公务员期刊网 精选范文 表面活性剂论文范文

表面活性剂论文精选(九篇)

表面活性剂论文

第1篇:表面活性剂论文范文

关键词 甲烷;Pd-Pt/ Al2O3;Ce

中图分类号O69 文献标识码A 文章编号 1674-6708(2013)99-0117-02

0 引言

低浓度甲烷广泛存在于各类工业有机废气中.和其他有机化合物相比,甲烷较难活化,理论计算表明,当甲烷浓度在3000ppm~5000ppm时,非催化直接燃烧的起燃温度在1300℃~1400℃左右.对于甲烷的催化燃烧,研究表明,Pd单贵金属催化剂具有较高的催化活性,但其活性组分在高温下容易发生迁移和表面团聚,活性下降较快.另经研究发现往Pd单贵金属催化剂中加入一定量Pt可在一定程度上提高催化剂的热稳定性.目前认为,以Pd、Pt为活性组分,Al2O3为载体的双贵金属催化剂是极具应用价值的甲烷燃烧催化剂体系.但该类催化剂的长期热稳定性是一个亟待解决的难题.

近年来有研究表明,在贵金属催化剂中加入适量稀土可产生热稳定效果.但目前相关研究主要集中于Pd单贵金属催化剂,而Pd-Pt双贵金属催化剂的研究相对较少。

1 材料与方法

1.1催化剂制备

本研究采用分步浸渍法制备所需催化剂,载体为40-60目的γ-Al2O3,焙烧气氛为空气.

1.2催化剂性能评价

1.3催化剂表征

2 结果与讨论

2.1催化剂的甲烷催化燃烧活性

2.2催化剂的甲烷催化燃烧稳定性

2.3催化剂的BET和CO化学吸附分析

2.4催化剂的XRD分析

3 结论

1) Ce的加入可显著提高Pd-Pt/Al2O3催化剂的甲烷燃烧活性及其热稳定性;

2)Ce的加入虽然降低了催化剂的总比表面积,但却促进了活性组分在载体表面富集,提高了催化剂的有效活性表面积;

3) Ce的加入使催化剂中PdO晶粒减小,分散度提高,同时有效抑制反应过程中PdO晶粒的烧结和由此导致的粒径长大。

参考文献

[1]王胜,等.贵金属甲烷燃烧催化剂[J].化学进展.

第2篇:表面活性剂论文范文

论文摘要:系统介绍了复合柴油的作用机理、研究配制及应用发展。

1

概述

复合柴油是将水和柴油通过复合剂和复合设备复合形成的油包水(w/o)型乳液。早在100多年前,就已有人掺水使用柴油,但是因为那时的柴油掺水技术水平较低,收益不够明显以及石油危机尚未突出等原因,而使柴油掺水技术处于缓慢发展的状态。50年代末,由于环境保护需要以及石油危机等原因,柴油掺水应用技术才获得重视。到了70年代,柴油掺水技术进入到实用性的发展阶段。美国、前苏联、日本等工业发达国家竞相把柴油掺水技术列为国家重点开发研究项目,对掺水复合柴油的复合手段、复合工艺、复合装置、表面活性剂、复合机理及其燃烧动力学和对内燃机的磨损腐蚀以及规格化、商品化等多方面都进行了大量的实验和深入研究。大量的研究表明:油水混合燃料能极大地改善排放污染,节省燃油。同时,柴油掺水复合燃料对内燃机不但没有腐蚀和增加磨损的问题,反而能起到清洗剂的作用,可以降低内燃机维修费用。目前,世界各国研究燃油掺水技术的专业机构空前增加,专利文献和学术论文如雨后春笋般地涌现。在日本、美国、德国等,柴油复合剂早已作为商品销售,现已开发出第三代或第四代产品。日本专营复合油的萨米特公司推出的h一106 , h一107复合剂产品,销往东南亚各国。纵观柴油掺水技术的过去和现在,它已显示出了强大的生命力。

2复合柴油的节能、降污原理及复合机理

2.1复合柴油节能、降污原理

2.1.1“微爆”效应(二次雾化)

目前,国内外大多数专家认为复合柴油的节能是由于乳液内部的微小水珠的“微爆”效应引起的或称二次雾化。微爆是在高温环境下,由两种或多种有不同挥发性的液体的汽化引起的。由于液体的扩散速度是有限的,稳定性差的液体就会覆盖在表面,从而导致液滴迅速升温。一旦温度达到某个组分的过热极限,微爆就会伴随连续产生并变大的泡核而发生。微爆的作用是提高油滴的表面活化能。复合柴油为油包水(w/0 )型乳液,外相为柴油,内相为水。由于油的沸点比水高,所以受热时水总是先达到沸点而沸腾或蒸发。当油滴内部的压力超过油的表面张力和环境压力之和时,水汽将冲破油膜的阻力而使油滴爆炸,形成更细小的油滴。爆炸后的油滴更细小,因此燃烧更完全,从而达到节能效果。

2.1.2化学效应

有文献对复合油的燃烧化学进行了研究,提出了水煤气反应的重要性,燃料中由于高温裂解产生的碳粒子,能与水蒸气反应生成co和h2,使碳粒子能充分燃烧,提高了燃烧效率,降低了排烟中的烟尘含量。复合柴油在柴油机燃烧室高温高压条件下发生化学反应,由于复合油中水的存在,促使产生了许多oh"基团,使得消除积炭的反应()速度加快,从而达到降污的目的。有文献提出了其他一些用于解释复合油节能降污的观点,例如掺混效应、汽提效应、改善燃料与空气的混合比例减少过剩空气系数以大幅度降低氮氧化物()的产生等。

2.2柴油复合机理

复合柴油是由普通柴油、水、表面活性剂、助表面活性剂组成。柴油和水是两相互不相溶的体系,作为油包水的乳液,水是分散相,为使水的微小液滴在两相交流中足够稳定,须使用表面活性剂。柴油复合剂能使乳液稳定的因素有二:其一,降低了油一水界面张力,即降低了吉布斯函数,有利于乳液的稳定存在;其二,柴油复合剂的分子在界面处作定向吸附,生成具有一定机械强度的薄膜,阻止分散相液滴的合并聚集。由于乳液中液滴分子作不停顿的布朗运动,频繁地相互碰撞,如果界面膜的强度较小,在碰撞中界面膜容易破裂成液滴合并。因此,柴油复合剂需要二种或二种以上的表面活性剂复配而成,这种复配的柴油复合剂所形成的界面膜有较高的膜弹性,所形成的乳液也比较稳定。目前柴油复合剂的配方根据其结构大致分为五种类型:①阴离子型有烷基磺酸盐类、烷基苯磺酸盐类、烷基蔡磺酸盐类、脂肪酸皂类、烷基醋墟泊酸磺酸盐类等;②阳离子型有简单胺盐类、季胺盐类等;③非离子型有脂类,如脂肪酸聚氧乙烯醋、脂肪酸山梨醇醋;醚类,如脂肪醇聚氧乙烯醚,烷基苯酚聚氧乙烯醚,脂肪醇山梨醇脂聚氧乙烯醚;酞胺类,如烷基醇酞胺等;$两型离子型有梭酸类、硫酸类、磺酸类等;④高分子型有天然水溶性胶类、淀粉衍生物类、纤维素类、合成水溶性高分子类等。

3复合柴油的配制及性能

3.1复合剂配方成分的筛选依据

(1)亲油基团与油相具有相似结构的复合剂复合效果好。根据相似相溶原理,要求复合剂的憎水基团的结构和油的结构越相似越好。结构与柴油越相似,界面上的吸附作用也就越强,这样就能既可使油水界面张力降低得多,又能使界面膜的强度大,因而稳定性就好。根据多种活性剂的性能试验筛选最终选择了与柴油的主要成分有相似分子结构的有机酸和复合剂且。

