公务员期刊网 精选范文 纳米粒的制备技术范文

纳米粒的制备技术精选(九篇)

纳米粒的制备技术

第1篇:纳米粒的制备技术范文

关键词:纳米材料;物理方法;化学方法

1引言

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《nanostructured materials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(bui1ding blocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法?

2.1.1机械法?

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的fe-18cr-9w合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的zno纳米颗粒。

2.1.2气相法?

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50 nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,φ82mm的ge在6gpa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法?

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法?

2.2.1溶胶—凝胶法?

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。stephen等利用高分子加成物(由烷基金属和含n聚合物组成)在溶液中与h2s反应,生成的zns颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。marcus jones等以cdo为原料,通过加入zn(ch?3)?2和s[si(ch?3)?3]?2制得了zns包裹的cdse量子点,颗粒平均粒径为3.3nm,量子产率(quantum yield,qy)为13.8%。

2.2.2离子液法?

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。jiang等以bicl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的bi2s3纳米花。他们认为溶液的ph值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80 nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶bi2s3纳米棒。

2.2.3溶剂热法?

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。lou等采用单源前驱体bi[s?2p(oc?8h??17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系bi?2s?3纳米棒,且该方法适于大规模生产。liu等用bi(no3)3•5h2o、naoh及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72 h制得了长达数毫米的bi2s3纳米带。

2.2.4微乳法?

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm- 800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液

。自那以后,微乳理论的应用研究得到了迅速发展。1982年,boutonnet等人应用微乳法,制备出pt、pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

4结论

纳米材料由于具有特异的光、电、磁、催化等性能,可广泛应用于国防军事和民用工业的各个领域。它不仅在高科技领域有不可替代的作用,也为传统的产业带来生机和活力。随着纳米材料制备技术的不断开发及应用范围的拓展,工业化生产纳米材料必将对传统的化学工业和其它产业产生重大影响。但到目前为止,开发出来的产品较难实现工业化、商品化规模。主要问题是:对控制纳米粒子的形状、粒度及其分布、性能等的研究很不充分;纳米材料的收集、存放,尤其是纳米材料与纳米科技的生物安全性更是急待解决的问题。这些问题的研究和解决将不仅加速纳米材料和纳米科技的应用和开发,而且将极大地丰富和发展材料科学领域的基础理论。

参考文献

[1]lu y,liaw p k,the mechanical properties of nanostructured materials.jom,2001,53(3):31.

[2]gary stix,微观世界里的大科学,科学,2001,(12):18?20.

[3]张璐,姚素薇,张卫国,等.氧化铝纳米线的制备及其形成机理[j].物理化学学报,2005,2(11):1254?1288..

[4]李英品,周晓荃,周慧静,等.纳米结构mno?2的水热合成、晶型及形貌演化[j].高等学校化学学报,2007,28(7):1223?1226..

[5]ledenstoy n n,crystalline growth characteristics,mater prog,1998,35(2?4):289.

[6]王结良,梁国正,纳米制备新技术研究进展[j].河南化工,2003,(10):7?l0.

[7]王林等:纳米材料在一些领域的应用及其前景[j].纳米科技,2005,(4),6?90.

[8]刘建伟,刘有智,超重力技术制备纳米氧化锌的工艺研究[j].化学工程师,2001,(5):21?22.

[9]姚斌,丁炳哲,纳米材料制备研究[j].科学通报,1994,39:1656.

[10]刘海鹏等:纳米技术及其在精细化工中的应用[j].纳米科技,2005,(4),18?20,360.

[11]张万忠,李万雄,纳米材料研究综述[j].湖北农学院学报,2003,23(5):397?340.

[12] takaki s,yatsuya s.nanoparticle produced by sputtering[c]//14th international congress on electron microscopy[j].cancun,mexico:[s.n] 1998:469?470..

[13]杜芳林,崔作林,张志锟,等.纳米铜的制备、结构及催化性能[j].分子催化,1997,18(3):46?48..

[14]魏胜,王朝阳,黄勇,等.蒸发冷凝法制备纳米al粉及其热反应特性研究[j].原子能科学技术,2002,36(4):367?370..

[15]张立德,纳米材料研究简介[j].物理教学,2001,23(1):2?5.

[16]苏品书,超微粒子材料技术[j].湖北:武汉出版社,1989:56.

[17]王泽红等:caso晶须制备技术及应用研究[j].矿冶,2005,(2),38?41.

[18]戴静等:硼酸盐晶须在复合材料中的应用[j].化工矿物与加工,2005,(10),36?38,.

[19]jiang jie,yu shuhong,yao weitang,et al.morphogenesis and crystallization of bi2s3.nanostructures by an ionic liquid?assisted templating route:synthesis,formation mechanism,and properties[j].chem.mater.,2005,17(24):6094?6100..

[20]靳刚:纳米生物技术和纳米医学[j].纳米科技,2005,(3),2?5.

[21]梁勇:纳米微料在医学中的应用[j].中国粉体工业,2005,(3),3?5.

[22]赵荣祥,徐铸德,李赫,等.离子液介质中硫化铋单晶纳米棒制备与表征[j].无机化学学报,2007,23(5):839?843..

[23]刘跃进,李振民,水热法合成云母氧化铁结晶条件[j].化工学报,2004,55(5):20.

[24]张立德,纳米材料与纳米结构[j].北京:化学工业出版社,2000.

[25]顾惕人,朱步瑶等.表面化学[m].北京:科学出版社,1994.

[26]lou wenjing,chen miao,wang xiaobo,et al.novel single?source precursors approach to prepare highly uniform bi2s3 and sb2s3 nanorods via a solvothermal treatment[j].chem.mater.,2007,19(4):872?878..

[27]liu zhaoping,liang jianbo,li shu,et al.synthesis and growth mechanism of bi2s3 nanoribbons[j].chem.eur.j.,2004,10(3):634?640..

[28]陈为亮等:化学还原法制备纳米银粉的研究[j].纳米科技,2005,(4),37?40.

[29]张登松,施利毅,纳米材料制备的若干新进展[j].化学工业与工程技术,2003,24(5):32?36.

[30] zhang weixin,yang zeheng,huang xinmin,et al.low temperature growth of bismuth sulfide nanorods by a hydrothermal method[j].solid state commun.,2001,119(3):143?146..

