样增加了计算量,也是测试变得复杂了许多。⑷现在的电路元器件多是被封装的,这样就造成可测电压的可及节点数会很少,从而使可用作故障诊断的信息量减少,致使故障定位中的不准确程度提高,使得判断错误,造成严重后果。上述这些困难如果只用传统的数学方法描述将会很难达到诊断效果。因为人工智能技术可以很好地模拟人类处理问题的过程,并且具有学习能力,还可以积累经验,所以这门技术在现代模拟电路诊断中得到了广泛的应用。下面将介绍以人工智能技术为基础的一些诊断方法。

2 现代模拟电路故障诊断的方法

2.1 专家系统故障诊断方法

专家系统,就是指一个内部具有很多专家水平的某个领域的知识和经验的智能计算机程序系统。专家系统可以依据某个领域中人类专家提供的知识和经验进行推理、演算、判断来模拟人类专家处理问题的过程,从而解决某些需要专家决定的复杂问题。通过观察到的数据来判断出现故障的原因就是诊断专家系统的任务。其基本的工作原理是:先把专家知识机器诊断经验用规则表示出来,形成故障诊断专家系统的知识库,再根据报警信息对知识库进行推理,诊断出故障元件。

在模拟电路故障诊断中主要是应用基于产生式规则的专家系统,其得到广泛应用的原因主要是由故障诊断和基于产生式规则的专家系统的特点所决定的。使用这种诊断方法的特点是:可以将故障与征兆之间的关系易于用直观的,模块化的规则表示出来,并且这种专家系统允许增加、删除或修改一些规则,来确保诊断系统的实时性和有效性,还可以在一定程度上解决不确定性的问题和给出符合人类语言习惯的结论并具有相应的解释能力等。

尽管专家系统能有效的模拟故障诊断专家并完成故障诊断的过程,不过在实际应用过程中仍存在一些缺陷,主要是知识获取的瓶颈问题以及你能有效解决故障诊断中许多不确定因素,这些问题就影响了故障诊断的准确性。除此之外,专家系统在自适应能力、学习能力和实时性方面也存在着不同程度的局限。其解决方案是将其与具有信息处理特点的神经网络和适合人类认识特征模糊理论相结合。

2.2 神经网络故障诊断方法

人工神经网络(ANN)是模拟人脑组织结构和人类认知过程的信息处理系统,具有并行分布处理、自适应、联想记忆等优点。ANN技术解决故障诊断问题的主要步骤为:根据诊断问题组织学习样本,根据问题和样本构造神经网络,选择合适的学习算法和参数。利用ANN的学习、联想记忆、分布式并行信息处理功能,可以解决诊断系统中不确定知识表示、获取、和并行推理等问题。在上一方法中提到神经网络可以弥补专家系统的一部分缺陷,但是ANN技术仍有不足之处。由于其自身不够完备,学习速度慢、训练时间长等原因,影响了它的实用化。为了可以将其更好的应用在模拟电路故障诊断中,许多学者把ANN与遗传算法、专家系统及故障字典法等相结合,较好地解决了智能中小规模模拟电路故障诊断难题。若是想解决大规模的模拟电路故障诊断问题,还需学者们进行深一步的研究。

2.3 模糊故障诊断方法

模糊故障诊断方法是依据专家经验在故障征兆空间与故障原因空间建立模糊关系矩阵,再讲个条模糊推理规则产生的模糊关系矩阵进行组合,根据一定的判断阈值来识别故障元件。其优点是:模糊理论可适应不确定性的问题;模糊知识库使用语言变量来表述专家的经验,更接近人的表达习惯;模糊理论能够得到问题的多个可能的解决方案,并根据这些方案模糊度的高低进行优先程度排序等。由于隶属度的获取,复杂系统模糊模型的建立、辨识,语言规则的获取、遗忘、修改等理论和方法还不够完善,所以这种方法的应用就受到了很大的限制。若是将其与专家系统、ANN等相结合,则可有效地解决这些困难。除了上述这些诊断方法外,还有小波变换故障诊断方法、多传感器信息融合故障诊断方法、基于Agent技术的故障诊断方法等。

