公务员期刊网 精选范文 纳米制药技术设计范文

纳米制药技术设计精选(九篇)

纳米制药技术设计

第1篇:纳米制药技术设计范文

1.纳米材料的特性

当一种物质被不断切割至一定程度,其粒子小至纳米量级,即为纳米材料。科学家发现纳米材料有许多鲜为人知的性质,比如体积效应、表面效应、量子尺寸效应、宏观量子隧道效应和介电限效应等。而出现许多特性:光学性质、催化性质、化学反应性质、硬度高、可塑性强、高比热和热膨胀、高导电率和扩散性、高磁化率和高矫顽力等。正由于纳米材料具有诸如上述的性质,为生物医学、药学等许多领域带来新的生机。

2.纳米技术在生物医学中的应用

2.1生物兼容性物质的开发

在生物医学中应用纳米技术,可以使得材料生物的相容性得到最大限度的提升,同时还能够降低生物的毒性、增强生物的传导性从而使得材料生物可以最大限度的满足生物组织的需求,达到生物组织规定的标准。纳米技术应用到生物医学中,衍生出各种纳米材料,如纳米无机金属生物材料,这种材料不具有毒副作用,其与人体的组织具有相容性,有利于人体相关组织的生长。同时纳米具有较强的生物活性,能够对人体的血液进行有效的净化处理,将人体中的有毒物质排出人体的体外,从而使得人体的抵抗力得到进一步的提升,降低人体患病的可能性。

另外,相关的生物医学研究学者利用纳米技术已经研制出一种新型的骨骼亚结构纳米材料,这种材料在实际的临床应用中应用较为广泛,现如今已经成功的取代了原有的合金材料,并且其他成功研制的纳米材料也在临床中得到了应用,可以说,在生物医学领域中,纳米技术无处不在。

2.2 DNA纳米技术

DNA纳米技术主要是依据DNA的理化性质来实现对纳米技术的合理设计和应用,这种DNA纳米技术在实际的应用中,主要是用来实现对分子的组装,在对DNA进行复制的过程中,也能够应用这种技术实现对碱基各种特性的体现,同时也能够使得遗传信息的多样性得到最大限度的体现,在纳米技术进行设计的过程中,所遵循的原理也包括这几方面的特性和内容。

3.纳米技术在药学领域中的应用

3.1纳米控释系统改善药动学性质

将药物制成纳米制剂后,不但达到缓控释效果,而且改变其药物动力学的特性。比如有人以环抱素A为模型药物,以硬脂酸制备了纳米球以市售CYA微乳型口服液为对照,测得口服CYA-SA-NP在大鼠体内相对利用度接近80%,达峰时间推迟,具有明显效果。还有人以链脉霉素糖尿病大鼠为模型,皮下注射胰岛素纳米囊实验,其结果降糖作用持续3天,且在药物吸收相具有明显的量效关系。本品3天一次与一天3次的常规胰岛素疗效相当。

3.2纳米释药系统增强药物靶向性

纳米材料生物相容性好,采用可生物降解的高分子材料作药物载体制成纳米释药系统,可增强抗肿瘤药物靶向性,就相关的阿霉素免疫磁性毫微粒的体内磁靶向定位研究可以了解到,AIMN具有超顺磁特性,在给药部位近端和远端磁区均能产生放射性富集,富集强度为给药量的60%-65%,同时其在脏器的分布显著减少,从而证实了AIMN具有较强的磁靶向定位功能,为靶向治疗肿瘤奠定了结实的基础。

3.3纳米技术在药理学研究上的应用

在药理学研究上,人们可以利用尖端直径小到可以插入活细胞内而又不严重干扰细胞正常生理过程的超微化传感器或纳米传感器用以获得活细胞内大量的动态信息,反映出机体的功能状态并深化对生理及病理过程的理解,为药理学研究提供精确的细胞水平模型。

4.展望

纳米技术属于一种新型的学科技术,在未来的社会发展中,这种技术将会对生物医学以及药学领域带来更为积极的影响,在未来的社会中,这种技术的应用会使得生物医药与药学领域之间的联系性得到进一步的加强,就这方面来说,这项技术在生物医学以及药学领域中的应用主要包括以下几个方面:

(1)在未来的生物医学以及药学领域中,对于分子的研究会更加的深入,而其对于分子的要求也会进一步的提升,而纳米技术的应用就会进一步的提高分子之间相互的作用效果,从而实现对分子的有效组装,而且其在未来的社会发展中,主要的应用方向会是细胞器结构细节以及自身装配机理上等方面。

(2)随着纳米技术的深入发展,这种技术在应用于生物医学以及药学领域中后,会使得诊断以及检测技术的水平更上一层楼,同时这种技术的应用也会在微观上以及微量上实现有效的应用,并且在未来的发展中,这种技术也会逐渐向着功能性以及智能化的方向发展,以实现生物医学以及药学领域各项技术功能水平的提升,还会使得生物医学以及药学领域在管理上实现智能化和数字化,从而对生物医学以及药学领域的发展形成有效的推动作用。

(3)纳米技术在未来的生物医学中以及药学领域中会实现靶向性的转变,纳米技术会将药物的作用进行有效的转向处理,在一定程度上可以将药物的药效得到最大限度的提升,同时也能够对药物的成本进行有效的降低,从而推动生物医学以及药学的发展。

第2篇:纳米制药技术设计范文

关键词:纳米材料;纳米技术;动物疾病防控

中图分类号:S858文献标识码:B文章编号:1007-273X(2018)04-0012-02

当前国际动物疫病现状呈现复杂化,形势不容乐观。新兴复合型科技研究产物应用于动物疾病的诊断、治疗预防等环节迫在眉睫。纳米材料及技术由于具有新颖的物理、化学和生物学特性,已被研究应用于生命科学领域。纳米材料具有其独特的功能和优势,越来越多研究人员将纳米技术引入到动物疾病防控领域,如致病菌的快速检测、疾病的诊治等方面,并己取得了一定的效果。

1纳米材料及纳米技术研究概况

1.1纳米材料特点

纳米材料主要表现为表面与界面效应、小尺寸效应和宏观量子隧道效应等。实际应用效果包括表面积大、表面活性高、催化效率高、安全性稳定、吸附能力优良、低毒性等特点。

1.2纳米材料研究进展

纳米材料是纳米科学发展的重要基础,也是纳米科技最为重要的研究对象。纳米材料在生物医学中检测诊断、药物治疗以及健康预防方面均取得了一定的发展。军事医学院邱志刚[1]试验发现,水中的纳米氧化铝可以促使耐药基因从大肠杆菌转入沙门氏菌的效率提高200倍。即使以往很难发生耐药基因转移的不同种类细菌,在氧化铝纳米粒子的作用下耐药基因也发生了转移。由此可见,应用氧化铝纳米粒子大大加快了细菌获取耐药基因的速度。

1.3纳米技术

纳米技术是在纳米尺度下对物质进行制备、研究。在药物研究领域,由于纳米材料和纳米产品性质的特异性和优越性,用该技术建立新的药物控释系统可起到提高药物在体内的吸收效果、改善药物的输送、替代病毒载体、催化药物化学反应的作用。研究引入了微型领域,为寻找和开发新兽药、结合转基因技术用于动物试验研究[2],研制合成理想的药物提供强有力的技术支撑。

2纳米材料在动物疾病防治中的应用

随着生命科学、生物信息学等新兴复合型学科的迅速发展,纳米材料借助其特殊的结构效应在动物疾病防治领域展示出广阔的应用前景。医学起源于疾病诊断,对动物疾病没有很好的诊断就不可能有很好的预防和治疗。目前随着科技的发展,动物疾病诊断技术得到了前所未有的发展,各种检验诊断手段、仪器已是各式各样。利用纳米材料的特性去化验检测样品材料,可借助纳米材料极高的传感灵敏效应对疾病进行早期诊断,便于疾病防治。

2.1纳米分子信息成像和诊断

分子信息影像是生物医学和分子诊断学中的一门重要学科,可用于检测,考察机体内外组织中的分子细胞形态结构变化[3,4]。而纳米探针由于具有高亮、光学稳定、光谱吸收范围广等特点,可用于定量准确监测生物机体内部分子的理想工具,连接于小分子的肽、抗体以及核酸分子来进行疾病检测,靶向定位于目标细胞分子内部。Wu等[5]研究发现,基于量子点的肿瘤标记Her2的免疫荧光标记,比常规荧光染料标记不同的靶细胞表面受体、细胞骨架、核抗原和其他细胞器更有效。同时也发现了生物结合的胶体量子点在细胞标记、细胞示踪、DNA检测和体内成像方面很有价值。Gao等[6]进行了体内量子点成像和肿瘤定位的动物研究,观察到量子点在肝、脾、脑、心、肾和肺中的吸收、滞留和分布有逐渐减少的规律,在裸鼠前列腺癌异种移植瘤的研究中,量子点在瘤组织内特异性蓄积呈现出亮红色。