(2)混合复合剂的效果往往比单一复合剂效果好。为了形成稳定的复合液,要求复合剂不仅能大量降低水的表面张力,而且能在油水界面形成坚固的保护膜。有些物质的表面活性大,能大量降低水的表面张力;有些物质表面活性虽然较差,但能在水微粒周围形成坚固的保护膜。选择具有相似分子结构的这两类表面活性剂,把它们组合起来,就可以取长补短,达到更好的复合效果。因此,使用一种以上的表面活性剂加助剂制备的微乳液,比用单一表面活性剂加助剂制备的微乳液更稳定。因此采用了使用混合表面活性剂加助剂进行复合配方设计。

(3)辅助表面活性剂是微乳液形成的一个不可缺少的组分。一般乳状液的形成主要是由于复合剂在油/水界面的吸附,形成坚韧的保护膜,同时降低界面张力,使油(或水)较易分散。但无论如何仍有界面,从而有界面张力的存在,故此种体系是不稳定的。若再加人一定量的极性有机物,可将界面张力降至不可测量的程度;此后即形成稳定的微乳液。辅助表面活性剂是微乳液形成一个不可缺少的组分,它除了能降低界面张力外,还能增强界面膜的流动性,使界面膜的弯曲更加容易,有利于微乳液的形成。

3.2复合剂配方的筛选

虽然有以上这些理论依据,但关于复合剂中各种组分的具体确定,目前还没有成熟完整的理论模式来测算指导,必须靠经验积累和试验实践来确定每种组分的实际复合效果。因此,进行深人细致的实验选择尤为必要。

3.2.1实验试剂

①主复合剂工:由有机酸(酸值为123.3kohmg/g)和碱溶液反应制成。

②复合剂n:非离子表面活性剂,上海大众药业有限公司,粘度:1 000一1 400mm2/s;

③助表面活性剂:醇类,济南化工二厂,纯度98 %。

3.2.2实验步骤

通过大量的配制试验,考察了各种组分的复合效果,从而最终找到了合适的复合剂配方。所找到的复合剂配方中阴离子型表面活性剂的比例占绝大多数,而非离子型表面活性剂仅占8%左右,这就使所配制的复合柴油成本大大降低。

①配制复合剂的小样。向锥形瓶中加人5lg有机酸,再加人8.5g碱溶液,振荡15 min,待反应完毕后,加人6g复合剂ii ,3g助剂,盖上塞子,然后采用手摇振荡的方法使锥形瓶内各种物质完全混合均匀。在室温下静置,待泡沫消失,即得到复合剂。

②配制该复合剂的扩大样。向锥形瓶中依次加人510g有机酸,85g碱溶液及60g复合剂ii , 30g助剂,然后按上述方法配制,得到复合剂的扩大样。将锥形瓶内的复合剂静置一段时间,待液面上的泡沫完全消失后,且再用手振荡锥形瓶也无泡沫产生为止飞这大概需要3h左右。此时用手触摸锥形瓶壁已冷却至室温,待用。

3.2.3实验现象

①在加人碱溶液的过程中,发现溶液液面上会产生泡沫。

②在振荡锥形瓶的过程中,感觉到瓶壁是热的。

③在振荡过程中,液面上有白色泡沫产生,并随复合剂量增加,泡沫层变厚。

3.2.4实验结果

由上述实验步骤得到含有机酸74 %(质量分数),含碱溶液12%(质量分数),含复合剂11为9%(质量分数),含助剂5%(质量分数)的复合剂。该剂为完全透明的棕色油状液体,无特殊不良气味,稳定性好,自配制起至今(半年多)无任何变化。

3.3复合柴油的配制

本此使用上面的复合剂配方来配制微复合柴油,在相同的实验室条件下,分别进行了复合柴油配制的小样试验和扩大试验。

3.3.1试验

配制方式用天平分别称取一定量的水、剂、油(0#柴油)按一定顺序加人到烧杯中,搅拌一段时间后,静置,观察到体系为透明的均相液体后,继续加人一滴剂,重复上述操作,直至体系出现浑浊为止。然后取体系出现浑浊的前一滴加剂量作为该微乳油的最终加剂量,重新按上述步骤配制乳油。从刚刚配制的乳油样中取出一部分,倒人250m1带磨口塞的锥形瓶中,保存起来,观察其稳定性如何。

2配制结果

3结果分析

①从表2可以看出:在水占6%一20 %、复合剂占10%一21%时,均可形成乳油。特别是其中的油样1、油样2、油样3及油样4和油样6不但形成乳油的速度快,而且形成的乳油透明度高、稳定性好。

②试验证明:在小样试验中所配制的复合剂,进行扩大试验后,仍能实现对柴油的复合,这表明该剂的复合能力没有改变。而且在小样试验中可以配成复合柴油的水、油、剂之配比,在扩大试验中同样可以配成乳油。

3.3.4复合哭油指标(以4号样为例)

4我国复合柴油的发展现状及研究方向

我国柴油复合技术研究起步较晚,最近几年发展迅速,已开发出许多较好的复合剂配方并研究了复合复合剂的亲水一亲油值(h lb值)等性质,和国外技术相比,没有合成反应,均采用多种表面活性剂复配而成,只是在复合剂的配方组成上略有差别。这些柴油复合剂配方组成的共同特点是:

1)以非离子表面活性剂为主体的高效复合剂达80%左右。此非离子表面活性剂的亲水基团为聚氧乙烯()。即一般所说的eo链。其醚氧可与金属催化剂络合,提高催化剂活性。

2)低沸点易燃有机物,如丙酮、甲苯、硝酸乙酷、正己烷等。其目的在于降低点火温度,便于内燃机起动。

第3篇:表面活性剂论文范文

关键词:表面活性剂浓度;泡沫稳定性;液膜;胶团

中图分类号:TQ423文献标识码:A文章编号:1671-0460(2017)07-1337-03

近年來,随着国内主力油田都进入高含水阶段,二次采油所能达到的效果已经不理想了,聚合物驱和二元复合驱虽然可以提高采收率,但在某些条件比如低渗透油藏条件下,起不到预想的作用,泡沫驱由于其良好的封堵效能和调整油层间非均质性的能力,逐步得到重视。向纯水中加入气体这种方式并不能得到达标的驱油标准的泡沫。工业上,通常是将具有良好起泡性能的表活剂(起泡剂)溶液与气体按一定比例混合,用以产生大量驱油泡沫。泡沫驱能否成功的关键在于泡沫能否在地层条件下稳定大量存在。从目前的研究来看,影响泡沫稳定性的因素有很多,表活剂也是其中一种影响因素,本文主要从泡沫稳泡机理上来探讨不同表活剂浓度情况下的稳泡机理。

1泡沫气泡的聚并过程

泡沫的稳定性主要取决于分散气泡聚并的相对程度以及液膜的排液程度。分散气泡液膜的薄化以及破裂都影响着泡沫的聚并过程。实验观察得到结果是泡沫的寿命主要取决于薄化时间而不是破裂时间。相近的气泡若大小相同,聚并过程可以分成三个阶段:(1)两个气泡形成厚夹层;(2)夹层变薄成液膜;(3)膜表面波纹不断扩张,最终气泡破灭[1]。

