公务员期刊网 精选范文 bp神经网络范文

bp神经网络精选(九篇)

bp神经网络

第1篇:bp神经网络范文

关键词:网络舆情;BP神经网络;预警

中图分类号:C915 文献标识码:A 文章编号:1009-3044(2014)22-5283-04

互联网这些年来在我国的快速的发展,我国网民人数较之前有了大幅的提升。网络的开放性和灵活性让其成为反映社会舆情的主要载体之一。而近两三年网络舆情引发的事件激增,引起了政府的高度重视,网络俨然已成为政府部门了解民意的又一理想窗口。显然,能够直观表达网络舆情的光定性的解读远远不够,对于决策者更希望得到一个舆论事件过程中所处的量化等级。由于舆情危机产生具有模糊性和随机性是非线性的,因此通过建立预警指标,再利用容错能力高,通过学习复杂数据发现规律进行识别的人工神经网络是不二选择。故本文的核心在于BP神经网络[1]。

1 网络舆情危机预警指标体系

网络舆情危机的发生,受到多种随机因素的影响,而且每个因素对结果所起的效果大小也是不一样的。因此网络舆情危机预警的关键是建立科学、系统的预警指标体系。依据近些年来网络舆情方面专家的调查汇总和政府机构对舆情监督部门的考察,并结合网络舆情与危机预警机制方面的资料,经过多次地调试整理汇总制定出,对网络舆情信息从五个具体的指标构建了网络舆情危机预警指标体系[2]。

1.1 舆情预警指标

1.1.1 舆情信息的敏感度

网络上有各式各样的信息,而这些各式各样的信息其敏感度也是不同的,对于可能造成社会动荡的网络信息则是政府最为关注的。显然各条信息所引起的社会敏感度是不同的,敏感度越高说明产生舆论危机的可能性就越高。这种指标的量化标准采用专家打分的方法得到。得分设定的范围为[0,1],0、0.5、0.7、1表示的意义依次为“具有敏感性”、“敏感”、“很敏感”、“相当敏感”。

1.1.2 舆情信息的流通量

舆情信息的流通量反映出舆情信息在网络上传播情况和讨论热度。而这些网络上的流通信息会被搜索引擎例如Google、百度等抓取。因此通过限定时间段搜索引擎搜索关键词得到的搜索量可以作为流通量使用。

1.2.3 舆情观点倾向度

舆情观点倾向度主要量化网民对于某个舆论信息观点倾向度。分别由1,0,-1表示正面、中立、反面观点,用[f(x)][f(x)]表示各个观点面倾向度,n表示发表观点的总观点数,此指标用[μ]表示:

其实就是求各个观点总和的均值,其取值范围在(-1,1)。这部分则是通过统计事件讨论最热的贴吧的跟帖信息或者微博评论进行打分得到的。

1.2.4 舆情影响范围

舆情影响范围是指在某一时刻或时间段内,舆情信息所影响的区域性范围。对于这部分的评分依照我国的行政地域划分进行评分。即村\社区、乡\镇\街道、县\区、市、省、国家。其取值范围为[0,1]。这部分的取值则是通过新闻报道中时间的发展态势进行取值。地域对应的取值见下表:

1.2.5 网络舆情媒体曝光度

网络舆情信息被媒体曝光之后则将网络信息的讨论引到现实社会中,而现实中媒体的报道是有着比网络更为严格的审查制度。媒体的报道无疑对网络舆情有着更为影响力的宣传进而推动着舆论的发展。而这部分的数据则采用Google news中通过对时间段的设定搜索关键词得到相应的搜索到的新闻条数进行量化评价媒体的曝光度。

1.2.6 舆情指标

而结果评级依照《国家突发公共事件总体应急预案》将预警等级设为四个等级:特别严重、严重、较重和一般。而根据网络舆情危机的严重程度、经济程度、可控性等方面将预警设为5个等级:安全、轻警、中警、重警、急警[7]。

2 数据获取与处理

2.1 事件的选取和回顾

在实证分析中以“宁波PX事件”为预警模型的最终目标,而选择了“厦门PX事件”和“昆明PX事件”为学习样本进行学习。这一连串关于PX事件其危害的对象不仅仅是政府形象更是对整个社会和谐稳定造成了较大的影响。尤其是宁波PX事件中,甚至出现了不理智的因受谣言的蛊惑冲击政府机关掀翻执勤警车的情况。倘若能及时且准确地对此类事件进行预警并作出相应的预防措施就能对事件进行有效的控制。

2.2 指标数据的获取

对于所建立的模型而言其关键不仅仅在于预警模型的指标的建立和神经网络的识别。其数据的获取亦是十分关键的一步。根据各个数据的特点,整理各个指标数据获取方式如下。

将厦门PX事件和昆明PX事件作为一个学习样本,其数据清单如表3所示。

同样将模型的预警目标――“宁波PX事件”作为目标数据,其数据清单如表4所示。

2.3 输入数据的标准化处理

网络舆情危机预警指标体系中有5个预警指标,其中存在定性指标和定量指标两大类,并且对各个指标的数据进行了量化处理,然而各个指标的单位的量纲是不同的,为了能够对各个指标进行对比评分 ,需要将它们进行标准化得到[0,1]无量纲指标。

量化的指标均有正负方向均有正负方向之分,自然这些数据的标注化方法均有不同:

1)正向指标处理:正向指标表示值越大越安全,危机等级越小无量纲化以最小值为基准,正向无量纲化处理方程:

2) 负向指标处理:负向指标在文章中表示指标值越小越安全,危机等级越小。无量纲化以最大值为基准,负向的无量纲化处理方程:

其中,X 表示量化后的指标值, [xmin]表示指标的最小值, [xi] 表示指标的实际值, [xmax]表示指标的最大值。

3 舆情预警模型的建立及结果

3.1 模型的建立

神经网络模型是一个典型的“输入-处理-输出”的过程。输入是采集到的指标的实际值,输出是模型识别的结果,即预警的敏感度,而中间过称则采用BP神经网络模型进行学习计算,这部分相当于“黑匣子”。在处理的时候,该文采用三层BP网络(一个输入层、一个隐含层、一个输出层)的网络结构,那么输入、输出节点数分别是5和1[8]。

在设置完参数之后用第四章所讲述的利用Matlab软件完成模型的建立。

3.2 结果及检验

通过搜集得到的数据汇编成的学习样本,并将其中的70%作为样本,30%作为检验样本进行。

通过计算可以得到该表,从该表中容易得到,学习过程中准确率达到了91.76%。并在测过程中抽取了5项进行预测,得到的准确率为92.31%,其较高的准确率。因此有理由认为该模型在未来的预测过程中其准确率应该达到90%以上。

4 研究结论

本文的研究结果表明:基于舆情量化指标的BP神经网络能够对网络舆情信息进行较为准确的预警,无论是学习还是最后实践的识别准确率都达到了80%以上。这种预警方法通过舆情信息的预警指标利用量化评价方法可以降低人为的主管臆断,而实验结果也表明了其拥有较高的识别准确率。并且利用Matlab进行编程得到的预警模型具有广泛的应用前景和使用价值。模型可以为政府提供网络舆情的预警,也为企业的网络声誉进行预警为企业的公关提供预警参考。

参考文献:

[1] 薛圈圈.基于BP神经网络的网络舆情危机预警研究[D].江西:江西财经大学,2010:25-30.