人工智能技术在今后的工程中具有广泛的应用前景,这种技术的应用将会使得模拟电路故障诊断的方法得到进一步发展,是诊断方法更加趋于完善,使其适用性更加广泛,为实现复杂大规模模拟电路的故障诊断提供更有效且更实用的方法,其将会成为今后模拟电路故障诊断的主发展方向。

[参考文献]

[1]张少刚,齐世平,等.现代模拟电路故障诊断新方法[J].信息与电子工程.2006,4(6):476-480.

第6篇:故障诊断方法范文

一、汽车故障诊断时要注意的问题

1.查找合适的维修信息

对于装有自诊断系统的待检查汽车来说,检查诊断的第一步就是查找合适的维修信息。必须参考修汽车的说明书,不能用推测、猜想。如果实在找不到原车说明书,用同类车的说明书作参考也可以,但要注意数据的差异。除此之外,最好拥有要维修汽车的服务通报。

另外,必须拥有汽车的电路图和结构图。没有相应的电路图,诊断计算机系统的故障是很困难的,甚至是不可能的。制造商提供的维修手册、通用维修手册或电子数据系统中必须载有维修程序信息。诊断结果可以由专用的输出传感器表明是否有故障,但无法显示故障是出在传感器上还是出在导线上,因此必须有合适的检查程序以准确地找出故障原因。一本部件位置手册可以帮助找到汽车上的某一个部件,从而节省时间。

2.积极地查找故障

应及时学习最新的修理常识,及时更新知识,避免走弯路。有些汽车的间歇性故障是难于诊断的,除非是检查汽车时正好故障显现。换句话说,当我们进行诊断测试时,故障症候不出现,故障就难以诊断。当故障一出现,立即直接到现场去诊断故障,这一方法对无法启动的故障尤为适用。如果出现这种情况,应当告知顾客不要再试图启动汽车。这样做的费用可能偏高,但有时候这可能是成功诊断故障原因的唯一方法。一定要乐于多跑上几千米为顾客诊断,排除故障。

在汽车检修中,如果计算机装有可拆卸的“可编程只读存储器”,那么必须拥有最新的“可编程只读存储器”刷新的信息。假如不具备这类知识,而汽车制造商却推荐更换“可编程只读存储器”来修正一项特别的驾驶性能,那么将在检查、诊断上浪费时间和精力以及增加成本。

还有要注意的常识是,发动机的机械故障也能产生诊断故障代码,因此诊断故障代码并不一定是发动机计算机系统某一元件的故障。例如,如果由于排气阀烧坏而使汽缸压缩性变差,而诊断故障代码显示的是氧传感器提供的缺氧信号。事实上,大量的油气混合气在汽缸内未燃烧,氧传感器能感应到排气气流中附加的氧气,这时必须尽快确定到底是传感器故障导致缺氧故障码还是有机械上的原因。

二、正确判断故障,根据故障性质进行维修

汽车维修很重要的一点就是确定故障性质。根据汽车不同的故障性质、状况采用不同的维修方法。

1.按工作状态可分为间歇性故障和永久性故障

间歇性故障就是有时发生、有时消失的故障;永久性故障是故障出现后,如果不经人工排除将一直存在的故障。

2.按故障程度可分为局部功能故障和整体功能故障

局部功能故障是指汽车某一部分存在故障,这一部分功能不能实现,而其他部分功能仍完好;整体功能故障是即使为汽车的某一部分出现了故障,也使整个汽车的功能不能实现。

3.按故障形成速度分,有急剧性故障和渐变性故障

急剧性故障是故障一经发生,工作状况急剧恶化,不停机修理汽车就不能正常运行;渐变性故障发展较缓慢,故障出现后一般可以继续行驶一段时间。与急剧性故障相类似的一种故障叫突发性故障,在故障发生的前一刻没有明显的症状,故障发生往往导致汽车功能丧失,甚至危及驾驶员和车辆的安全。