图1所示,描述了两个大小相似的气泡间形成薄液膜以及液膜进一步的变化流程

a.两个相近的气泡接近时,水合作用形成一个厚层;b.泡沫表面变形产生了“凹陷”的钟型构造;c.“凹陷”逐渐消失,形成了一个半径为R的平行平面,在Plateau区吸引力和分离压力的综合作用下,液膜排液;d.低表活剂浓度时(低于CMC),膜表面形成波纹,膜的破裂或者膜厚度的变化,都会形成稳定或亚稳定结构。这种向稳定或亚稳定态转变的过程称为“形成黑斑”,因为在此厚度下液膜会变灰或黑;e.黑斑逐渐变大并覆盖整个薄膜;f.这种平衡液膜的寿命本质上取决于毛管压力的量级,不受其他因素限制;g.高表活剂浓度时(高于CMC)由于液膜内部胶团的内部分层会形成大范围的的胶质晶状结构;h.薄膜显示出一定程度的亚稳态,而且其厚度呈阶梯式的变化;i.液膜达到了一个平衡态,没有进一步的变化,最终膜会变厚而且很稳定,膜内含有部分胶团[2]。

气泡变薄原因是因为其液膜排液,图2所示,即为液膜薄化阶段的过程图。

2低表活剂浓度时的泡沫稳定机理

表活剂浓度低于或接近于CMC时,液膜表面流变学特性是影响泡沫稳定性的主要因素。对活性分子的吸附以及吸附层的性质,决定着泡沫的排液性以及稳定性。

2.1马拉格尼效应

在这里首先提到马拉格尼效应,两个气泡在界面上由于毛管压力的作用,会相互靠近,从而导致薄液膜中的液体被挤出到临近的Plateau区。这种液体流动从而导致了表层表活剂发生对流传导。因此,界面上液流方向的表活剂浓度增加,从而降低了界面张力。这种沿着界面变化的表面张力梯度递变产生了液流阻力[3]。这个现象就是我们熟知的马拉格尼效应。图3为马氏效应图。

马拉格尼效应就是表面张力的修复作用,可以恢复液膜强度,使得泡沫具有良好的稳定性,不易被破坏。表面张力的修复作用源于两种过程:

(1)活性剂分子自液膜的低表面张力区域迁移至高表面张力区域.

(2)活性劑分子自溶液中吸附至表面上。

以第二种方式为主进行修复的液膜,只是从溶液中吸取活性剂分子,只是复原了密度,没有复原厚度,因此强度不高。若要使马氏效应显著,加入的起泡剂应能够引起表面张力显著降低,因此,此效应的最大值应出现在浓度较低,而又接近CMC处。(只是针对单一活性剂溶液)。

2.2粘弹性

液膜排液期间,表活剂单分子层会经历膨胀变形和剪切变形,变形会产生界面梯度张力。表活剂粘度的增长也会引起表面流度的降低从而延长排液时间。然而,如果界面张力梯度很高,即使在低界面粘度下,液膜排液速度依然很慢,这说明在低表活剂浓度时,粘度不是影响泡沫稳定性的主要因素,由于变形导致的界面梯度张力才是主要影响因素。界面张力梯度可以提高泡沫粘性,从而延长排液时间,这是因为张力梯度产生了一个更大的液膜压力从而阻碍了薄膜表面附近的液体流动[4]。对于建立稳定泡膜界面而言,最重要的动力学表面特性无非就是界面膨胀弹性,图4所示,即为泡沫稳定性(泡沫寿命),还有起泡性(初始泡沫高度)这两者与膨胀弹性的函数关系图。

3高表活剂浓度时的泡沫稳定机理

浓度高于CMC时,泡沫稳定性随表活剂浓度增加而增加。这个增长的原因是另一种稳定机理:胶团缔合分层。在工业体系中,表活剂溶液的浓度通常是高于CMC的,因此这个机理从现场应用的角度上来说很重要[5]。表活剂浓度很高时,泡膜会逐渐变薄,表活剂溶液形成的薄泡膜在薄化时,会呈现出一定的亚稳态直到达到平衡液膜厚度[6]。这个过程如图5所示,该图是一个乙氧基醇非离子表活剂溶液形成的水平液膜光电流-时间图表。

液膜一形成,就开始变薄,当膜的厚度小于104nm时,膜厚开始逐步变化。液膜处于亚稳均匀态一小段时间。然后出现比现有膜更薄的黑斑并且逐步增大。黑斑最终覆盖整个液膜并且液膜处于一个新的亚稳态。然后,更小的黑斑出现,之后扩张,又产生一个新的亚稳态[7]。这个过程不断重复,直到液膜最终达到稳态。干涉图中液膜的亚稳态的阶梯宽度与每个亚稳态阶段的泡沫寿命一一成比例。阶梯高度是相等的,与胶团直径对应,大约10nm。分层现象实际是逐层液膜内缔合胶团和胶体粒子的薄化。由于液膜体积有限,胶团通过屏蔽静电排斥来相互作用。液膜分层是一个普遍现象,这个现象是因为泡膜中出现长链晶状胶体还有就是因为胶团的逐层薄化。由于带电布朗粒子间相互排斥作用,使得带电粒子进入液膜内部的不流动区域,从而产生了这种缔合分层的现象。薄膜中形成长链缔合胶体,这个机理在抑制液膜排液方面有明显的理论意义和实际应用意义,含有分层液膜的分散相,其流变性会发生变化,分层泡膜粘度要高于纯溶剂内泡膜粘度[8]。图6所示的照片是一个水基泡沫体系,该体系的稳定性由于泡沫夹层间发生分层现象而增加,这也证明了实际泡沫中存在胶团缔合分层。含有胶团分层液膜的泡沫寿命更长,稳定性更好。

4结论

通过阅读大量文献以及实验,了解了关于活性剂,原油,泡沫三相之间的相互关系和作用,我们可以得出下面一些结论。

泡沫稳定性机理与表活剂浓度有密切关系,且这个浓度的分界点通常就是临界胶束浓度(CMC),表活剂浓度低于CMC时,达不到在溶液中形成胶团的浓度,此时,诸如表面张力效应(马拉格尼效应),界面粘弹性等界面流变学因素是影响泡沫稳定的关键,但这些因素中最重要的就是界面张力。当表活剂浓度高于CMC时,由于表活剂分子将在溶液中从单个离子状态缔合成“胶态聚集体”,也就是胶团。而胶团相互间会发生缔合分层,从而起到稳定液膜的作用。

第4篇:表面活性剂论文范文

[论文摘要]目前,静电在生物工程中有着重要的应用。介绍高分子抗静电的方法,阐明高分子材料抗静电技术在我国的发展和策略。

静电广泛地存在于自然界和日常生活之中,如人们每时每刻呼吸的空气每厘米就含有100500个带电粒子;自然界的雷电;干燥季节里人身上化纤衣物由于摩擦起电而粘附在身体上,这一切都是比较常见的静电现象。实际上,静电在生物工程中有着重要的应用。

一、高分子抗静电的方法概述

高聚物表面聚集的电荷量取决于高聚物本身对电荷泄放的性质,其主要泄放方式为表面传导、本体传导以及向周围的空气中辐射,三者中以表面传导为主要途径。因为表面电导率一般大于体积电导率,所以高聚物表面的静电主要受组成它的高聚物表面电导所支配。因此,通过提高高聚物表面电导率或体积电导率使高聚物材料迅速放电可防止静电的积聚。抗静电剂是一类添加在树脂或涂布于高分子材料表面以防止或消除静电产生的化学添加剂,添加抗静电剂是提高高分子材料表面电导率的有效方法,而提高高聚物体积电导率可采用添加导电填料、添加抗静电剂或与其它导电分子共混技术等。

(一)添加导电填料

这类方法通常是将各种无机导电填料掺入高分子材料基体中,目前此方法中所使用的无机导电填料主要是碳系填料、金属类填料等。

(二)与结构型导电高分子材料共混

导电高分子材料中的高分子(或聚合物)是由许多小的重复出现的结构单元组成,当在材料两端加上一定的电压,材料中就有电流通过,即具有导体的性质,凡同时具备上述两项性质的材料称为导电高分子材料。与金属导体不同,它属于分子导电物质。根本上讲,此类导电高分子材料本身就可以作为抗静电材料,但由于这类高分子一般分子刚性大、不溶不熔、成型困难、易氧化和稳定性差,无法直接单独应用,一般作导电填料与其它高分子基体进行共混,制成抗静电复合型材料,这类抗静电高分子复合材料具有较好的相容性,效果更好更持久。