2.2纳米金及其检测技术

纳米金即指金的微小颗粒。其直径在1~100nm,具有高电子密度介电特性和催化作用。可与多种生物大分子结合,且不影响其生物活性。新型的纳米抗菌复合材料具有作为新的抗菌剂或者是抗菌包装材料的高效伤口敷料的可行性[7],可以用作高效的抗微生物制剂在生物应用中具有广阔的发展前景。纳米金PCR是基于常规PCR基础上,结合纳米技术而发展起的新型检测技术。刘阳等[8]根据副溶血弧菌(VP)的toxR基因序列,设计一对特异性引物,建立纳米金PCR检测方法,结果表明能扩增得到与试验设计相符的208bp(VP)的特异性条带,且与其他细菌无交叉反应。与普通PCR法进行比较,该方法检测灵敏度比普通PCR高10倍。而与传统的细菌分离鉴定法相比,纳米金PCR检测大大提高检测效率且具有灵敏度高、特异性强等优点。

2.3作为药物运输载体

和传统的注射或口服给药途径不同,运用纳米材料可定点靶向进行药物运输,对于药物剂量控制和疾病的预防及治疗具有重要意义。使用纳米材料运输药物可有效提升药物运输效率,降低毒性反应。越来越多的科研人员开始关注并构建用于药物输送的纳米载体,这些药物载体在肿瘤疾病的诊断治疗中具有广阔的前景。如Chen等[9]将pH敏感材料环糊精和低分子量的聚乙烯亚胺整合成纳米载体,并负载寡聚核酸,该载体可以有效地转染肺腺癌细胞,并对肿瘤生长有良好的抑制作用[10]。

3展望

第3篇:纳米制药技术设计范文

关键词:纳米,中医药,经济,技术

引言:通过现在的问题反映,首先提出一些纳米技术的需求,再而阐述了纳米中医药的现状接着提出纳米中药化的好处和现在存在的一些问题,通过笔者的分析,一步一步的摄入了纳米技术在当前中国的国情来说要发展,提出一些相对的解决方法。引入纳米技术是社会的要求。最后说明自己的观点(总结)。

随着经济的发展,环境问题变得越来越严重。从而导致发病率变得越来越高。如果还是单靠过去的一味中药很难把病情完全治好。加上现在环境问题的特为严重和社会的需求量增多。很多中药材都是靠人工培育,但人工培育的功效始终比不上天然的。虽然实行了中医药的政策,解决了老百姓的看病难,看病贵的问题。但始终是不能从根本解决问题。加上纳米技术的进一步发展,因此将纳米技术融入中医药是社会的要求,社会的主流。纳米技术使中医药的药效得到更好的发挥。

那先由我们看看纳米中医药的发展

纳米中药制备技术的研究现状

医学上的发展就目前来说,提出最多的是中西合作和中医药现代化,但我们在中医药的现状中发现很多问题,例如上面所提的民生问题,为此我们要想一下有没有更好的方案解决目前的问题,随着经济的发展我,我国的纳米技术已达到一定的程度,并取得一定的成效,为使中药面向世界,并形成医学科新的经济增长点,应将现代的高新技术引入到中药制剂之中。随着科学技术的飞速发展,中药的现代化生产已成为现实。纳米技术的出现使得超微粉碎成为全世界各个生产领域的先进技术,日益显现出它强大的生命力和蕴藏的无穷财富。对于中国的国药—中草药尤为如此。可以说中药超微粉碎是中药的一次飞跃性革命。如果中国能胜利的打完这场“革命”,在医学生又是一个新的焦点。纳米技术是如何引进中医药中呢?首先注意的是纳米粒制备的关键是控制粒子的粒径大小和获得较窄且均匀的粒度分布,减小或消除粒子团聚现象,保证用药有效、安全和稳定。

根据目前的科技情况。纳米药物粒子的制备技术可以分为三类,机械粉碎法、物理分散法和化学合成法。通过宏观到微观的转型,实现了微观世界的并且是医学界的狂飙式发展。

中医药的理论基于对宏观的自然界,而纳米技术科研研究则是微观技术,现在把宏观与微观技术的有机组合能不能在医学上形成一们崭新的“宏微”中医理论学科呢?至于宏观中医药大家对它有了一定的了解,现在我只是对微观进行阐述。纳米科学与技术,有时简称为纳米技术,是研究结构尺寸在0.1至100纳米范围内材料的性质和应用。纳米技术的引入是医学微观化,一方面由于纳米技术的引入为携带提供了一定的方便,以前,无论什么看一次病总要大袋小袋的提着,这只是对病者,如果像医院或一些医护机构,当他们想购买大量药物时不是很麻烦。引入纳米技术在这里就起了相当重要的作用,比如运输大量的药物,现在只须小盒便能搞定;另一方面,害怕吃药吗?害怕打针吗?不用怕,纳米技术中药话可以帮助你,把纳米级药物制成药膏然后贴于患处,可以通过皮肤直接接受不需要注射。由于纳米技术是对药物的微观化,比如将药物磨成粉状,加大了与病菌的接触面积,例如中药超细后的产品除用于散剂、颗粒剂、胶囊剂、片剂、中药口服散剂、胶囊剂、微囊外,把药物微化,这样可以提高药物在体内的生物利用度。增强中药的疗效,再者,纳米技术在中药加工方面的应用能保持中药原有成分的基础,使药效充分析出。另外,纳米粒子包裹的智能药物进入人体后,可主动搜索并攻击癌细胞或修复损伤组织。在人工器官移植领域,只要在器官外面涂上纳米粒子,就可以预防器官移植的排异反应。使用纳米技术的新型诊断仪,只需检测少量的血液,就能通过其中的蛋白质和DNA诊断出各种疾病。在抗癌的治疗方面,德国一定医院的研究人员将一些极其细小的氧化铁纳米颗粒,注入患者的癌瘤里,然后将患者置于可变的磁场中,使患者癌瘤里的氧化铁纳米颗粒升温到45-47摄氏度,这温度足以烧毁癌细胞,而周围健康组织不会受到伤害。同时,配合使用纳米药物来阻断肿瘤血管生成,饿死癌细胞。纳米中药化不知那些好处,据了解,纳米中药化将药物加工成纳米级的微细粒子,病人服药时,首先减轻病人的痛苦,有些病人怕吃药,如果制成了粒子状,病人一般是比较易接受,药物的真对性特别的强,药物就可能针对性地直达病灶,激活中药细胞活性成分,直接攻击病毒、细菌、重金属、毒质,细胞壁或细胞膜等障碍将不复存在,这样中药疗效可大大速率,尽快的减轻病人的痛苦,如治疗消化道疾病的药品“思密达”经纳米化处理后其药效提高了3倍。中药药效的加大、加快,使中药可与西药相媲美,为今后中药的发展创造了条件。使中药具有新的功能将中药加工至纳米尺寸之后,其细胞内原有不能被释放出来的某些活性成分由于破壁而被释放出来,有可能使纳米中药具有新的功能。此外,由于其给药途径,药物吸收方式等的改变,可能在药代动力学、药效学、药理学、药物化学等方面产生新的作用。并且中药有没有西药那样很多副作用,发展纳米中医药看来是必然的事了。特别的,一些科学家预言:由于纳米微粒的尺度一般比生物体内的细胞、红血球小得多,所以,有可能把含有计算机功能、人机对话功能和有自身复杂能力的纳米机器人送入体内而又不严重干扰细胞的正常生理过程。通过体外控制操作,获取体内多种生化反应的连续的动态信息,从而破解中药复杂的作用机制。

纳米中医药也存在一定的问题,那是值得我们深虑:

1.成分的混乱;由于纳米中药化加大了药的效用,但同时也是所需药的成分难以把握,例如你本来是需要的是5两A药材6两B药材4两C药材,但当你纳米化时,你会使药用发生了变化,使得吸收的药的分量不同,可能导致A多了或少了。纳米技术中药化使得生物利用度、溶出度较低等得以纠正,疗效得以增强。这种改变性质的作用使得传统中药所含的有效成分及其药效变得面目全非。严重的会造成安全隐患。为此对研究和发展纳米中药化造成了巨大的压力。

2.由于纳米技术是一种微观的世界,如果科学家对药物不是有充分的了解,当实行微观处理时可能会导致一些药物的分量不够或减少了别的分量,另外,需要谨慎地掌握纳米粒度与相关中药所含有效成分分子组成和分子量的关系,以防为获得纳米微粒而损坏了药物的有效成分。纳米级的研究并不像宏观的研究那么简单,如果一些技术错误了,结果可能要重做。

3.纳米中药因其粒度超细,表面效应和量子效应显著增加,使得药物的有效成分获得了高能级的氧化或还原潜力,从而影响药物稳定性,增加了保质和储存的困难。

4.加大了鉴别的难度,即超细状态下的中药是否还具有普通粉碎时所有的显微特征?如果原有的显微特征发生了改变,则又应建立何种更精细的鉴别方法?这是个重大的问题,对于纳米级的研究,考的是先进的技术。

5.纳米尺度的物质存在着生物安全性威胁问题,如果不能够有效地防止纳米尺度物质的接触或者摄入,可能会引起多系统的复杂病变。

所谓万物都有双面性,纳米中医药的引入一定上给我们带来了很多好处,但也有一些负面的影响,综合中国现在的情况,许多专家都认为发展纳米中医药是利大于弊。那就根据我国的国情出发,如何将纳米技术中医药引入。何如加大对纳米技术中医药的发展呢?