第2篇:纳米粒的制备技术范文

Abstract: With the characteristics of large surface area, low melting point, nanomaterials has far-reaching significance in materials science. This paper expounds preparation and characteristics of nanomaterials systematically, and makes the prospects for its future application.

关键词: 纳米粒子;纳米材料;制备方法

Key words: nanoparticles;nanomaterials;preparation method

中图分类号:TB3 文献标识码:A 文章编号:1006-4311(2012)24-0021-02

0 引言

纳米技术作为一种最具有市场应用潜力的新兴科学技术,其在短短三十年发展迅猛,已引起一场技术革命。纳米技术包括纳米材料学,纳米工程学等,其中纳米材料学是关键。纳米材料是指结构单元尺寸介于1~100nm范围之间,其和普通材料相比,具有许多优良的特性。而纳米材料的制备是纳米材料学的核心,目前,制备纳米材料的方法众多,归纳起来,无外乎两种,即物理方法和化学方法。

1 纳米粒子的特性

纳米粒子是由数目较少的原子或分子形成,在热力学上是不稳定的,所以被视为一种新的物理状态,是介于宏观物质和微观原子、分子之间的一种状态,使其具有许多奇异的特性,除正在探索的性质以外,已经发现有:

1.1 比表面和表面张力较大

平均粒径为10-100nm的纳米粒子的比表面积可达10-70m2/g,纳米粒子内部会产生很高的压力,造成纳米粒子内部原子间距比块材小,所以表面张力较大。

1.2 纳米粒子的熔点降低

例如块状金的熔点为1063℃,但粒径为2nm的纳米时则金熔点降低到300℃左右,所以可在较低温度时发生烧结和熔融。

1.3 磁性的变化

晶粒的纳米化可使一些抗磁性物质变为顺磁性,如金属Sb通常为抗磁性,而纳米Sb则表现出顺磁性,此外,纳米化后还会出现各种显著的磁效应、巨磁阻效应等。

1.4 物理性质变化

金属纳米粉末一般呈黑色,而且粒径越小,颜色越深,即纳米粒子的吸收光能力越强;当其颗粒尺寸小于50nm时,位错源在通常应力下难以起作用,使得金属强度增大[1]。粒径约为5-7nm的纳米粒子制得的铜和钯纳米固体的硬度和弹性强度比常规金属样品高出5倍。

1.5 纳米离子的导电性增加

研究表明,纳米CaF2的离子电导率比多晶粉末CaF2高约一个数量级,比单晶CaF2高约两个数量级。

此外,纳米粒子还具有化学反应性能高、比热容大,在低温下有良好的热导性,作为催化剂效率高、随着粒度减小,超导临界温度逐渐提高等特点。

2 纳米粒子的制备方法

制备纳米粒子的方法归纳起来,无外乎两种方法,即物理制备方法和化学制备方法,两种方法的本质都是将块状的或者较大颗粒的物质变成颗粒更小的纳米级的粒子。

2.1 物理制备方法

根据物理化学原理,物质的分散度越高,即颗粒越小,其表面吉布斯自由能会越高,此时,形成的颗粒会自发聚集变大,也就是说粉碎到一定程度时就不能再被粉碎。我们可以通过一些物理方法,比如表面活性剂、改变温度压强等方法来制备纳米粒子。

2.1.1 低温低压制备方法 对于由固体物质来制备纳米粒子,可以在低温下进行粉碎,可采用液氮或者干冰来进行温度控制,这种方法缺点:在制备过程中容易引入杂质,并且粒子的颗粒大小难以控制,并且生成的粒子容易发生聚集。

对于由液体物质来制备纳米粒子,可以在低温低压下进行,先将溶液雾化冷冻,再在低温低压下干燥,然后将溶剂生化后得到纳米级尺度粒子。这种方法优点是操作简单,可制的10-50nm的微粒;缺点是一旦形成玻璃态,就无法生华溶剂。

2.1.2 表面活性剂作用下制备 由固体物质来制备 用纯度优于99%的粉状石墨和粉状金属按原子比为1:1的混合粉末,在氩气保护下置于容积为120mL的钢罐中,选用WC球(ф12mm),球与粉的质量比为18:1,然后在行星或球磨机上高能球磨,经过110h后得到粒径约为10nm的纳米粒子。加入表面活性剂作为助磨剂,可以获得力度更小的纳米粒子。该法可以制备高熔点金属碳化物TaC,NbC等。再如,可将颗粒较小的粉末状物质装入不锈钢容器内,再加入乙醇作为表面活性剂,用氮气作为保护气体,在45atm下进行超声波进行粉碎,亦可以得到纳米粒子(0.5μm)。这种方法已制备出SiC等超微粉末,操作简单可靠。

由液体物质来制备其操作步骤主要有:将所要制备物质原料和煤油按照1:1体积比混合,然后在高温条件下(不低于170℃)缓缓加入乳化剂,并在搅拌过程中将溶剂蒸发掉,并且进行干燥,最后经分离,对无水盐类物质进行加热分解即得到纳米级粉末。这种方法,目前已制备出橄榄石型超微纳米粉末。

2.2 化学制备方法

第3篇:纳米粒的制备技术范文

关键词纳米晶块体材料制备非晶晶化机械合金化深过冷

DEVELOPMENTOFBULKMETALNANOMETERMATERIALSPREPARATIONTECHNOLOGIESANDTHEIRESTIMATE

ABSTRACTOnthebasisofthesummarizationofbulkmetalnanocrystallinematerialspreparationmethods,twopotentialtechnologies:supershortfalsecurrentdirectcrystallizationmethodandhighundercoolingdirectcrystallizationmethodareproposed.Intheend,thedevelopmentandapplicationprospectsofvariousmethodsarealsoestimated.