4.按故障产生的后果分,有危险性故障和非危险性故障

突发性故障和急剧性故障属于危险性故障,常引起汽车损坏,危及到车辆和人身安全,是汽车故障诊断与预防的重点;渐变性故障属非危险性故障,故障发生后一般可以修复。

三、汽车诊断时要注意的问题

1.要有详细的汽车诊断参数

汽车诊断参数是诊断技术的重要组成部分,在不解体的条件下直接测量结构参数十分困难,因此必须通过状态参数进行描述,用来描述系统、零件和过程性质的状态参数称为诊断参数。一个结构参数的变化可能引起很多状态参数的变化,究竟选择哪些状态参数作为诊断参数,应从技术上和经济上经综合分析确定。

2.合理使用汽车诊断方法

汽车在工作过程中,各种零件和总体都处于装配状态,无法对其零件进行直接测试。例如汽缸的磨损量、曲轴轴承的间隙等,在发动机不解体的情况下是无法测量的。因此,对汽车进行诊断都是采用间接测量,如通过振动、噪声、温度等物理量的测量来间接诊断汽车的技术状况。采用间接测量方法进行判断,必然会带来一些“不准确性”。例如发动机工作时,曲轴主轴承的工作状态可分为正常状态和不正常状态两种情况,如果采用机油温度作为判断轴承工作状态的特征,并将油温分为“正常”“过高”两种情况,则可能会产生误判。因为机油温度过高,固然可能是轴承运转失常所致,但也可能是其他原因(如机油黏度不合适、机油量不足、机油散热器不良等)造成机油温度上升。

“故障树”分析法,是根据汽车的工作特征和技术状况之间的逻辑关系构成的树枝状图形,来对故障的发生原因进行定性分析,并用逻辑代数运算对故障出现的条件和概率进行定量估计。这是一种可靠性分析技术,普遍应用于汽车等复杂动态系统的分析中。树枝图分析法用于汽车诊断,不仅可以分析由单一缺欠导致的系统故障,而且还可以分析两个以上的零件同时发生故障引发的系统故障,还能分析系统组成中硬件以外的其它成分,例如可以考虑汽车维修质量或人员因素的影响。

汽车故障的发生带有随机性,属于偶然性事件。如若建立树枝图,并用来分析故障,有助于弄清楚故障发生的机理,除可进行定性分析外,还可以根据树枝图中影响故障发生因素的出现概率,定量预测故障发生的可能性,即故障发生的概率。

除此之外,汽车诊断方法还有其他的一些方法,概括起来有经验法、推理法、对比法、替换法、分析法、仪器辅助诊断方法等。具体使用哪一种方法,就要看汽车的故障与原因了。

3.灵活运用维修案例

在汽车修理过程中,很多修理工喜欢看案例,但不能照搬。那样的话还不如不使用案例,所以要灵活使用汽车修理案例。在使用案例时要遵循以下原则:一要看经典案例,目的是了解具有代表性的故障现象与规律;二要看描述生动完整的案例,目的是了解故障诊断思路,以及如何归纳、推理、总结;三要看典型案例,目的是了解某一车型同一故障的易发性;四要学习案例的写作与表述,很多维修人员会干不会说,会说不会写,其实写作过程非常有利于思维的条理性锻炼。总之,对待案例千万不能生搬硬套,要举一反三。

第7篇:故障诊断方法范文

摘要: 随着经济的发展,技术的进步,现代企业设备越来越大型化、复杂化、智能化,如果液压设备发生故障,生产就无法进行。本文首先介绍液压系统故障诊断的准备工作,然后详细介绍三种诊断方法。

关键词:液压系统故障 简易故障诊断法 人工智能故障诊断法

液压系统具有很多独特的优点,常见的如:大容量、结构紧凑、安装灵活、反应快、容易控制等等,在现代大型设备,特大型设备中具有广泛的应用的同时存在着问题,极易发生故障从而影响生产,造成故障的原因主要是系统中元辅件和工作液体性能不稳定,系统设备使用不当或者维护不到位。近几年液压系统故障诊断成为了一门专门的学科,受到高度的重视。

