公务员期刊网 精选范文 金属材料论文范文

金属材料论文精选(九篇)

金属材料论文

第1篇:金属材料论文范文

40多年以前,科学家们就认识到实际材料中的无序结构是不容忽视的。许多新发现的物理效应,诸如某些相转变、量子尺寸效应和有关的传输现象等,只出现在含有缺陷的有序固体中。事实上,如果多晶体中晶体区的特征尺度(晶粒或晶畴直径或薄膜厚度)达到某种特征长度时(如电子波长、平均自由程、共格长度、相关长度等),材料的性能将不仅依赖于晶格原子的交互作用,也受其维数、尺度的减小和高密度缺陷控制。有鉴于此,HGleitCr认为,如果能够合成出晶粒尺寸在纳米量级的多晶体,即主要由非共格界面构成的材料[例如,由50%(invol.)的非共植晶界和50%(invol.)的晶体构成],其结构将与普通多晶体(晶粒大于lmm)或玻璃(有序度小于2nm)明显不同,称之为"纳米晶体材料"(nanocrystallinematerials)。后来,人们又将晶体区域或其它特征长度在纳米量级范围(小于100nn)的材料广义定义为"纳米材料"或"纳米结构材料"(nanostructuredmaterials)。由于其独特的微结构和奇异性能,纳米材料引起了科学界的极大关注,成为世界范围内的研究热点,其领域涉及物理、化学、生物、微电子等诸多学科。目前,广义的纳米材料的主要包括:

l)清洁或涂层表面的金属、半导体或聚合物薄膜;2)人造超晶格和量子讲结构;功半结晶聚合物和聚合物混和物;4)纳米晶体和纳米玻璃材料;5)金属键、共价键或分子组元构成的纳米复合材料。

经过最近十多年的研究与探索,现已在纳米材料制备方法、结构表征、物理和化学性能、实用化等方面取得显著进展,研究成果日新月异,研究范围不断拓宽。本文主要从材料科学与工程的角度,介绍与评述纳米金属材料的某些研究进展。

2纳米材料的制备与合成

材料的纳米结构化可以通过多种制备途径来实现。这些方法可大致归类为"两步过程"和"一步过程"。"两步过程"是将预先制备的孤立纳米颗粒因结成块体材料。制备纳米颗粒的方法包括物理气相沉积(PVD)、化学气相沉积(CVD)、微波等离子体、低压火焰燃烧、电化学沉积、溶胶一凝胶过程、溶液的热分解和沉淀等,其中,PVD法以"惰性气体冷凝法"最具代表性。"一步过程"则是将外部能量引入或作用于母体材料,使其产生相或结构转变,直接制备出块体纳米材料。诸如,非晶材料晶化、快速凝固、高能机械球磨、严重塑性形变、滑动磨损、高能粒子辐照和火花蚀刻等。目前,关于制备科学的研究主要集中于两个方面:l)纳米粉末制备技术、理论机制和模型。目的是改进纳米材料的品质和产量;2)纳米粉末的固结技术。以获得密度和微结构可控的块体材料或表面覆层。

3纳米材料的奇异性能

1)原子的扩散行为

原子扩散行为影响材料的许多性能,诸如蠕变、超塑性、电性能和烧结性等。纳米晶Co的自扩散系数比Cu的体扩散系数大14~16个量级,比Cu的晶界自扩散系数大3个量级。Wurshum等最近的工作表明:Fe在纳米晶N中的扩散系数远低于早期报道的结果。纳米晶Pd的界面扩散数据类似于普通的晶界扩散,这很可能是由于纳米粒子固结成的块状试样中的残留疏松的影响。他们还报道了Fe在非晶FeSiBNbCu(Finemete)晶化形成的复相纳米合金(由Fe3Si纳米金属间化合物和晶间的非晶相构成)中的扩散要比在非晶合金中快10~14倍,这是由于存在过剩的热平衡空位。Fe在Fe-Si纳米晶中的扩散由空位调节控制。

2)力学性能

目前,关于纳米材料的力学性能研究,包括硬度、断裂韧性、压缩和拉伸的应力一应变行为、应变速率敏感性、疲劳和蠕变等已经相当广泛。所研究的材料涉及不同方法制备的纯金属、合金、金属间化合物、复合材料和陶瓷。研究纳米材料本征力学性能的关键是获得内部没有(或很少)孔隙、杂质或裂纹的块状试样。由于试样内有各种缺陷,早期的许多研究结果已被最近取得的结果所否定。样品制备技术的日臻成熟与发展,使人们对纳米材料本征力学性能的认识不断深入。许多纳米纯金属的室温硬度比相应的粗晶高2~7倍。随着晶粒的减小,硬度增加的现象几乎是不同方法制备的样品的一致表现。早期的研究认为,纳米金属的弹性模量明显低于相应的粗晶材料。例如,纳米晶Pd的杨氏和剪切模量大约是相应全密度粗晶的70%。然而,最近的研究发现,这完全是样品中的缺陷造成的,纳米晶Pd和Cu的弹性常数与相应粗晶大致相同,屈服强度是退火粗晶的10~15倍。晶粒小子50nm的Cu韧性很低,总延伸率仅1%~4%,晶粒尺寸为110nm的Cu延伸率大于8%。从粗晶到15urn,Cu的硬度测量值满足HallPetch关系;小于15nm后,硬度随晶粒尺寸的变化趋于平缓,虽然硬度值很高,但仍比由粗晶数据技HallPetch关系外推或由硬度值转换的估计值低很多。不过,纳米晶Cu的压缩屈服强度与由粗晶数据的HallPetCh关系外推值和测量硬度的值(Hv/3)非常吻合,高密度纳米晶Cu牙DPd的压缩屈服强度可达到1GPa量级。

尽管按照常规力学性能与晶粒尺寸关系外推,纳米材料应该既具有高强度,又有较高韧性。但迄今为止,得到的纳米金属材料的韧性都很低。晶粒小于25nm时,其断裂应变仅为<5%,远低于相应粗晶材料。主要原因是纳米晶体材料中存在各类缺陷、微观应力及界面状态等。用适当工艺制备的无缺陷、无微观应力的纳米晶体Cu,其拉伸应变量可高达30%,说明纳米金属材料的韧性可以大幅度提高。纳米材料的塑性变形机理研究有待深入。

纳米晶金属间化合物的硬度测试值表明,随着晶粒的减小,在初始阶段(类似于纯金属盼情况)发生硬化,进一步减小晶粒,硬化的斜率减缓或者发生软化。由硬化转变为软化的行为是相当复杂的,但这些现象与样品的制备方法无关。材料的热处理和晶粒尺寸的变化可能导致微观结构和成份的变化,如晶界、致密性、相变、应力等,都可能影响晶粒尺寸与硬度的关系。

研究纳米晶金属间化合物的主要动机是探索改进金属间化合物的室温韧性的可能性。Bohn等首先提出纳米晶金属化合物几种潜在的优越性。其中包括提高强度和韧性。Haubold及合作者研究了IGC法制备的NiAl的力学性能,但仅限于单一样品在不同温度退火后的硬度测量。Smith通过球磨NiAl得到晶粒尺寸从微米级至纳米级的样品,进行了"微型盘弯曲试验",观察到含碳量低的材料略表现出韧性,而含碳多的材料没有韧性。最近Choudry等用"双向盘弯曲试验"研究了纳米晶NiAl,发现晶粒小于10nm时,屈服强度高干粗晶NiAl,且在室温下有韧性,对形变的贡献主要源于由扩散控制的晶界滑移。室温压缩实验显示由球磨粉末固结成的纳米晶Fe-28Al-2Cr具有良好的塑性(真应变大于1.4),且屈服强度高(是粗晶的1O倍)。测量TiAl(平均晶粒尺寸约10nm)的压缩蠕变(高温下测量硬度随着恒载荷加载时间的变化)表明,在起始的快速蠕变之后,第二阶段蠕变非常缓慢,这意味着发生了扩散控制的形变过程。低温时(低于扩散蠕变开始温度),纳米晶的硬度变化很小。观察到的硬度随着温度升高而下降,原因之一是压头载荷使样品进一步致密化,而主要是因为材料流变加快。Mishra等报道,在750~950°C,10-5~10-3s-1的应变速率范围,纳米晶Ti-47.5Al-3Cr(g-TiAl)合金的形变应力指数约为6,说明其形变机制为攀移位错控制。

值得注意的是,最近报道了用分子动力学计算机模拟研究纳米材料的致密化过程和形变。纳米Cu丝的模拟结果表明,高密度晶界对力学行为和塑性变形过程中的晶界迁移有显著影响。纳米晶(3~5nm)Ni在低温高载荷塑性变形的模拟结果显示,其塑性变形机制主是界面的粘滞流动、晶界运动和晶界旋转,不发生开裂和位错发散,这与粗晶材料是截然不同的。