KEYWORDSbulknanometermaterial,preparationofmaterials,crystallizationofamorphousalloys,mechanicalalloying,highundercooling

Correspondent:ZhangZhenzhongNorthwesternPolytechnicalUniversity,StatekeyLaborotryofSolidificationProcessingXi''''an710072

自80年代初德国科学家H.V.Gleiter成功地采用惰性气体凝聚原位加压法制得纯物质的块状纳米材料后[1],纳米材料的研究及其制备技术在近年来引起了世界各国的普遍重视。由于纳料材料具有独特的纳米晶粒及高浓度晶界特征以及由此而产生的小尺寸量子效应和晶界效应,使其表现出一系列与普通多晶体和非晶态固体有本质差别的力学、磁、光、电、声等性能[2],使得对纳米材料的制备、结构、性能及其应用研究成为90年代材料科学研究的热点。为使这种新型材料既有利于理论研究,又能在实际中拓宽其使用范围,探索高质量的三维大尺寸纳米晶体样品的制备技术已成为纳米材料研究的关键之一。本文综述国内外现有块状金属纳米材料的制备技术进展,并提出今后可能成为块状金属纳米材料制备的潜在技术。

1现有块状金属纳米材料的制备技术

1.1惰性气体凝聚原位加压成形法

该法首先由H.V.Gleiter教授提出[1],其装置主要由蒸发源、液氮冷却的纳米微粉收集系统、刮落输运系统及原位加压成形(烧结)系统组成。其制备过程是:在高真空反应室中惰性气体保护下使金属受热升华并在液氮冷镜壁上聚集、凝结为纳米尺寸的超微粒子,刮板将收集器上的纳米微粒刮落进入漏斗并导入模具,在10-6Pa高真空下,加压系统以1~5GPa的压力使纳米粉原位加压(烧结)成块。采用该法已成功地制得Pd、Cu、Fe、Ag、Mg、Sb、Ni3Al、NiAl、TiAl、Fe5Si95等合金的块状纳米材料[3]。近年来,在该装置基础之上,通过改进使金属升华的热源及方式(如采用感应加热、等离子体法、电子束加热法、激光热解法、磁溅射等)以及改良其它装备,可以获得克级到几十克级的纳米晶体样品。纳米超饱和合金、纳米复合材料等也正在利用此法研究之中。目前该法正向多组分、计量控制、多副模具、超高压力方向发展。

该法的特点是适用范围广,微粉表面洁净,有助于纳米材料的理论研究。但工艺设备复杂,产量极低,很难满足性能研究及应用的要求,特别是用这种方法制备的纳米晶体样品存在大量的微孔隙,致密样品密度仅能达金属体积密度的75%~90%,这种微孔隙对纳米材料的结构性能研究及某些性能的提高十分不利。近年来,尽管发展了一些新的纳米粉制备方法如电化学沉积[4]、电火花侵蚀(sparkerosion)[5]等方法,但与这些方法相衔接的纳米粉的分散、表面处理及成型方法尚未得到发展。

1.2机械合金研磨(MA)结合加压成块法

MA法是美国INCO公司于60年代末发展起来的技术。它是一种用来制备具有可控微结构的金属基或陶瓷基复合粉末的高能球磨技术:在干燥的球型装料机内,在高真空Ar2气保护下,通过机械研磨过程中高速运行的硬质钢球与研磨体之间相互碰撞,对粉末粒子反复进行熔结、断裂、再熔结的过程使晶粒不断细化,达到纳米尺寸[6]。然后、纳米粉再采用热挤压、热等静压等技术[7]加压制得块状纳米材料。研究表明,非晶、准晶、纳米晶、超导材料、稀土永磁合金、超塑性合金、金属间化合物、轻金属高比强合金均可通过这一方法合成。

该法合金基体成分不受限制、成本低、产量大、工艺简单,特别是在难熔金属的合金化、非平衡相的生成及开发特殊使用合金等方面显示出较强的活力,该法在国外已进入实用化阶段。如美国INCO公司使用的球磨机直径为2m,长3m,每次可处理约1000kg粉体,这样的球磨机1993年在美国安装有七座,英国安装有二座,大多用来加工薄板、厚板、棒材、管材及其它型材。近年来,该法在我国也获得了广泛的重视。其存在的问题是研磨过程中易产生杂质、污染、氧化及应力,很难得到洁净的纳米晶体界面,对一些基础性的研究工作不利。

1.3非晶晶化法

该法是近年来发展极为迅速的一种新工艺,它是通过控制非晶态固体的晶化动力学过程使晶化的产物为纳米尺寸的晶粒。它通常由非晶态固体的获得和晶化两个过程组成。非晶态固体可通过熔体激冷、高速直流溅射、等离子流雾化、固态反应法等技术制备,最常用的是单辊或双辊旋淬法。由于以上方法只能获得非晶粉末、丝及条带等低维材料,因而还需采用热模压实、热挤压或高温高压烧结等方法合成块状样品[8]。晶化通常采用等温退火方法,近年来还发展了分级退火[9]、脉冲退火[10]、激波诱导[11]等方法。目前,利用该法已制备出Ni、Fe、Co、Pd基等多种合金系列的纳米晶体,也可制备出金属间化合物和单质半导体纳米晶体,并已发展到实用阶段。此法在纳米软磁材料的制备方面应用最为广泛。值得指出的是,国外近年来十分重视块体非晶的制备研究工作,继W.Klement、H.S.Chen、H.W.Kui等采用真空吸铸法及合金射流法制备出Mg-La-TM、La-Al-TM、Zr-Al-TM系非晶块体之后,近几年日本以Inoue为代表的研究小组在非晶三原则指导下,又成功地采用合金射流成形及深过冷与合金射流成形相结合的方法制备了厚度分别为2mm、3mm、12mm、15mm、40mm、72mm的Fe-(Al,Ga)-(P,C,B,Si,Ge)[12]、(Fe,Co,Ni)70Zr8B20Nb2[13]、(Nd,Pr)-Fe-(Al,Ga)[14]、Zr-Al-Cu-Ni[15]、Pd-Cu-Si-B[16]系的非晶块体。我国北京科技大学的何国、陈国良最近也采用合金射流成形法获得8mmZr65Al7.5Cu17.5Ni10[17]的非晶块体,这些研究结果为该法制备及应用块体纳米材料注入了极大生机。

该法的特点是成本低,产量大,界面清洁致密,样品中无微孔隙,晶粒度变化易控制,并有助于研究纳米晶的形成机理及用来检验经典的形核长大理论在快速凝固条件下应用的可能性。其局限性在于依赖于非晶态固体的获得,只适用于非晶形成能力较强的合金系。

1.4高压、高温固相淬火法

该法是将真空电弧炉熔炼的样品置入高压腔体内,加压至数GPa后升温,通过高压抑制原子的长程扩散及晶体的生长速率,从而实现晶粒的纳米化,然后再从高温下固相淬火以保留高温、高压组织。胡壮麒等利用此法已获得4×3(mm)的Cu60Ti40及3×3(mm)的Pd78Cu6Si16晶粒尺寸为10~20(nm)的纳米晶样品[18,19]。该法的特点是工艺简便,界面清洁,能直接制备大块致密的纳米晶。其局限性在于需很高的压力,大块尺寸获得困难,另外在其它合金系中尚无应用研究的报道。