[2] 戴媛.我国网络舆情安全评估指标体系研究[D].北京:北京化工大学,2008:13-22.

[3] 袁越.厦门PX时间[OL].http://.cn/c/2007-09-27/165713986641.shtml.

[4] 王秀娟.昆明PX事件[N].中国石油石化,2013.

[5] 大公网.镇海PX项目引发[OL].http:///mainland/node_13226.htm.

[6] 周子健.基于网络搜索量的上海世博会国际影响力研究[J].艺海,2011(5):80-82.

第2篇:bp神经网络范文

关键词:BP 神经网络 教学评价 模型构建 评价方法

中图分类号:TP183 文献标识码:A 文章编号:1672-3791(2013)06(c)-0200-01

BP神经网络是一种单向多层前馈人工神经网络模型,可以实现任何复杂的、多因素、不确定和非线性的映射关系,是目前应用最广泛的人工神经网络模型之一。通过这种梯度下降算法不断地修正网络各层之间的连接权值和阈值,从而实现期望输出值与实际输出值之间的误差达到最小或者小于某一个阈值[1~2]。

本文的研究目标是通过对现有评价指标、评价方法的分析,建立有效的教学评价模型,并实现相应的网上教学评价系统设计。结合BP神经网络,给出了一种非线性的教学评价模型,训练好的BP网络模型根据测评数据,就可得到对评价对象的评价结果,实现定性与定量的有效结合。

1 BP神经网络模型

(1)输入/输出节点。输入/输出节点是与样本直接相关的。根据沈阳工业大学教学质量评估指标体系,将二级评价指标作为模型的输入神经元,因此系统的输入层神经元的个数为二级指标的个数。将评价结果作网络的输出,输出层神经元个数为1。

(2)层数。由于BP网络的功能实际上是通过网络输入到网络输出的计算来完成的,因此隐含层数越多,神经网络学习速度就越慢。但是只含有一个隐含层的BP网络就可以逼近任意的非线性函数。因此,本文选取结构相对简单的3层BP网络,即隐含层只有一个。

(3)隐含层神经元个数。隐含层单元个数与问题的要求以及输入输出单元个数有直接的关系。隐层单元过多将会导致神经网络训练时间过长、误差不易控制及容错性差等问题。本文采用公式2.1计算得出隐含层神经元个数。

4)激活函数 BP网络的非线性逼近能力是通过S型的激活函数来体现出来的,所以隐含层中一般采用S型的激活函数,输出层的激活函数可以采用线性或S型[3]。S型激活函数为

该函数值在[-1,1]范围内变化很剧烈,而超出这个范围即处于不灵敏区,变化则相当平缓。因此为使得进入不灵敏区的误差函数有所改变,迅速退出不灵敏区,保证训练网络的快速性,尽可能使所有输入值都在灵敏变化段中,一般需在该公式中引进参数。本文的神经网络算法即在此部分进行改进。

2 基于BP神经网络的教学评价模型构建

本文由公式2.1计算得出隐含层节点数为4(这里考虑了下述16个指标可以分为4组)。(见表1)

3 改进的BP神经网络算法描述

网络的拓扑结构和训练数据确定之后,总误差函数E的性质特征就完全由激活函数f决定了。改进激活函数,可以改变误差曲面,尽量减少局部极小值的可能性。BP算法的激活函数一般为sigmoid型函数,即。

改进的BP算法是对标准的S型函数引入新的参数,则函数变为,其中系数决定着S型函数的压缩程度。该非线性函数满足如下两个条件:一是连续光滑且具有单调性;二是定义域为,值域为,故符合激活函数要求。而且它使得激活函数曲线变得平坦,方便在或时,避开局部极小,因此该函数具有更好的函数逼近能力以及容错能力。

4 仿真计算与分析

以学生评教数据为输入值,专家评教数据为期望输出值,采用上述算法在Matlab下设计仿真程序对BP模型进行辨识,输入层、隐含层和输出层的结点数分别为16×4×1,激活函数采用变化的S型,学习率=0.99。

通过沈阳某大学教务处所提供的数据进行实验,采用10组样本进行网络训练,并对10位教师进行测评。10样本的评价目标和神经网络辨识分别为差(21.93),及格(44.64),及格(46.94),中(59.87),中(59.11),中(62.35),中(59.83),良(78.93),良(79.56),优(99.12)。结果显示,BP模型对评估的模拟结果比较精确,对整个考核的排序十分有用。因此该模型能较为准确地根据各评价指标来确定教学效果。

5 结论

结合国家高等教育的政策导向以及学校实际,建立了一个基于BP神经网络建立了教学评价模型,引用具有更好函数逼近以及容错能力的改进的BP学习算法,确定指标体系的权重,使评价结果科学合理。

参考文献

第3篇:bp神经网络范文

人工神经网络(Artificial Neural Networks,ANN),是基于人类大脑的生物活动所提出的,是一个数学模型。它由众多节点通过一定的方式互联组成,是一个规模巨大、自适应的系统。其中有一种学习算法是误差传递学习算法即BP算法。BP算法是人工智能最常用到的学习方法,从一定意义上来讲,BP算法的提出,终结了多层网络在学习训练算法上的空白史,是在实际应用中最有效的网络训练方法,对ANN的应用和发展起到了决定性的作用。

BP算法是使用从输出层得到的误差来估算前一层的误差,再利用该误差估算更前一层的误差。依次进行,就会获得其他所有各层的估算误差。这样就实现了将从输出层的得到误差沿着与输入信号传送相反的方向逐级向网络的输入端传递的过程[1]。但是,BP算法也存在着不可忽视的缺陷。基于此,该文总结介绍了BP的改进方法。

2 BP算法的基本思想

2.1 BP算法的基本原理

BP算法是有监督指导的算法,它的学习训练过程一般分为两步:首先是输入样本的正向传递;第二步误差的反向传递;其中信号正向传递,基本思想是样本值从输入层输入,经输入层传入隐藏层,最后通过输出层输出,中间层对样本数据进行处理操作,利用各层的权值和激活函数对数据进行操作然后在输出层获得输出[2];接下来就是反向传递,算法得到的实际输出值与期望目标输出之间必然会有误差,根据误差的大小来决定下一步的工作。如果误差值较小满足训练的精度要求,则认为在输出层得到的值满足要求,停止训练;反之,则将该误差传递给隐藏层进行训练,按照梯度下降的方式,对权值和阈值进行调整,接着进行循环,直到误差值满足精度要求停止训练[3]。