1、液压系统故障诊断的准备工作

第一拿到设备使用说明书时一定要认真仔细的阅读,详细了解该设备的功能、结构、工作原理,包括系统中元件的功能结构和原理;第二从网上查阅设备的档案资料,包括生产厂家、制造日期、调试验收,故障可能、处理方法等等。

2、简易故障诊断方法

2.1 主观诊断法

这是一种最传统的方法,凭借维修人员的主观判断(看、听、摸、闻、问)和实践经验,或者利用简单的仪器、仪表判断故障发生的部位并且给出发生的原因。常见到的主观诊断法有感官诊断、方框图分析、系统图分析,该方法简单快捷方便,这种方法对维修人员的要求极高需要有丰富的诊断经验,但是诊断结果具有局限性。

2.2直接性能测试法

这种方法通过测试液压元件和系统性能进而评价系统工作状态,适用于处于工作状态的系统,还能进行定量的分析,现代运用最多的是检测液压系统的状态。如果检测的液压系统元件或者性能超出了规定的正常范围,那么该系统就有发生故障的可能性。这种方法原理简单,相当直观,但是测试的精准度不是很高,一般早期的失效很难检测出来。

3、基于信号分析的故障诊断方法

3.1基于抽样分析法

反映系统内部信息的除了液压系统本身的信息,其内部的污染物也可以,也就是说测定和鉴别油液当中污染物的成分和含量,可以知道液压系统的污染情况和运行状况,也是一种故障诊断的方法。目前我们经常见到的有两种:一种是基于油液颗粒污染度的检测技术,包括:显微镜检测技术(设备投资小、方法简单、费时费力、误差大)、自动颗粒计数器(检测速度快、操作简便、准确度高但精度低)、称重法(设备简捷、检测方便、只测重)、铁谱分析法(可进行定性和定量的分析)、光谱法(成本高、精度高);另一种是基于油液性能参数的检测技术,这种技术需要细致的分析油液的有关参数和金属的含量,历时的周期较长,无法实现在线检测,但是对重要液压系统的诊断很有效。

3.2基于振动噪声分析法

在液压系统的运行过程中,必然会伴随产生振动和噪声,尤其液压泵的振动声音十分大,实际上这些设备的振动和噪声就包含了许多故障的信息,分析信号,得到元件状态信息,进而进行故障诊断。这种方法的理论比较完善,应用也比较广泛,有多种信号处理方法如:时域特征参数法、时差域特征法、概率密度法、相关分析法、谱分析法、自功率谱分析法、倒频谱分析法、包络谱分析法、主分量自回归谱提取法、AR谱参数提取法、小波分析等。目前旋转机械设备也能用它分析诊断故障,纯机械设备的故障诊断效果相当明显。随着信号处理技术的发展,这种方法的应用前景十分可观。

3.3基于数学模型法

这种方法的指导是现代控制理论和优化方法,基础是系统的数学模型,残差产生法是观测器(组)、等价空间方程、Kalman滤波器、参数模型估计和辨识等,利用阀值或者准则评价决策残差。该方法和控制系统的关系相当密切,共同成为监控、容错控制、系统修复重构的基础。这种方法的数学模型的精确度直接决定诊断的精确性,一般最常建立的是线性和非线性的数学模型来诊断液压系统的故障。

4、基于人工智能的故障诊断方法

4.1基于专家系统的智能诊断法

这是智能诊断技术中受到多方关注的一个发展方向,研究最多,应用最广,主要是利用专家的知识和推理方法解决实际遇到的复杂问题。在这的专家系统并不是指人员而是指一种人工智能计算机程序,知识权威,学习功能强大。该系统的主要组成部分:知识库(系统知识和规则库)、数据库、推理机和解释机制。如果利用它检测在线的系统,数据库显示的是实时工况数据;如果利用它检测离线系统,则数据库显示的是实际故障时的数据或者人为故障的样本数据。该方法的运行过程是通过人机相互交换,专家系统获得所需信息,利用系统的知识库和数据库,推理机运用规则,调用应用程序,进行正确的推理,找到液压系统的故障。这种方法给自动化进行液压系统故障诊断代带来了光明和希望,但是也存在一定的不足和问题,不过未来的发展前景还是很广阔的。