1.由于各级的懒散性比较强,如果国家不统一制定完全的行业技术标准,可能会导致某些地方的药用不高或某些地方的纳米中药技术只是一个梦想。如果国家有了一定的机构管理,一定的技术标准,那样可以使纳米药物统一化,安全化。所以国家应成立你执迷中医药的研究中心,一方面集中科研相关的技术连接,另一方面可以组织协调科研机构,高校试验室以及产业界的公共参与,进行重点攻关。

2.国家政府必须认真重视纳米医药的发展,毕竟市场是一个充满“利润”式的社会,很多时候,如果国家不重视药物的安全管理,可能不导致药物市场混乱,同时国家有必要组织一定实力和特色的中药类高校与纳米研究机构进行强强联合,通过集大家之智慧来进行纳米中医药化。这就是国家要加强宏观调控对纳米药物的管理。

3.由于纳米中药化是刚刚引进来的一个新学科,很多方面还没有完善,特别是纳米对技术的要求高,所以国家应增加国内纳米重要的博士研究站,在较高会议上培养和吸引综合性的科研人才投身到这个领域中去

4.加强国内研究基地的建设。改善基础设施条件,增加专项的投入,并重视知识产权的保护,加大纳米中医药的财政支出,因为外国对这方面有了一定的认识,由于他们的技术含量高,纳米技术早就名噪一时,所以,国家可以加大中外的合作,另外还有派人到外国学习先进的技术,通过只是的交流,国与国的合作,进一步提高中医药的纳米技术的发展。

总结:纳米技术是2l世纪最具发展前景的领域之一,它给中医药的现代化提供了新的思路和方法。通过对比中国的利弊,实行纳米中药化的转型不但可以促进经济的发展和提供取药的方面,在历史上也是一次伟大的改革,在一定的程度上提高了医学家纳米中医药的定位,而且在国外也是中医的地位提得更高。科学技术的迅猛发展,中医药也逐步走向世界,面临着前所未有的机遇和巨大的发展空间—纳米技术中药化,然而,基于其独特的理论体系,现代科学技术尚难与之有机地结合起来,这也成为阻碍中医药发展的最主要因素。随着纳米技术在中药研究开发领域的一些应用基础研究上获得突破,它必将极大地促进中药现代化的进程。在中医理论的指导下,中药纳米化技术作为实现中药现代化的关键技术,必将推动我国的中药尽可能快地走向国际市场。

参考文献:

1杨祥良基于纳米技术的中药基础问题研究[J].华中理工大学学报,20一104—105

2赵宗江,胡会欣,张新雪.中药归经理论现代化研究[J].北京中医药大学学报,2002年25

3.徐辉碧,杨祥良,谢长生,等.纳米技术在中药研究中的应用[J].中国药科大学学报,2001年32

第4篇:纳米制药技术设计范文

开创“理”与“据”

余灯广是个“杂家”,他本科学习的是化学工程,博士时期学习的是生物医学工程,而到了博士后,他则选择了纺织科学与工程专业。这期间,余灯广还在湖北双环化工集团公司工作了10年,这段经历让他能从一个更宽广的视角来看待科研。2011年,余灯广几经思索,决定踏入材料科学与工程研究领域,上海理工大学则是这段新旅途的起点。一上路,余灯广就把关注点放在了微纳米材料制造技术上。在他眼中,一种新型微纳米材料制造技术,往往意味着能创造更多的新型结构微纳米材料及实际应用。

极端条件(超高温、高压、超磁以及高电压)下物质的相互作用与理化性能表现,和微观层次物质之间的相互作用是目前人类认识世界、获取知识的两座富矿。“与此相应,在极端条件下制备功能物质、于微观层次操控分子,及用微纳米体系制备功能材料是人类改造世界、获取新方法的先进技术。”在该思路的指引下,他主持了国家自然科学基金委员会与英国皇家学会合作交流项目――“三级同轴电纺制备零级药物缓控释给药系统研究”,取得了新的突破。

虽然三级同轴电纺在基本原理上与单射流电纺没有差别,也就是直接应用高压静电场力对流体进行单步拉伸固化,从而获得纳米纤维。但实际上其实施难度和涉及的经验与知识大不相同。“在单射流电纺中,Taylor锥后的直线射流直接拉伸弯曲或者发生分裂,对其影响并不大。”余灯广介绍道,而在同轴电纺和三级同轴电纺过程中,Taylor锥后的直线射流若是发生分裂,就无法获得所需要的多层纳米结构。此外,在溶剂环流三级同轴纺的实施过程中,如果外层环流溶剂发生分裂,将毁坏纤维收集板上的纳米纤维毡。

“要想高效准确地调控三级同轴纺过程,需要对每种流体在高压电场下的表现与行为,及它们在三级同轴纺的过程中具有的匹配性和协调性,有一个比较清晰的认识。”因此,余灯广带领团队对这些流体的基本理化性能、以及这些理化性能与它们在高压电场下行为之间的关系进行探究,最终发现了芯鞘纳米纤维的三级同轴电纺成纤机理,使得制备结构特征明确、性能优良的三级芯鞘纳米纤维“有理可循”。

通过研究,余灯广还设计了多种应用三级同轴纺制备的多层次纳米结构(药物梯度分布、控释材料梯度分布、芯鞘纳米药物储库、薄层包裹结肠靶向药物储库等),将这些结构特征与纳米纤维的理化性能和功能表现进行有效关联,对稳定可靠地制备出功能高度重现的纳米给药系统尤为关键。“这些微观结构主要特点包括:每层厚度以及彼此之间比率、药物或材料梯度大小与方向、每层的成分c组成、包裹的厚薄以及致孔剂的用量等。”余灯广介绍说,他将这些特点参数结合药物和聚合物基材的理化性能(如极性、水溶性、溶蚀性能、降解性能)进行实验分析,然后通过大量试验数据对其进行总结归纳和分析演绎,建立了三级芯鞘纳米纤维的“微观结构特点―理化性能状况―所需功能表现”之间的内在关联、使得多层结构型纳米纤维状药物零级控释给药系统的研究开发“有据可依”。聚焦“自组装”

目前,余灯广正在进行“基于电纺芯鞘纳米纤维的分子自组装原位协同调控研究”项目研究。在该项目中,他选用了一些药物活性分子和药用载体材料,并使用了一些药学常规方法,分析表征自组装纳米体系的活性成分包裹率和对活性成分的缓控释效果,这样做的目的是应用它们作为自组装基元物质模型,并通过它们来研究应用电纺芯鞘纤维为模板调控分子自组装原位构建功能纳米体系的可行性、有效性和实用性。

“我们的策略为先通过top-down同轴电纺制备聚合物基芯鞘纳米纤维,再以纤维为模板、利用其直径的纳米尺度限定作用和芯鞘结构的模板作用、在一个微观区域内调控自组装基元分子的转运与接触,实现一个相对可控的bottom-up分子聚集组装过程。”余灯广介绍说,其具体的研究内容包括:发展同轴电纺工艺(溶剂环流三级同轴纺、稀溶液环流同轴纺、升温同轴纺);制备新型人工自组装材料,即具有成分空间分布特征、多组分复合的水溶性聚合物基芯鞘纤维;通过“溶解―疏水”作用启动分子自组装构建纳米体系;研究芯鞘结构纤维电纺成型机理及其对分子自组装的调控机制;阐明复合纤维组成成分、结构特征和环境因素等对分子聚集组装的原位协同调控机理。若是项目研究成功,将为建立多组分可控自组装提供新方法,为构建新型人工自组装功能纳米材料开发新途径,并会发展出功能导向的自组装新体系和新技术。

至今为止,该在研项目已经发表SCI研究论文25篇,获得中国发明专利授权8项。他说:“等这个项目完成后,我将在此基础上开发一系列新型人工自组装功能纳米材料,和相关新型纳米给药系统,那时候将会进行相关对比研究以及动物试验。”

第5篇:纳米制药技术设计范文

纳米材料是指在三维空间中至少有一维处于纳米尺度范围(1~100nm)或由纳米粒子作为基本单元构成的材料.纳米粒子也叫超微颗粒,处于原子簇和宏观物体交界的过渡区域,这样的体系既非典型的微观系统亦非典型的宏观系统,是一种典型的介观系统,与常规尺度物质相比具有表面效应、小尺寸效应和宏观量子隧道效应等[1-2].纳米技术是通过对纳米尺度物质的操控来实现材料、器件和系统的创造和利用,例如在原子、分子和超分子水平上的操控.纳米技术应用于生物领域产生了纳米生物技术,纳米生物技术的发展已经对医学产生很大的影响,过去的几十年中,市场上已经出现基于纳米技术的一些药物,许多具有药物诊断和药物传输功能的纳米材料都可以应用到生物医学中.纳米技术打开了微米尺度以外的世界,而细胞水平上的生理和病理过程都发生在纳米尺度,因此纳米技术将对生物医学产生深远影响.纳米生物技术和生物医学以及其他技术的关系如图1所示[3].本文仅对量子点、纳米金、碳纳米管、氧化铁和富勒烯等纳米材料在生物医学中的应用研究现状及发展前景做一综述.