3 BP算法的缺陷

尽管BP算法有着显著的优点,但是在实际应用过程中,BP算法会出现很多问题。尤其是下面的问题,对BP神经网络更好的发展有很大影响。有的甚至会导致算法崩溃。

3.1 收敛速度的问题

BP算法在进行训练学习时,收敛速度慢,特别是在网络训练达到一定的精度时,BP算法就会出现一个长时间的误差“平原”,算法的收敛速度会下降到极慢[4]。如果盲目的加快收敛速度,则会使算法产生震荡现象。

3.2 局部极小点问题

在一些初始权值的条件下,BP算法在训练过程中会陷入局部极值。这是由于BP网络采用最速下降法,误差曲面非常复杂且分布着许多局部极值点,一旦陷入,BP算法就很难逃脱,进而会使BP网络的训练停止。算法可以在某处得到一个收敛值,但是并不能确定取到了误差曲面的最小值。这样就会使网络难以达到事先规定的误差精度[5]。

3.3 网络瘫痪问题

在算法的学习训练过程中,网络的权值会变得很大,从而使得节点的输入变大,这就会导致其激活函数的导函数在改点取得的值很小,接着会导致算法的训练速度变得极低,最终会导致BP网络停止收敛,网络瘫痪。

3.4 步长问题

BP的收敛是建立在无穷小权修改量的基础上,而这就意味着网络所需要的训练时间是无穷的,这显然是不可取的。因此,要限定权值修改量的值。这主要是因为,如果步长太小,那么网络的收敛速度就会下降,如果步长太大,就会使BP神经网络产生瘫痪和振荡。学者们经过研究提出一个较好的方法,就是用自适应的步长代替原来的定值步长,以使权值修改量随着BP网络的训练而不断变化[6]。

4 改进BP算法的方法

BP算法应用广泛,但它又存在很多缺陷,针对BP算法的问题,国内外许多学者提出各种改进方法,主要的改进方法分为两类:一是启发式改进,如附加动量法和自适应学习率等;二是结合新理论的改进。这些方法在不同程度上提高了网络的收敛速度,避免了局部最小问题。

4.1 启发式改进方法

启发式改进方法是建立在BP网络梯度下降规则的基础上,通过对BP神经网络的权值和学习率的改进,从而解决BP网络在学习训练过程中遇到的问题。它的核心思想是:使权重的调整量最大限度的适应误差下降的要求。该文主要介绍了附加动量法。

传统的BP算法实际上是运用最速下降规则来搜索最优点的算法,该规则是顺着梯度的反方向进行权值的修正,并不将前一阶段积累的经验考虑进来。因此会在训练过程中发生震荡,导致收敛速度缓慢。但是将动量项引入到BP网络中后,当输入样本依照顺序输入时,则可以将权值的修正公式看作为以t为变量的时间序列,那么权值的修改公式就改变为如下所示:

[Δwn=-ηt=0nan-1?Et?Wt]

加入动量项以后若本次[?Et?Wt]与前一次同号时,则加权和增大,使[Δwn]增大;当[?Et?Wt]与上一次符号相反时,说明算法存在一定的震荡,此时指数加权和减小,使[Δwn]减小[7]。

4.2 BP网络结构的优化

在BP算法中,输入和输出节点的个数由实际问题确定,网络结构的优化主要是针对隐藏层的节点数和层数。许多研究表明,一个隐藏层就可以解决各种分类问题。那么对于隐藏层节点的个数的确定,有的学者给出了公式[NH=NI+NO+L](其中[NH]表示隐藏层节点数,[NI]表示输入层节点数,[NO]表示输出层节点数),但是公式缺乏一定的理论支持,所以目前最好的方法是通过经验和在学习训练过程中不断的调整隐藏层节点数,最后得到一个合适的网络结构。

4.3 基于新理论的算法改进

随着对BP网络结构知识的研究,能够更加深刻的理解BP算法误差传递的本质。出现了许多基于新兴理论的BP算法的改进,这种改进方式是结合了其它领域比较成功的优化算法和理论,比如将遗传算法与BP算法相结合,将遗传算法高效的全局寻优能力引入进来,利用GA算法来优化BP算法的权值和阈值,解决BP神经网络存在容易陷入局部极值和收敛速度慢的问题,两种算法的结合实现了各自优势的互补,取得了良好的效果[8];将粒子群优化算法用于BP神经网络的学习训练,使算法更容易找到全局最优解,具有更好的收敛性[9]。很多研究者还将BP算法与模糊数学理论、小波理论、混沌算法等相结合。这些改进使得BP神经网络得到更进一步的应用。

5 小结

BP算法是目前在神经网络学习算法中得到最广泛应用的。该文总结了BP算法的原理,针对BP算法中出现的问题,虽然给出了BP算法的改进方法,但还是有很多不足之处。随着科学日新月异的发展,各种新的优化算法不断的提出,BP算法也会得到更广泛的发展。

参考文献:

[1] 胡彩萍.基于BP神经网络的排序评价算法研究及应用[D].南昌:江西师范大学硕士学位论文,2009.

[2] 刘翔.BP算法的改进及其应用[D].太原:太原理工大学硕士学位论文,2012.

[3] 张璐璐.基于遗传神经网络的人民币识别方法研究[D].长春:吉林大学硕士学位论文,2009.

[4] 张波.DRP决策支持系统及小波网络在其中的应用[D].成都:四川大学硕士学位论文,2006.

[5]付海兵,曾黄麟.BP神经网络的算法及改进[J].中国西部科技,2012,11(8):1671-6396.

[6] 周羽.红外图像人脸识别研究[D].大连:大连理工大学硕士学位论文,2007.

第4篇:bp神经网络范文

关键词:BP神经网络;学习率;改进算法

反向传播BP(back propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一[1]。BP算法的思想是,学习过程由信号的正向传播与误差的反向传播两个过程组成。正向传播时,输入样本从输入层传入,经各隐层逐层处理后,传向输出层。若输出层的实际输出与期望的输出不符合,则转入误差的反向传播阶段。误差反传是将输出误差以某种形式通过隐层向输入层反传,并将误差分摊给各层的所有单元,从而获得各层单元的误差信号,此误差信号即作为修正各单元权值的依据。这种信号正向传播与误差反向传播的各层权值调整过程,是周而复始地进行的。权值不断调整的过程,也就是网络的学习训练过程。此过程一直进行到网络输出的误差减少到可以接受的程度或进行到预先设定的学习次数为止[2]。

1 BP标准神经网络算法分析

1.1 BP算法存在的不足及原因分析

标准的BP算法因其简单、易行、计算量小、并行性强等优点,是目前神经网络训练采用最多也是最为成熟的训练算法之一。与早期的人工神经网络模型相比,BP反向传播神经网络无论是在网络理论还是网络性能方面都更加成熟,起最突出的优点就是具有很强的非线性映射能力。但人们在使用过程中发现BP算法也存在着训练时间长、收敛速度慢、易陷入局部最小点等缺陷。