3)纳米晶金属的磁性

早期的研究发现。纳米晶Fe的饱和磁化强度试比普通块材a-Fe约低40%。Wagner等用小角中子散射(SANS)实验证实纳米晶Fe由铁磁性的晶粒和非铁磁性(或弱铁磁性)的界面区域构成,界面区域体积约占一半。纳米晶Fe的磁交互作用不仅限于单个晶粒,而且可以扩展越过界面,使数百个晶粒磁化排列。Daroezi等证实球磨形成的纳米晶Fe和Ni的饱和磁化强度与晶粒尺寸(50mm~7nm)无关,但纳米晶的饱和磁化曲线形状不同于微米晶材料。随着晶粒减小,矫顽力显著增加。Schaefer等报道,纳米晶Ni中界面原子的磁拒降低至0.34mB/原子(块状Ni为0.6mB/原子),界面组份的居里温度(545K)比块状晶体Ni的(630K)低。最近的研究还发现,制备时残留在纳米晶Ni中的内应力对磁性的影响很大,纳米晶Ni的饱和磁化强度与粗晶Ni基本相同。

Yoshizawa等报道了快淬的FeCuNbSiB非晶在初生晶化后,软磁性能良好,可与被莫合金和最好的Co基调合金相媲美,且饱和磁化强度很高(Bs约为1.3T)。其典型成份为Fe73.5Cu1Nb3Si13.5B9称为"Finemet"。性能最佳的结构为a-Fe(Si)相(12~20nm)镶嵌在剩余的非晶格基体上。软磁性能好的原因之一被认为是铁磁交互作用。单个晶粒的局部磁晶体各向异性被有效地降低。其二是晶化处理后,形成富Si的a-Fe相,他和磁致伸缩系数ls下降到2′10-6。继Finemet之后,90年代初又发展了新一族纳米晶软磁合金Fe-Zr-(Cu)-B-(Si)系列(称为''''Nanoperm")。退火后,这类合金形成的bcc相晶粒尺寸为10~20nm,饱和磁化强度可达1.5~1.7T,磁导率达到48000(lkHz)。铁芯损耗低,例如,Fe86Zr7B6Cu1合金的铁芯损耗为66mW·g-1(在1T,50Hz条件下),比目前做变压器铁芯的Fe78Si9B13非晶合金和bccFe-3.5%Si合金小45%和95%,实用前景非常诱人。

4)催化及贮氢性能

在催化剂材料中,反应的活性位置可以是表面上的团簇原子,或是表面上吸附的另一种物质。这些位置与表面结构、晶格缺陷和晶体的边角密切相关。由于纳米晶材料可以提供大量催化活性位置,因此很适宜作催化材料。事实上,早在术语"纳米材料"出现前几十年,已经出现许多纳米结构的催化材料,典型的如Rh/Al2O3、Pt/C之类金属纳米颗粒弥散在情性物质上的催化剂。已在石油化工、精细化工合成、汽车排气许多场合应用。

Sakas等报道了纳米晶5%(inmass)Li-MgO(平均直径5.2nm,比表面面积750m2·g-1)的催化活性。它对甲烷向高级烃转化的催化效果很好,催化激活温度比普通Li浸渗的MgO至少低200°C,尽管略有烧结发生,纳米材料的平均活性也比普通材料高3.3倍。

Ying及合作者利用惰性气氛冷凝法制成高度非化学当量的CeO2-x纳米晶体,作为CO还原SO2、CO氧化和CH4氧化的反应催化剂表现出很高的活性。活化温度低于超细的化学当量CeO2基材料。例如,选择性还原SO2为S的反应,可在500°C实现100%转换,而由化学沉淀得到的超细CeO2粉末,活化温度高达600°C。掺杂Cu的Cu-CeO2-x纳米复合材料可以使SO2的反应温度降低到420°C。另外,CeO2-x纳米晶在SO2还原反应中没有活性滞后,且具有超常的抗CO2毒化能力。还能使CO完全转化为CO2的氧化反应在低于100°C时进行,这对冷起动的汽车排气控制非常有利。值得注意的是这样的催化剂仅由较便宜的金属构成,毋须添加资金属元素。

FeTi和Mg2Ni是贮氢材料的重要候选合金。其缺点是吸氢很慢,必须进行活化处理,即多次地进行吸氢----脱氢过程。Zaluski等最近报道,用球磨Mg和Ni粉末可直接形成化学当量的Mg2Ni,晶粒平均尺寸为20~30nm,吸氢性能比普通多晶材料好得多。普通多晶Mg2Ni的吸氢只能在高温下进行(如果氢压力小于20Pa,温度必须高于250°C),低温吸氢则需要长时间和高的氢压力,例如200°C、120bar(lbar=0.1Mpa),2天。纳米晶Mg2Ni在200°C以下,即可吸氢,毋须活化处理。300°C第一次氢化循环后,含氢可达~3.4%(inmass)。在以后的循环过程中,吸氢比普通多晶材料快4倍。纳米晶FeTi的吸氢活化性能明显优于普通多晶材料。普通多晶FeTi的活化过程是:在真空中加热到400~450℃,随后在约7Pa的H2中退火、冷却至室温再暴露于压力较高(35~65Pa)的氢中,激活过程需重复几次。而球磨形成的纳米晶FeTi只需在400℃真空中退火0.5h,便足以完成全部的氢吸收循环。纳米晶FeTi合金由纳米晶粒和高度无序的晶界区域(约占材料的20%~30%)构成。4纳米材料应用示例

目前纳米材料主要用于下列方面:

l)高硬度、耐磨WC-Co纳米复合材料

纳米结构的WC-Co已经用作保护涂层和切削工具。这是因为纳米结构的WC-Co在硬度、耐磨性和韧性等方面明显优于普通的粗晶材料。其中,力学性能提高约一个量级,还可能进一步提高。高能球磨或者化学合成WC-Co纳米合金已经工业化。化学合成包括三个主要步骤:起始溶液的制备与混和;喷雾干燥形成化学性均匀的原粉末;再经流床热化学转化成为纳米晶WC-Co粉末。喷雾干燥和流床转化已经用来批量生产金属碳化物粉末。WC-Co粉末可在真空或氢气氛下液相烧结成块体材料。VC或Cr3C2等碳化物相的掺杂,可以抑制烧结过程中的晶粒长大。

2)纳米结构软磁材料

Finemet族合金已经由日本的HitachiSpecialMetals,德国的VacuumschmelzeGmbH和法国的Imply等公司推向市场,已制造销售许多用途特殊的小型铁芯产品。日本的AlpsElectricCo.一直在开发Nanoperm族合金,该公司与用户合作,不断扩展纳米晶Fe-Zr-B合金的应用领域。

3)电沉积纳米晶Ni

电沉积薄膜具有典型的柱状晶结构,但可以用脉冲电流将其破碎。精心地控制温度、pH值和镀池的成份,电沉积的Ni晶粒尺寸可达10nm。但它在350K时就发生反常的晶粒长大,添加溶质并使其偏析在晶界上,以使之产生溶质拖拽和Zener粒子打轧效应,可实现结构的稳定。例如,添加千分之几的磷、流或金属元素足以使纳米结构稳定至600K。电沉积涂层脉良好的控制晶粒尺寸分布,表现为Hall-Petch强化行为、纯Ni的耐蚀性好。这些性能以及可直接涂履的工艺特点,使管材的内涂覆,尤其是修复核蒸汽发电机非常方便。这种技术已经作为EectrosleeveTM工艺商业化。在这项应用中,微合金化的涂层晶粒尺寸约为100nm,材料的拉伸强度约为锻造Ni的两倍,延伸率为15%。晶间开裂抗力大为改善。

4)Al基纳米复合材料

Al基纳米复合材料以其超高强度(可达到1.6GPa)为人们所关注。其结构特点是在非晶基体上弥散分布着纳米尺度的a-Al粒子,合金元素包括稀土(如Y、Ce)和过渡族金属(如Fe、Ni)。通常必须用快速凝固技术(直接淬火或由初始非晶态通火)获得纳米复合结构。但这只能得到条带或雾化粉末。纳米复合材料的力学行为与晶化后的非晶合金相类似,即室温下超常的高屈服应力和加工软化(导致拉神状态下的塑性不稳定性)。这类纳米材料(或非晶)可以固结成块材。例如,在略低于非晶合金的晶化温度下温挤。加工过程中也可以完全转变为晶体,晶粒尺寸明显大干部份非晶的纳米复合材料。典型的Al基体的晶粒尺寸为100~200nm,镶嵌在基体上的金属间化合物粒子直径约50nm。强度为0.8~1GPa,拉伸韧性得到改善。另外,这种材料具有很好的强度与模量的结合以及疲劳强度。温挤Al基纳米复合材料已经商业化,注册为GigasTM。雾化的粉末可以固结成棒材,并加工成小尺寸高强度部件。类似的固结材料在高温下表现出很好的超塑:在1s-1的高应变速率下,延伸率大于500%。