2纳米材料在生物医学中的应用

2.1量子点

量子点(quantumdots,QDs)是一种粒径为2~10nm的半导体纳米晶,主要包括硒化镉、碲化镉、硫化镉、硒化锌和硫化铅等.与传统的有机荧光染料相比,QDs具有激发波长可调、荧光强度更高、稳定性更强、不易发生光漂白和同时激发多种荧光等优点.通过对多种量子点同时进行激发,可以达到多元化检测的目的,有利于进行高通量筛选.QDs的发射光谱随尺寸大小和化学组成变化而有所改变,因此可以通过控制QDs的尺寸和化学组成使得其发射光谱覆盖整个可见光区[4].随着QDs尺寸的减小,其电子能量的不连续性产生独特光学性质,因此,QDs可以作为荧光探针用于生物分子成像,进行生物分子的识别.Goldman等[5]利用亲和素修饰CdSe/ZnSQDs,通过亲和素-生物素化抗体的特异性结合形成荧光纳米粒子复合抗体,探讨了在蛋白毒素检测领域的应用前景.Genin等[6]以QDs为探针对半胱氨酸蛋白进行检测,检测时间可以持续到150s,检测机理是将QDs与有机荧光染料分子CrAsH、半胱氨酸依次结合,利用形成的复合体进行检测.Liang等[7]研究链酶亲和素修饰的QDs对mi-croRNA的定量检测效果,利用QDs发出的荧光信号对microRNA的含量进行测定,最低检测限达到0.4fmol.Shepard等[8]利用量子点和Cy3,Cy5荧光染料共同作用,对炭疽杆菌进行多元检测,大大提高了检测效率,与传统的双光色检测相比体系通量提高了4倍.杜保安等[9]采用水相合成法合成了Mn2+掺杂CdTe量子点,通过在CdTe量子点中掺杂Mn2+,进一步改良CdTe的发光性能及热稳定性,扩大了量子点的应用范围.聚乙二醇(polyethyleneglycol,PEG)因其容易和氨基、羧基、生物素等多种功能化基团反应而常用于QDs的表面改性,而且PEG还能够增加QDs的化学稳定性.研究发现,用低聚PEG-磷酸酯胶束包覆QDs后分散于水中,其荧光强度几周内都不会发生改变,若分散于磷酸盐溶液中,80h后荧光强度只降低10%[10].QDs特殊的光学性质使得它已逐步应用于光发射二极管、生物化学传感器、太阳能电池、生物分子成像和纳米医学等领域.

2.2金纳米粒子

金纳米粒子(AuNPs)具有独特的光学性质、良好的生物相容性、易修饰生物分子以及制备简单等特点,因此在生物传感、分子成像、肿瘤治疗和药物传输等生物医学领域得到广泛研究.Wang等[11]利用N-羟基琥珀酰亚胺修饰的AuNPs实时检测人体血液中链霉素和生物素的相互作用,发现经修饰后的AuNPs具有3μg/mL的低检出限和3~50μg/mL的宽动态检测范围,为构建全血中蛋白检测和细胞分析的新型光学生物传感器提供了思路.Huang等[12]将金纳米棒连接上表皮生长因子抗体后作用于癌细胞,发现金纳米棒附近的分子表现出更强、更敏锐和极化的拉曼光谱,这对于肿瘤的早期准确检测成像具有很大意义.Wei等[13]研究了AuNPs和紫杉醇对HepG2肝癌细胞凋亡的影响,发现AuNPs单独或与紫杉醇协同作用可以引起HepG2细胞凋亡,AuNPs可以增强紫杉醇对HepG2细胞的抑制和凋亡作用.Tong等[14]研究发现叶酸结合的金纳米棒在近红外光照射下可以破坏质膜,这是由于细胞内钙离子的快速增多进而导致肌动蛋白动态异常造成的.但是,关于AuNPs的研究还处于初级阶段,许多问题尚需进一步的深入研究.例如:如何制备各种形态和结构以及可控成分的AuNPs,如何在治疗过程中实现定向输送和释放的靶向性以及使AuNPs作为探针的信号放大以便用于生物检测等都需要进一步的探索.本课题组Liu等[15]研究了AuNPs对成骨细胞系MC3T3-E1的增殖、分化和矿化功能的影响,结果表明,20,40nm的AuNPs均促进MC3T3-E1细胞的增殖、分化和矿化功能,且呈现出剂量和时间依赖性.RT-PCR结果表明,20,40nm的AuNPs均促进runt相关转录因子2(Runx2)、骨形态发生蛋白2(BMP-2)、碱性磷酸酶(ALP)和骨钙素(OCN)基因的表达.结果显示,AuNPs能够促进MC3T3-E1细胞成骨分化及矿化功能,而且影响随纳米颗粒的尺寸变化有所不同.Runx2,BMP-2,ALP和OCN4种基因可能相互影响,从而刺激MC3T3-E1细胞的成骨分化.实验结果提示,与骨中羟基磷灰石晶体尺寸相似的AuNPs可能扮演了一个晶核的角色,从而刺激其周围细胞的增殖、分化和矿化,形成钙的沉积.随后Liu等[16]又研究了AuNPs对骨髓基质细胞(MSCs)增殖、成骨和成脂分化的影响,结果表明,AuNPs可以促进MSCs向成骨方向分化,抑制向成脂方向及成脂横向分化.结果揭示了AuNPs是如何进行细胞内活动进而影响骨髓基质细胞的功能,对合理设计用于组织工程和其他生物医学方面的新材料具有重要意义.

2.3碳纳米管

碳纳米管(carbonnanotubes,CNTs)的结构,形象地讲是由1个或多个只含sp2杂化碳原子的石墨薄片卷曲成的纳米级圆筒.根据石墨片层数不同,CNTs可分为单壁碳纳米管(SWCNTs)和多壁碳纳米管(MWCNTs).CNTs的长度从几百纳米到几毫米不等,但它们的直径均在纳米量级,SWCNTs和MWCNTs的直径分别在0.4~3.0nm和2~500nm.MWCNTs也是由几个石墨片层的圆筒构成,层间距在0.3~0.4nm.CNTs可以在药物供给系统与细胞之间形成圆筒形的渠道,输送肽、蛋白质、质粒DNA或寡核苷酸等物质.CNTs还能促进骨组织的修复生长,促进神经再生,减少神经组织瘢痕产生.Kam等[17]将CNTs胺基修饰后,通过生物素连接具有荧光的抗生素蛋白链菌素,孵育白血病细胞HL60一定时间后,发现细胞内产生较强的荧光,且随CNTs浓度和孵育时间的延长,荧光强度不断增强,证明CNTs能将大分子蛋白载入HL60细胞内.Feazell等[18]研究胺基化的SWCNTs运输铂(Ⅳ)复合物的效果,结果发现铂(Ⅳ)复合物以胺基化SWCNTs为载体进入癌细胞,并且其细胞毒性比连接前高出100多倍,为提高肿瘤化疗药物的敏感性提供了新思路.Zhang等[19]采用原代培养小鼠成骨细胞(OBs)为模型,研究了SWCNTs(直径<2nm)、DWCNTs(直径<5nm)和MWCNTs(直径<10nm)对OBs增值、分化和矿化功能的影响,结果表明,它们均抑制OBs的增殖、横向分化和矿化功能,且呈现时间和剂量依赖性,并且明显抑制了OBs中Runx-2和Col-Ⅰ蛋白的表达水平.Liu等[20]进一步研究了SWCNTs(直径<2nm)和MWCNTs(直径<10nm)对骨髓基质细胞(MSCs)增殖、成骨分化、成脂分化和矿化的影响,结果表明,SWCNTs和MWCNTs明显抑制了MSCs的增殖,且呈现出了剂量依赖关系.SWCNTs和MWCNTs抑制MSCs增殖和成骨分化的机制可能是通过调节依赖于Smad的骨形态发生蛋白(BMP)信号通路而起作用.结果提示,CNTs对OBs和MSCs的生长起着重要的调控作用,其生物安全性评价还需进行充分研究以便将来进行合理设计用于生物医学.由于碳纳米管独特的结构,其外表面既可以非共价吸附各种分子,还可以共价键合多种化学基团,内部则可以包埋小分子,从而提高了其表面负载率及实现增溶和靶向等.在生物医学上,鉴于碳纳米管具有的生物膜穿透性和相对低的细胞毒性,在药物传递方面具有较好的应用前景.碳纳米管的应用给肿瘤的诊断与治疗带来了新的机遇,随着对其用作药物载体的深入研究,低毒高效的修饰性碳纳米管有望在将来广泛应用于临床[21].