1.1.1 学习算法的收敛速度慢

BP神经网络学习训练次数过多,导致学习训练过程过长,学习收敛速度太慢,即使一个比较简单的问题,也需要几百次甚至上千次的学习才收敛。

1.1.2 隐含层层数及节点数的选取缺乏理论指导。

BP神经网络隐含层的层数以及节点数的选取,目前尚无理论上的指导,大多根据经验确定。因此网络往往具有很大的冗余性,无形中增加了学习的时间。

1.1.3 训练时学习新样本有遗忘旧样本的趋势

BP神经网络的学习与记忆具有不稳定性。当给一个训练结束的BP神经网络提供新的记忆模式时,会破坏已经调整完毕的网络连接权值,导致已经记忆的学习模式信息消失。

2 改进的BP神经网络学习算法

2.1 学习方法的改进

对于标准的BP算法,由于其自身存在的缺点,BP算法的研究提出了一些的改进算法,如自适应调节学习率[3],引入兜度因子[4],使用双曲正切函数[5],但是都没有取得非常理想的效果,对此我们可以采用以下的算法来解决问题。

2.1.1 加入动量项

反向传播算法提供使用最速下降方法在权空间计算得到的轨迹的一种近似。我们使用的学习率参数η越小,从一次迭代到下一次迭代的网络突触权值的变化量越小,轨迹在权值空间越光滑。我们可以设想使用一下的方法来解决这个问题。

ΔWji(n)=αΔWji(n-1)+ηδj(n)yi(n) (1)

α是动量常数,通常是整数。

为了看出动量常数在一系列模式呈现上对突触权值的影响,我们将(1)式重新写成带下标t的一个时间系列。索引t从初始时间0到当前时间n,式(1)可被视为权值修正量ΔWji(n)的一阶差分方程。解这个关于ΔWji(n)的方程得到

这代表一个长度为n+1的时间序列,并且我们可以知道δj(n)yi(n)等于- 因此我们可以把公式(2)重写等等价形式

当前修正值ΔWji(n)代表指数加权的时间序列的和。欲使时间序列收敛,动量常数α必须限制在0和1之间。当α等于0,反向传播算法运行起来没有动量。虽然在实际中动量常数α不大可能是负的,但是还有可正可负。

当偏导数 在连续迭代中有相同的代数符号,指数加权和ΔWji(n)在数量上增加,所以权值ΔWji(n)被大幅度调整。在反向传播算法中包含动量趋于在稳定的下降方向上加速下降。

当偏导数 在连续迭代中有相反的代数符号,指数加权和ΔWji(n)在数量上减少,所以权值ΔWji(n)调整不大。在反向传播算法中包含动量具有稳定符号正负摆动方向的效果。

3 仿真实验

根据以上的算法,我们对标准的BP算法和改进的BP算法进行仿真计算,仿真计算的结果如表1所示。

可以看出改进后得算法能减少迭代次数,减少实际误差。

4 结论

从大量的实际应用来看,收敛速率慢,学习时间长,产生振荡,甚至达不到收敛精度是常规BP算法的主要缺陷,通过对BP算法的改进,增加动量项,可以减少BP算法的迭代次数,减少误差,提高BP算法的工作效率。

[参考文献]

[1]Adaboost算法改进BP神经网络预测研究[J].计算机工程与科学,2013年8月.

[2]韩立群.人工神经网络教程[M].北京:人民邮电出版社,2007年7月.

[3]马锐.人工神经网络原理[M].北京:机械工业出版社,2010年9月.

第5篇:bp神经网络范文

关键词:BP神经网络; 模糊矩阵; 教学评价

中图分类号:TP183 文献标识码:A文章编号:2095-2163(2013)06-0060-03

0引言

教师教学效果的审核评定是高校教学中的重要工作。传统的考核方法或者只是由学生填写调查表,给教师划分等级,进行定性描述,或者是由督导组根据几堂课的听评给教师的课堂教学打出一个分值。无论是哪种方法都不能全面客观地对教学工作做出科学评定。而且传统的考核方法受主观因素影响较大,学生在对教师的评判中常会加入多种因素,各种因素之间的影响也各不相同,仅以学生或仅凭督导团的评定来实施评判显然已不尽合理。因此, 建立一种能尽量排除各种主观因素的干扰,同时又具有完善且稳定的评价体系的评定方法则成为必要和重要的研究课题。

本文构建一种教学效果评价体系,即对教师的评价从“教学态度”、“教学内容”、“教授方法”、“课堂效果”四大方面分项进行,无论是学生还是督导组均可据此评价体系给出相应评分。本文提出使用BP反向传播神经网络来构建一个稳定的评分系统,各项评分指标为网络输入,使用已训练完成的BP神经网络来模拟一个专家的打分经验,由此输出一个终值。BP神经网络通常是指基于误差反向传播算法的多层前向神经网络,由于BP网络的神经元采用的传递函数是Sigmoid型可微函数,因而可以实现输入和输出间的任意非线性映射[1]。由于BP神经网络本身就是一种高度复杂的非线性动力系统的辨识模型,并且BP神经网络具有逼近任意非线性函数的能力[2],因此使用BP神经网络进行评价将使结果更具客观性,以此来模拟一个稳定的评分系统亦将具备了现实实现基础。在本文提出的系统中,系统将评价体系中各组评分的分值作为反向传播神经网络的输入,使用BP网络运算后得出一个综合性的评分,即整个过程好似系统模拟一个经验颇丰的专家进行打分。其后,本文又通过数据测试验证了模型的评价结果与实际相符。

1BP神经网络模型

BP(Back Propagation)神经网络是基于误差反向传播的多层前向神经网络,即权值和阈值的调节规则采用了误差反向传播算法,这是一个有导师的神经元网络学习算法[2]。BP网络能学习和存储大量的输入输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。该网络的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。其中的隐层可扩展为多层。只要在隐层中有足够数量的神经元,就可使用这种网络来逼近任何一个函数[3]。一个典型的BP网络结构如图1所示。

2评价模型的构建

本文构建了一套评价体系,使用一套客观标准进行量化表达,且该体系适用于大多数学校的教学评价。评价项目中,各项指标的取值范围为[0,10]。多位专家将根据评价体系方案为每一位参评教师填表打分,经过汇总后,每一个教师的教学情况评分将和一个评价矩阵A对应。列向量x为各个项目指标,行向量e为各位专家评出的各项指标分值。对列向量进行均值计算,则得到各个教师的教学效果指标向量S。所得教学效果指标向量S即是神经网络的输入。评价体系方案设计如表1所示。