第2篇:金属材料论文范文

金属材料在腐蚀介质中形成腐蚀疲劳裂纹之后,裂纹在腐蚀环境与交变载荷共同作用下扩展直至最后的断裂。疲劳裂纹扩展是裂纹在交变载荷下的渐变过程,而在腐蚀疲劳中由于存在腐蚀,裂纹扩展就会变得非常复杂。韩恩厚[9]等认为降低应力比和频率所导致的裂纹扩展速率增加是建立在氢致开裂机制的基础上。韩光炜,宋余九[10]通过研究认为阳极溶解在腐蚀疲劳裂纹扩展过程中的直接贡献甚微,阳极溶解的主要作用是通过间接促进氢脆过程进而对腐蚀疲劳裂纹扩展产生影响。与裂纹的萌生一样,腐蚀疲劳的裂纹扩展也是局部性的。腐蚀疲劳裂纹扩展阶段,可能存在以下6个过程对裂纹扩展起作用[11]:(1)裂纹尖端的阳极溶解;(2)金属表面-腐蚀环境的化学反应产生一些有害的化学物质,并扩散至裂纹尖端塑性区,促进了裂纹加速扩展,如氢脆;(3)腐蚀介质向裂尖区的转移和腐蚀产物由裂尖向外迁移;(4)疲劳开裂导致反复形成新的金属表面;(5)交变载荷导致裂尖金属表面的保护膜反复破裂;(6)裂纹张开期间腐蚀产物形成堆积,影响了裂纹的闭合状态和裂尖环境。

2影响因素

腐蚀疲劳涉及力学、化学、材料学等多个学科,科研工作者通过研究发现影响腐蚀疲劳的因素主要有力学因素、环境因素以及材料因素。力学因素包括应力大小、应力比、频率、应力幅和波形等;环境因素包括环境类型、酸性和温度等;材料因素包括材料成分、机械性能、组织形态、加工工艺和杂质分布等。

2.1力学因素研究表明交变载荷对腐蚀疲劳裂纹扩展的影响主要表现在:(1)使疲劳裂纹反复张开和闭合,增强了裂纹尖端与腐蚀的介质交换;(2)改变裂纹尖端的应变速率(3)造成累积疲劳损伤[12]。在力学影响因素中,交变载荷的应力比R和频率f对腐蚀疲劳裂纹扩展的影响非常重要:增加R和降低f都会加快腐蚀疲劳裂纹扩展速率。R不仅会影响腐蚀疲劳裂纹扩展速率,还会影响腐蚀疲劳的门槛值,一般情况下随R的增大,门槛值会减小[11,12]。另外,波形也会对腐蚀疲劳裂纹萌生和扩展产生显著的影响,而在常规疲劳过程中,波形对疲劳性能影响很小。腐蚀速率也会随着应力的增大而加快,即随着交变应力的平均值和振幅的增大而加快。

2.2环境因素在腐蚀环境中,理论上讲即使应力再低,只要加载次数足够大,金属材料也会发生破坏。这主要表现在腐蚀介质降低了材料的疲劳极限。一般升高温度会加快裂纹扩展速率,但是若温度上升引起材料严重孔蚀,产生许多浅裂纹源,从而降低了应力集中,反而提高材料的耐腐蚀疲劳性能。随着介质的酸性增加,溶液的腐蚀性增强,金属材料的临界应力强度因子降低,加快了腐蚀疲劳破坏,从而降低腐蚀疲劳寿命。腐蚀产物对裂纹扩展速率的影响包括两个方面:一是腐蚀产物能够减少腐蚀介质向裂纹尖端的转移,对电流可以起到屏蔽作用,从而减缓裂纹扩展;二是腐蚀产物在裂纹尖端会形成腐蚀电偶,从而加速腐蚀电化学过程。

2.3材料因素材料特性对腐蚀裂纹扩展速率影响至关重要,不同的材料耐腐蚀性不同,直接影响耐腐蚀疲劳性能。当材料含有杂质时,会产生应力集中,加快点蚀的发生从而增大腐蚀疲劳破坏。材料特性也决定着腐蚀疲劳门槛值的大小来影响裂纹扩展速率。不同晶相组织的电位差异会导致腐蚀疲劳端口裂纹开裂,且呈折线状,裂纹之间相互连接、交叉、分叉呈现出多裂纹特征。

3寿命预测

目前,对于腐蚀疲劳裂纹扩展寿命的预测方法研究比较多,在工程中应用最广泛的方法依然是1963年由Paris提出的疲劳裂纹扩展公式,也就是著名的Paris公式,它建立了应力强度因子和疲劳裂纹扩展速率之间的关系,是当今工程应用上预测疲劳裂纹扩展寿命理论的基础。式中,a是裂纹长度,单位为mm;N是应力循环次数,单位为cycle;da/dN是裂纹扩展速率,单位为mm/cycle;C、n是与材料-环境相关的常数,ΔK是应力强度因子幅,单位为MPam,计算式为。式中Kmax、Kmin分别是裂纹处应力强度因子的最大值和最小值Δσ是裂纹处应力幅值。Wei[13]认为腐蚀环境和交变载荷对裂纹扩展过程是相互独立的作用,因此提出了叠加模型。在K>KISCC的情况下,腐蚀疲劳裂纹扩展速率为机械疲劳裂纹扩展速率和应力腐蚀裂纹扩展速率的叠加。Austen[15]认为虽然机械疲劳和应力腐蚀同时对腐蚀疲劳裂纹扩展起到作用,但二者并非叠加关系,而是由发展较快的一个过程来表示腐蚀疲劳裂纹扩展过程,也就是过程竞争模型。式中,Bcf是与环境、材料相关的常数,ΔKthcf是腐蚀疲劳的门槛值。之所以腐蚀疲劳裂纹扩展速率模型能够适用腐蚀疲劳环境下,主要是(da)/dNcf与裂尖ΔK相关,另外可将空气看成一种较弱的腐蚀介质。

4结论

第3篇:金属材料论文范文

实验材料为FeS2矿物标本上的立方单晶与五角十二面体单晶,通过超声清洗样品表面污染。所用仪器为扫描电镜SEM(LEO-1450型及ZEISSULTRA-55型),EBSD系统为OxfordInstru-ments公司的HKLCHANNEL-5系统。EBSD数据采集步骤为:将样品安放在扫描电镜样品台上,记录下位置;将样品台推进扫描电镜样品室,对样品室进行抽真空;将样品台倾转70°并进行聚焦和倾转图像校正,将EBSD探头送入样品室;将入射电子束打在样品表面,选择合适视场进行菊池花样的扣背底同时在电脑上进行图像的优化;照下形貌相,选好视场,设置EBSD测定参数,启动自动程序进行菊池花样的自动标定;抽出EBSD探头,样品回转至水平位置,关闭电镜和计算机。进行数据处理,根据需要输出各种类型的含有晶体学信息的图。查FeS2的晶体学数据知其可以有3种不同的晶体结构,最常见的是简单立方结构,空间群符号为Pa3,Herman-Mauguin国际符号为2/m3,点阵常数a=0.5417nm,配位数Z=4;另一种为三斜晶系,空间群符号为P1,Pearson符号为aP12;第3种为正交晶系,空间群符号为Pnnm,Laue群为mmm,点阵常数为a=4.45魡,b=5.43魡,c=3.39魡。

二、实验结果分析

(一)立方FeS2单晶表面条纹形貌观察与分析立方FeS2都是正方形颗粒,与石英伴生。用扫描电镜中配置的能谱仪验证是FeS2,特征谱见图1a,定量结果为Fe33at%,S66at%。图1b为FeS2单晶表面形貌相,可见明显生长台阶,这与材料科学基础课程界面一章介绍的Kossel-Stranski模型[2-5],也称Terrace–ledge–kink(TLK)mode(坪台-台阶-扭折模型)对应,表明FeS2晶体缓慢生长时表面不是完全晶体学面光滑的,而是要通过热激活形成台阶,再由台阶的侧向生长完成垂直于表面的生长。台阶线近似成45°或90°。

(二)五角十二面体FeS2单晶表面条纹形貌观察与分析黄铁矿晶体形态、表面微形貌研究表明,负晶体是指黄铁矿晶体{210}面上的条纹垂直于{210}和{100}面的交棱方向,并认为这种条纹只出现在那些简单五角十二面体的黄铁矿晶体上。图2所示为五角十二面体(210)面上的正条纹和负条纹形貌。图3为五角十二面体黄铁矿记为A晶体和B晶体的表面形貌条纹。图4为A、B两个黄铁矿的能谱分析结果。对比图2和图3可知以看出,试验时的A、B两个黄铁矿晶粒表面形貌都为正条纹不是负晶体,为普通正条纹黄铁矿。从图4a可知,A晶粒中去除C元素的影响,计算结果为Fe31.47at%,S68.39at%,可知S原子数量是Fe原子数量的2.17倍,接近理论值。同时,检测到A晶粒中含有微量的Si和Ni元素含量大约在0.14at%。从图4b可知,B晶粒中去除O元素的影响,计算得Fe29.35at%,S69.18at%,可知S原子数量是Fe原子数量的2.35倍,接近理论值。同时,检测到B晶粒中含有微量的Si和Ti和Al元素含量大约在1.5at%。综上可知,五角十二面体的黄铁矿一般含有微量元素,即说明形成时溶液的过饱和度相对较大。同时,A晶粒和B晶粒的杂质元素的含量不同,说明成矿时杂质元素的种类不影响黄铁矿晶体的形态。

(三)立方FeS2单晶取向确定图5a、图5b为一颗立方FeS2的立方体颗粒及采用扫描电镜EBSD系统测出的取向的{100}极图,其取向的欧拉角为(147.8,6.1,125.0),转化为密勒指数为(001)[010],与立方体形貌完全对应,可知立方硫化铁的每个表面都是(100)面。立方结构材料只有在非常缓慢的条件下或<100>方向的生长速度比其它方向慢的多的条件下才长成立方体。