2.4氧化铁纳米粒子

氧化铁纳米粒子由于具有超顺磁性,是一类具有可控尺寸、能够外部操控并可用于核磁共振成像(MRI)造影的材料.这使得氧化铁纳米粒子广泛应用于蛋白质提纯、医学影像、药物传输和肿瘤治疗等生物医学领域.Wang等[22]采用一种新方法将色酮偶联到Fe3O4纳米颗粒上,合成的结合物使色酮在培养基中的溶解度急剧增加,从而使HeLa细胞吸收色酮能力增强,结合物能更有效抑制HeLa细胞增殖,这种色酮耦合的Fe3O4纳米粒子可以作为多功能输送系统用于诊断和治疗.Wei等[23]研究发现Fe3O4纳米颗粒可以特异性检测H2O2和葡萄糖,并且具有很高的灵敏度.结果显示,对H2O2的检测精度可达到3×10-6mol/L,对葡萄糖的检测精度达到5×10-5~1×10-3mol/L.Xie等[24]发展了一种新方法用于制备超微磁性纳米颗粒,其中小配体4-甲基苯膦二酚用作表面活性剂来稳定颗粒的表面,其与氧化铁表面具有很强的螯合作用,进而与环状多肽链接,可用于靶向诊断肿瘤细胞.刘磊等[25]通过化学共沉淀法制备了铁磁性纳米粒子(FeNPs),并以W/O反相微乳法制备了包埋荧光染料三联吡啶钌配合物Ru(bpy)2+3的二氧化硅纳米粒子(SiNPs)和二氧化硅磁性纳米粒子(Si/FeNPs),并研究了不同浓度的FeNPs,SiNPs和Si/FeNPs对肝癌细胞HepG2的增殖、细胞周期、表面形态和超微结构的影响,结果表明FeNPs对HepG2细胞增殖和周期没有显著影响,SiNPs和Si/FeNPs能够促进细胞生长分裂,具有促增殖作用;SiNPs和Si/FeNPs通过细胞膜的包吞作用随机进入细胞内,进入细胞后,不影响细胞的形态和超微结构.实验结果对进一步研究修饰特异性抗体、蛋白或负载抗癌药物之后的二氧化硅纳米粒子在一定交变磁场作用下的抗肿瘤效果具有重要意义.氧化铁纳米粒子是目前国内外大力研究的一种新型靶向给药系统,应用前景十分广泛.但是成功应用于活体肿瘤靶向纳米探针和纳米载药体目前仍然存在很多障碍:1)表面进行化学修饰后,氧化铁纳米纳米粒子的磁化量降低;2)纳米氧化铁上嵌入配基结合位点可能会降低它的靶向特异性,并且所载药物常常在内涵体或溶酶体中释放,而不是靶细胞的胞质;3)在到达肿瘤组织之前,结合或封装的化疗药物在血液中很快释放.氧化铁纳米粒子和其他可生物降解的、生物相容性好的聚合物微团的结合可能会解决上述问题.可以预期,随着人们对磁性纳米粒子聚合物研究的不断深入,磁性纳米氧化铁粒子将在肿瘤的诊断及治疗中发挥越来越重要的作用.

2.5富勒烯

富勒烯(C60)是一个由12个五元环和20个六元环组成的球形三十二面体,外形酷似足球,直径为0.71nm.六元环的每个碳原子均以双键与其他碳原子结合,形成类似苯环的结构.富勒烯、金属内嵌富勒烯及其衍生物由于独特的结构和物理化学性质,在生物医学领域有广泛的应用.如抗氧化活性和细胞保护作用、抗菌活性、抗病毒作用、药物载体和肿瘤治疗等[26].Hu等[27]发现丙氨酸修饰的水溶性富勒烯衍生物能够抑制过氧化氢诱导的细胞凋亡,其机制是通过清除细胞内外活性氧而抑制细胞凋亡.Yin等[28]研究发现C60(C(COOH)2)2,C60(OH)22和Gd@C82(OH)223种富勒烯衍生物可以降低细胞内活性氧水平来保护过氧化氢诱导的细胞损伤,其清除的活性氧自由基包括超氧阴离子、单线态氧和羟基自由基等.Mashino等[29]研究发现甲基吡咯碘修饰的富勒烯衍生物可以通过抑制大肠杆菌的能量代谢对其活性起到抑制作用.Chen等[30]发现Gd@C82(OH)22能有效抑制肿瘤生长并对机体不产生任何毒性,其对H22肝癌动物模型抗肿瘤效率比环磷酰胺和顺铂都高,其抑瘤效果并不像传统药物对肿瘤的直接杀伤作用,而是通过其他机制来完成.实验结果表明Gd@C82(OH)22能提高免疫应答能力,促进巨噬细胞和T细胞分泌IL-2,TNF-α和IFN-γ等一系列免疫因子,同时促进血液中T细胞亚型Th1型因子IL-2,IFN-γ和TNF-α的分泌,说明它的抑制肿瘤生长效果有可能是通过激活机体免疫功能实现的[31].Zhou等[32]采用差速离心和ICP-MS测定方法研究了Gd@C82(OH)22在荷瘤小鼠组织中的亚细胞分布情况,结果表明此纳米颗粒可以进入细胞,其亚细胞分布模式与GdCl3显著不同,Gd@C82(OH)22在动物体内是以整个完整碳笼形式存在,且在代谢过程中碳笼不会打开释放出内部的Gd3+.随后研究了Gd@C82(OH)22和C60(OH)22对荷Lewis肺转移瘤小鼠氧化应激水平的影响,发现2种富勒烯衍生物可以通过清除自由基抑制脂质过氧化下调氧化应激相关指标,降低由于肿瘤转移到肺造成的肺损伤[33].这些结果都为解释Gd@C82(OH)22纳米颗粒的抗肿瘤生长机制提供了证据,对开展金属富勒烯在抗肿瘤药物领域的研究具有很大意义.

第6篇:纳米制药技术设计范文

纳米技术的定义是指一些设备,本身或其关键部分是人工的,至少在某个方向上是1~100nm范围。与癌症相关的纳米技术设备可以是携带靶向性治疗药物的纳米载体;生物靶向性的纳米造影剂;也可以是高度特异检测DNA和蛋白质的纳米粒子和纳米设备,将在肿瘤的诊断、治疗领域产生巨大突破。

【关键词】 纳米技术 肿瘤 诊断 治疗

1 癌症纳米技术

纳米技术的正式定义是指一些设备,本身或其关键部分是人工的,至少在某个方向上是1~100nm范围。与癌症相关的纳米技术设备可以是注射的纳米载体;生物靶向性的纳米造影剂,用于手术中显像以区别神经—肿瘤的相互关系;也可以是高度特异检测DNA和蛋白质的磁性纳米粒子。Whitesides[3]在其纳米技术的定义中,对确切的大小没有过分限制,从生物学需要考虑,更强调生物纳米尺寸在实际操作中的合适性。

2 常用的纳米技术工具

2.1 用于药物投递和显像的纳米载体

癌症治疗中的纳米载体是一大类纳米技术装置,可以非侵袭性地发现早期肿瘤分子标志;同时靶向性投给药物。纳米载体一般至少由3部分组成[2]:核心的组成部分;治疗作用和(或)影像功能的有效负荷;生物表面调节分子,以增加纳米粒子在播散时的肿瘤靶向性。

脂质体是原始而简单的纳米载体,可以穿透癌症新生血管增加肿瘤位点的药物浓度。脂质体包埋的阿霉素现在用于乳腺癌或难治性卵巢癌[4]。几种类型的纳米粒子可以增加MRI的对比度,如含钆或氧化铁的纳米粒子;以及多结构纳米造影剂,可以将MRI与生物靶向性和可见光检测相结合。低密度脂性纳米粒子已用于提高超声影像的质量。

注射用的多孔硅纳米载体可以生物降解,比其他可生物降解的聚合体速度更快(几分钟~几小时vs几天~几个月),因此具有以前不可达到的时间特征。金纳米壳(Nanoshell)[5],由黄金在硅核心上涂布组成,可以通过组织的近红外线被选择性的激活,导致局部治疗性热消融。

2.2 含纳米材料的宏观设备

目前有能力在纳米范围内进行分子沉淀,使信息密度成百万倍的增加,微阵列进步为纳米阵列,直接用于核酸或蛋白组的测定。用于癌症领域的另一个纳米级装置是表面增强的激光解吸附—电离飞行时间(surface?鄄enhanced laser desorption/ionization time?鄄of?鄄flight,SELDI?鄄TOF)质谱技术,应用于癌症的早期诊断[6]。

多通路生物分子传感器,可以同时间对大量不同的分子标志(组织或血清蛋白组)进行检测,目前最有希望的有微悬臂和纳米悬臂阵列。

硅纳米导线或导管已用于小分子分离,控释药物的投给[7]。也可以作为纳米级的场效应生物晶体管,当其表面发生分子结合事件时,变化的导电率可以被检测。将尺寸控制在5~100纳米的通路和小孔已在硅芯片上制成,使体积移动精确到纳米范围。

3 癌症纳米技术的应用

纳米技术的应用包括:早期诊断,如对血标本进行蛋白组分析;其次,在体内对肿瘤的演化过程进行分析或分子显像;提高药物治疗的靶向性,避开体内的生物或生理学屏障;对治疗效果进行实时监测,替代治疗后的随访评估。

3.1 体内癌症生物标志的检测和监测

新的影像学技术使用的造影剂上结合有分子识别物质或靶向性药物(抗体),具有信号增强作用,可以检测更微小更早期的癌细胞。

近来证实,亲淋巴的顺磁性纳米粒子,可对前列腺癌的隐性淋巴结转移进行MRI显像,这为非侵袭性方法难以发现。Meta分析显示[8],使用纳米粒子造影的MRI对多种癌症的淋巴结转移的诊断具有很高的特异性(96%)和敏感性(88%)。Kobayashi等[9]在乳腺癌小鼠中使用钆纳米载体——聚合状的树状体(dendrimers)可以清晰显示淋巴结和淋巴管的排泄,提示在临床上可以替代前哨淋巴结活检。双峰纳米粒子,携带有近红外的肉眼可见的荧光基团,与MRI造影剂(交联氧化铁)共价结合,可以用于手术前脑肿瘤轮廓的描绘和手术中的病变显示。交联氧化铁纳米粒子与annexin?鄄Y共价结合,用于MRI可识别喜树碱诱导T细胞的凋亡。使用生物精确纳米粒子,端粒酶活性(增殖潜能的标志)也可以在细胞水平由MRI检测。