4.2基于神经网络的智能诊断法

20世纪80年代人工神经网络迅速崛起,成为人工智能领域的一个分支,是一种计算模型(与人的认知过程相似),一种非线性动力学网络系统(模拟大脑神经元结构特性)。神经网络的非线性处理单元(类似神经元)相互关联,具有了学习、记忆、归纳总结等功能和数学模拟能力。这种方法的具有独特的优势,如:分布式处理能力、联想记忆、自学习能力等收到诊断领域的广泛关注和重视,未来发展前景十分宽广。

4.3基于模糊理论的智能诊断法

大量的模糊现象存在于液压系统故障诊断领域,如:系统油温过高、压力波动较重等等,过高、较重这些都是模糊的概念,并没有清晰的边界,故障发生会经历一个漫长的时间,同时故障发生的原因和症状也是模糊的,可能一对一,可能一对多,也可能多对一。利用模糊逻辑、模糊关系描述故障的原因和现象,建立隶属度函数和模糊方程,明确识别故障。这种方法的现象更为客观,结果更符合实际,速度快,容易实现。

5、结束语

随着21世纪科技的发展,人工智能技术更是突飞猛进,还有许多智能诊断的方法如:故障树诊断法、灰色理论智能诊断法、案例推理诊断法、多智能体的智能诊断法、信息融合技术智能诊断法等等。如何将新型科技、智能技术运用到故障诊断系统当中,实现自动化、智能化的故障系统诊断是我们亟待解决的问题。

参考文献:

[1]范士娟,杨超.液压系统故障诊断方法综述[J].机床与液压,2009,37(5):188-192,195.

第8篇:故障诊断方法范文

关键词: 电控发动机 故障 诊断方法 运用

现代机械设备广泛采用电子控制技术,其电气设备、系统结构日趋复杂和精密,对设备各系统和用电设备的控制基本实现了功能组合化、控制电子化和连接标准化,使机械设备性能更加完善,同时对机械设备的故障诊断与维修有了更高层次的要求。因此,在对电子控制发动机的故障诊断与维修方面,不能再延续传统的经验检查方法进行故障判断,而应在一定经验积累的基础上,借助先进的检测设备,运用先进的检查方法,结合故障发生原因、现象和检测结果,充分利用技术维修资料,认真思考和分析,判断故障范围,有针对性地解决故障问题。

一、电控发动机的故障特点和诊断的基本原则

(一)诊断电控系统故障的注意点

对电控发动机进行故障诊断时,首先要判断该故障是属于发动机的机械故障,还是属于微机控制系统的故障。在进行电控系统的故障诊断时,应注意以下几点。

1.配线和连接器的故障。断路故障主要由导线折断、连接器接触不良、连接器端子拔出等原因所造成。一般导线在中间折断的情况很少见,大多是在连接处断开。因此,尤其应仔细检查传感器和连接器处连接的导线,接触不良可能是连接器端子氧化锈蚀,污物进入端子,或连接器插头与插座之间接触压力过小所致。把连接器分开后,检查、清洁、打磨修整后,再重新插上,可能会恢复正常。

2.不要打开电脑盖,电脑即使坏了也无法修理;若是好的,打开后可能损坏电脑,或破坏其密封性能。

3.雨天检修或清洗发动机时,应防止将水溅到电子设备及线路上。

4.拆卸导线连接器时,要注意松开锁紧弹簧或接下锁扣;在装插连接器时,应插到底并锁住。

5.检查线路断路故障时,应先脱开电脑和相应传感器的连接器,然后测量连接器相应端子间的电阻,以确定是否断路或接触不良。

6.检查导线是否有搭铁短路故障时,应拆开线路两端的连接器,然后测量连接器被测端子与车身搭铁之间的电阻值,电阻值大于1M为合格。

对于电子控制发动机,主要从两方面理解:一是机械部分;二是电子控制部分。通过控制不同的执行机构,监测和控制发动机工作。在使用中,发动机故障的原因可能出自机械部分,也可能出自电子控制部分,其故障诊断的难易程度也不一样。因此在对电控发动机故障诊断时,我们要分清故障是在机械部分还是在电子控制部分,了解故障的特点,遵循故障诊断的一些基本原则,就可以用较简单的方法准确而迅速地找出故障所在。