三、讨论

通过查找文献、动手实验、结果分析的系统研究过程,提高了学生科学研究素质与综合实验能力,为以后的研究生科研工作奠定了良好基础,并深化了对材料科学基础中晶体学相关概念与定律的理解。通过对两种FeS2晶体类型与表面形态的对比研究,理解了晶体结构类型与单晶表面形貌的关系;晶体的微观对称性与宏观对称性的关系,晶体表面小面化或刻面的现象与宏观表面的关系;认识了硫化铁单晶在不同内因或外因作用下结晶成不同形貌的现象;掌握了材料分析方法中介绍的主要测试仪器扫描电镜、能谱仪、电子背散射衍射仪,分别可获取材料微观形貌、微区成分、微区晶体结构及取向这3个最基本的材料信息;提高了寻找硫化铁标本、文献检索、样品制备、地质知识及最终的文章撰写能力;体现了材料科学基础课程研究型教学培养理念。

四、结语

第4篇:金属材料论文范文

国内许多材料专业是在之前的铸、锻、焊、热处理等专业基础上建立起来的,国家振兴东北老工业基地的政策,使得以金属材料为主体的专业仍然担负着人才培养的重要任务。我校金属材料工程专业在设立之初,立足专业教师优势科研方向及社会经济发展,结合国家重大战略需求,设置了先进材料和无损检测专业方向模块,学生既能掌握深厚的金属材料工程专业基础知识,同时又能在新材料研发及金属材料缺陷、损伤评价等方面得到训练。2011年,为了配合国家战略性新兴产业需要,以先进材料专业方向为基础筹建的功能材料专业,获得教育部第七批高等学校特色专业建设点的支持,成为国家战略性新兴产业相关建设专业之一。在我校2012年的培养计划中,顺应国家“高等学校创新能力提升计划”中提出的“提升人才、学科、科研三位一体的创新能力,构建面向行业产业以及区域发展重大需求”以及国家“十二五”科技规划中“科技与经济紧密结合,将促进科技成果转化为现实生产力作为主攻方向”的战略需求,结合本专业教师近年来承担国家重点基础研究发展计划(973计划)、863计划等科技项目的实际发展,设立了金属材料工程与技术专业方向,培养在材料结构研究与分析、金属材料及复合材料制备与成型、金属材料工程质量管理以及材料检测与表征等领域的高素质人才。材料专业的课程设置有基础课、专业基础课和专业课。专业基础课程包括材料科学基础、固态相变原理及应用、材料成型原理、金属材料学、近代材料分析技术、材料力学性能、材料物理性能等。在专业课程中,设置了材料表面工程技术、工程安全及质量管理、腐蚀及防护、热处理工艺及设备、失效分析等。其中,新设的工程安全及质量管理课程,旨在加强学生在标准规范及产品质量管理方面的知识积累,提高学生的国际竞争意识。在选修课中,有目的地新增材料工程的节能环保课程,引导学生关注专业技术的发展,同时补充有关知识,开阔学生视野,使其具备技术伦理学知识,能够认识技术发展可能带来的社会问题,并加以判断和自我约束。由于金属材料工程是一个与工程实际有着紧密联系、实践性很强的专业,因此专业基础课程和专业课程中的实验教学是整个教学体系的重要组成部分。实验教学可以增强学生对所学知识的感性认识,并培养学生分析实际问题的能力,对于强化工程素质、启迪创新思维和创造能力有重要作用。金属材料工程专业的实验课注重学生对材料基本结构、工艺、性能及其相互间关系的认识,并培养学生通过实验环节完成上述分析的能力。实验课程的设置及实验内容,对学生专业知识的掌握、能力的培养等具有重要作用。

2面向专业方向课程群的综合实验平台与模块化实验教学体系

在专业基础课的实验设置上,每门专业基础课均设置了独立的实验课,即材料科学基础实验、固态相变原理实验、材料分析方法实验、材料成形原理实验、金属材料学实验、材料物理/力学性能实验等,进一步系统整合专业基础课程体系的实验教学内容,优化实验项目,合理配置实验装置和设备,主要目的是培养学生的基本实验技能,配合理论教学深入理解材料科学与工程的知识体系。在专业课程的实验设置上,基于专业整体学时有限的实际情况,分别在两个学期设置了金属材料工程与技术综合实验I和金属材料工程与技术综合实验II,通过系统规划、整合各课程的实验环节,使之与专业方向课程群的理论教学相辅相成,培养学生专业实验实践能力,并能够在工程问题的解决和工程思想的培养上得到进展。

专业基础课和专业课实验的设置按照演示性、验证性、综合性和设计性实验层次系统布局,渐次推进。其中演示性、验证性实验在课程学习的早期进行。重点对各类材料基础课程中的重要定理、现象、过程进行实践上的验证和事实的说明,从而使学生对该部分内容加深理解,增强记忆,牢固掌握基本理论知识。综合性实验以综合应用性实验为主体,重点是专业基础课程、专业课程所涉及的综合性、系统性、实践应用性、专业性较强及知识面较宽的工作原理、工艺过程、系统分析与设计等教学内容的实验。综合性实验使学生在综合应用、实践操作、分析问题、解决问题等基本技能方面得到训练和提高。设计创新性实验以学生设计、创新为主体。学生利用学过的理论及专业知识,通过科学的命题、选题,开设、开发创新性实验,旨在调动学生的创新积极性,启发学生的创新思维,增强创新能力培养。为完成实验课程教学内容,达到实验教学目的,有效利用实验资源,我们为实验人员及学生提供灵活的选择,在专业基础课和专业课系列实验的大框架下,设置六个二级平台:(1)样品制备平台;(2)显微组织观察及表征实验平台;(3)相变测试及分析实验平台;(4)性能测试及表征实验平台;(5)金属材料工程与技术综合实验平台;(6)无损检测综合实验平台。在各二级平台中建设模块化的实验单元,为各类实验提供平台。例如:在样品制备平台二级平台下设置块材样品制备技术、薄膜样品制备技术、电镜样品制备技术、性能样品制备技术等实验模块;在显微组织观察及表征实验平台二级平台下设置金相显微镜的构造、成像原理与使用方法,金相组织的观察与分析方法,物相定性、定量分析方法,材料成分分析、表征方法,晶粒尺寸测定及评定方法,铁碳平衡组织观察,钢的非平衡组织观察,铸造组织及缺陷的观察,有色金属及合金的组织观察等模块。学生可以结合课程学习的内容、实验的要求,选择各模块开展实验。建立演示性、验证性、综合性和设计性实验层次合理、功能基本齐全、规模适当的教学实验体系。

3结束语

第5篇:金属材料论文范文

关键词 金属材料;失效;断裂韧性;影响因素

中图分类号TG14 文献标识码A 文章编号 1674-6708(2013)82-0057-02

0 引言

随着现代社会经济的不断发展,对金属材料的使用也大大的增加,在工程构件设计和使用的过程中,最为严重的就是金属材料的断裂,金属材料一旦发生断裂就会发生生产安全事故,同时也会造成一定的经济损失。通过对以往发生的大量的金属材料的断裂事件的分析,得出构件的低应力脆断是由宏观裂纹扩展引起的,其中最为主要的是金属材料的断裂纹,裂纹一般是在金属加工和生产的过程中引起的[1]。

根据影响金属材料断裂韧性因素的不用,可以总体上概括为两个部分的因素,分别是金属材料外部因素和金属材料内部因素,本文分别就影响金属材料的外部因素和内部因素综合进行分析,以得出影响金属材料动态断裂韧性的因素。

1 影响金属材料断裂韧性的外部因素

1.1 几何因素的影响

几何因素是影响金属材料断裂韧性的一个最为重要的外部因素。几何因素主要包括两个方面的内容,分别是试样厚度和试样取向等因素,下面对这两个因素进行分析:

1)试样厚度

目前在对金属材料的断裂韧性进行研究的过程中发现,不同厚度的金属材料会对会对裂纹前端的应力约束产生较大的影响,同样也会对金属材料的断裂韧性有一定的影响,所以我们分别用不同厚度的同一个金属材料进行断裂韧性的实验,在实验的过程中发现厚试样的断裂韧性值明显的比薄试样的断裂韧性值要低,换而言之,不同厚度的金属材料,其自身的断裂韧性也不同,厚度也是影响金属材料断裂韧性的一个重要的因素[2]。

2)试样的取向

在对金属材料进行取样测试的时候,试样的去向业余金属材料的断裂韧性之间存在着一定的联系,如果我们取样的金属材料裂纹面与金属材料裂纹的扩展方向一致,那么金属材料的断裂韧性就会明显的降低。如果我们取样的金属材料裂纹面与金属材料裂纹的扩展方向相反或者有一定的偏差,那么金属材料的断裂韧性就会较别的有所提高[3]。

1.2 加载速率的影响

加载速率与金属材料的断裂韧性有一定的影响,它们之间的联系通常可以用应变速率来进行表示,如果对金属材料的应变速率进行增加的话,那么金属材料相应的断裂韧性就会有所降低。但是,如果应变速率很大,而且形成局部温度升高的绝热状态时,形变热量来不及散开,材料的断裂韧性值会出现回升。