(三)添加抗静电剂法

1.有机小分子抗静电剂。有机小分子抗静电剂是一类具有表面活性剂特征结构的有机物质,其结构通式为RYx,其中R为亲油基团,x为亲水基团,Y为连接基。分子中非极性部分的亲油基和极性部分的亲水基之间应具有适当的平衡与高分子材料要有一定的相容性,C12以上的烷基是典型的亲油基团,羟基、羧基、磺酸基和醚键是典型的亲水基团,此类有机小分子抗静电剂可分为阳离子型、阴离子型、非离子型和两性离子型4大类:阳离子型抗静电剂;阴离子型抗静电剂;非离子型抗静电剂;两性型抗静电剂。

导电机理无论是外涂型还是内加型,高分子材料用抗静电剂的作用机理主要有以下4种:(1)抗静电剂的亲水基增加制品表面的吸湿性,吸收空气中的水分子,形成“海一岛”型水性的导电膜。(2)离子型抗静电剂增加制品表面的离子浓度,从而增加导电性。(3)介电常数大的抗静电剂可增加摩擦体间隙的介电性。(4)增加制品的表面平滑性,降低其表面的摩擦系数。概括起来一是降低制品的表面电阻,增加导电性和加快静电电荷的漏泄;二是减少摩擦电荷的产生。

2.永久性抗静电剂。永久性抗静电剂是一类相对分子质量大的亲水性高聚物,它们与基体树脂有较好的相容性,因而效果稳定、持久、性能较好。它们在基体高分子中的分散程度和分散状态对基体树脂抗静电性能有显著影响。亲水性聚合物在特殊相溶剂存在下,经较低的剪切力拉伸作用后,在基体高分子表面呈微细的筋状,即层状分散结构,而中心部分呈球状分布,这种“蕊壳”结构中的亲水性聚合物的层状分散状态能有效地降低共混物表面电阻,并且具有永久性抗静电性能。

二、我国高分子材料抗静电技术的发展状况

我国许多科研机构和生产企业已陆续开发出一些品种,以非离子表面活性剂为主,目前常用的品种有,大连轻工研究院开发的硬化棉籽单甘醇、ABPS(烷基苯氧基丙烷磺酸钠)、DPE(烷基二苯醚磺酸钾);上海助剂厂开发目前多家企业生产的抗静电剂SN(十八烷基羟乙基二甲胺硝酸盐),另外该厂生产的抗静电剂PM(硫酸二甲酯与乙醇胺的络合物)、抗静电剂P(磷酸酯与乙醇胺的缩合物);北京化工研究院开发的ASA一10(三组份或二组份硬脂酸单甘酯复合物)、ASA一150(阳离子与非离子表面活性剂复合物),近年来又开发出ASH系列、ASP系列和AB系列产品,其中ASA系列抗静电剂由多元醇脂肪酸酯、聚氧乙烯化合物等非离子表面活性剂;ASB系列产品则为有机硼表面活性剂(主要是硼酸双多元醇脂与环氧乙烷加成物的脂肪酸酯)与其他非离子表面活性剂复合而成;ASH和ASP系列主要是阳离子与非离子表面活性复合而成,杭州化工研究所开发的HZ一1(羟乙基脂肪胺与一些配合剂复合物)、CH(烷基醇酰胺);天津合成材料工业研究所开发的IC一消静电剂(咪唑一氯化钙络合物);上海合成洗涤剂三厂开发生产的SH系列塑料抗静电剂,已经形成系列产品,在使用效果和性能上处于国内领先地位,部分品种可以替代进口,如SH一102(季铵盐型两性表面活性剂)、SH一103、104、105等(均为季铵盐型阳离子表面活性剂),SH抗静电剂属于结构较新的带多羟基阳离子表面活性剂;济南化工研究所JH一非离子型抗静电剂。(聚氧乙烯烷基胺复合物)等;河南大学开发的KF系列等,如KF一100(非离子多羟基长碳链型抗静电剂)、KF-101(醚结构、多羟基阳离子永久型抗静电剂),另外还有聚氧乙烯醚类抗静电剂,聚乙烯、聚丙烯和聚氯乙烯专用抗静电剂202、203、204等;抗静电剂TM系列产品也是目前国内常用的,主要用于合成纤维领域。

从抗静电剂发展来看,高分子型的永久抗静电剂是最为看好的产品,尤其是在精密的电子电气领域,目前国内多家科研机构利用聚合物合金化技术开发出高分子量永久型抗静电剂方面已取得明显进展。

三、结语

我国合成材料抗静电剂行业发展前景较好,针对目前国内研究、生产、应用与需求现状,对我国合成材料抗静电剂工业发展提出以下建议。

(一)加大新品种开发力度

近年来国外开发的高性能伯醇多聚氧化乙醚类非离子型表面活性剂;用于聚碳酸酯的脂肪酸单缩水甘油酯;用于磁带工业的添加了聚氯化乙烯醚醇的磷酸衍生物;适应于聚烯烃、聚氯乙烯、聚氨酯等多种合成材料的多元醇脂肪酸酯和三聚氰胺加成物等,总之国内科研院所应根据我国合成材料制品要求,开发出多种高性能、环保无毒的抗静电品种,并不断强化应用技术研究,以满足国内需求。

(二)加快复合抗静电剂和母粒的研究与生产

今后要加快多种结构抗静电剂及其他塑料助剂的复配,向适应范围广、效率高、系列化、多功能、复合型等方向发展。另外合成材料多功能母粒作为助剂已经成为今后合成树脂加工改性的重要原材料,如着色、阻燃、抗菌、成核等母粒在国内开发方兴未艾,国内要加快抗静电母粒的开发与研究,促进我国抗静电剂工业发展。

参考文献:

[1]高绪珊、童俨,导电纤维及抗静电纤维[M].北京:纺织工业出版社,1991.148154.

第5篇:表面活性剂论文范文

关键词:催化剂失活、电镜、烃类、热重表征、比表面积

前言

对大多数烃类预转化催化剂来说,它的物理性质及化学性质随催化反应的进行发生微小的变化,短期很难察觉,随着长期(2-3年)运行过程中这些变化累积起来,造成催化剂活性的显著下降,从而造成了催化剂的失活。本文针对新旧天然气预转化催化剂,应用扫描电镜-能谱联用技术,以及热重、比表面积测定等分析表征方法来探讨催化剂活性降低的原因。

一、新旧催化剂的扫描电镜表征

采用扫描电镜对新旧催化剂进行表征,结果见图1、图2。

从新旧催化剂5000倍扫描电镜图片可以看出,使用后的催化剂表面出现成团卷曲的丝状物。

取新鲜催化剂和失活催化剂的多个颗粒的多个位置,进行表面成分分析,检测结果见表1。

检测结果表明,丝状物上炭元素含量很高,达到20-30%左右,认为该催化剂存在积碳现象且为丝状炭,由于催化剂积碳现象,导致催化剂孔道堵塞,活性中心覆盖问题,最终导致其催化活性有所下降。

二、旧催化剂的热重表征

催化剂积炭是有机催化反应中常见的现象。由于积炭覆盖了活性中心或堵塞了孔道,阻止反应物接近活性中心及通畅的孔道,使催化剂失活或活性降低。进一步热重分析,旧催化剂在空气气氛下升温,当温度达到约650℃,积炭开始被烧掉,而且 当达到一定温度和时间后失重曲线趋于平缓,烧炭完成,由失重曲线看出催化剂积炭量较高。