持续血管生成发生于癌前病变中,是早期诊断中的重要标志。在动物模型中使用改良纳米粒子,以ανβ3?鄄integrin为靶点,可以对血管形成进行了MRI显像。另一个体内分子检测的是植入性传感器,体外设备进行信号接收,但植入性材料存在非特异性吸附血清蛋白——生物污垢,导致传感器对蛋白检测能力迅速下降。

3.2 体外癌症生物标志分子的早期精确检测

临床使用的一些癌症分子标志,如CEA、PSA,由于特异性不是很好,限制其应用于早期诊断。有几个纳米技术是很合适的侯选者,如纳米悬臂,检测蛋白组的SELDI?鄄TOF质谱分析。

生物分子的结合会产生压力和形变[10],使用合适的选择性纳米结构传感器可以进行检测和识别。主要的例子是微米和纳米悬臂,当其表面发生核酸杂交、分子结合事件,其共振频率会发生偏斜和改变。此偏斜或者直接被激光束探测,或者偏斜转换成可以测量的物理特征,如共振频率发生改变,见图1。值得提出的是,将成千上万个纳米悬臂阵列集成在厘米大小的芯片上,这样可以同时读码蛋白组信息,甚至整个蛋白组。此技术与微电子制作技术存在相同之处,因此提示可以大规模的,低成本可靠的生产。

纳米悬臂、纳米导线和纳米管的阵列是可以将癌症的诊断、预后和治疗的选择从单个生物标志向多个生物标志转化的工具。

此外,携带荧光基团的硅珠已经用于白血病细胞的检测;在人类SY5Y成神经细胞瘤和C6胶质细胞瘤中,荧光纳米粒子可以检测细胞内的钙浓度——细胞死亡的有效标志,因此可定量测量细胞对药物的反应。

纳米粒子比传统的细胞染色方法具有稳定性和可调性的优势。如量子点不会随时间丢失其信号强度,即不存在光漂白作用;而且,偶联不同抗体的纳米粒子与对应的分子靶向性结合后,可以显示不同的颜色 [11]。即使进行单波长光照射,单个细胞或细胞群中的分子标志分布地图将准确而清晰的显示。

纳米粒子已经用于血清蛋白组的检测,重点是痕量的低分子量蛋白水解片段,应用于卵巢癌和其他肿瘤。SELDI?鄄TOF蛋白组分析使用纳米粒子后,可增加单位面积的蛋白吸附能力,进行更多不同样本的分离和检测。

目前已经开始联合使用多个纳米诊断技术。如改良的寡聚核苷酸—金纳米磁性粒子具有500个zepto摩尔(zepto=10-21)的敏感性,用于核酸的检测。因不需要酶扩增,具有超过PCR的优势,而且也用于蛋白质分析[12]。更进一步的方法是改良金纳米粒子探针,与微悬臂结合,可以分析DNA的单个碱基错配。

3.3 药物的靶向性治疗

将具有识别功能的物质(如抗体)与纳米载体结合,使含有活性药物的纳米载体具有分子靶向性功能。与传统的抗体引导的治疗相比,分子靶向性纳米载体至少具有4大优势:在每个靶向性生物识别过程中,可以携带更多有效治疗负荷;能携带多个不同的靶向性药物,增强选择性;能够以整体的方法通过生物屏障;局部可以投给多种药物,导致靶向性的联合治疗。

通过叶酸介导的靶向性纳米粒子已经在移植鼻咽癌的裸鼠的治疗中得到证实。多功能纳米材料——树状多聚体在胞内与叶酸靶向性结合后,选择性的在细胞内投递抗癌药物甲氨蝶呤[13];若将荧光素结合到纳米载体则可提供可视的影像信号。多种抗原已用于引导纳米粒子识别血管内皮细胞。如将存在于内皮细胞的ανβ3?鄄integrin与全碳氟纳米乳液结合,用于小鼠模型中结肠腺癌和黑色素瘤的抗血管治疗。目前,已将靶向性溶解血管内皮细胞和化疗药物相结合的纳米粒子开发出来,并可以明显提高治疗效果,减少副作用[14]。

另一类靶向性方法由外部能量驱动,激活局部毒性反应。如使用聚焦超声爆破的脂质包裹微囊进行光动力学治疗;通过联合使用金纳米壳和近红外线光学激活,对深层的癌细胞进行局部热消融。其次,非特异的物理化学相互作用也会提高纳米载体的靶向性,如100nm的粒子更趋向于达到内皮细胞的末梢;比此尺寸更大或更小均导致靠边,因此使治疗的药物更容易到达内皮或组织部位。对pH敏感的多聚纳米载体可以生物分解而释放出抗癌药物紫杉醇,所以肿瘤部位特殊的pH水平使治疗作用优先得到靶向性激活[15]。将来的希望是将上述靶向性方法联合起来,使之在治疗上取得最大成功。

获得和维持药物理想的生物分布,需要精确的给药剂量和时间。植入体内的纳米胶囊,没有多次注射和医院使用的不方便,还可以预先编程,使投递具有时间变化规律,或者通过传感器对植入点的微环境刺激作出自调节的反应。目前,从植入渗透泵恒速的投给激素药物醋酸亮丙瑞林已经在临床上用于治疗前列腺癌[16]。

3.4 工程纳米粒子避开生物、生理学屏障

药物和造影剂从投给部位向理想靶点的缓慢移动,充满磨难,纳米载体和传统的方法均如此。生物物理屏障包括上皮细胞之间的紧密联接(血脑屏障)或血管内皮细胞的保护性排出,网状内皮组织系统(reticulo?鄄endothelail system,RES)的捕获,以及供应癌症的脉管系统解剖结构的紊乱和癌症细胞中的高渗透压;延迟药物微粒进入或促进渗出。纳米技术基础的药物投递系统具有穿过屏障的优势,因为其组成的核心材料的独特特征,如使用缓激肽拮抗剂可以增加血管的通透性[1]。

通透性增强剂的局部给药,能可逆性地开启细胞间的联接,使生物分子药物更容易穿透肠道的上皮细胞屏障,进入血液循环。纳米技术具有多功能性,可以同时携带治疗药物、通透性增强剂和肠壁靶向性材料,因此也使药物避免被酶降解,延迟释放时间[17]。同样,尺寸更微小的多功能粒子被静脉注射,可以增加药物从癌症血管透出,或更容易通过血脑屏障。

细胞的RES可以隔离注射的纳米粒子,对纳米粒子包埋的药物是有效的免疫屏障。通过表面覆盖聚乙烯乙二醇,脂质体可以有效避免被RES的吸收,因此药物的半衰从几分钟提高到几小时或几天,增加了脂质体靶向治疗肿瘤的效果。

癌症病变内的高渗透压,导致治疗药物渗透和在肿瘤内扩散相当困难,即使药物直接注射到病变也容易再排除,尤其是晚期癌症。将来解决此麻烦问题的创造性方法是,多阶段、多负荷的投递系统,但目前这仅仅是一个理论上的构思。2005年1月Abraxane被美国FDA批准[18]为治疗转移性乳腺癌,此药物由紫杉醇纳米粒子组成,可以结合到白蛋白分子上。这种纳米粒子不需要治疗前使用甾体类抗炎药物(传统的紫杉类必须使用),白蛋白可以帮助纳米粒子从内皮细胞上穿过,此联合可以将紫杉醇的临床剂量提高50%。

4 纳米技术的安全性和展望

纳米技术对癌症治疗可能是最有希望的手段之一,然而,应该放在安全性考虑之后。这不仅是严格的审批管理的观点,当然也是健康工作者最关注的问题。纳米载体也会触发过敏反应。碳纳米管可以产生抗体,早期的纳米树状体也可导致较弱的抗体反应,但蛋白结合的树状体是很强的免疫原。因此,纳米技术的治疗不可能不导致过敏反应,需要设计合适对抗手段。

纳米粒子主要的优势是其多功能性,能够将多方法,如治疗、诊断和屏障避开制剂进行联合,与药物反应的生物副作用也会增加。Cristini等[19]发现,将靶向性细胞毒药物治疗肿瘤,尤其是抗血管治疗,将癌症病变分割成多个卫星灶,即治疗产生的重新排列(氧和营养支持的来源),使后序治疗的难度增加。

展望将来,对治疗的疗效进行实时评估方法,将替代直接对肿瘤大小、分子表达和靶向性信号通路进行的观察,甚至替代一些传统的终点分析方法,如缓解时间和生存时间。体内分子显像剂的开发,双重的治疗—显像纳米载体技术的建立,体内显微镜技术(通过荧光光子技术对单个细胞进行显像)的出现,将对最优的诊断治疗提供确实的依据[20,21]。

【参考文献】

[1] Brannon?鄄Peppas L,Blanchette JO. Nanoparticle and targeted systems for cancer therapy[J]. Adv Drug Deliv Rev, 2004,56(11):1649-1659.

[2] Ferrari M. Cancer nanotechnology: opportunities and challenges[J]. Nat Rev Cancer, 2005,5(3):161-171.

[3] Whitesides GM. The ‘right’ size in nanobiotechnology[J]. Nat Biotechnol, 2003,21(10):1161-1165.

[4] Allen TM. Ligand?鄄targeted therapeutics in anticancer therapy[J]. Nat Rev Cancer, 2002, 2(10):750-763.

[5] Hirsch LR, Stafford RJ, Bankson JA, et al. Nanoshell?鄄mediated near?鄄infrared thermal therapy of tumors under magnetic resonance guidance[J]. Proc Natl Acad Sci USA, 2003,100(23):13549-13554.