1.3 温度的影响

金属材料的断裂韧性之所以会发生变化,是因为金属材料本身的内部损伤或者内部结构的缓慢变化而引起的,内部金属粒子的空位浓度的变化直接导致了金属材料的损伤。国内有一些研究文献表明,空位的迁移运动也就一定,空位聚合形成空穴的动力一定。因此裂纹尖端空位浓度越高,形成空穴的几率也就越大,就比较容易导致断裂。由基本的物理学知识可以得知,给定一个材料,其本身受热多少的变化也会影响到金属材料的韧性,金属材料本身的断裂韧性会随着温度的升高而降低。金属材料本身具有一个温度适应变化的范围,一旦外界的温度逾越了这个范围,就会对金属材料的断裂韧性产生一定的影响,由此我们可以推断出金属材料的断裂韧性和温度有着很大的关系。

由上图可以得知,金属材料的断裂韧性会随着温度的变化而变化,当金属的温度达到一定的温度以后,金属材料的断裂韧性对比系数会随着温度的继续升高而下降,且下降的幅度很明显。

2 影响金属材料断裂韧性的内部因素

2.1 组织结构的影响

1)马氏体

金属材料内部的马氏体也是影响金属材料断裂韧性的一个重要的内部因素。金属材料的淬火马氏体在回火后获得回火马氏体,在马氏体不出现回火脆性的情况下,回火温度和强度的变化会对整个金属材料的产生很大的影响,随着回火温度的提高,强度逐渐下降,塑性和韧性逐渐升高。因此,通过这些实验我们可以得出通过淬火、回火获得回火马氏体后,金属材料的组织综合力学性能能达到一个最好的水平,同时这也使得即材料的屈服强度和断裂韧性值都得到较大的提高[4]。

2)贝氏体

金属材料内部的贝氏体一般有三种不同的类型,分别是无碳贝氏体(针状铁素体)、上贝氏体和下贝氏体。通常金属材料通过加热后,其内部的贝氏体会变成魏氏体,这使得金属材料的断裂韧性有了很大的降低[4]。

3)奥氏体

奥氏体本身的韧性比马氏体要高出很多,所以如果在金属材料的马氏体上残留一定的奥氏体时,也就相当于提高了金属材料的断裂韧性。

2.2 碳含量的影响

金属材料内部碳元素的含量(碳含量)也会对金属材料的断裂韧性产生一定的影响,一种比较常见的现象是在高强度钢材的生产过程中降低碳元素的含量,以提高金属材料的断裂韧性,以便达到强化的目的[4]。

2.3 合金元素的影响

板条马氏体的形成有利于断裂韧性的提高。在钢中,合金元素主要通过对钢组织结构的影响来影响断裂韧性,不同种类的合金元素含量的多少是可以直接影响金属材料的断裂韧性的。在相同的作用强度下,位错型马氏体的断裂韧性比孪晶型马氏体高得多,这样一来,含位错型马氏体较多的金属材料,其本身的断裂韧性就会越高。在金属材料中,不同的合金元素之间会产生很多的作用,这些影响到金属材料的复杂性。

2.4 晶粒尺寸的影响

金属材料中的晶粒尺寸的大小也会影响金属材料本身的断裂韧性,通过科学实验可以发现,晶粒越小,其晶粒总体所占的面积就会越大,这样一来,裂纹就有拥有更加复杂错综的结构,如果想要使这种复杂的晶界失去稳定性,就需要获使用更多的外界能量,因此,细化晶粒不但利于提高材料的强度,还能提高材料的断裂韧性。

3 结论

本文对影响金属材料的断裂韧性进行了综合的分析,分别对影响金属材料断裂韧性的内外部因素进行了综合的分析,得出了一定的结论,以期对日后的研究提供一些理论依据。

参考文献

[1]李鹤林,冯耀荣.石油钻柱失效分析及预防措施.石油机械,1990,18(8):38-44.

[2]练章华,骆发前,龚建文,钟水清.塔里木油田钻杆刺漏原因分析[J].钻采工艺,2003,26(6):62-64.

第6篇:金属材料论文范文

关键词:电厂金属材料学;教学研究;教学实践

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)36-0129-02

“电厂金属材料学”与火力发电厂生产实际紧密结合的专业课程,是热能与动力工程专业的一门必修专业基础课。通过本课程的学习,使学生掌握金属材料学的基础理论和锅炉、汽轮机以及相关辅机,比如泵、风机、加热器、除氧器、凝汽器等设备常用的金属材料及热处理方法等方面的知识;掌握解决工程实际问题的技能;为学生从事电力行业相关的设计、安装、检修工作奠定基础[1]。

根据我国“十五”规划教材对工程类应用型本科院校教材的要求,该课程针对热能与动力工程专业学生的教学课时已经缩短到32学时。鉴于本课程授课内容多、学时少、学生学习难度大、综合性强的特点,本文分析该课程的教学难点,希望对提高该课程的授课效果有所裨益。

一、教学体系构建与难点分析

首先精选教学内容,这就要求授课教师结合教学大纲要求,一方面照顾知识面的广度,另一方面要注重基本概念和基本原理的深度。该课程内容以大容量、高参数机组,主要以600MW及以上的火力发电厂主力机组主要设备的金属材料为主,兼顾300MW的火力发电厂主力机组主要设备的金属材料。授课时尽可能反映国内外电厂金属材料的先进的科学技术、新成果。

该课程涉及以前所学的各门专业课程较多,如“工程制图”、“机械设计基础”、“工程力学”、“工程热力学”、“金属工艺学”等。在讲授时帮助学生复习和回忆已学专业知识,比如“碳钢拉伸试验”这部分内容时,与“工程力学”课程内容基本相同,不必再次讲授,可以减少相关课时。在讲授“金属的晶体结构与结晶” 内容时,有的部分内容在高中曾经学习过,也不必再次讲授,可以减少相关课时。还比如教师在讲解“模具钢、切屑用钢”的教学内容时,由于热能动力专业的学生将来不可能从事金属切削加工、模具制造方面的工作,教师可以酌情相应缩减教学时间。

二、知识点的联系与巩固

对于热能动力专业学生学习“金属材料学”来讲,既不是材料专业学生学习“金属材料学”,也不是机械专业学生学习“金属材料学”,那么,摸索出一套培养适合热能动力专业学生学习“金属材料学”的方法,那就更为重要的。对于热能动力专业学生学习“金属材料学”来讲,不能过于专业学习金属材料理论,热能动力专业学生更多关注热力系统的热力计算,对于热力系统管道的金属材料的选定不熟悉。针对这种情况,在学习“金属材料学”时,哪些内容,热能动力专业学生可以作为一般了解,哪些内容,热能动力专业学生作为重点掌握,必须给学生明确交代。

“电厂金属材料”课程并不难学,没有多少计算题,计算题也没有积分和求导。“电厂金属材料”课程只有一个定律,即杠杆定律。但是“电厂金属材料”课程理论性强,规定条文多,需要记忆的概念多,有时一个概念套着另一个概念。相当于英语语法中的一个从句套着另一个从句。比如奥氏体的定义:碳原子溶入γ-Fe中形成的间隙固溶体,称为奥氏体。什么是固溶体,什么是间隙固溶体,什么是γ-Fe,在多少度形成γ-Fe,各个知识点串联起来,从而达到融会贯通,使学生加深理解和记忆。

教师在讲授“电厂金属材料学”开始时,为了提高学生的学习兴趣和爱好,搜集一些古代铸造金属的精美照片,比如司母戊鼎、四羊方尊、马踏飞燕、长信宫灯等部级青铜器出土文物,从一方面反映,我国的冶炼技术历史久远,冶炼技术水平精湛,从另一个方面反映我国悠久历史和灿烂的文化。

为了提高学生的学习兴趣和爱好,教师可以提出与金属相关的中国成语,学生加以补充。比如:金戈铁马、枕戈待旦、刀枪入库,马放南山、趁热打铁、点石成金、打铁还需自身硬、百炼成钢、铁打的营盘流水的兵,浪子回头金不换等成语。

为了提高学生的学习兴趣和爱好,教师可以向学生提出一些问题,比如:我们在日常生活和学习中,哪些用到铸铁材料、哪些材料是碳钢制造的。

“电厂金属材料学”课程有头重脚轻的感觉。比如“铁碳合金相图”内容非常重要,是金属材料学的重要基础理论,由于理论理解难度大,学生学习感觉有些吃力,教师需要增加课时。本课程围绕“铁碳合金相图”进行,所以要求学生必须掌握铁碳合金相图,必须徒手绘画,掌握各点、线和相区的物理意义。

教师讲解“电厂金属材料学”课程时,为了达到学生容易理解的目的,多媒体要配以火电厂锅炉本体及辅机、汽轮机本体及辅机、泵与风机等图片,便于学生理解和掌握[2]。如图1华能上海石洞口第二电厂的超临界压力600MW汽轮机组图片,图2超临界压力600MW汽轮机叶轮图片,图3超临界压力600MW锅炉屏式过热器图片。学生在学习过程中为“锅炉原理”、“汽轮机原理”奠定基础。