3 新旧催化剂比表面积测定

对鲜催化剂和旧催化剂进行比表面积测定结果有孔径变化进行对比结果见表2。

从表2可以看出,使用过的催化剂BET比表面积从新鲜催化剂的120.5m /g下降到15.4m /g,催化剂孔径由6.04nm增大到12.5nm,说明催化剂微孔和在使用过程中存在明显收缩现象。积碳使催化剂的比表面积下降较大,这也是催化剂活性下降的一个重要原因。

结论:

1)烃类预转化催化剂使用过程中比表面积减少,孔径变大和积碳是催化剂活性降低或失活的重要原因之一。

2)在催化剂性能下降分析中,扫描电镜能谱联用仪与热重分析仪的配合使用,可得到较为理想的分析效果。

参考文献:

第6篇:表面活性剂论文范文

关键词:表面活性剂 疏水缔合聚合物 二元体系 粘弹性

聚合物/表面活性剂二元复合驱是一种以充分发挥表面活性剂和聚合物相互协同效应的采油方法,聚/表二元复合驱是在三元复合驱的基础上去除碱的一种复合体系,由于碱对某些地层的破坏较大,因此科学家更多倾向于研究二元复合驱对强化采油的应用研究,由于表面活性剂能更好的降低油水界面张力和聚合物能增加溶液的粘弹性和降低油水流度比等优点,且聚合物与表面活性剂相互作用可使聚合物分子链的构象发生变化,而聚合物的存在也同时影响着表面活性剂的表面张力、临界胶束浓度、聚集数及溶液流变性、界面吸附和增溶性等性质。其二者相互作用对提高采收率更具有挑战性意义,因此本文从二者的相互作用出发,重点介绍了二者的研究现状。

1、疏水缔合聚合物/表面活性剂二元复合驱的研究现状

二元复合驱技术首次利用是在美国德克萨斯州的Ranger油田进行的低界面张力聚/表二元体系的先导试验,最终使原油采收率在水驱后提高了25%左右,具有较为可观的经济效益。此后国内大批研究者也进行了表面活性剂/聚合物的二元复合驱研究,且取得了较好的成绩。李孟涛等使用阳离子表面活性剂NEP溶液,在油藏条件下界面张力可达10-2mN/m数量级,在室内模拟非均质岩心上,能达到提高采收率幅度为20%;夏惠芬等研究了甜菜碱型两性表面活性剂与聚合物作用可形成10-3mN/m数量级的超低界面张力,且对水驱后残余油的采收率有所提高。郭拥军等研究疏水改性水溶液聚合物与SDBS作用时,粘度变化呈现一定的规律,且提出疏水改性水溶液聚合物中的疏水基团与SDBS的作用超过同类阴离子间的相互排斥作用,疏水基与SDBS的作用使得体系粘度是单一聚合物溶液粘度的23.7倍;同时得出混和溶液表面张力随SDBS浓度的增加而单调下降,并无一般高分子聚合物与表面活性剂作用时所出现的两个转折点,从而说明该聚合物与表面活性剂的作用不同于一般高分子聚合物与表面活性剂的相互作用。

现有研究都表明在聚合物/表面活性剂二元复合驱中,聚合物不仅具有良好的粘弹性还能较好的控制油水流度比,表面活性剂降低油水界面张力的性质,使残余油能很好的启动。若能选择合适的驱油体系,其驱油效率不会小于三元复合驱。目前有大批学者对二元体系的溶液界面、流变性质等都进行了大量研究,也逐步开始对二元体系的微观渗流机理进行研究,并且分别从表面活性剂和聚合物的分子结构方面入手,合成出如两性表面活性剂、石油磺酸盐、烷基苯磺酸盐、新型孪连表面活性剂和生物表面活性剂等一系列高活性的表面活性剂。同时随着疏水缔合聚合物在油气开采中的应用,出现了通过优化设计出的不同分子结构的耐温抗盐等新型缔合聚合物。不管是表面活性剂还是缔合聚合物分子结构对二元体系性质的影响,都需要更为深入的研究,才能为我国油气开采技术进一步发展提供依据。

2、阴离子表面活性剂SDBS对二元复合体系粘弹性的影响

2.1.阴离子表面活性剂SDBS对聚/表二元体系粘度的影响

由于疏水缔合聚合物在溶液中形成的空间网络这种特殊结构,其流变性对表面活性剂很敏感,通过实验考察不同类型表面活性剂与疏水缔合聚合物相互作用对二元体系流变性的特殊影响,不仅可以证实疏水缔合聚合物溶液不同于一般聚合物所具有的网络结构的存在,还能得出二元体系粘度变化规律与表面活性剂分子结构的关系。

叶仲斌等研究得出,开始向疏水缔合聚合物溶液中加入少量的SDBS时,体系粘度稍有降低;继续增加SDBS浓度,粘度上升到最高值;之后随着SDBS浓度的进一步增加体系粘度急剧下降到最低点后不再变化。分析认为在加入很少量SDBS(小于10mg/L)时,SDBS仅起电解质作用,压缩双电层,使体系粘度稍有降低;当SDBS浓度达到一定值后,才开始与溶液中的疏水基作用形成聚集体,随着聚集体的增加,网络结构更为密集,体系增粘达到最大;继续增大SDBS浓度,胶束浓度也开始增加,疏水侧基增溶于胶束中,随着胶束数量的增大,聚合物的网络结构被拆散,粘度急剧下降;当SDBS浓度达到更高值后,体系粘度不再随SDBS浓度的增加而变化,此时溶液中自由的SDBS浓度大于其cmc值,体系粘度降到最低。

2.2阴离子表面活性剂SDBS对聚/表二元体系弹性的影响

2.2.1应力扫描

表面活性剂SDBS加入聚/表二元体系后,在一定的剪切应力范围内,粘度不随应力的变化而变化,称这一应力区为聚/表溶液的线性粘弹区。文献曾提出聚合物溶液必须具有足够的浓度才能有线性粘弹区,实验发现单独的疏水缔合聚合物溶液在该应力范围内就无线性粘弹区,由此表明SDBS的加入,使得聚/表溶液分子间由疏水缔合作用形成了更强的超分子网络结构,当CSDSS=100mg/L时溶液的线性应力区最宽,由此线性粘弹区的大小也反映了聚/表溶液中超分子网络结构的强度。超分子结构越强的溶液,屈服应力值也越高,而单独的聚合物溶液,在此应力范围内,并无明显的屈服应力值。

2.2.2粘度与剪切速率关系

随着SDBS浓度的增加,一定剪切速率范围内(小于0.ls-1)体系粘度保持不变;当CSDBS=100mg/L时,在0.1~0.5s-1间出现剪切增稠现象,结合前面对粘度的测试结果,分析认为是该浓度的SDBS与疏水缔合聚合物作用形成稠密的网络结构,低剪切使得分子链更为伸展,体系粘度稍有增加;当剪切速率达到10s-1后,不同SDBS浓度的二元体系间粘度差变小,都表现出明显的剪切稀释性。

2.2.3第一法向应力差

研究得出,体系的N1随着剪切速率的增加而增加,高剪切速率下,溶液中分子能表现出较强的弹性效应。与粘度测试结果一致,CSDBS=100mg/L时二元体系的N1最大,且N1随剪切速率变化出现拐点时对应的剪切速率最小,此时体系能在较低剪切速率下表现出较强的弹性效应,同时也反映出该浓度时体系具有较强的超分子网络结构;SDBS浓度继续增加,体系的N1开始减小,弹性也减小,再次表明高浓度表面活性剂SDBS的加入,溶液中形成过多的聚集体,使得聚合物网络结构开始被拆散,与粘度变化规律一致。

3、结论

阴离子表面活性剂SDBS与疏水缔合聚合物相互作用规律表现出一定规律,表面活性剂SDBS在二元体系中的加入使体系的粘度随着SDBS浓度的增加先降低后增加,最后又降低,达到最低值后保持不变。相同粘度的不同二元体系,随着表面活性剂和疏水缔合聚合物分子结构性质的改变,弹性效应也不同。

参考文献

[1]吕鑫,张健等.聚合物/表面活性剂二元复合驱研究进展[J].西南石油大学学报.2008,30(3):127-130.