(二)故障特点

电控发动机机械部分的故障特征我们可用常规检查方法和经验法诊断即可,故不再详细叙述。

电子控制部分主要由电控单元ECU、传感器和执行器等组成,而这些零件由各种电子元件和电子电路组成。一般电子元件对高电压、温度十分敏感,一旦这些电子元件或电路损坏,则会使电控部分某一零部件不工作或工作异常,那么在电控发动机上则表现出某些特定的故障现象。

1.元件击穿。电子元件被过电压击穿或能高温、大电流击穿,故障现象表现为短路或断路。例如,电子点火控制器内部的电容或三极管被击穿,就会使点火控制器工作异常,造成点火线圈次级绕组无法产生高压电,高压火线不跳火或火花弱,故障现象表现为发动机无法启动或工作异常。

2.元件老化或性能退化。电子元件长期在高温、电压、电流变化频繁、灰尘等恶劣条件下工作,就会使其老化或性能退化。

3.线路故障。主要包括接线松脱、接触不良、潮湿、腐蚀等导致的绝缘不良短路、旁路等。传感器和执行器都是固定在发动机某一位置上,通过导线与电控单元ECU连接,若导线接头插接不良或导线短路等,就会使传感器无法将检测的信号传给电控单元,而电控单元不能控制执行器工作,从而造成发动机工作异常。

二、电控发动机故障诊断方法

(一)直观诊断法

直观诊断就是通过人的感觉器官对汽车故障现象进行看、问、听、试、嗅等,判断得出结论的诊断方法。采用这种方法诊断的维修人员必须具有较丰富实践维修经验和熟悉车辆结构,否则不能准确地判断故障部位和原因。

(二)利用随车自诊断系统诊断

随车故障自诊断可以对系统的故障进行自诊断,在电控发动机故障诊断中是一种简便快捷的诊断方法。当发动机出现某种故障时,自诊断系统就会立刻监测到故障,并以故障代码方式储存该故障的信息,通过警告灯方式报警。

注意:自诊断系统给出的故障码,只表明故障的范围,具体的故障点还应通过其他方法进行检查确定。由于自诊断系统能够存储多个故障码,如果故障排除而未及时清除故障码,那么在检查时,则有可能原始故障码和新发故障码同时出现,无法具体确定真正故障原因,给检查带来不必要的麻烦。所以,在每次排除故障后,必须清除故障码。

(三)利用简单仪表诊断

电控系统的传感器和执行器均有一定的电阻值。工作时有输出电压范围和输出脉冲波形。因此可以用万用表测量元件电阻或输出电压、线路是否导通,也可用示波器测试元件工作时的输出电压。

用万用表检查电控系统故障时,必须以被测车辆的详细维修技术资料为依据,应知道电控单元线束插接器中各端子相连接的传感器和执行器的名称、电路连接图,发动机不同工作状态下各端子标准电压值和各端子之间的标准电阻值等资料。

例如,检测温度传感器其结构多为热敏电阻式,检查可用电吹风或将传感器放在热水中加热,模拟其工作环境,测量其电阻。其阻值应为负温度变化,即随温度增高,阻值下降。若不变化,即可判定传感器失效。

(四)利用专门诊断仪器诊断

目前在对电控发动机进行故障诊断中更多地应用故障解码器,如电眼睛等专用车系诊断仪等,大大提高了电子控制系统的诊断效率。当需要进行故障诊断时,将故障解码器的插头和汽车上的故障诊断插座相连接,打开点火开关,进行操作后,可以很方便地从诊断仪的显示屏上读出所有储存在电脑中的故障码。