教师在讲授“铸铁”内容时,介绍制作阀门的材料不仅有钢制阀件、还有灰口铸铁阀件、可锻铸铁阀件、球墨铸铁阀件、铜合金等阀件。“铸铁锅炉”,额定出口热水温度低于120℃,且额定出水压力不超过0.7MPa,锅炉可以用不低于HT150灰口铸铁制造。“铸铁式省煤器”用于非沸腾式锅炉,适合中小型锅炉。

还可以介绍“城镇供热管网设计规范”CJJ34的相关内容。比如“室外采暖计算温度低于-10℃地区露天敷设的热水管道设备附件均不得采用灰铸铁制品;室外采暖计算温度低于-30℃地区露天敷设的热水管道,应采用钢制阀门及附件,蒸汽管道在任何条件下均应采用钢制阀门及附件。”

在讲授“不锈钢”的章节内容时,介绍高纯气体管道选材的有关规定,比如:“气体纯度大于或等于99.999%,露点低于-70℃,应采用内壁电抛光低碳不锈钢管EP。阀门应选用同等级的隔膜阀或波纹管阀。”“气体纯度大于99.99%、小于99.999%,露点低于-60℃,应采用BA管或EP管。阀门宜采用波纹管阀。”还可以介绍医用气体管道选材的有关规定,“医用气体的管材均应采用无缝铜管或无缝不锈钢管。其中无缝不锈钢管的材质性能不应低于0Cr18Ni9奥氏体。”“医用气体阀门应使用铜或不锈钢材质的等径阀门。”“无缝不锈钢管、管材和医用气体低压软管洁净度应达到内表面碳的残留量不超过20mg/m2。”

“金属材料学”与“金属工艺学”密不可分。一般地,热能动力工程专业没有设置“金属工艺学”课程,那么需要补充一些“金属工艺学”课程相关的知识,比如什么叫拉制管和挤制管,管材、线材、棒料等金属形式等。还比如:纯铜及黄铜管材按照制造方法分拉制管、挤制管,纯铜管常用材料:T2、T3、T4、TUP,黄铜管常用材料:H62、H68、HPbs9-1。比如:无缝钢管、电焊钢管,常用的直缝电焊钢管:一般用Q215、Q235、Q255普通碳素钢和08、10、15、20优质碳素钢制造,通常用于工作压力不超过1.6 MPa,介质最高温度不超过200℃凝结水管道中。

在讲授“轴承合金”内容时,联系相关汽轮机运行常见故障,比如:若汽轮机转子轴向推力过大或供油中断,有可能造成推力轴承巴氏和金熔化,使转子产生较大轴向位移,造成汽轮机的严重事故。比如,讲到“锡基轴承合金”时,锡基轴承合金含锡量为83%,锡材料比较软,适合于做轴承合金的材料,同时介绍云南个旧是中国最大锡矿产地等。

在讲授“汽轮机用钢”内容时,提高汽轮机单机最大功率的措施之一是采用高强度、低密度的材料,比如,钛基合金的密度只有不锈钢的57%,超硬铅合金材料LC4,其密度仅为一般不锈钢材料的35%,而其屈服强度σ0.2=550MPa,使用这些材料均可使汽轮机末级叶片高度增加,从而增大极限功率。

在讲授“有色金属及其合金”内容时,铜合金可以作为阀门使用,但是输送氢气的管道选用不带铜和铜合金阀门,防止碱对管道的腐蚀。由于电阻率低的特点,铜及铜合金作为导体使用。管壁导热率λ[w/m℃],钢管λ=45-50 w/m℃,黄铜管λ=81-116w/m℃,铝λ=236 w/m℃,纯铜λ=349-465w/m℃。一般采用铜管作为导热管,采用铝材作为翅片。

在讲解电厂金属材料后,教师有时间情况下,可以介绍电厂非金属材料,比如,避免金属管道的腐蚀和磨损,可以采用陶瓷材料。扩大热能动力学生知识面,以适应将来工作需要。

三、授课的几点体会

根据培养方案的要求,“电厂金属材料学”教学课时已经缩短到32学时,在这么短的时间内,学生不可能成为金属材料学方面专家,也不可能办到。那么,学习这门课程的最终目的就是,要求热能动力的学生达到自己学会“查工程师手册”,教会学生使用选择需要的金属材料的牌号的方法。受人之鱼不如受之以渔,适应将来的工作需要。

选用金属材料总原则,在满足工程实际使用要求的前提下,尽可能选择价格低的金属材料,尽可能选择常用的金属材料,性价比高的金属材料,哪些材料是常用的金属材料,便于采购的金属材料。比如火力发电厂冷却水水质是选择表面式双流程凝汽器管材的主要依据,可以供选用的管材主要有:普通黄铜管、锡黄铜管、白铜管、钛管、不锈钢管等。钛管虽然对氯化物、硫化物和氨具有较好的耐腐蚀性,抗冲击腐蚀的性能也较强,可以在受污染的海水中使用,但价格较贵。不锈钢管耐腐蚀性,抗冲击腐蚀的性能优于黄铜管,但价格较高,随着需求和产量的提高,价格可以降下来。由于表面式双流程凝汽器用量非常大,数量达到Ф18内径4500根,考虑满足使用要求的前提下,尽量选用价格较低,使用较广的金属材料,表面式双流程凝汽器选择4500根黄铜管。授课过程中,如何选用金属材料的牌号总原则这条主线,理论和实际相结合,理论应用到实践中去,贯穿课程的始终。

按照金属材料的使用范围和用途,确定钢件的类型和牌号,与选取传感器型号类似[3]。要求学会金属材料应用就可以,金属材料牌号多。根据工程上的需要选择金属材料和金属材料热处理方法。

近年来,我国新建、改建、扩建机组向大机组、大容量方向发展,这些机组均是超临界、超超临界的高参数。大量新技术、新材料、新工艺被广泛应用,由于我国的冶炼技术和工艺制造技术还比较落后,需要引进大量国外材料和工艺技术。教师在讲授“合金钢的分类”内容时,讲解我国合金钢的分类方法以外,还介绍国外的合金钢的牌号,比如美国、日本、德国、俄罗斯、法国常用的合金钢的牌号,与我国合金钢相应钢号对比。

随着全球科技的迅猛的发展,授课的内容也要与时俱进,如果还沿袭教材的内容按部就班的授课,那就落后与时代的发展了。在各个章节中尽量多地介绍前沿性研究方向,开阔学生眼界、拓展思路。比如向学生们介绍“金属学报”、“新金属材料”等杂志,国内外的前沿技术,新技术、新工艺等。

四、结语

在“电厂金属材料学”课程的教学环节中,特别是在教学方法上研究从单纯传授知识型转向以培养学生的能力为重点的方法,教学效果明显改善,达到全面提高教学质量的目的。

参考文献:

[1]宋琳生.电厂金属材料[M].北京:中国电力出版社,2006.

第7篇:金属材料论文范文

“电厂金属材料学”与火力发电厂生产实际紧密结合的专业课程,是热能与动力工程专业的一门必修专业基础课。通过本课程的学习,使学生掌握金属材料学的基础理论和锅炉、汽轮机以及相关辅机,比如泵、风机、加热器、除氧器、凝汽器等设备常用的金属材料及热处理方法等方面的知识;掌握解决工程实际问题的技能;为学生从事电力行业相关的设计、安装、检修工作奠定基础[1]。

根据我国“十五”规划教材对工程类应用型本科院校教材的要求,该课程针对热能与动力工程专业学生的教学课时已经缩短到32学时。鉴于本课程授课内容多、学时少、学生学习难度大、综合性强的特点,本文分析该课程的教学难点,希望对提高该课程的授课效果有所裨益。

一、教学体系构建与难点分析

首先精选教学内容,这就要求授课教师结合教学大纲要求,一方面照顾知识面的广度,另一方面要注重基本概念和基本原理的深度。该课程内容以大容量、高参数机组,主要以600MW及以上的火力发电厂主力机组主要设备的金属材料为主,兼顾300MW的火力发电厂主力机组主要设备的金属材料。授课时尽可能反映国内外电厂金属材料的先进的科学技术、新成果。

该课程涉及以前所学的各门专业课程较多,如“工程制图”、“机械设计基础”、“工程力学”、“工程热力学”、“金属工艺学”等。在讲授时帮助学生复习和回忆已学专业知识,比如“碳钢拉伸试验”这部分内容时,与“工程力学”课程内容基本相同,不必再次讲授,可以减少相关课时。在讲授“金属的晶体结构与结晶” 内容时,有的部分内容在高中曾经学习过,也不必再次讲授,可以减少相关课时。还比如教师在讲解“模具钢、切屑用钢”的教学内容时,由于热能动力专业的学生将来不可能从事金属切削加工、模具制造方面的工作,教师可以酌情相应缩减教学时间。

二、知识点的联系与巩固

对于热能动力专业学生学习“金属材料学”来讲,既不是材料专业学生学习“金属材料学”,也不是机械专业学生学习“金属材料学”,那么,摸索出一套培养适合热能动力专业学生学习“金属材料学”的方法,那就更为重要的。对于热能动力专业学生学习“金属材料学”来讲,不能过于专业学习金属材料理论,热能动力专业学生更多关注热力系统的热力计算,对于热力系统管道的金属材料的选定不熟悉。针对这种情况,在学习“金属材料学”时,哪些内容,热能动力专业学生可以作为一般了解,哪些内容,热能动力专业学生作为重点掌握,必须给学生明确交代。