[2]赵丹.疏水缔合聚合物与表面活性剂的相互作用[J].化工时刊,2010,24(1):51-53.

第7篇:表面活性剂论文范文

【关键词】壳聚糖;表面活性剂;研究及发展

壳聚糖是一种阳离子型聚电解质天然多糖,壳聚糖表面活性剂无毒、无公害,易于降解,不污染环境,同时具有良好的物理、化学性能。壳聚糖主要存在于甲壳素中。而甲壳素广泛存在于虾、蟹和昆虫的外壳中。壳聚糖又称壳多糖、可溶性甲壳质,是甲壳素脱去乙酰基的产物。

1、壳聚糖的表面活性

虽然壳聚糖自身没有很大的疏水基团,但在一定的pH值范围内,氨基质子化程度降低,从而壳聚糖分子链就表现出了疏水性。可通过酰化、羟基化、氰化、醚化、烷基化、酯化、酰亚胺化、成盐、螯合、水解、卤化、接枝与交联等反应,可制备壳聚糖类衍生物[1、2]。隋卫平等[3]将壳聚糖进行亲水和疏水改性,合成了(2-羟基-3丁氧基)-丙基羟丙基壳聚糖。结果表明,壳聚糖本身没有活性,但疏水改性后有具有明显的表面活性。

2、壳聚糖类表面活性剂的研究

壳聚糖的研究与开发已经涉及到很多领域壳。壳聚糖分子中存在羟基和氨基,可以通过对羟基和氨基进行化学改性,从而来改善其溶解性能[4]。范金石[5]通过壳聚糖降解水溶性――壳低聚糖为原料,分别与烷基缩水甘油醚、脂肪酰氯和环氧丙基长链烷基二甲基氯化铵反应得到了三个不同系列的新型壳低聚糖衍生物,而且涵盖了所有的表面活性剂――非离子型、阴离子型、阳离子型三类,再对合成的低聚糖表面活性剂的溶解性、表面活性、乳化性能、起泡性能、增溶性能等物理化学性能进行了深刻的研究。

3、壳聚糖类表面活性剂的发展趋势

壳聚糖类表面活性剂属于糖类表面活性剂,表现出良好的表面活性。该类表面活性剂无毒,无公害,有良好的pH稳定性能、抗氧化性能,因此可完全其应用于化妆品配方和食品中。用于发用制品能保持头发的光泽、柔软、易梳理和抗静电;用于化妆品中,能使皮肤具有良好的调理性能;因此可将其用于保湿润肤液、香波、浴乳、洗面奶等洗涤化妆品中。此外壳聚糖表面活性剂是纯天然的表面活性剂,具有良好的表面活性、乳化性、吸湿保湿性、增溶性、抗菌性等性质,可以在洗涤、医药、食品、化妆品、纺织印染、石油、环保等多种领域中得到广泛应用。

1)在食品上的研究进展

1.1壳聚糖可作为食品添加剂使用。由于壳聚糖本身无毒无害的优利特点,使壳聚糖可以作为食品添加的首选材料。在牛奶中加入适量的壳聚糖可以促性肠道杆菌的发育,从而间接促进乳糖酶的生长,因此更好的被人体吸收;此外食品中加入壳聚糖还可以畅通排毒效果[6]。

1.2壳聚糖在肉制品保鲜上的应用。在研究壳聚糖对肉类保鲜的研究时,最终发现一定质量分数范围和不同浓度的壳聚糖都有效对猪肉进行保鲜,最后达到肉类保鲜的效果[7、8]。

2)在生物工程方面的研究进展

Liu[9]等利用壳聚糖修饰电极测定神经传递素代谢物3,4一羟基苯乙酸,这种方法的特点是响应时间快,灵敏度高。Nishimura等研究对甲壳素衍生物的研究发现该衍生物可增强免疫系统功能;同时还发现壳聚糖硫酸酯还具有具有抗凝活性[10]。

3)在纺织工业的研究进展

随着我国经济的发展和人们对抗菌织物认识的提高,抗菌织物越来越受欢迎。因为壳聚糖具有生物降解性和生物兼容性,是非溶出型抗菌剂。因此在纺织工业发展前景很大。壳聚糖可作为织物的整理剂、上浆剂、印染助剂等使用,具有柔软性、耐燃、防静电、防霉等特点[11]。

4)在工业上的研究进展

由于我国具有丰富的甲壳素资源,有巨大的甲壳素、因此壳聚糖产品越来越受关注。而在有机硅中掺杂这壳聚糖的表面活性剂具有很好的催化性能。由于此种表面活性剂表面张力低,乳化作用大,润湿性好,增溶性能好,而且起到很好的起泡、稳泡和抑泡作用,现在已广泛于纺织、化妆品、涂料、农业化学品、医药、机械加工等行业。

5)在农业方面的研究进展

壳聚糖溶液可以减轻消除玉米的黑穗病,蒋挺大等[12]证实了:利用壳聚糖较强的抗菌能力,可将壳聚糖与蛋白混合来作为土壤的改良剂,这种改良剂易于可降解,可作为优质的肥料使用。有机硅壳聚糖表面活性剂对于农药技术带来根本性变革。此类表面活性剂可促进农药制剂附着、润湿、铺展及渗透能力,对农作物有关键作用。由于此类表面活性剂易于降解,因此减少农药的残余量,节省水源[13、14]。

4、市场前景及发展前途

壳聚糖作为一种无毒无害,易降解的纯天然生物有机资源。受到世界诸多国家科研工作者的广泛关注。例如:在日本,壳聚糖类食品作为唯一一种功能型保健食品;而欧洲及美国的营养学界则把壳聚糖称作六大要素(蛋白质、脂肪、糖类、维生素、无机盐和壳聚糖)之一,并且大量研制以壳聚糖为主要原料的保健食品,现以投放到市场中。

而我国拥有丰富甲壳素资源,发展壳聚糖产业具有得天独厚的优势。经年来,随着各国对壳聚糖的认识不断提高。研究不断深化,壳聚糖已应用于许多领域中,其中化妆品、食品工业等行业对壳聚糖的需求日益加快;壳聚糖在医药、化工、造纸、农业、环保、轻纺等领域中正在得到广泛的应用。

小结

随着人们生活水平的提高,表面活性剂已成为人们生活中不可或缺的日用品,而表面活性剂的种类也日益变得越来越多。表面活性剂的改性也成为所有研究人员研究方向。而壳聚糖表面活性剂是新型的,绿色的表面活性剂。具有性能优良、易生物降解、高效、安全等特点。

参考文献

[1]徐君义.21世纪是甲壳素世纪吗?[A].中国甲壳资源研究开发应用学术研讨会论文集[C].青岛:海洋大学出版社,1997.11-13.

[2]夏文水,陈洁.甲壳素和壳聚糖的化学改性及其应用[J].无锡轻工业学院学报,1994,13(2):162-164.

[3]隋卫平,杨秀利,杨倩.应用化学,2002,19(9):890―893.

[4]马宁,汪琴,孙胜玲等.甲壳素和壳聚糖化学改性研究进展[J]化学进展,2004,16(4)・643---653.

[5]范金石.甲壳低聚糖类表面活性剂的制备及其性能研究[D].青岛海洋大学博士学位论文,2002.

[6]林伟忠.甲壳素/壳聚糖及其在食品工业中的应用[J].食品科学,1996,(12):11-15.

[7]赵希荣,夏文水.壳聚糖的抗菌防腐活性及其在食品保藏中的应用[J].食品研究与开发,2006,27(2):157―160.