1.5大塑性变形与其它方法复合的细化晶粒法

1.5.1大塑性变形方法

在采用大塑性变形方法制备块状金属纳米材料方面,俄罗斯科学院R.Z.Valiev领导的研究小组开展了卓有成效的研究工作,早在90年代初,他们就发现采用纯剪切大变形方法可获得亚微米级晶粒尺寸的纯铜组织[20],近年来他们在发展多种塑性变形方法的基础上,又成功地制备了晶粒尺寸为20~200(nm)的纯Fe、Fe-1.2%C钢、Fe-C-Mn-Si-V低合金钢、Al-Cu-Zr、Al-Mg-Li-Zr、Mg-Mn-Ce、Ni3Al金属间化合物、Ti-Al-Mo-Si[21-23]等合金的块体纳米材料。

1.5.2塑性变形加循环相变方法

1996年我国赵明、张秋华等[24]将碳管炉中氩气保护下熔炼的Zn78Al22超塑性合金,经固溶处理后通过小塑性变形和循环相变(共析转变),获得了晶粒尺寸为100~300(nm)的块状纳米晶体。

该方法与其他方法相比具有适用范围宽,可制造大体积试样,试样无残留缩松(孔),可方便地利用扫描电镜详细研究其组织结构及晶粒中的非平衡边界层结构,特别有利于研究其组织与性能的关系等特点并可采用多种变形方法制备界面清洁的纳米材料,是今后制备块体金属纳米材料很有潜力的一种方法。如将此法与粉末冶金及深过冷等技术相结合,则可望利用此法制备金属陶瓷纳米复合材料[21],并拓宽其所能制备的合金成份范围。

除以上主要方法外,近年来还发展的有喷雾沉积法、离子注入法等块体金属纳米材料制备技术,在此不再一一赘述。

2直接制备块状纳米晶的潜在技术

2.1脉冲电流直接晶化法

近年来,关于脉冲电流对金属凝固组织的影响已屡见报道:80年代,印度学者A.K.Mistra首先在Pb68Sb15Sn7共晶及Pb87Sb10Sn3亚共晶合金中通以40mA/cm2的直流电,发现凝固后组织明显细化[25],M.Nakada等人在Sn85Pb15合金凝固过程中通脉冲电流后,也发现凝固组织细化且发生枝晶向球状晶转变[26],J.P.Barnak等研究了高密度脉冲电流对Sn60Pb40和Sn63Pb37合金凝固组织的影响[27]。结果证实,脉冲电流可增加过冷度,并可使共晶的晶粒度降低一个数量级,且晶粒度随脉冲电流密度增加而降低。周本濂等不仅在实验上研究了脉冲电流对合金凝固组织的影响[28],而且在理论上用经典热力学和连续介质电动力学对脉冲电流作用熔体的结晶成核理论和结晶晶粒尺寸的计算作了深入研究[29,30],指出脉冲电流密度达到0.1GA/m2时,在理论上可获得大块纳米晶,按该理论对Sn60Pb40合金进行计算,结果与实验值基本一致。由于理论上要求的一些金属纳米化的临界脉冲电流密度在工程上能够达到且与实验值基本符合,加之脉冲电流的快速弛豫特点可限制纳米晶粒的长大,使作者相信,随着脉冲电流对金属凝固影响机制的进一步研究及实验装置的进一步完善,超短时脉冲电流处理在某些合金上有可能使熔体直接冷凝成大块纳米晶材料,并成为直接晶化法制备纳米晶材料的潜在技术之一。

2.2深过冷直接晶化法

快速凝固对晶粒细化有显著效果的事实已为人所知。急冷和深过冷是实现熔体快速凝固行之有效的两条途径。急冷快速凝固技术由于受传热过程限制只能生产出诸如薄带、细丝或粉体等低维材料而在应用上受到较大的限制。深过冷快速凝固技术,通过避免或清除异质晶核而实现大的热力学过冷度下的快速凝固,其熔体生长不受外界散热条件控制[31],其晶粒细化由熔体本身特殊的物理机制所支配,它已成为实现三维大体积液态金属快速凝固制备微晶、非晶和准晶材料的一条有效途径[35]。由于深过冷熔体的凝固组织与急冷快速凝固组织具有很好的相似性[36]并且国外已在Fe-Ni-Al、Pd-Cu-Si[37]等合金中利用急冷快速凝固获得纳米组织,另外,近年来周尧和、杨根仓教授领导的课题组在Ni-Si-B合金中利用深过冷方法已制备出晶粒尺寸约为200nm的大块合金,并已探讨出多种合金系有效的熔体净化方法,加之作者近期又在Fe-B-Si系共晶合金中利用深过冷及深过冷加水淬方法成功地制备了几十~200nm,11×10(mm)的块状纳米材料,见图1a、图1b所示,因此有理由相信,通过进一步研究深过冷晶粒细化的物理机制,进而为深过冷晶粒的纳米化设想提供理论基础,同时研究出各种实用合金的熔体净化技术以及深过冷与其它晶粒细化技术相结合的复合制备技术,深过冷方法可望成为块体金属纳米材料制备新的实用技术。从目前的实验结果来看,深过冷晶粒细化的程度与合金的化学成分、相变类型、熔体净化所获得热力学过冷度的大小及凝固过程中的组织粗化密切相关。为进一步提高细化效果,除精心的设计合金的化学成分之外,发展更有效的净化技术是关键,另外探索深过冷技术与急冷、塑性变形及高压技术等相结合的复合细化技术,可望进一步拓宽深过冷直接晶化法制备纳米晶的成分范围。相信通过今后的不懈努力,该技术将会成为块状纳米晶制备的又一实用化技术。

3展望

纵观纳米材料的研究发展,不难看出,纳米材料的推广应用关键在于块体纳米材料的制备,而块体金属纳米材料制备技术发展的主要目标则是发展工艺简单,产量大适用范围宽,能获得样品界面清洁,无微孔隙的大尺寸纳米材料制备技术。其发展趋势则是发展直接晶化法纳米晶制备技术。