使用故障解码器在读故障码的同时,我们也可在发动机数据流中分析发动机工作情况,这种方法现在使用得越来越多。数据流可以具体反映出传感器和执行器现时工作状态,如节气门位置传感器的电压变化,水温传感器的电阻变化,喷油器的喷油时间变化,等等。通过对它们工作状态时的变化的观察,我们可以判断哪些传感器和执行器工作是否正常,诊断方法也同样简单、有效、可靠,工作效率也高。

(五)故障症状模拟诊断法

在电控发动机故障诊断中,经常会碰到发动机有故障但没有明显故障症状的现象,这为我们诊断工作带来较大困难。在这种情况下,可运用上述介绍的各种检查方法,尽可能地缩小故障范围,然后模拟出现故障时相同或相似的条件和环境,找出故障原因,有针对性地维修排除故障。

(六)振动法

1.连接器。在垂直和水平方向轻轻摇动连接器。

2.配线。在水平和垂直方向轻轻摆动配线。连接器接头、振动支架和穿过开口的连接器体都是应仔细检查的部位。

3.零件和传感器。用手指轻拍装有传感器的零件,检查是否失灵。不可用力拍打继电器,否则可能会使继电器开路。

(七)加热法

用电吹风或类似工具加热可能引起故障的零件,检查是否出现障。注意加热时不可直接加热ECU中的元件,且加热温度不得高于60℃。

(八)水淋法

用水喷淋在车辆上,检查是否发生故障。注意不可将水直接喷在发动机零部件上,而应喷在散热器前面,间接改变温度和湿度;也不可将水直接喷在电子器件上,尤其应防止水渗漏到ECU内部。

(九)电器全接通法

第9篇:故障诊断方法范文

故障诊断的关键是提取故障的特征。故障特征是指反映故障征兆的信号经过加工处理后所得的反映设备与系统的故障种类、部位与程度的综合量。故障诊断方法按提取特征的方法的区别,可分为谱分析方法、基于动态系统数学模型的方法、采用模式识别的方法、基于神经网络的方法、专家系统的方法、小波变换的方法和利用遗传算法等。这些方法将在下文具体介绍。

一、故障诊断中的谱分析方法

在故障诊断中比较常用的信号处理方法是谱分析。常用傅里叶谱、沃尔什谱,另外还有滤波、相关分析等。谱分析的目的:信号中包含噪声,为了提取特征;故障信号的时域波形不能清楚地反映故障的特征。而电力电子电路中包含故障信息的关键点信号通常具有周期性,因此可以用傅里叶变换将时域中的故障波形变换到频域,以突出故障特征,实现故障诊断。

傅里叶变换是将某一周期函数分解成各种频率的正弦分量,类似地,沃尔什变换是将某一函数分解成一组沃尔什函数分量。自适应滤波是一种数字信号的处理统计方法,它不需要知道信号一二阶的先验统计知识,直接利用观测资料,通过运算改变滤波器的某些参数,而使自适应滤波器的输出能自动跟踪信号特性的变化。在电力电子系统故障诊断中,可以用自适应处理来实现噪声抵消,谱线增强等功能,从噪声背景下提取故障特征,从而实现准确的诊断。

二、参数模型与故障诊断

如果系统的数学模型是已知的,就可以通过测量,估计系统的状态和参数,确定状态变量和系统参量是否变化。采用基于系统数学模型的故障诊断方法,可以从较少的测量点去估计系统的多个状态量或系统参数,从而实现故障诊断。

进一步又可以分为检测滤波器方法、状态估计法和参数辨识方法三种。

1、检测滤波器方法

它将部件、执行机构和传感器的故障的输出方向分别固定在特定的方向或平面上。

2、状态估计法

通过监测系统的状态变化,也能反映由系统参数变化引起的故障,并对故障进行诊断。与一般的状态估计不同,在进行故障诊断时,并不是去估计未知的状态信息,而是借助观测器或卡尔曼滤波器去重构系统的输出,以便取得系统输出的估计值。这个估计值与实际输出值之差就叫量测残差。残差中含有大量的系统内部变化的信息,因此可以作为故障诊断的依据。状态估计法的优点是在线计算量小,诊断速度快。