“电厂金属材料”课程并不难学,没有多少计算题,计算题也没有积分和求导。“电厂金属材料”课程只有一个定律,即杠杆定律。但是“电厂金属材料”课程理论性强,规定条文多,需要记忆的概念多,有时一个概念套着另一个概念。相当于英语语法中的一个从句套着另一个从句。比如奥氏体的定义:碳原子溶入γ-Fe中形成的间隙固溶体,称为奥氏体。什么是固溶体,什么是间隙固溶体,什么是γ-Fe,在多少度形成γ-Fe,各个知识点串联起来,从而达到融会贯通,使学生加深理解和记忆。

教师在讲授“电厂金属材料学”开始时,为了提高学生的学习兴趣和爱好,搜集一些古代铸造金属的精美照片,比如司母戊鼎、四羊方尊、马踏飞燕、长信宫灯等部级青铜器出土文物,从一方面反映,我国的冶炼技术历史久远,冶炼技术水平精湛,从另一个方面反映我国悠久历史和灿烂的文化。

为了提高学生的学习兴趣和爱好,教师可以提出与金属相关的中国成语,学生加以补充。比如:金戈铁马、枕戈待旦、刀枪入库,马放南山、趁热打铁、点石成金、打铁还需自身硬、百炼成钢、铁打的营盘流水的兵,浪子回头金不换等成语。

为了提高学生的学习兴趣和爱好,教师可以向学生提出一些问题,比如:我们在日常生活和学习中,哪些用到铸铁材料、哪些材料是碳钢制造的。

“电厂金属材料学”课程有头重脚轻的感觉。比如“铁碳合金相图”内容非常重要,是金属材料学的重要基础理论,由于理论理解难度大,学生学习感觉有些吃力,教师需要增加课时。本课程围绕“铁碳合金相图”进行,所以要求学生必须掌握铁碳合金相图,必须徒手绘画,掌握各点、线和相区的物理意义。

教师讲解“电厂金属材料学”课程时,为了达到学生容易理解的目的,多媒体要配以火电厂锅炉本体及辅机、汽轮机本体及辅机、泵与风机等图片,便于学生理解和掌握[2]。如图1华能上海石洞口第二电厂的超临界压力600MW汽轮机组图片,图2超临界压力600MW汽轮机叶轮图片,图3超临界压力600MW锅炉屏式过热器图片。学生在学习过程中为“锅炉原理”、“汽轮机原理”奠定基础。

教师在讲授“铸铁”内容时,介绍制作阀门的材料不仅有钢制阀件、还有灰口铸铁阀件、可锻铸铁阀件、球墨铸铁阀件、铜合金等阀件。“铸铁锅炉”,额定出口热水温度低于120℃,且额定出水压力不超过0.7MPa,锅炉可以用不低于HT150灰口铸铁制造。“铸铁式省煤器”用于非沸腾式锅炉,适合中小型锅炉。

还可以介绍“城镇供热管网设计规范”CJJ34的相关内容。比如“室外采暖计算温度低于-10℃地区露天敷设的热水管道设备附件均不得采用灰铸铁制品;室外采暖计算温度低于-30℃地区露天敷设的热水管道,应采用钢制阀门及附件,蒸汽管道在任何条件下均应采用钢制阀门及附件。”

在讲授“不锈钢”的章节内容时,介绍高纯气体管道选材的有关规定,比如:“气体纯度大于或等于99.999%,露点低于-70℃,应采用内壁电抛光低碳不锈钢管EP。阀门应选用同等级的隔膜阀或波纹管阀。”“气体纯度大于99.99%、小于99.999%,露点低于-60℃,应采用BA管或EP管。阀门宜采用波纹管阀。”还可以介绍医用气体管道选材的有关规定,“医用气体的管材均应采用无缝铜管或无缝不锈钢管。其中无缝不锈钢管的材质性能不应低于0Cr18Ni9奥氏体。”“医用气体阀门应使用铜或不锈钢材质的等径阀门。”“无缝不锈钢管、管材和医用气体低压软管洁净度应达到内表面碳的残留量不超过20mg/m2。”

“金属材料学”与“金属工艺学”密不可分。一般地,热能动力工程专业没有设置“金属工艺学”课程,那么需要补充一些“金属工艺学”课程相关的知识,比如什么叫拉制管和挤制管,管材、线材、棒料等金属形式等。还比如:纯铜及黄铜管材按照制造方法分拉制管、挤制管,纯铜管常用材料:T2、T3、T4、TUP,黄铜管常用材料:H62、H68、HPbs9-1。比如:无缝钢管、电焊钢管,常用的直缝电焊钢管:一般用Q215、Q235、Q255普通碳素钢和08、10、15、20优质碳素钢制造,通常用于工作压力不超过1.6 MPa,介质最高温度不超过200℃凝结水管道中。

在讲授“轴承合金”内容时,联系相关汽轮机运行常见故障,比如:若汽轮机转子轴向推力过大或供油中断,有可能造成推力轴承巴氏和金熔化,使转子产生较大轴向位移,造成汽轮机的严重事故。比如,讲到“锡基轴承合金”时,锡基轴承合金含锡量为83%,锡材料比较软,适合于做轴承合金的材料,同时介绍云南个旧是中国最大锡矿产地等。

在讲授“汽轮机用钢”内容时,提高汽轮机单机最大功率的措施之一是采用高强度、低密度的材料,比如,钛基合金的密度只有不锈钢的57%,超硬铅合金材料LC4,其密度仅为一般不锈钢材料的35%,而其屈服强度σ0.2=550MPa,使用这些材料均可使汽轮机末级叶片高度增加,从而增大极限功率。

在讲授“有色金属及其合金”内容时,铜合金可以作为阀门使用,但是输送氢气的管道选用不带铜和铜合金阀门,防止碱对管道的腐蚀。由于电阻率低的特点,铜及铜合金作为导体使用。管壁导热率λ[w/m℃],钢管λ=45-50 w/m℃,黄铜管λ=81-116w/m℃,铝λ=236 w/m℃,纯铜λ=349-465w/m℃。一般采用铜管作为导热管,采用铝材作为翅片。

在讲解电厂金属材料后,教师有时间情况下,可以介绍电厂非金属材料,比如,避免金属管道的腐蚀和磨损,可以采用陶瓷材料。扩大热能动力学生知识面,以适应将来工作需要。

三、授课的几点体会

根据培养方案的要求,“电厂金属材料学”教学课时已经缩短到32学时,在这么短的时间内,学生不可能成为金属材料学方面专家,也不可能办到。那么,学习这门课程的最终目的就是,要求热能动力的学生达到自己学会“查工程师手册”,教会学生使用选择需要的金属材料的牌号的方法。受人之鱼不如受之以渔,适应将来的工作需要。

选用金属材料总原则,在满足工程实际使用要求的前提下,尽可能选择价格低的金属材料,尽可能选择常用的金属材料,性价比高的金属材料,哪些材料是常用的金属材料,便于采购的金属材料。比如火力发电厂冷却水水质是选择表面式双流程凝汽器管材的主要依据,可以供选用的管材主要有:普通黄铜管、锡黄铜管、白铜管、钛管、不锈钢管等。钛管虽然对氯化物、硫化物和氨具有较好的耐腐蚀性,抗冲击腐蚀的性能也较强,可以在受污染的海水中使用,但价格较贵。不锈钢管耐腐蚀性,抗冲击腐蚀的性能优于黄铜管,但价格较高,随着需求和产量的提高,价格可以降下来。由于表面式双流程凝汽器用量非常大,数量达到Ф18内径4500根,考虑满足使用要求的前提下,尽量选用价格较低,使用较广的金属材料,表面式双流程凝汽器选择4500根黄铜管。授课过程中,如何选用金属材料的牌号总原则这条主线,理论和实际相结合,理论应用到实践中去,贯穿课程的始终。

按照金属材料的使用范围和用途,确定钢件的类型和牌号,与选取传感器型号类似[3]。要求学会金属材料应用就可以,金属材料牌号多。根据工程上的需要选择金属材料和金属材料热处理方法。

近年来,我国新建、改建、扩建机组向大机组、大容量方向发展,这些机组均是超临界、超超临界的高参数。大量新技术、新材料、新工艺被广泛应用,由于我国的冶炼技术和工艺制造技术还比较落后,需要引进大量国外材料和工艺技术。教师在讲授“合金钢的分类”内容时,讲解我国合金钢的分类方法以外,还介绍国外的合金钢的牌号,比如美国、日本、德国、俄罗斯、法国常用的合金钢的牌号,与我国合金钢相应钢号对比。

随着全球科技的迅猛的发展,授课的内容也要与时俱进,如果还沿袭教材的内容按部就班的授课,那就落后与时代的发展了。在各个章节中尽量多地介绍前沿性研究方向,开阔学生眼界、拓展思路。比如向学生们介绍“金属学报”、“新金属材料”等杂志,国内外的前沿技术,新技术、新工艺等。