从实用化角度来看,今后一段时间内,绝大多数纳米晶样品的制备仍将以非晶晶化法和机械合金化法为主,它们发展的关键是压制过程的突破。此外在机械合金化技术中,尚需进一步克服机械合金化过程中所带来的杂质和应力的影响。对于能采用塑性变形等技术可直接获得亚微米级晶粒的合金系,拓宽研究系列,研究出与各种合金成分所对应的实用稳定的塑性变形及热处理工艺,并全面进行该类纳米晶材料的性能研究工作是此类技术走向实用的当务之急。

从长远角度来看,高压高温固相淬火、脉冲电流和深过冷直接晶化法以及与之相关的复合块状纳米材料制备技术及其基础研究工作,是今后纳米材料制备技术的研究重点。

相信随着块状纳米材料制备技术的不断研究和发展,在不远的将来会有更多的纳米材料问世,并产生巨大的社会、经济效益。

参考文献

1GleiterHV.TransJapanInstMetalsuppl,1986,27:43

2GleiterH.ProginMaterSci,1989,33:233

3卢柯.中国科学基金,1994,4:245

4HughesRO,SmithSD,PandeCS,etal.ScripMetall,1986,20:93

5BerkowitzAE,WalterJL.JMaterRes,1987,2:277

6KochCC.NanostructuredMater,1993,2:109

7梅本富,吴炳尧.材料科学与工程,1992,10(4):1

8KawamuraY,etal.MaterSciEng,1998,98:449

9NohTH,etal.JMagnMater,1992,128:129

10GorriaP,etal.JApplPhys,1993,73(10):6600

11刘佐权等.金属学报,1996,8:862

12AkishisaInone,AkiraMurakami,TaoZhang,etal.MaterTrans,JIM,1997,38:189

13AkishisaInoue,HisatKoshiba,TaoZhang,etal.MaterTrans,JIM,1997,38:577

14AkishisaInoue,ZhangT,ZhangW,TakeuchiA.MaterTrans,JIM,1996,37:99

15PekerA,JohnsonWL,ApplphysLett,1993,63:2342

16AkishisaInoue,TakahiroAoki,HisamichiKimura,MaterTrans,JIM,1997,38:175

17何国,陈国良,材料科学与工艺,1998,6:105

18李冬剑,丁炳哲,胡壮麒等,科学通报,1994,19:1749

19YaoB,DingBZ,SuiGL,etal.JMaterRes,1996,11:912

20ValievRZ,KorasilnikovNA,etal.MaterSciEng1991,A137:35

21ValievRZ,KrasilnikovNA,TzenevNK.MaterSciEng,1991,A137:35

22AddulovRZ,ValievRZ,KrasilnikovNA,Mater.Sci.Lett.,1990,9:1445

23ValievRZ,KoznikovAV,MulyukovRR,Mater.Sci.Eng.,1993,A168:141

24赵明,张秋华等.中国有色金属学报,1996,6(4):154

25MistraAK,MetallTrans,1986,A17:358

26NakadaM,ShioharaY,FlemingsMC.ISIJInternational,1990,30:27

27BurnakJP,SprecherAF,ConvadH.ScriptaMetall,1995,32:819

28鄢红春,何冠虎,周本濂等.金属学报,1997,33(5):455

29秦荣山,鄢红春,何冠虎,周本濂.材料研究学报,1995,9(3):219

30秦荣山,鄢红春,何冠虎,周本濂.材料研究学报,1997,11:69

31魏炳波,杨根仓,周尧和.航空学报,1991,12(5):A213

32DubostB.Nature,1986,324(11):48

第4篇:纳米粒的制备技术范文

关键词:纳米材料;制备方法

1、 纳米材料

纳米技术诞生于20世纪80年代末,是现代纳米科学和纳米技术相结合的产物。纳米技术是指在纳米尺寸范围内研究物质的组成,通过直接操纵和安排原子、分子而创造新物质。纳米科技的最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物特性制造出具有特定功能的产品,例如将电子器件体积极度缩小至纳米甚至单分子。纳米科技的诞生使人类改造自然的能力直接延伸到分子和原子,将全面开发物质潜在的信息和结构能力,使单位体积物质储存和处理信息的能力提高百万倍以上。纳米材料,从广义上讲,就是指在三维空间中至少有一维处于纳米尺度(1-100nm)范围内的材料或者是由他们作为基本单元组装而成的结构材料。按维数,可以分为三类:如果空间三维尺度均在纳米尺度,则为零维;如果空间中有二维尺度处于纳米尺度,则为一维;如果空间中只有一维处于纳米尺度,则为二维。纳米材料是纳米科技发展的重要基础,纳米材料结构的特殊性决定了纳米材料出现许多不同于传统材料的独特性能,进一步优化了材料的电学、热学及光学性能。

2、纳米材料制备

对纳米材料的制备方法目前主要有三种分类方法。第一种是根据制备原料状态分为固体法、液体法及气体法。第二种按反应物状态分干法和湿法。第三种为物理法、化学法和综合法。现今采用第三种分类方法较多。它又分为(i) 化学法, 分为水热法、水解法、熔融法等;(ii) 物理法, 分为蒸气冷凝法、爆炸法、电火花法、离子溅射法、机械研磨法、低温等离子体法等; (iii) 综合法, 分为等离子加强化学沉积法( PECVD) 、激光诱导化学沉积( LICVD) 等方法。

近年来虽然有关制备方法报导较多, 但能够实用化批量生产的方法则很少。纳米材料的制备, 某些方法颇具特色, 但为减少篇幅, 这里将以表1形式给出某些制备方法。下面对制备纳米材料具有某些特色的制备方法予以重点而详细的介绍。

2.1 激光气相合成法

本世纪八十年代初由美国Haggery等人首先提出。目前用该法已合成出一批具有颗粒粒径小、不团聚、粒径尺寸分布窄等优点的超细粉, 产率高, 是一种可行的方法, 具有工业化应用前景。如以C2H4 作光敏剂, Ti(i-OC3H7) 4/ O2 为原料, 以CW-CO2 激光为热解光源, 在连续流动反应池中制备TiO2 超微粒子。激光能量密度对纳米粒子制备影响的研究表明, 在大气中用激光束直接加热Zn靶制备ZnO纳米粉, 不同的激光能量密度可制备出形状结构不同的纳米粉。通常情况下, 颗粒相互粘连为链状, 条件合适时可得弥散状粉粒, 而高能量密度激光加热可获得晶须结构粉粒。激光气相合成超细粉已成为世界各国关注的高新技术领域。