[8]段静芸,徐幸莲,周光宏.壳聚糖在冷却鲜猪肉保鲜中的应用研究[J].食品工业科技,2001,22(9):26―28.

[9]ihua Liu ,Itaru Honm a ,H aoshen Zhou.A m perometric biosensor

based on tytesinase ―conjugated polysaechride hybrid film :Selective

determination of nanomol~neurotransm it ters me tabolite of 3,4 一 di―hydro xyphenyl acetic acid (DOPAC ) in biological fluid [J].Biosen―sors and B ioelectronics,2005,21(5) :809―816 .

[10]Muzzarerelli RAA.Chitin and its derivatives newt reads of applied research [J].Carbohydrate Polymers.1983,3:53-57.

[11]钱国强,周菊岩,马建标等.壳聚糖微球固定化L-天门冬酰胺酶研究[J].高等学校化学学报,1996,17(7):1147.

[12]蒋挺大.甲壳素[M].北京:化学工业出版社,2001.

第8篇:表面活性剂论文范文

论文关键词:油田化学 化学品的发展趋势

论文摘要:就目前中国对油田化学的定义来看,油田化学主要是指在石油勘探、钻取、运输等过程中所使用的化学方法和各种化学药剂,其中大多数药剂类属于精细的化学工艺产品。本文就将从油田化学的关键步骤入手,详细的介绍相关油田化学药剂在油田化学中的应用,同时也会简单的阐述油田化学产品的大致发展方向及前景。

油田化学是研究油田勘探、采集、钻井和原油运输过程中相关化学问题的科学,也是石油科学中最早发展的一门学科,是由采油化学、钻井化学和集输化学三部分组成,由这些组成部分就组成了油田化学的研究目标和方向。勘探、钻井、采油和原油集输虽然是不同的过程,但它们是相互联系的,所以油田化学的几个组成部分虽然都自己各自的发展方向,但是它们都是相互关联的。油田化学品在油田勘探、钻井、原油集输的过程占有绝对重要的地位,所以在油田化学发展的过程中,为了更好地更顺利地勘采石油,油田化学品的发展应是重中之重。

一、油田化学在各方面中的应用

1.钻井方面

在一般油田钻井的过程中钻进液的使用是最重要的,它是指在油田钻井过程中的以其能够满足钻井工作的需求的一切循环流体的总称。其中钻井液有携带和悬浮岩屑、冲洗井底(钻井液在钻头水眼处形成高速液流,可将钻井液与地层压力差压持在井底的岩屑冲起,起到快速清洗井底作用。)、稳定井壁、平衡地层压力(在钻进过程中通过不断调节钻井液密度,使液柱压力能够平衡地层压力,防止井塌和井喷等井下复杂情况发生。)、冷却和润滑钻头、钻具、传递水动力(钻井液在钻头喷嘴处以极高流速冲击井底,提高了钻井速度和破岩效率。高压喷射钻井利用该原理,使高泵压主要分布在钻头处,提高射流对井底的冲击力和钻井速度。)、获取井下信息等这么一些功能。在整个应用过程中,对钻井液也有很多相关的要求,首先应与所钻遇油气层相配伍,满足保护油气层要求,有利于获取良好的岩样、岩芯和电测资料;其次钻井液应具有较好的抗温、抗盐、抗钙镁能力;接着钻井液应环保,减少对钻井人员及环境污染伤害;最后钻井液应具有良好的缓蚀防腐作用,减少对井下工具及地面装备的腐蚀。

2.采油方面

在采油过程中,最常使用的是表面活性剂、高分子化合物、酸化及酸液添加剂,其中常用的几种表面活性剂烷基磺酸钠(-AS)(有磺氯酰化法和磺氧化法两种方法合成)、烷基苯磺酸钠(ABS)、Span和Tween型活性剂、聚醚型活性剂—高分子活性剂、多乙烯多胺型活性剂—-AE、AP型活性剂,这些活性剂的作用主要是为了能在油田形成吸附界面膜,降低表面张力的物质,更好更方便地采集石油。油田采集中的酸化是决定油好坏的最重要的一步,酸化是用酸或潜在酸处理油田层,以恢复或增加油田层渗透率,实现油田井增产和注水井增注的一种新技术。酸化的分类主要有酸化分类:按油气层类型可分为碳酸岩油气层酸化和砂岩油气层酸化;按酸化工艺可分为基质酸化和压裂酸化;

按酸液组成和性能可分为常规酸酸化和缓速酸酸化。基质酸化:是指在低于岩石破裂压力的条件下,将酸液注入油气层,使之沿径向渗入油气层,溶解孔隙及喉道中的堵塞物。压裂酸化:简称酸压,是在足以压开油气层形成裂缝或张开油气层原有裂缝的压力下,对油气层挤酸的一种工艺。常规酸化:是指直接使用盐酸处理碳酸盐岩油气层或碳酸盐胶结的砂岩油气层和直接使用氢氟酸或土酸处理泥质胶结的砂岩油气层。缓速酸酸化:是指用缓速酸处理的油气层的酸化。缓速酸是指为了延缓酸与油气层岩石的反应速度,增加酸的有效作用距离而配制的酸。目前国内外使用的缓速酸主要有:自生酸、稠化酸、乳化酸、泡沫酸和化学缓速酸等。酸液添加剂主要有缓蚀剂 、铁离子稳定剂、表面活性剂、稠化剂。

3.原油的集输方面

原油在集输得过程中井壁结蜡会影响原油的产量,甚至会堵塞 油井,迫使油井停产。管线结蜡会使泵压升高,甚至使原油失去流动性,在管内冻结。决定原油流动性的因素为:粘度、粘度、屈服值(即在一定温度下,原油停输后,使原油重新流动所需要的最小压力(启动压力)。改善流动性可采取降粘、防蜡降凝及降低屈服值以及降阻的方法,而防蜡降凝又是改善流动性的关键。)

在地层的温度和压力下,蜡一般溶在原油中。随着油从井筒上升,系统的压力下降气体从原油中逸出,并发生膨胀,吸热,导致原油温度降低,同时由于气体会把原油中的轻组分带出一部分,使原油的溶蜡能力降低,石蜡结晶就从原油中析出,造成油管结蜡。原油与管壁间的温差造成输油管道中的结蜡。在现今油田化学技术中主要使用的是防蜡剂,利用防蜡剂的作用,改变石蜡的结晶形态。蜡晶改性剂的分子中要有与石蜡分子不同的链节,这种物质加入原油中可以改变石蜡结晶形态,使蜡不能聚集长大成网络结构,不易沉积,而易被油流带走。

4.水处理方面

油田污水主要是指从原油脱出的含油污水。处理油田污水目的污水一般都含油、盐、SAa,且水温高,随便排放会造成环境污染,因此,一般采用污水回注。就目前看来,我国处理油田污水的化学方法主要是:除机杂方面是用凝聚或者加硫酸铝、聚合铝 、铁盐等加以沉聚。除油方面主要有自然重力除油(其原理是利用油水密度差,除油效果差,无法达到除油标准);斜板分离除油(斜板罐)增加分离设备工作表面积,缩短油粒上浮距离,提高分高效率“浅池理论”;凝聚与絮凝(混凝除油法)加凝聚剂、絮凝剂使油成絮团与水分离而除去。乳化油珠常常带负电,加入带正电的凝聚剂和絮凝剂,通过电中和作用使油珠变大,油珠上浮,达到除油的目的;

二、油田化学品的发展趋势

1.油田化学品的纳米材料的相关研究使得钻井液的胶体更加稳定,这种材料的研制也满足了油田开发所需的正电离子高和表面积很大的增粘剂的要求,现在的油田中所使用的化学品由纳米的材料制作的主要有:有机正电胶BPS、正电MMH。