表1教师教学评价体系

Tab.1 The system of teaching evaluation类别项目教学态度严谨负责x0; 思想教育x1;教学内容教学目标x2; 准确度x3; 熟练程度x4; 信息量x5;教授方法启发思维x6; 讲授思路x7;重点难点x8;联系实际x9;教学仪态x11;语言表述x12;媒体使用x14课堂效果课堂纪律x15;学生思维x16 图2则为一个由6名专家给出的某位教师教学效果的评分矩阵。

3BP网络模型的设计与实现

使用BP神经网络可以构建稳定的评分系统。人为打分时由于主观因素的影响,分值出入较大,往往不能准确地反映实际情况,为了避免对同一教师的教学评价出现较大反差,构建一个稳定的BP神经网络系统即已成为实践发展过程中的一个必然要求。在系统实现过程中,一位专家首先根据本文提出的评分系统给出各项成绩,并将此成绩作为神经网络的输入值。其后,这位专家再给出一个综合评分,作为神经网络的样本,即输出值,以此即可对BP网络进行训练。训练后的神经网络就可以模拟该专家的打分经验,由此构建形成一个稳定的评分系统。

根据BP神经网络模型的定理(Kolmogrov 定理):给定任一连续函数f:[0,1]nRn,f可以用一个三层前向神经网络来模拟实现。第一层,即输入层,有n个神经元;中间层,神经元个数可由经验公式实验得出;第三层,输出层有m个神经元。因此一个三层结构的、设有Sigmoid神经元,并具有足够隐节点的BP神经网络则可以逼近任何一个连续函数。本系统采用有三层结构的BP神经网络,其结构如图1所示。由于评价体系中有17个指标,因此网络的输入层有17个输入。系统的输出层则确定为1个节点。隐层神经元个数将根据实验结果而确定为11个。隐层传递函数可使用“lognsig”对数传递函数实现,输出层传递函数使用“pureline”纯线性传递函数实现。训练函数则使用“traingdm”动量梯度下降反向传播法对网络进行训练,另外,网络性能函数使用了默认的“mse”均方误差函数。MATLAB中的主要代码如下:

设有10位教师需要评分,因而使用10组分数即17×10的矩阵作为10个教师的教学效果矩阵。教学效果矩阵即是神经网络的输入矩阵,亦是训练样本,矩阵的行向量为各项评价指标,10个样本,即10位教师的最终评价结果则作为目标样本来训练神经网络,获取1×10矩阵为目标矩阵,即10位教师的最终得分。实验中运用Matlab编程建立三层BP神经网络,目标训练误差为0.1,最大训练次数为 3 000次。训练误差随训练次数的变化情况如图3所示,神经网络经过909步迭代达到精度要求。对应输出与目标的误差如图4所示。

训练样本的输出与专家打分结果比较如表2所示。

由表2可以看出,训练后的网络输出值与专家给出的终值之间的差异均在可接受的指标范围内,因此采用BP神经网络可以构建稳定的评分系统。

4结束语

在对教师教学效果的评价中存在着多种因素,本文构建了一套较为合理的评价体系,并且提出使用BP神经网络对专家评分进行模拟,利用神经网络可避免打分过程中出现的宽严不定的情况。实验证明,BP神经网络可以构建稳定的评分系统,并取得了良好的实验效果。

参考文献:

[1]许东. 吴铮. 基于Matlab 的系统分析与设计—神经网络[M]. 西安:西安电子科技大学出版社,2003:18-19.

[2]胡守仁. 神经网络导论[M] . 长沙:国防科技大学出版社,1993 :113 - 120.

[3]Martin T. Hagan, Howard B.demuth. 神经网络设计[M]. 北京:机械工业出版社 ,2002:227-255.

[4]郭齐胜. 系统建模原理方法[M]. 长沙:国防科技大学出版社,2003:172-173.

[5]袁剑. BP神经网络在学生综合考评中的应用[J]. 福建电脑,2010(6).

第6篇:bp神经网络范文

关键词:BP;神经网络;PID控制器

1 分层调整学习速率的改进BP算法

BP算法本质上是梯度下降法。若要改进BP算法,首先要熟悉了解梯度下降法的原理。

设函数f(x)具有一阶连续导数,假设在x=x*处取得函数极小值,用xk代表在第k次接近极小值点,则在第k+1次接近极小值点为xk+1=xk+λpk,对函数f(x)在xk+1处进行泰勒级数展开:

f(xk+1)=f(xk+λpk)=f(xk)+λ?荦f(xk)Tpk+o(λ)(1-1)

上式中?荦f(xk)为函数f(x)在xk处的梯度,当λ取得非常小的值时,o(λ)为λ的高阶无穷小。如果有

?荦f(xk)Tpk<0 (1-2)

能推出

f(xk+λpk)<f(xk) (1-3)

这就表明在第k+1次迭代时的函数值小于第k次迭代的函数值。为了使?荦f(xk)Tpk取得最小值,对其求模变化:

?荦f(xk)Tpk=||?荦f(xk)||・||pk||・cosθ (1-4)

上式中,θ为向量?荦f(xk)与pk的夹角。

假设||pk||为固定值,当θ=0时,即向量?荦f(xk)与pk同向,则cosθ=1,?荦f(xk)Tpk取得最大值;反之,当θ=180时,即向量?荦f(xk)与pk反向,则cosθ=-1,?荦f(xk)Tpk<0,所以向量pk的正方向就是梯度的负方向。沿其负梯度方向进行搜索能够使f(x)函数值减小的速率加快,能够快速地找到极小点。

根据式(1-1)可知,λ作为梯度?荦f(xk)与向量pk的系数,称为步长,同时影响着网络在负梯度方向上的搜索能力。选取最佳步长的计算公式如下:

λk=(1-5)

把求得最佳步长代入式(1-3)得

f(xk-λkpk)<f(xk) (1-6)

我们在最佳步长的计算中能够发现,公式(1-5)的计算增加了网络计算量,可以通过使用学习速率η替代步长来降低计算量。在文章中我们提出了一种分层调整学习速率的方法,它能够同时调整输入层与隐含层及隐含层与输出层之间的网络连接权值的学习速率。

设定网络的学习速率η为一个较小的值,当满足f(xk-λkpk)<f(xk)条件时,则学习速率的改变趋势为:

η?坩2η (1-7)

当满足f(xk-λkpk)>f(xk)条件时,则学习速率的改变趋势为:

η?坩0.5η (1-8)

2 以改进的BP神经网络参数为基础的自整定PID控制器

相比较其他而言,BP神经网络主要优胜点在于能够将网络连接权值不断代入计算来修正误差,使之可以不断接近适应度函数。学习算法的实现难度比较小,所以在构建PID控制器时,用BP网络结构来构建是比较常见的。以BP算法为基础的神经网络能够通过自学及自适应能力找到一组最优PID参数,使系统的性能达到最优。

①常规的PID控制器:闭环控制被控对象,在线整定KP、KI、KD参数;