2.2 冷冻干燥法

本法可较好地消除粉料干燥过程中的团聚现象。由于含水物料在结冰时可使固相颗粒保持在水中时的均匀状态。升华时, 由于没有水的表面张力作用, 固相颗粒之间不会过分靠近, 从而避免了团聚产生。目前该法已制备出MgO-ZrO2及BaPb1-xBixO3超微粒子。

2.3 机械合金化技术

该方法通过机械驱动力作用下非平衡相的形成和转变使粉末的组织结构逐步细化, 达到不同组元原子互相渗入和扩散目的, 发生反应。本法能够获得常规方法难以获得的非晶合金、金属间化合物、超饱和固溶体等材料, 为纳米材料的制备提供了新途径。目前, 机械合金化法应用范围还限于制备纳米金属和纳米合金材料领域, 如已报导的有Al-Fe、A-Si3N4、Fe-B等合金纳米材料的制备。机械合金化法应适当控制球磨条件, 控制O2 含量, 由于空气中氧存在易使产物形成多相体。

2.4 高温气相裂解法

该法是由气相化学反应、表面反应、均相成核、非均相成核、凝并以及聚集或熔合六个部分组成。各基元步骤的相对重要性决定了产物粒子性能的差异。本法生产的TiO2 超细粒子具有以下特点: 粒度细、化学活性高、粒子呈球形、单分散性好、凝聚粒子小、可见光透过性好以及吸收紫外线以外的光能力强。因此本法生产的超微粒子(如TiO2) 具有广泛实用价值, 由于本法能实现连续生产而具有广阔工业前景。

2.5 超声化学方法

它是利用超声空化能量加速和控制化学反应, 提高反应率, 引发新的化学反应的一门新兴边缘交叉学科, 研究声能量与物质间的一种独特的相互作用。由于超声空化, 产生微观极热, 热续期间又非常短, 可产生非常的化学变化。它不同于传统的光化学、热化学和电化学过程。超声空化现象存在于液体中的微气核( 空化核), 在声场的作用下振动生长和崩溃闭合的动力学过程。在空泡崩溃闭合时, 泡内的气体或蒸气被压缩而产生高温及局部高压并伴随着发光、冲击波。利用超声空化原理, 恰好为化学反应创造了一个独特的条件。本法已用于生产无定形铁、非晶态铁。该法只需低超声功率( ~100瓦) 而每小时可产生克数量级的超微粒, 性能价格相比是目前尚无它法能与之媲美的具有潜在应用前景的好方法。

2.6醇盐水解法

本法通过金属盐的水解制备超微粒子, 由于金属醇盐仅与水反应, 因此杂质被引入的可能性很小。醇盐水解最大特点是从物质的溶液中直接分离制造所需的超微粒子, 这样可得到纯度高、粒径细、粒度分布范围窄的超微粉末,该法具有制备工艺简单、化学组成能精确控制、粉体的性能重复性好以及得率高( ~100%) 特点。目前已合成出TiO2、NdO、Nd( OH)2、ZrO2( < 10nm) 。本法存在主要问题是原料成本偏高,如能降低原料之成本, 则将具有极强的生命力。

2.7沉淀转化法

该方法理论依据是根据难溶化合物溶度积不同, 通过改变沉淀转化剂的浓度、转化温度以及借助于表面活性剂来控制颗粒生长和防止颗粒团聚来获得单分散超微粒子。该法具有设备简单、原料成本低、工艺流程短、操作方便、产率高等优点,已制备出NiO, CuO,ZnO, Co3O4, Ni( OH) 2, Co(OH)2, La(OH)3 等超微粒子。

2.8共沉淀法

化学共沉淀法是一种最经济的制备氧化物粉体的方法。但是, 沉淀在洗涤过滤和干燥时易产生团聚现象, 已制备出纳米级Fe3O4、ZrO2-Y2O3、ZrO2。

2.9水热合成法

有关水热合成法的发展及在材料制备中的应用已有报道, 但水热合成法用于制备纳米超微粒子则是近几年的事。目前已有SnO2、BaTiO3、Ni、镧锶铁氧体合成的报道。本法具有原料易得、粉末粒度较小以及成本相对较低的优点。该法可能用于工业化生产。

2.10其它方法

报导的方法尚有相转移法、配位沉淀法、气相蒸发法、热解法、气相反应法、微波等粒子体化学气相沉积法、机械化学法等制备纳米粒子方法, 篇幅之限, 此处只简要提及, 不作展开。

参考文献

[1] 颜停婷,张登松,施利毅.纳米结构材料的制备及应用.上海大学学报(自然科学版),2011,17(4):447-454

第5篇:纳米粒的制备技术范文

一、纳米氧化锌的制备

氧化锌的制备方法分为三类:即直接法(亦称美国法)、间接法(亦称法国法)和湿化学法。目前许多市售氧化锌多为直接法或间接法产品,粒度为微米级,比表面积较小,这些性质大大制约了它们的应用领域及其在制品中的性能。我公司采用湿化学法(NPP-法)制备纳米级超细活性氧化锌,可用各种含锌物料为原料,采用酸浸浸出锌,经过多次净化除去原料中的杂质,然后沉淀获得碱式碳酸锌,最后焙解获得纳米氧化锌。与以往的制备纳米级超细氧化锌工艺技术相比,该新工艺具有以下技术方面的创新之处:

1.平衡条件下反应动力学原理与强化的传热技术结合,迅速完成碱式碳酸锌的焙解。

2.通过工艺参数的调整,可以制备不同纯度、粒度及颜色的各种型号的纳米氧化锌产品。

3.本工艺可以利用多种含锌物料为原料,将其转化为高附加值产品。

4.典型绿色化工工艺,属于环境友好过程。

二、纳米氧化锌的性能表征

纳米级氧化锌的突出特点在于产品粒子为纳米级,同时具有纳米材料和传统氧化锌的双重特性。与传统氧化锌产品相比,其比表面积大、化学活性高,产品细度、化学纯度和粒子形状可以根据需要进行调整,并且具有光化学效应和较好的遮蔽紫外线性能,其紫外线遮蔽率高达98%;同时,它还具有抗菌抑菌、祛味防酶等一系列独特性能。