3、参数辨识方法

实时辨识出系统模型的参数,与正常时模型的参数比较,确定故障。常用的有最小二乘法。

三、模式识别在故障诊断中的应用

故障的模式识别就是从那些反映系统的信息中抽取出反映故障的特征,并根据这些特征的不同属性,对故障进行分类。用模式识别方法进行故障诊断,是根据样本的数学特征来进行的,因此它不需要精确的数学模型。对于一些被诊断对象数学模型过于复杂、不易求解的问题,模式识别方法也是适用的。另外,在对工业系统的故障诊断中应尽量利用非数学(包括物理和结构)方面的特征,设计出各种各样的特征提取器,这样将有利于利用对已有系统的知识,有利于减少计算工作量。由于特征的选择和提取与待识别的模式紧密相关,故很难有某种泛泛的规律可循。目前常用的方法有:最小距离分类法,bayes分类法,fisher判别法,从参数模型求特征,用k-l变换提取特征等

四、基于神经网络的故障诊断方法

利用神经网络的自学习、自归纳能力,经过一定的训练,建立起故障信号与故障分类之间的映像关系。利用学习后的神经网络,实现故障诊断。神经网络是由大量的神经元广泛互连而成的网络,这里以bp网络为例加以介绍。bp网络是单向传播的多层前向网络,它由输入层、中间层和输出层组成,中间层可有若干层,每一层的神经元只接受前一层神经元的输出。bp网络中没有反馈,同一层的节点之间没有耦合,每一层的节点只影响下一层节点的输入。

bp网络一般采取的学习算法是:网络的输出和希望的输出进行比较,然后根据两者之间的差调整网络的权值,最终使误差变为最小。当电力电子电路发生故障时,如果能够利用神经网络的学习能力,使故障波形与故障原因之间的关系通过神经网络的学习后保存在其结构和权中,然后将学习好的神经网络用于故障诊断,神经网络就可以通过对当前电压或电流波形的分析,得出故障原因,从而实现故障的在线自动诊断。

五、专家系统

由于故障诊断是从被监测和诊断的对象表征去寻找故障的成因、部位,并确定故障的严重程度的,因此,如果把由已知故障去分析系统或设备的运行特性与表征叫做正问题,那么故障诊断就是逆问题了。这种逆问题的求解明显不同于正问题的求解,而人工智能ai(artificial intelligence)技术中的专家系统es(expert system)正是解这种逆问题的有利工具。专家系统是人工智能研究的一个分支,它是通过模拟专家的经验,实现故障诊断。专家系统的结构如下表所示:一个典型的诊断专家系统通过在线监测并进行数据采集、存贮,然后传送到诊断运行中心,在这里由专家系统进行处理、分析和诊断,最后将诊断结果和处理建议自动地反馈回运行现场。因此,专家系统是诊断系统中最核心的部分。本文后面将介绍作者在实际中应用专家系统方法进行故障诊断的实例。

六、小波变换的方法

在故障诊断中,突变信号往往对应着设备的某种故障,分析和识别系统中产生的各种波形信号,并判别其状态,是进行电路故障诊断中的有效方法之一。设备正常运行时发出的信号较平稳,一旦设备出现故障,就将发出具有奇异性的动态非平稳信号。为了实现设备故障的快速、准确检测,必须有效地识别故障发生瞬间的非平稳信号。信号的处理与分析是故障预测和诊断的基础,提高诊断的准确度需要信号处理和分析方法,小波变换以其对非平稳信号局部化分析,及良好的时—频定位功能的突出优点,为故障诊断提供了新的、强有力的分析手段,弥补了传统故障诊断中因为专家的经验知识很难精确描述,存在知识获取的“瓶颈”问题。

相关热门标签