②BP神经网络:BP神经网络通过自学习和自适应能力不断更新整定网络的连接权值,通过不断整定使输出值极限接近目标值。当输出值为KP、KI、KD时,系统的性能为最佳。

假定BP神经网络优化PID控制器是一个由三层网络构成的,且其输入层节点有M个,隐含层节点Q个、输出层节点3个。

输出节电输出对应KP、KI、KD可调参数值,隐含层的激发函数可以取Sigmoid函数,可正可负。然而输出层的激发函数为非负。

BP神经网络输入层节点的输出为

公式中,g′(x)=g(x)・(1-g(x)),f′(x)=(1-f2(x))/2。

以改进的BP神经网络为基础的PID控制器算法:

一是对BP神经网络的结构进行明确,在明确了网络结构的同时也就明确了输出层及隐含层的节点个数。并对各层的(0)初始化,k=1;

二是为计算e(k)=r(k)-y(k),可以通过样本采集得到的r(k)及y(k)代入计算;

三是在将r(i),y(i),u(i-1),e(i)(i=k,k-1,...,k-p)输入到神经网络之前进行统一化处理;

四是通过式(2-2)和(2-3)将各层神经元的输入输出计算出来,输出层输出的数据就是PID控制器的KP(k)、K1(k)、KD(k);

五是PID的控制输出u(k)可以由式u(t)=KP[e(t)]得到;

六是当所有网络权值刷新一次之后,若误差e(k+1)满足e(k+1)<

e(k),那么按照式(1-7)对其学习速率增大,当误差不再变化时,此时记录连接权值。若误差e(k+1)满足e(k+1)>e(k),那么按照式(1-8)对其学习速率减小,当误差减小时,记录连接权值

七是将k赋值为k+1,返回第二步。

3 改进的BP神经网络PID仿真

将被控对象假定为:

网络结构采用4-5-3结构,输入信号为γ(k)=1.0,此信号是阶跃信号。网络结构中的4代表输入层有四个输入,为给定输入r(k)、

e(k)=r(k)-y(k)、y(k)和1。网络结构中的3代表输出层有三个参数,为KP、KI、KD。η=0.01,加权系数初值在[-1,1]区间内随机赋值。经过仿真得到的曲线图如图1和图2所示。

图1 单位阶跃响应曲线图

图2 误差变化曲线

被控对象是二阶的,所以阶跃响应曲线以正弦的方式衰减,并在系统稳定水平线上下振荡。从图1和图2可以看出,刚启动时系统振荡幅度较大,误差也比较大,系统在0.2s左右时振荡幅度变小,误差也迅速变小,在0.3s之后系统达到稳定运行,误差几近于0。由图可知在单位阶跃响应中改进的BP神经网络相较BP神经网络而言,超调量小,收敛速度快。

4 总结

提出了一种分层调整学习速率的BP神经网络改进方法,并把改进的方法与传统的PID结合。并基于MATLAB平台建立了模型进行仿真验证,仿真结果验证了改进的BP神经网络PID具有更快的响应速度、更高的精度,且稳定性更强。

参考文献:

[1]李楠.基于神经网络直流无刷电机控制策略的研究[D].兰州理工大学,2005.

[2]黄家圣.人工神经网络在无刷直流电动机中的应用研究[D].上海海事大学,2005.

[3]王国玲,李振宇,范自道.无刷直流电机自适应模糊PID控制系统[J].机电工程技术,2013(2):30~33.

第7篇:bp神经网络范文

【关键字】 灰色理论 BP神经网络 预测模型

一、引言

随着大数据时代的到来,BP神经网络预测模型已成为学术界研究的热点,并应用到多领域中。BP神经网络具有很好的非线性逼近以及自学习的能力,可高精度拟合预测值,但是,由于很多系统存在不确定性,传统的BP神经网络将原始时间序列直接作为输入值,而原始时间序列中具有很大的随机性和不确定性,使得神经网络在预测结果中,存在较大偏差。解决此问题的有效方法是将原始时间序列经过灰色理论进行白化处理,过滤掉数列中的不确定性和随机性等灰色特性,再将白化处理后的结果作为BP神经网络的输入。

二、灰色预测理论研究

根据研究对象的特性可将其分为白、灰、黑三类,该分类取决于研究者对系统信息的掌握程度,是基于认识程度而言,具有相对性。其中白色系统信息完全明确,黑色系统信息完全缺乏,而灰色系统是介于白色系统和黑色系统之间,其信息具有不充分、不完全的特性。灰色预测为灰色系统最典型的应用,在样本数据量较少、预测结果具有一定的随机性时,灰色理论是应用最为广泛的,克服了系统周期短和数据不足的矛盾。对于样本少、贫信息的不确定性系统[1]而言,由于原始数据毫无规律可循,因此灰色理论首先将原始时间序列进行累加,使其具有递增规律,然后对其进行拟合,最终将累加数据进行还原。其具体原理如下所示:设原始时间序列为累加为时间序列为,累加后是单调不减时间序列,可见,一般累加可将非负的任意无规律数列转换为单调不减数列。根据该时间序列,建立白化方程并得到方程的解。所得即为的估计值,但是由原始数列累加变换所得,因此,还需对估计值进行累减处理,最终即为所求预测值。

三、BP神经网络理论研究

BP神经网络是一种具有连续传递函数的前馈神经网络,其训练方法是误差反向传播算法,常用的为梯度下降法[2]。以均方误差最小化为目标不断修改网络权值和阈值,最终能高精度地拟合数据。BP神经网络模型结构分为三层,第一层为输入层,输入值为预测系统的主要影响因素的定量值;第二层为隐含层,每个神经网络模型至少包含一个隐含层,为了计算方便,本论文中采用一个隐含层进行预测;第三层为输出层,输出即为系统的预测结果,输出可为一个或多个,本文采用一个输出模式。设输入层的输入值为,隐含层的神经元值为,输出层的神经元值为。输入层神经元与隐含层神经元的权值为,隐含层神经元与输出层神经元的权值为。隐含层神经元的阈值为,激发函数为,输出层神经元的阈值为,激发函数为。在神经网络进行训练时,分为两个方向:信息正向传递和误差反向传播。在信息正向传递的过程中,隐含层每个神经元通过该神经元的阈值、其与输入层各神经元的权值及输入层各神经元本身的值的结合,在本层激励函数的作用下取得。神经网络经过以上的正向信息传递,将M维向量的N个样本数据作为输入,计算出隐含层神经元的值,最后计算出实际输出值。利用其与期望输出值T可计算出均方误差。将所得MSE沿原来正向信息传递的路径逐层反向传递,依据输出的MSE计算出各层的,并将作为依据,更新各连接的阈值和权值,此时误差反向传递完毕。网络模型反复进行信息正向传递和误差反向传递着两个过程,直到MSE达到标准或小于标准ε。