清华大学测试中心用透射电镜对产品进行了分析,纳米氧化锌粒子为球形,粒径分布均匀,平均粒径20~30纳米,所有粒子的粒径均在50纳米以下。经ST-A表面和孔径测定仪测试,纳米氧化锌粉体的BET比表面积在35m2/g以上。此外,通过调整制备工艺参数,还可以生产出棒状纳米氧化锌。本产品经院微生物所检测鉴定,结果表明,在丰富细菌培养基中,加入0.5%~1%的纳米氧化锌,可有效抑制大肠杆菌的生长,抑菌率达99.9%以上。

三、纳米氧化锌的表面改性

由于纳米氧化锌具有比表面积大和比表面能大等特点,自身易团聚;另一方面,纳米氧化锌表面极性较强,在有机介质中不易均匀分散,这就极大地限制了其纳米效应的发挥。因此对纳米氧化锌粉体进行分散和表面改性成为纳米材料在基体中应用前必要的处理手段。

所谓纳米分散是指采用各种原理、方法和手段在特定的液体介质(如水)中,将干燥纳米粒子构成的各种形态的团聚体还原成一次粒子并使其稳定、均匀分布于介质中的技术。纳米粉体的表面改性则是在纳米分散技术基础上的扩展和延伸,即根据应用场合的需要,在已分散的纳米粒子表面包覆一层适当物质的薄膜或使纳米粒子分散在某种可溶性固相载体中。经过表面改性的纳米干粉体,其吸附、润湿、分散等一系列表面性质都会发生变化,一般可以自动或极易分散在特定的介质中,因此使用非常方便。一般来讲,纳米粒子的改性方法有三种:1.在粒子表面均匀包覆一层其他物质的膜,从而使粒子表面性质发生变化;2.利用电荷转移络合体(如硅烷、钛酸酯等偶联剂以及硬脂酸、有机硅等)作表面改性剂对纳米粒子表面进行化学吸附或化学反应;3.利用电晕放电、紫外线、等离子、放射线等高能量手段对纳米粒子表面进行改性。

根据不同应用领域的要求,选择适当的表面改性剂或表面改性工艺,对纳米氧化锌进行表面改性,改善其表面性能,增加纳米颗粒与基体之间的相容性,从而应用于各种领域,提高产品的性能技术指标。

四、纳米氧化锌的应用

本公司从纳米氧化锌的制备伊始,就十分重视其应用技术开发的研究。通过公司内部科研人员的潜心研究,以及与相关科研单位的技术合作,在纳米氧化锌的应用技术方面取得了一系列重要成果。目前产品的主要应用领域有:

1.橡胶轮胎在橡胶行业中,特别是透明橡胶制品生产中,纳米氧化锌是极好的硫化活性剂。由于纳米氧化锌可与橡胶分子实现分子水平上的结合,因而能提高胶料性能,改善成品特性。以子午线轮胎和其他橡胶制品为例,使用纳米氧化锌可显著提高产品的导热性能、耐磨性能、抗撕裂性能、拉伸强度等项指标,并且其用量可节省35-50%,大大降低了产品成本;在加工工艺上,能延长胶料焦烧时间,对加工工艺极为有利。纳米氧化锌用于橡胶鞋、雨靴、橡胶手套等劳保制品中,可以大大延长制品的使用寿命,并可改善它们的外观及色泽,其用于透明或有色橡胶制品中,有着碳黑等传统活性剂不可替代的作用。纳米氧化锌用于气密封胶、密封垫等制品中,对于改善产品的耐磨性和密封效果也有着良好的作用。目前我公司的纳米氧化锌已在国内多家大型轮胎和橡胶制品得到良好应用。

2.油漆涂料随着人们对涂料的色泽、涂膜性能、环保等各方面要求的提高,纳米材料在涂料行业中的应用受到越来越广泛的重视。目前应用于涂料中的纳米材料品种有纳米二氧化钛、纳米二氧化硅、纳米氧化锌、纳米碳酸钙等,其中纳米二氧化钛和纳米二氧化硅由于其昂贵的价格而限制了它们的应用范围和数量,纳米碳酸钙性能又比较单一,在提高涂料的防霉和抗紫外老化性能方面作用较小,因而纳米氧化锌以其优异的性价比在涂料的应用中占据了更大的优势。纳米氧化锌具有一般氧化锌无法比拟的新性能和新用途,能使涂层具有屏蔽紫外线、吸收红外线及杀菌防霉作用,因此它可广泛应用于建筑内外墙乳液涂料及其他涂料中,同时它的增稠作用还有助于提高颜料分散的稳定性。我公司通过与相关科研单位联合开发,将纳米氧化锌成功应用于水性涂料中,制作成纳米氧化锌改性涂料,经测试表明,此改性涂料的耐沾污性、耐人工老化性、耐水耐碱性、耐洗刷性、硬度及附着力等传统机械力学性能得到较大的改善。此外,纳米氧化锌改性涂料的抗菌防霉性能也在进一步研究之中。

3.化纤纺织品纳米材料于化纤纺织品中有两种途径:一种是把纳米微粒直接添加在化学纤维的初始反应液中,采用常规的聚合反应合成功能纤维,使纳米微粒均匀分布于纤维内部;另一种方法就是把纳米微粒作为一种后整理剂配制到织物的后整理液中,通过浸轧使纳米微粒吸附在纤维的表面,或者用一定的粘合剂将纳米微粒涂覆到织物表面形成一种功能性的涂层,改善织物的服用性能。吉林化纤集团将我公司表面改性后的纳米氧化锌配制到粘胶纤维的喷丝液中,合成了含有纳米氧化锌微粒的粘胶纤维,该纤维经纺纱、织造得到添加纳米氧化锌的抗紫外织物,与未添加纳米氧化锌的普通织物进行对比,抗紫外织物的UPF值(紫外线遮挡系数)为对照织物的两倍。我公司产品能够显著提高粘胶纤维、合成纤维制品的抗紫外和抗菌功能,用于抗紫外织物、抗菌织物、遮阳伞等产品的生产。我公司开发的抗紫外用纳米胶体,已由杭州天堂伞业集团有限公司在遮阳伞上试用,计量院测试表明,UPF值(紫外线遮挡系数)为50,其性能指标已经达到澳大利亚标准,超过欧盟标准。