[6] Tolson J, Bogumil R, Brunst E, et al. Serum protein profiling by SELDI mass spectrometry: detection of multiple variants of serum amyloid alpha in renal cancer patients[J]. Lab Invest, 2004,84(7):845-856.

[7] Cai D,Mataraza JM, Qin ZH, et al. Highly efficient molecular delivery into mammalian cells using carbon nanotube spearing[J]. Nat Methods, 2005,2(6):449-454.

[8] Will O, Purkayastha S, Chan C, et al. Diagnostic precision of nanoparticle?鄄enhanced MRI for lymph?鄄node metastases: a meta?鄄analysis[J]. Lancet Oncol, 2005, 7:52-60.

[9] Kobayashi H, Kawamoto S,Sakai Y, et al. Lymphatic drainage imaging of breast cancer in mice by micro?鄄magnetic resonance lymphangiography using a nano?鄄size paramagnetic contrast agent[J]. J Natl Cancer Inst, 2004,96(9):703-708.

[10] Hansen KM, Thundat T. Microcantilever biosensors[J]. Methods, 2005,37(1):57-64.

[11] Voura EB, Jaiswal JK, Mattoussi H, et al. Tracking metastatic tumor cell extravasation with quantum dot nanocrystals and fluorescence emission?鄄scanning microscopy[J]. Nat Med, 2004,10(9):993-998.

[12] Nam JM, Stoeva SI, Mirkin CA. Bio?鄄bar?鄄code?鄄based DNA detection with PCR?鄄like sensitivity[J]. J Am Chem Soc, 2004,126(19):5932-5933.

[13] Santhakumaran LM, Thomas T, Thomas TJ. Enhanced cellular uptake of a triplex?鄄forming oligonucleotide by nanoparticle formation in the presence of polypropylenimine dendrimers[J]. Nucleic Acids Res, 2004, 32(7): 2102-2112.

[14] Sengupta S, Eavarone D, Capila I, et al. Temporal targeting of tumour cells and neovasculature with a nanoscale delivery system[J]. Nature, 2005,436(7050):568-572.

[15] Potineni A, Lynn DM, Langer R, et al. Poly(ethylene oxide)?鄄modified poly(beta?鄄amino ester) nanoparticles as a pH?鄄sensitive biodegradable system for paclitaxel delivery[J]. J Control Release, 2003,86(2?鄄3):223-234.

[16] LaVan DA, McGuire T,Langer R. Small?鄄scale systems for in vivo drug delivery[J]. Nature Biotechnol, 2003,21(10): 1184-1191.

[17] Tao SL, Lubeley MW, Desai TA. Bioadhesive poly(methyl methacrylate) microdevices for controlled drug delivery[J]. J Control Release, 2003,88(2):215-228.

[18] Gradishar WJ, Tjulandin S, Davidson N, et al. Phase Ⅲ trial of nanoparticle albumin?鄄bound paclitaxel compared with polyethylated castor oil?鄄based paclitaxel in women with breast cancer[J]. J Clin Oncol, 2005,23(31):7794-7803.

[19] Lesinski GB,Sharma S,Varker KA,et al.Release of biologically functional interferon?鄄alpha from a nanochannel delivery system[J]. Biomed Microdevices, 2005,7(1):71-79.

[20] Mooney D. Cancer: one step at a time[J]. Nature, 2005,436(7050):468-469.

第7篇:纳米制药技术设计范文

扫描探针显微镜,其探针可以沿样品表面逐点扫描,针尖能随样品的高低起伏作上下运动,用光学方法测量针尖的运动,就可以得到分子的图像。目前已经用于人体多种正常组织和细胞的超微形态学观察,而且可以在纳米水平上揭示肿瘤细胞的形态特点。通过寻找特异性的异常结构改变,以解决肿瘤诊断的难题。另一种新型的纳米影像学诊断工具———光学相干层析术(OCT)已研制成功,OCT的分辨率可达纳米级,较CT和核磁共振的精密度高出上千倍。它不会像X线、CT、磁共振那样杀死活细胞。通过应用纳米技术,在DNA检测时,可免去传统的PCR扩增步骤,快速、准确。美国NASAAmesCen-terforNanotechnology与中南大学卫生部纳米生物技术重点实验室合作,将碳纳米管用于基因芯片,可以在单位面积上连接更多的更高,样本需要量低于1000个NDA分子(传统DNA检测的样本需要量超过106个DNA分子);需要的样品量更少,可以免去传统的PCR扩增步骤;结果可靠,重复性好;操作简单,易实现检测自动化。其基本原理是:连接在碳纳米管上的DNA探针通过杂交捕获特异性的靶DNA或RNA,靶DNA或RNA中的尿嘧啶将电荷转到碳纳米管电极,电荷的转移通过金属离子媒介的氧化作用变成信号并放大。国外在80年代末开始着手研究超顺磁性氧化铁超微颗粒的研究,90年代把这种造影剂应用于临床。

其技术要点是:制备出高顺磁性氧化铁纳米颗粒,在其表面耦连肝癌组织靶向性物质(如肝肿瘤特异性单克隆抗体、肝肿瘤细胞表面特异性受体的配体)制成特异性的MRI造影剂。我国科学家也成功开发了应用超顺磁氧化铁脂质体纳米粒进行肝癌诊断的技术,可以发现直径3mm以下的肝肿瘤,还能发现更小的肝转移癌病灶。目前不加造影剂的磁共振检查能发现直径1.0cm的肝癌病灶,因此该成果大大提高了肝癌早期诊断的敏感性。国家863资助课题“纳米复合包裹生物微系统制备、超声造影和控制释药”,研制了纳米包膜微米微泡超声造影剂与包裹药物和气体的微球,造影后对比效果明显增强,有利于疾病的早期诊断和鉴别诊断。目前利用磁性纳米分离癌细胞在动物实验上已获得成功。其方法是:在直径为50nm的Fe3O4纳米粒表面包覆聚苯乙烯,将特异抗体连接其上,此抗体全只与骨髓中的癌细胞结合。因此,利用磁性分离技术装置很容易将癌细胞从骨髓中分离出来,分离率达99.9%以上,其意义重大。肿瘤切除术后加放疗,为目前肿瘤治疗的一种方案,但放疗的同时也会使正常细胞受到伤害,尤其是杀伤骨髓细胞,从而产生造血功能障碍,因此在放疗前将骨髓抽出,并分离出肿瘤细胞,将极大的提高放疗的疗效。

二、在治疗技术方面的应用

纳米生物材料可以作为基因治疗药物携带材料或靶向材料。通过纳米材料的筛选、纳米粒径的控制及靶向物质的加载,可大大提高药物载体的靶向性,降低药物的毒副作用。用于研究的模型药物包括阿霉素(ADM)、米托蒽醌和单克隆抗体以及近年来迅速发展的反义药物。我们可将药物包埋在纳米粒内部,也可吸附或偶联在其表面,通过血管内注射纳米粒后,纳米粒主要被网状内皮系统吞噬,肝脏中有数目众多的网状内皮细胞,且位置固定,因此药物能在肝内聚集,然后逐步放入血液循环,使肝脏药物浓度增加,对其他脏器不良反应减少,对肝脏有被动靶向作用;当纳米粒足够小(100~150mm)便可逃过kupffer细胞的吞噬,可将其表面覆以特殊包被后,靠其连接的特异性抗体等物质定位于其他靶向器官发挥作用。

肿瘤基因治疗是近年来基因治疗和肿瘤治疗领域内研究的热点,肿瘤基因治疗的方法主要有:①肿瘤抑制基因疗法;②肿瘤免疫基因疗法;③“自杀”基因疗法;④耐药基因疗法;⑤其他基因疗法。尽管基因治疗在基础研究取得很多成绩,然而临床试验研究的结果尚不令人满意。造成这种现象的原因是多方面的。这些问题主要有:①肿瘤基因治疗缺乏靶向性;②基因转移载体的效率、安全性及容量等问题;③绝大多数治疗方案目的基因只有一个。传统的DNA传递系统分为病毒载体介导系统和非病毒载体介导系统。病毒性载体在体内、体外均有高效表达,但是病毒性载体具有抗原性,体内应用诱导免疫反应和炎症反应;而且病毒性载体有可能将外源性病毒基因插入人的基因组中,引起严重的毒副作用。非病毒性载体一般不会造成基因的永久表达、无抗原性、体内应用安全;组成明确,易大量制备,但传递效率低。研制具有高效转染、安全低毒和器官甚至肿瘤细胞特异性的基因载体已成为制约基因治疗药物发展的瓶颈。纳米技术的出现为解决基因转移载体提供了新的思路。采用纳米载体转运核苷酸有很多优越性:①有助于核苷酸高效率转染细胞;②能够靶向定位输送核苷酸;③能有效保护核苷酸,防止体内生物酶的降解;④无机纳米粒本身具有杀伤癌细胞的作用,且对正常细胞无损害。纳米生物材料亦可应用于制造各类组织的支架(如血管、气管、输尿管、韧带与肌腱),组织工程用支架材料,内固定件,骨组织缺损修复材料。卫生部纳米生物技术重点实验室与美国合作开发的具有自塑能力的可吸收注射型纳米骨浆,已在美国、中国等多个国家开展临床实验,疗效显著,该纳米骨浆具有高度生物相容性且无致热源性。