四、灰色神经网络预测模型的建立

由于灰色系统具有明显的不确定性,因此用灰色模型先将原始输入数据进行累加,使其具有明显的指数特性,并对其进行白化即用微分方程对其进行拟合预测。对于有N个参数的灰色神经网络的微分方程为:

其中,xi(1)(i=2,3,...,N)为系统输入值,xi(1)为系统输出值。记微分方程系数为

将GM(1,N)的输出值作为神经网络的输入值,即可得到灰色神经网络模型。

总结和展望:由于现实世界中的系统很多属于灰色系统,在对未来数据的预测过程中,仅凭传统的BP神经网络预测存在很大的偏差。而本文提出的灰色神经网络预测模型可以有效地过滤系统中的灰色特性,并充分发挥灰色理论和BP神经网络各自的优势,二者取长补短,使得最终对灰色系统的预测更加准确。但值得注意的是在神经网络预测的过程中,采用的梯度下降法只能找到局部最有值[3],无法准确获取全局最优。可在以后的预测模型研究中考虑加入遗传算法等对此模型进行优化。

参 考 文 献

[1] 刘金英. 灰色预测理论与评价方法在水环境中的应用研究[D].吉林大学,2004.

第8篇:bp神经网络范文

一、BP学习算法

由于BP神经网络(Back-Propagation Neural Network)具有非线性、鲁棒性和并行性等突出的特点,适用于解决非线性的复杂系统问题。BP神经网络有一个比较实用和有效的训练方法,为工程应用创造了条件。BP神经网络是一个多层网络,图1是一个具有三层神经元结构的BP网络,最左层称为输入层,中间层称为隐含层,最右层称为输出层。

输入层与隐层间权值为wki,阈值为bk,隐层与输出层间权值为wjk,阀值为bj。隐层和输出层的输出分别为:

q为输出层神经元个数,Tpj为期望输出。

BP神经网络的学习算法如下:1、构造学习训练模式。对P和T给出输入、输出样本;2、网络状态初始化。用随机化方法将两个权重矩阵wki、wjk两个偏差矩阵bk、bj设置初始值;3、将P的值送到输入层神经元,通过连接权重矩阵ωki送到隐含层神经元,按公式(1)计算隐含层神经元输出值;4、按公式(2)计算输出层神经元的输出值;5、按公式(3)计算输出层神经元的一般化误差;6、调整隐含层到输出层的连接权重:Δwjk=ηejopk,η是学习率;7、调整输入层到隐含层的连接权重:Δwki=ηekopi神经元的误差等于所有与该神经元相连的神经元的输出端误差乘以对应的权值并求和;8、调整输出层神经元的偏差:Δbj=ηej;9、调整隐含层神经元的偏差:Δbi=ηek;10、重复第3步至第9步的内容,误差ej(j=1,2,…,q)变得足够小为止。

为了减少迭代次数,加快收敛,常采取学习率的自适应调整、增加权重动量项及初始权值与偏差值随机化的组合方法。如果将遗传算法与BP神经网络结合起来,得到一种混合算法。此算法首先用遗传算法对神经网络的参数进行优化,得到一个权值范围,再用BP算法在这个小空间范围内搜索出最优解。用遗传算法修正网络参数,代替了直接用梯度法求网络参数的方法,提高了算法的搜索效率。遗传算法不仅能对网络参数进行优化,还能对网络结构和网络输出进行优化。

二、设备预测维修

1、预测维修流程。预测维修以量化点检为基础,利用设备状态监测等数据,充分考虑专家知识,选择BP神经网络算法,选取大量的维修样本对系统进行训练,使其掌握从已知设备状态参数来确定维修策略的知识,据此对未来设备状态和故障发生时间等进行预测。维修流程如图2所示。

2、时间序列预测。时间序列预测是根据过去的一组观测值序列,找出符合发生故障的变化函数。然而,由于受到多种因素的影响,系统的发展变化是高度非线性的,很难直接找到描述设备故障规律的函数。BP神经网络具有高度自学习能力,可以任意逼近非线性函数,因此,BP神经网络适合模拟复杂的非线性系统。

假设某个时间序列为{xn},则预测可用下式表示:

xn+k=f(x1,x2,…,xn)

用BP神经网络拟合函数f,网络有x1,x2,…,xm个输入和一个输出。将发生故障的观测时间值序列化得到一组输入样本:

x=[x1,x2,…,xm]T=[序列1,序列2 ,…, 序列n-m+1]T。

进行网络训练,输出预测时间值,即设备发生故障的未来时间。因此,通过对时间序列的预测,可以进行趋势分析。

3、状态预测。设备工作状态与设备的振动、温度、服役期、维修次数等技术参数和工作环境有关。状态预测是根据设备的点检记录和状态监测,运用BP神经网络方法预测设备未来工作状态,决定设备是否需要维修及进行怎样的维修?需要多少维修费用?

将影响设备维修决策的8个主要因素作为输入单元x, x=[x1,x2,…,x8]T=[振动,温度,压力,点检,湿度,噪声,服役期,维修费]T,取值为各因素的隶属度。输出层是设备管理者关注的设备状态、维修类别、更换零部件数量及维修费用等输出信息。为了简化计算,选择两个输出,即

y=[y1,y2]T=[设备状态,维修类别]T

隐层结点数选择如下公式计算:

式中s为样本数,取s=60,i为输入层结点数,i=8,k为隐层结点数,由此式计算出的最小k=6。

三、实例分析

本例对某大型钢铁企业的直流电机工作状态进行计算分析,预测其工作状态并与专家分析、经济大修模型和模糊聚类法方法加以比较。选取60组样本,对样本数据进行预处理,用BP神经网络算法在Matlab中对网络进行训练,得到权值及偏差值。图3是网络计算的收敛曲线。

选择9组检验样本,从计算输出得到的设备工作状态可以看出,3种方法的决策与专家分析作比较,正确率分别为56%、90%和100%。由此可见,BP神经网络方法是行之有效的。

四、结论

临近大修的设备存在混沌特征,因此,一般的预测方法难以对混沌的动力学行为进行较好的描述。混沌系统的长期行为具有不可预测性,但对于短期行为,只要延迟时间充分大,就可以用设备运行状态的振动时间序列重构相空间,并通过对分形维数和李氏指数的研究,建立相空间的预测模式,从而对临修设备的维修时间进行预报。目前常用的预测模式有相空间线性模式、相空间非线性模式、李雅普诺夫指数模式和混沌神经网络模式等。进一步的研究将混沌理论与神经网络结合用于设备预测维修。