第8篇:金属材料论文范文

本书包含了大量的论题,向我们展示了不同领域的先进复合材料的研究和发现,尤其是在航空航海领域甚至是在陆上的应用。

本书共分为5章:1.简介,后4章是主题论文合集:1.前言,简要介绍金属及材料学会年会及成书的原因;2.复合材料的加工和设计,论题包括(1)10%铝基飞灰复合材料的形变特性在空间航空中的应用;(2)B4C在铝基复合材料中对机械性能和耐腐蚀性上的影响;(3)细菌纤维素对β相聚偏二氟乙烯的相稳定增强研究;(4)合成复合TaCTaB2粉末;3.复合材料的微观结构和相图表征,论题包括(1)激光沉积原位TiC增强镍基复合材料:微观结构和摩擦学性能研究;(2)挤压浸透法生产微石英增强铝合金金属基复合材料;(3)混合金属功能梯度复合材料的挤压浸透法技术生产和表征;(4)磁性记忆合金NiCo40+xAl30-x\[X=0、3、6、10\]的微观结构和机械性能;(5)金属基复合材料的定向凝固;4.材料的机械性能的发展,论题包括(1)一种高机械性能的金属纳米复合材料:NbTi纳米线和NiTi基复合材料的反常热膨胀; (2)复合材料数据融合无损检测技术对累计损伤进行定量;(3)计算预测玻璃态聚合物和热固塑料的机械性能;(4)多尺度表征SiC/SiC复合材料;(5)用于航空的铝基金属复合材料在加工中的断裂韧性和损伤力学研究;5.复合材料的界面和粘结,论题包括(1)连续纤维增强陶瓷铝基复合材料的多尺度建模;(2)冲击检测在评价复合材料层合板弱键中的发展;(3)用等离子体处理高分子纤维来增强织物复合材料层合板的机械性能;(4)1758K下钛铝合金对TiCx的润湿性研究;(5)用于汽车工业的金属聚合物金属三明治结构的成形极限图。

本书适合材料化学、固体物理、建筑学专业的研究生阅读,同时对从事复合材料研究工作的工程师、科学家和技术人员能够开阔视野,同时储备一些如何根据不同应用领域来选择和使用先进复合材料的相关知识。

第9篇:金属材料论文范文

关键词:工程材料 新材料 材料史 表面工程

一.工程材料发展现状

随着现代工业的发展,人们对设备性能的要求不断提高,迫使材料性能不断提高,新材料不断出现和应用,因此教材也要不断更新,才能适应时代的发展,才能更好服务学生。

为了对工程材料课程的教学现状进行分析,2013年3月,笔者在本市的两所中等职业学校进行了问卷调查。问卷随机调查了61名学生,其中有53名学生认为理论部分理解难度很大,45名学生认为实用性不强,有23名学生认为该课程学习后,对专业帮助不大或不明显。

二.主要问题和解决方案探讨

1.教材的主体内容形式的改进。在内容的介绍上,以应用为基础,以介绍具体的材料或典型材料为主,注重其实用性,在此基础上介绍其性能等参数等。

目前所使用教材多数以理论为主,这种内容上的安排有他的优点,如条理性强等。但是,对于中职学生来说,理解难度较大,实用性不强等。如果将其形式做适当调整,应该更适合中职学生,使用性也更强。例如在介绍铁碳合金时,把常用的铁碳合金材料做较详细的介绍,如45钢、Q235、T8钢、W18Cr4V等,在学生认识一定量的材料之后,再涉及材料的微观理论知识。

2.在内容的安排顺序。目前多数教材通常把理论部分放在教材前面,以全国中等职业技术学校机械类通用教材的《金属材料与热处理》为例,其内容安排如下:

金属的结构与结晶,金属材料的性能,铁碳合金,钢的热处理,合金钢,铸铁,有色金属,非金属材料。

该教材把金属的结构、结晶等知识放在前面介绍。如果从学生的接受能力考虑,把内容的顺序安排做一定排列组合调整,可能会收到意想不到效果。如把晶体结构理论及热处理等,难度较大的内容,穿插在具体材料的介绍中,或者放到课本后部介绍。

关于材料的晶体结构理论部分,较难理解。如果在课程一开始先介绍,学生理解难度很大,即使大学本、专科学生,在学习时也容易产生困惑,一定程度上降低了学生的学习热情。笔者在学习期间,同学之中有不少类似的反映。对中职学生来说,文化基础较低,对分子理论方面知识的理解,难度自然会更大。

如果在课程开始和主要部分,介绍材料的应用、性能等内容,学生不仅易于理解,也会认可教材的实用性,从而提高学习的热情。在熟悉和掌握一定量的材料性能和应用的基础上,再辅以适当的理论知识,不仅学生易于理解,同时也会加深学生对已知材料的掌握程度。

3.新材料不断出现和应用,对教材内容应不断的更新应不断将最新的材料引进到教材中去。尤其是非金属材料,近年来发张迅速。

目前,制造业飞速发展,生产效率不断提高,要求设备的运转速度、运行频率相应大幅度提高。在这种情况下,新材料不断出现、更替,以前没有的或者不常用的材料,可能变成常用材料。有些过去的常用的材料,可能很快被淘汰。作为教材,应该不断更新涉及到的材料,力求把市场上应用最频繁的、最常见的、最新的材料整理出来,作为范例介绍给学生,而且每1―2年更新一次。同时,注意把日用品、家电设备等零件的材料作为介绍重点,增大学生对材料的接触面,这在一定程度上也能提高学生对知识的掌握。

4.适当增加表面处理部分的内容

在教材中介绍表面处理的相关知识。近年来表面处理技术的应用越来越多,应用面越来越广,学生进入企业后,多数会很快接触到这些方面的工作。目前多数零件在使用前都要经过表面处理。零件的主要原材料是铁合金类材料,通常要经过镀镍、镀锌、镀铬等处理,有的要进过发蓝、发黑以及磷化等等;铝合金要进行氧化处理等。在沿海工业城市,随着制造业的高速发展,设备对零部件的表面质量、防锈性能及美观性的要求越来越高,表面工程技术这个行业也日益兴盛。有一部分学生很可能以后从事表面工程这个行业的工作。因此,给学生适当增加这方面的知识是很必要的。

5.增加对国外材料相关内容的介绍,如材料的编号等。

近年来由于国内外技术交流不断加深等等原因,在现代企业中,使用国外材料材料越来越多,尤其是沿海企业。在企业里,某些情况下需要涉及到国外材料,如45号钢,各国对45号钢的牌号表示有的相近,有的差别比较大。在不了解的情况下,初次接触难免产生困惑。

中国 45 美国 1045/ 德国 C45(1.0503)/

国际 IC45e/ 英国 060A47/ 日本 S45C

可以在教材中安排小篇幅对这方面的内容作简要介绍,列举典型例子,将常用国内外钢材牌号对照表作为教材附录内容等。能够使学生尽早对相关知识有一个初步了解,为引导学生接触国外材料技术开启一个窗口。

6.增强课程的文化性、趣味性、启发性。

1954年,有一位法国工程师名叫马克・格雷瓜尔(Marc Gregoire),他的妻子柯莱特(Colette)突发奇想,将丈夫用来涂在钓鱼线上防止打结的不粘材料特氟龙(Teflon)用在煎锅上,结果出乎意料的好。这就是“不粘锅”的诞生。

在教材中增加一些经典材料的产生故事、发展历史等。比如橡胶的出现,让学生认识美国伟大的发明家----查尔斯・固特异和他的发明史,传承查尔斯.固特异在技术上的知识,更重要的是继承和发扬了查尔斯.固特异在逆境中不断探索的精神。又如高压锅内壁涂料的发明与应用史......

同时在教材中也可以介绍一些当代材料科学家和一些当今世界著名的材料生产企业,如美国的杜邦公司等。通过这些故事、简介等,可以增加学生的学习兴趣,活跃学生思维,起到启发学生智慧的效果。

三.目前教材现状、内容结构等

随着高科技的发展,材料发展目前主要表现在以下几个方面:复合材料是结构材料发展的重点,其中主要包括树脂基高强度、高模量纤维复合材料,金属基复合材料,陶瓷基复合材料及碳碳基复合材料等;功能材料与器件相结合,并趋于小型化与多功能化;开发低维材料;低维材料具有体材料不具备的性质;信息功能材料增加品种、提高性能。这里主要是指半导体、激光、红外、光电子、液晶、敏感及磁性材料等;高温超导材料将会继续得到重视及其产业化;生物材料将得到更多应用和发展;此外利用原子簇技术可能发展出更多的新材料等。像这些内容都可以适当增加在教材中的介绍,以前有过的也要不断更新。

四.结尾

教材的发展是一个不断更新的过程,尤其是技术类,它要随着科技和文化的发展不断改进、更新,才能适应社会的发展,满足社会的需求。它的提高需要行业、学生、编写人员及教师等多方的努力。反过来它又会使行业、学生、编写人员及教师从中受益。

附录1.关于金属材料/工程材料的问卷调查表(略)

参考文献

[1]金属材料与热处理(第五版)中国劳动社会保障出版社,2007年5月

[2]汽车材料与金属加工(第二版)中国劳动社会保障出版社,2007年7月

[3]工程材料及机械制造基础陕西科技大学出版社.马艳萍,2004年