卫生部纳米生物技术重点实验室还与美国匹滋堡大学组织工程中心合作,已开始出骨组织工程纳米生物活性材料,该材料由氨基酸及其他无毒的生物活性物质构成(如:葡萄糖、甘油、胶原蛋白、聚二醇等),采用国际上称为“绿色化学”技术进行合成。并且材料中含有骨生长因子可促进新骨的生成及骨组织功能的恢复,从而缩短骨修复周期,增强再造骨的功能,提高再造骨的质量,而且可以修复大面积的骨缺损。同时在成骨过程中,纳米材料亦可作为填充物质和骨生长因子的载体起着桥梁的作用。伴随着新骨的生长,生物材料逐步降解,待新骨形成时,纳米材料将被组织安全吸收。该材料的下一步开发计划是使材料携带骨生长因子基因,纳米材料既作为填充物质,又是基因转染的载体。纳米机器人是几百个原子、分子组成的颗粒,尺寸只有几十个纳米,表面活性很大,可进入血管中。科学家设想将这些机器人放在血液、尿液和细胞介质中工作,例如可以专门清除血管壁上的沉积物、疏通脑血管中的血栓。

第8篇:纳米制药技术设计范文

【关键词】纳米中药;制备; 特性

【中图分类号】R932 【文献标识码】A 【文章编号】1006-1959(2009)09-0157-01

“纳米中药”的概念最初是由华中科技大学的徐辉碧教授于1998年提出的,他认为纳米中药是指运用纳米技术制造的、粒径小于 100nm 的中药有效成分、有效部位、原药及其复方制剂。到目前为止尚未有制备出粒径小于 100nm的中药。不过,在药学领域从实际条件和研究目的出发将纳米的范畴定义在1~1000nm。

目前纳米中药的研究主要集中在中药纳米粉体的研究方面上。与西药相比中药纳米技术的应用研究较晚,但纳米西药的研究对纳米中药的研究具有借鉴作用。如中药纳米化后亦可以考虑制备成控释、靶向给药制剂,采用纳米技术可发展新的中药加工方法和新的中药剂型。许多研究表明生物机体对药物的吸收、代谢是一个复杂的过程,中药制剂产生药效不仅与药物特有的化学组成有关,还与该制剂的物理性状密切相关。在改变物理性状方面,改变药物的单元尺寸是十分有效的。当颗粒尺寸达到纳米级时,由于量子尺寸效应和表面效应,纳米粒子呈现出新的物理、化学和生物学特性。这就是应用中药纳米技术可能使药物活性和生物利用度提高乃至产生新的特性依据所在。

1 纳米中药的制备

纳米中药的制备是研究纳米中药最重要的问题。目前纳米中药的制备方法的报道很少。主要是采用机械粉碎法,如球磨法和微射流粉碎技术等。但是将中药粉碎成纳米粉体时,必须考虑中药组方的多样性、中药成分的复杂性等一系列问题。

从宏观上看,固体物料的粉碎似乎仅仅是颗粒粒度的变化,而随着粒度细化的量变,往往伴随着一系列颗粒微观上理化特性的质变,这与颗粒的组成、结构、温度及外界环境条件的影响有关。对于弹性颗粒,粉碎作用产生的内应力在它发生显著流变之前就达到了脆性破坏的极限强度,颗粒表现为易于粉碎。对塑性颗粒可以看到明显的流变,而结构不易产生明显的破坏。流变所消耗的能量转化为热量而释放,颗粒表现得难以粉碎。在外力反复作用下颗粒内部的晶体结构会出现松弛现象,也即受力而发生变形的颗粒在变形值维持不变的条件下内应力会逐渐消失,储蓄的弹性能量将转化为热量而提高了粉碎区的温度。瞬间作用的剪切应力有助于缩短颗粒流变过程,从而克服这类颗粒的宏观“粘度”,降低粉碎机内温度,加快粉碎过程的进行。

晶格缺陷是晶体物质结构的薄弱环节,也是颗粒粉碎的突破口。由于缺陷的存在,实际颗粒强度只是晶体强度的千分之几。对粉碎物料进行预处理如高压辊磨、挤压粉碎等是发展内部晶格缺陷是提高粉碎效率的有效手段。在塑性变形范围内,应变首先沿着晶体结构缺陷所占据的滑动面发展。随着粉碎区域温度的提高,界面原子的流动性增强,将使部分扩大的缺陷愈合,不利于粉碎过程的进行。及时将粉碎区的热量移出,降低粉碎机内温度有益高粉碎效率。

在高频周期性负荷作用下,固体颗粒的强度会有所降低,这是周期性负荷致使颗粒疲劳破坏并沿着结构最薄弱地方碎裂的缘故,振动磨和高速冲击搅拌磨就利用了这一原理。被粉碎的颗粒越细,则作用频率越高,超声波的高效能粉碎分散作用在相当大的程度上也是同样道理,这应该成为超细粉碎设备的设计原则。

颗粒的实际强度与其尺寸因素有关,随着颗粒越来越细的变化,其粉碎难度也急剧增大。粉碎过程主要是发展和产生结构缺陷,而颗粒越细其结构缺陷越少,本体强度提高。粉碎细度的实际极限约近数百纳米,进一步的粉碎几乎是在理想的晶体结构中形成并发展新的缺陷,无疑需要消耗巨大的能量。因此,必须承认在粉碎技术发展的不同阶段,存在有不同程度上的粉碎极限需要努力去克服。

粉碎过程是颗粒新表面生成的过程,在超细粉碎阶段不容忽视颗粒表面上介质的行为。在周围介质的吸附作用下颗粒强度会降低,变形增加。多年的研究和实践表明:固体在介质中产生新表面所需要的功比在真空中产生新表面所需的功要小得多。从热力学第二定律来看,新表面的自由能有自动减少、稳定的趋势。这种吸附过程在新表面形成的那一瞬间就开始了,吸附加快了新表面的发展,有助于颗粒内部微裂纹的扩展。在有介质存在的条件下,吸附层将沿着表面缺陷网渗入颗粒内部并使这些缺陷稳定下来。深入到缺陷内部的介质在应力消失后延缓了缺陷愈合过程,降低了颗粒在周期性负荷作用下的韧性。表面活性剂作为助磨剂可大大提高粉磨效率和对粉体表面进行改性处理都是基于这一道理。虽然中药与普通工业物料有所不同,其组成成分和结构复杂多样,含有较高的木质素、纤维、胶质、脂肪、淀粉和糖类等混合组分,不经深度干燥等处理无法超细粉碎,但深度干燥后多成坚韧特性,粉碎难度大,且容易出现团聚、高温降解裂变导致成分破坏流失和生物活性降低等现象,但从粉碎机理上分析,强烈的冲击、剪切、摩擦、研磨等粉碎作用可以有效地实现中药的超细粉碎。

2 纳米中药粒径评估

在纳米粉体加工中,对粉体颗粒的粒度及粒度分布进行表征是很重要的,它在很大程度上可以用来衡量颗粒加工的工艺性质、效率的高低及终级产品的性能和应用,也是选择和评价设备、进行过程控制以及衡量产品质量的基本依据。这对中药纳米粉体来说也不例外,但由于中药组成成分的复杂性和颗粒结构的多样性、特殊性,对中药纳米粉体颗粒粒度及粒度分布的测量提出了更高的要求。如植物药纳米粉遇水或醇容易引起溶胀,导致颗粒变大,而有机溶媒分散力差,不能将纳米粉体分散开来,因此中药纳米粉体粒径测定时,分散溶媒选择的难度加大。中药成分的不均匀性导致粒度分布较宽,测定仪器选择时需要考虑这一点。

3 纳米中药稳定性维持

粉体的性质与应用密切相关。根据聚集状态的不同,一般物质可分为稳态、非稳态和亚稳态,通常块状物质是稳定的,粒度在 2nm左右的颗粒是不稳定的,在高倍电子显微镜下观察其结构是处于不停的变化。纳米粉体因其粒径减小,表面能的增加,具有“表面效应”,在制备和使用过程中极易发生粒子凝并、团聚,形成二次粒子,使粒径变大,从而失去纳米微粒所具备的功能,因此,在纳米中药制备中,纳米粒子的稳定性是个重要问题。目前还没有这方面的研究报道。可以参照维持纳米粉体稳定的常规方法来处理:①在纳米分散体系中加入反絮凝剂使纳米粒子周围形成双电层;② 加表面活性剂,使其吸附在粒子表面,形成微泡;③应用超声波将团聚体打碎。但是由于中药纳米粉体成分的不均一性,导致了纳米粒子表面性质的不均一性,增加了稳定性维持的难度,这需要进行广泛深入的研究。

随着现代制药技术的快速发展,传统中药剂型改革已迫在眉睫。将纳米技术引入中药研究中具有积极的意义,必将对中药研究与发展产生巨大的推动作用。

参考文献

[1] 张志,崔作林著.纳米技术和纳米材料[M].北京:国防工业出版社,2000年

第9篇:纳米制药技术设计范文

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873K~1473K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1nm~1000nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的DeMey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3nm~40nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000nm~9000nm,一般细菌的长度为2000nm~3000nm[7],引起人体发病的病毒尺寸为80nm~100nm,而纳米包覆体尺寸约30nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

论文关键词:纳米材料生物医学应用