*基金项目:湖北省自然科学基金(2004ABA004),本文为湖北省教育厅科学技术研究重点资助项目(2004D020)阶段性研究成果。

第9篇:bp神经网络范文

【关键词】BP神经网络模型; 煤相; 训练; 预测

煤相最早是由前苏联学者热姆丘日尼科夫于1951年提出的,定义为煤的原始成因类型即一定泥炭沼泽环境下形成的煤成因类型和煤岩类型[1]。应用煤相分析实现煤层气潜力评价和生气有利带预测已成为煤层气勘探开发中十分重要的方法,然而成煤环境中不同的层位(纵向上)和不同地区(平面上)的煤相特征存在明显差异,野外露头观察、薄片分析等地质方法工作量巨大,而传统数学归纳统计方法又很难准确描述,因此寻找到一种高效、准确的方法成为亟待解决的问题。

1 煤相分析参数及类型划分

1.1 煤相分析参数

不同煤相反映出泥炭沼泽的覆水深度水介质的酸度氧化还原电位堆积方式和成煤植物种类等成煤环境的不同,可通过凝胶化指数(GI)、植物保存指数(TPI)、镜惰比(V/I)、流动性指数(MI)和森林指数(WI)五个煤岩学参数反映。

凝胶化指数GI反映泥炭沼泽的覆水程度,高值表明环境相对潮湿,低值则相对干燥,一般以4为界。

植物保存系数TPI是古代植物遗体遭受微生物降解程度的反映,在一定程度上反映PH的高低。

一般镜惰比(V/I)是成煤泥炭遭受氧化程度的参数,小于1.0反映成煤泥炭层暴露于氧化环境。

流动性指数MI是水流动介质和相对停滞介质的比值,可以反映成煤环境水体的流动性,一般大于0.4表明为流动相。

森林指数WI反映了成煤环境的森林情况,大于0.5表示为森林沼泽[2]。

1.2 煤相类型划分

根据成煤环境中煤相参数的划分依据,结合实际沉积环境的沉积相分析研究,将煤相特征划分为如下三类:干燥泥炭沼泽、森林泥炭沼泽和活水泥炭沼泽。

干燥泥炭沼泽类型反映高位干燥森林沼泽,包括潜水条件或者水下短时间干燥的氧化沼泽,该煤相广泛发育于辫状河三角洲等沉积环境。

森林泥炭沼泽体现极为潮湿、覆水较深的森林面貌,植物遗体遭受分解破坏弱,水流活动差,该煤相广泛发育于上三角洲平原等沉积环境。

活水泥炭沼泽反映处于流动的水动力条件,微生物活动强烈,强覆水的沼泽泥炭环境,该煤相广泛发育于三角洲间湾等沉积环境[3]。

其中在森林泥炭沼泽相发育地带,煤层厚度大且分布稳定,是煤层气生成有利地带,同样,煤储层物性也发育良好,有利于煤层气聚集成藏地带。

2 BP神经网络概述

BP神经网络(Back-Propagation Neural Networks)是一种典型的多层神经网络,由输入层、中间层和输出层组成,其学习过程包括正向传播和反向传播两部分,在正向传播中,信号从输入神经元传入,传播到各隐层神经元,经过激活函数输出,传播到输出层;判断误差函数的最小值,如果达不到所要求的精度,则自动转入反向传播,通过修改学习率、学习步长等参数,调整输出层与隐层、隐层与输入层之间的连接权值,重新进行正向传播,反复训练,直到误差函数达到所要求的精度为止,此时网络模型自动将各层连接权值加以保存,用于对未训练样本值进行预测[4-5](图1)。

图1 BP神经网络示意图

Fig.1 Back-Propagation Neural Networks

BP神经网络模型中输入层节点和输出层节点根据需要求解的问题、数据而定,隐层数一般在1到3之间,隐层节点数目前只能根据经验公式获得,根据Komogorov理论,一个具有n 个节点输入层,隐层节点数为2n+1。

输入层各节点数据的量纲差异往往对网络训练和预测结果会产生影响,,因此首先要对数据进行归一化处理,使数据经过归一化后全部分布在[0,1]区间内。数据标准化处理有如下几种:

(1)X’(i)=,(2)X’(i)=,(3)X’(i)=,本文采用方法(3)。

3 使用BP神经网络算法进行煤相预测

图2 学习次数与误差分析关系图

Fig.2 Learning times and error analysis

3.1 BP神经网络模型建立

选取凝胶化指数(GI)、植物保存系数(TPI)、一般镜惰比(V/I)、流动性指数(MI)、森林指数(WI)作为输入层节点变量;输出层划分为三个节点:干燥泥炭沼泽相、活水泥炭沼泽相、森林泥炭沼泽相,分别赋予期望输出值为0.99、0.66和0.33;隐层数设为1,隐层节点数为11;最大误差精度要求在达到10-3数量级,最大训练次数为3500次。此外针对BP神经算法收敛速度慢和易陷入局部极小的缺点,本文选择采用改进的BP神经网络算法,通过加入动量常数,可有效提高运算速度并避免不收敛情况的发生。

3.2 BP神经网络模型训练

选取了西北地区柴达木盆地、鄂尔多斯盆地的不同地区、不同层位的25个样点煤相分析结果作为训练样本 [1],应用专业软件Matlab进行BP神经网络模型训练,通过对学习率、学习步长、动量常数等参数的调整,使误差精度达到了预期要求[6-8],实际的训练次数为1095次,并且没有出现不收敛情况(图2)。

将参与训练的样本代回已经训练好的网络模型进行验证,验证结果表明,训练值与期望值之间的相对误差全部在10%以内,对于网络输出值小于1的神经网络模型,认定训练成功,模型可用于煤相类型的神经网络预测(表1)。

表1 西北地区柴达木盆地、鄂尔多斯盆地的几十个地区的

样点的煤相分析

Tab.1 The coal facies analysis of samples in qaidam basin

and ordos basin

3.3 BP神经网络模型预测

随机选取8个未参与训练的样点,将煤相参数代入已经训练好的网络中,进行网络预测,结果表明8个预测样本全部判别正确,判别效果非常好(表2)。

表2 样本预测及预测结果

Tab.2 Prediction of samples and results

4 结论

4.1 不同煤相反映出泥炭沼泽的覆水深度水介质的酸度氧化还原电位堆积方式和成煤植物种类等成煤环境的不同,通过凝胶化指数、植物保存指数、镜惰比、流动性指数和森林指数五个煤岩学参数量化反映。根据成煤环境中煤相参数的划分依据,将煤相划分为:干燥泥炭沼泽、森林泥炭沼泽和活水泥炭沼泽。

4.2 由于煤相类别与分析参数之间存在着较强的非线性关系,用传统的地质方法和数学归纳方法难以处理,而BP神经网络具有极强的自适应学习能力,能准确刻画出两者之间复杂的非线性关系,通过加入动量常数,则有效地提高了运算速度并避免了不收敛的发生。

4.3 本文将煤相分析参数作为输入层节点,典型煤相类别作为输出层节点,建立了基于BP神经网络的煤相分析预测模型,通过模型训练和预测,BP神经网络预测煤相结果准确,为开展区域上煤相研究提供了高效快速的方法。

【参考文献】

精选范文推荐