2.钻井液是油田化学的重要化学剂,最早的钻井液就是从天然的产物改良而来的,所以,现在对既廉价的既实用的改良的天然的聚合物钻井液的研制仍然显得非常重要,在实际的应用中,具有很潜在的应用前景。

3.综合水溶性聚合物疏水性的研究。该聚合物就是在原来的水溶性聚合物大分子上插入很少的疏水链而形成的一种新型聚合物。这种聚合物具有较强的疏水性。当聚合物的相关浓度超过临界的结合浓度时,就可以形成结合为主要结构的超级大分子结构,这样的结构就让该聚合物能够形成很好的增粘效果。

第9篇:表面活性剂论文范文

关键词:Au-Pd双金属催化剂,分子筛,共沉积

 

0.引言

随着人类社会的发展,人们对生活环境的质量要求也越来越高,但是化石燃料的燃烧作为最重要的获取能源的方式,一直在对空气造成严重的污染,其中的SO2可以导致酸雨,使得土地酸化,严重的可以直接引起疾病,威胁人类的健康。我国近几年发展很快,能源的需求量不断增大,环境污染问题已经引起了广泛关注。

加氢脱硫(HDS)过程是将含硫化合物进行催化加氢处理使之转化成相应的烃和HZS,从而降低原料中的硫含量,实现清洁能源。目前用于HDS反应的催化剂主要是Co(或Ni)-Mo系催化剂,因存在活性相烧结、中毒、金属离子沉积等因素而使催化剂失活。目前对碳化物、氮化物及贵金属HDS催化剂的研究较多。寻求新的活性高、抗中毒能力强的HDS催化剂是目前Au催化剂研究方向之一。

1.Au-Pd双金属催化剂的制备

Au催化剂的制备方法主要有:浸渍法、共沉淀法、沉积沉淀法、胶凝胶法、脉冲激光沉积法、高分子聚合物保护法、化学蒸发沉法、光化学沉积法、离子交换法、共沉淀法、金属有机配合物固载、溶剂化金属原子浸渍法及合金氧化法。用浸渍法制备的Au催化剂性往往很低,这也正是导致人们长期以来认为Au不能用作催化剂的原因之。

化学沉积法可将几种金属组分同时或分批地沉积到载体上,容易控制金属颗粒小,但重复性不理想,目前只应用于制备Au/TIOZ催化剂。论文参考网。离子交换法一般以子筛或沸石为载体,制备的Au催化剂较有效。共沉淀法适合制成薄膜用于气传感器。金属有机配合物固载法适合于制备以氢氧化物为载体的Au催化剂,适合制备高负载量的Au催化剂。溶剂化金属原子浸渍法,合金氧化法,化学发沉积法因制备条件要求较高,通用性小强。脉冲激光沉积法仅在制备单一尺寸Au微粒的模型催化剂时使用。

Au催化剂的制备方法不同所得Au微粒大小不同,导致Au与载体的相互作用不同,直接影响催化效果。

1.1浸渍法(ImpregnationIMP法)

作为制备贵金属催化剂最传统最简单的方法,它是将多孔性载体氧化物浸渍于含有活性组分(如HAuCz4·3HZO、AuC13或KAu(CN):等)的溶液中,干燥后再经后处理得到催化剂样品,该法制备出的金催化剂分散度较低。

1.2共沉淀法(CopreeipitationeP法)

将HAuCI;的水溶液和相应载体的金属硝酸盐水溶液(如硝酸铁)加入到碱性沉淀剂的溶液中,同时得到两种氢氧化物的共沉淀物,再经过滤、洗涤、干燥及一定温度的焙烧处理即得到金催化剂。沉淀过程既可采用正加法也可以采用反加法,目前采用共沉淀法己可以制备出金担载量达l0(w)t%的高活性催化剂和气体传感器材料。

1.3沉积·沉淀法(DepositionpreeipitationDp法)

将金属氧化物载体加入到HAuC14水溶液中,加碱中和并选择适当的反应条件使之沉积在载体表面上,一般控制pH=6-10,随后进行过滤、洗涤、干燥等后处理。论文参考网。不同载体用此法制备的最佳条件不同,制备过程中的处理方法也不同。该法的优点在于活性组分不会被包埋在载体内部,而是全部分布在载体表面,催化剂中Au颗粒尺寸分布较窄,提高了活性组分的利用率。

1.4聚合物保护法

在高分子保护下,用还原剂还原HAuC14溶液制得Au溶胶,然后负载于氧化物或活性炭载体,经干燥、焙烧后得Au催化剂。高分子保护剂可以为PvA(聚乙烯醇)、PVP(聚乙烯毗咯烷酮)、THPC(四轻甲基氯化磷)、PDDA、硫醇类物质、树型聚合物等。还原剂有NaBH;、HZCZO4、SnC12等。载体不同所选择的高分子保护剂也不同,5102、A1203为载体时PVA对其不起保护作用,用PVP则可以;活性炭为载体时用PVA,PVP作保护剂好于THPC;以氧化物为载体时pH值不同则保护剂不同,如用THPC保护剂和TIOZ、zroZ为载体时pH制在2.5,而e、A12o3为载体无需控制pH12,]。在Au催化剂制备过程中,高分子保护剂和还原剂与Au的前驱体用量存在着一定的关系。论文参考网。

1.5化学蒸发沉积法(ehemica一vapordepositsonevn法)

在真空条件下,将挥发性的金属有机化合物(如dimehtylgo1d即ikeotne)通过蒸汽导入并使之吸附于比表面积较高的金属氧化物载体上,然后于473K下在空气中焙烧使有机金属化合物分解为小颗粒的Au。这种方法可以广泛地应用于各种不同的金属氧化物载体上,制得的催化剂活性一般都比较高,它甚至可以将金以纳米级颗粒沉积在一些不适用沉积一沉淀法的酸性金属氧化物载体上。

1.6光化学沉积法(photoehemiealdepositionPeD法

该法将n型半导体(如TIO:、ZnO、ZrOZ及SnOZ等)悬浮于HAuC14的醇溶液中,在室温下用紫外光照射足够时间,然后过滤,洗涤,真空干燥即得所需催化剂。该法容易控制金属颗粒大小而将几种金属组分同时或分批地沉积到载体上。

1.7离子交换法(IonexchangeIE法

将HAucl4水溶液与NaY分子筛于80℃下共热,使之与分子筛作用以取代载体表面或内部的H十(或N+a),再经焙烧等活化处理即可,该法对于制备以Y型分子筛为载体的金催化剂最为有效。

2.总结

催化剂的制备过程决定了它的组成、结构和纹理组织,催化剂的制备方法不同所得Au微粒大小不同,导致Au与载体的相互作用同,直接影响催化效果。一些传统的制备方法,有的不能用于制备该催化剂,有的制得的性能不理想,如用浸渍法制备的Au催化剂性往往很低,化学沉积法可将几种金属组分同时或分批地沉积到载体上,容易控制金属颗粒小,但重复性不理想,目前只应用于制备Au/TIOZ催化剂。而借助于溶液理论、胶体化学、固态化学以及金属有机化学的知识可以比以前更合理地来合成各种新型催化剂。

参考文献

[1]高正中编著实用催化.北京:化学工业出版社,1996,7.

[2]李光亮.国外煤炭脱硫降灰技术的发展趋向[J].中国煤炭,2000,26,(7):61-63.

[3]曹晏,张尚武,等.阳泉高硫无烟煤热化学法预脱硫的试验考察[J].燃料化学学报,2001,29,(4):329-333.

[4]王娜,李文,等.煤多段加氢热解过程的脱硫脱氮效应研究[J].燃料化学学报,2001,29,(1):29-32.

[5]徐娟,王林.血管扩张药桂哌齐特的合成研究[J].中国新药杂志, 2003, 12,(11): 625-626.