4.防晒化妆品由于地球臭氧层遭到破坏,导致紫外线对地球生物圈辐射量的不断增加,过多的紫外线照射对人类健康造成的危害正在日益加重。为了抵御过量紫外线照射对人体皮肤的伤害,人们开发了多种防晒剂来保护皮肤。由于大多数有机防晒剂活性较高,对皮肤产生刺激性,在紫外线照射后易分解,防晒效果不长久,因而人们又开发了无机防晒剂,如纳米二氧化钛、纳米氧化锌等。研究发现,纳米氧化锌对紫外线的防护功能比传统的纳米二氧化钛要强,对紫外线UV-A和UV-B均具有良好的防护效果,因此纳米氧化锌在化妆品领域的应用迅速。我公司应用一种特殊表面处理技术生产的纳米级氧化锌防晒剂,它能非常有效地吸收太阳紫外线,尤其能保护人体免受UV-A和UV-B的侵害。大多数的传统防晒剂能对UV-B起作用,但并不能有效抵挡波长更长的UV-A紫外线,而UV-A越来越被认为与皮肤过早衰老以及皮肤癌有关。我公司氧化锌平均粒径小于50纳米,它能最有效地抵抗UV-A和UV-B,是广谱的抗紫外剂,无毒无害,是名副其实的新一代物理防晒剂。

5.其它领域随着人们对纳米氧化锌性能认识的深化,纳米氧化锌的应用领域在不断扩大。例如,将纳米氧化锌用于陶瓷行业,可以大大降低陶瓷制品的烧结温度,烧成品光亮如镜,减少了生产工序,降低了能耗,并赋予了陶瓷制品抗菌除臭和分解有机物的自洁作用,极大地提高了产品质量;纳米氧化锌由于尺寸小,比表面积大,表面的键态与颗粒内部的不同,加大了反应接触面,提高了催化效率,是化工生产制备脱硫剂和化学催化剂的首选材料;纳米氧化锌也是一种很好的光催化剂,在紫外线照射下,能自行分解出自由移动的负,留下带正电的空穴,激活空气中的氧变为活性氧,与多种有机物发生化学反应,杀死病菌和病毒。此外,纳米氧化锌在传感器、电容器、荧光材料、吸波材料、导电材料等诸多领域也展示出越来越广阔的应用前景。

第6篇:纳米粒的制备技术范文

纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。早在二十世纪60年代,英国化学家Thomas就使用“胶体”来描述悬浮液中直径为1nm-100nm的颗粒物。1992年,《NanostructuredMaterials》正式出版,标志着纳米材料学成为一门独立的科学。纳米材料是指任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。纳米结构无机材料因具有特殊的电、光、机械和热性质而受到人们越来越多的重视。美国自1991年开始把纳米技术列入“政府关键技术”,我国的自然科学基金等各种项目和研究机构都把纳米材料和纳米技术列为重点研究项目。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元(Bui1dingBlocks),纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。本文简单综述了纳米材料合成与制备中常用的几种方法,并对其优劣进行了比较。

2纳米材料的合成与制备方法

2.1物理制备方法

2.1.1机械法

机械法有机械球磨法、机械粉碎法以及超重力技术。机械球磨法无需从外部供给热能,通过球磨让物质使材料之间发生界面反应,使大晶粒变为小晶粒,得到纳米材料。范景莲等采用球磨法制备了钨基合金的纳米粉末。xiao等利用金属羰基粉高能球磨法获得纳米级的Fe-18Cr-9W合金粉末。机械粉碎法是利用各种超微粉机械粉碎和电火花爆炸等方法将原料直接粉碎成超微粉,尤其适用于制备脆性材料的超微粉。超重力技术利用超重力旋转床高速旋转产生的相当于重力加速度上百倍的离心加速度,使相间传质和微观混合得到极大的加强,从而制备纳米材料。刘建伟等以氨气和硝酸锌为原料,应用超重力技术制备粒径20nm—80nm、粒度分布均匀的ZnO纳米颗粒。

2.1.2气相法

气相法包括蒸发冷凝法、溶液蒸发法、深度塑性变形法等。蒸发冷凝法是在真空或惰性气体中通过电阻加热、高频感应、等离子体、激光、电子束、电弧感应等方法使原料气化或形成等离子体并使其达到过饱和状态,然后在气体介质中冷凝形成高纯度的纳米材料。Takaki等在惰性气体保护下,利用气相冷凝法制备了悬浮的纳米银粉。杜芳林等制备出了铜、铬、锰、铁、镍等纳米粉体,粒径在30nm—50nm范围内可控。魏胜用蒸发冷凝法制备了纳米铝粉。溶液蒸发法是将溶剂制成小滴后进行快速蒸发,使组分偏析最小,一般可通过喷雾干燥法、喷雾热分解法或冷冻干燥法加以处理。深度塑性变形法是在准静态压力的作用下,材料极大程度地发生塑性变形,而使尺寸细化到纳米量级。有文献报道,Φ82mm的Ge在6GPa准静压力作用后,再经850℃热处理,纳米结构开始形成,材料由粒径100nm的等轴晶组成,而温度升至900℃时,晶粒尺寸迅速增大至400nm。

2.1.3磁控溅射法与等离子体法

溅射技术是采用高能粒子撞击靶材料表面的原子或分子,交换能量或动量,使得靶材料表面的原子或分子从靶材料表面飞出后沉积到基片上形成纳米材料。在该法中靶材料无相变,化合物的成分不易发生变化。目前,溅射技术已经得到了较大的发展,常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。等离子体法是利用在惰性气氛或反应性气氛中通过直流放电使气体电离产生高温等离子体,从而使原料溶液化合蒸发,蒸汽达到周围冷却形成超微粒。等离子体温度高,能制备难熔的金属或化合物,产物纯度高,在惰性气氛中,等离子法几乎可制备所有的金属纳米材料。

以上介绍了几种常用的纳米材料物理制备方法,这些制备方法基本不涉及复杂的化学反应,因此,在控制合成不同形貌结构的纳米材料时具有一定的局限性。

2.2化学制备方法

2.2.1溶胶—凝胶法

溶胶—凝胶法的化学过程首先是将原料分散在溶剂中,然后经过水解反应生成活性单体,活性单体进行聚合,开始成为溶胶,进而生成具有一定空间结构的凝胶。Stephen等利用高分子加成物(由烷基金属和含N聚合物组成)在溶液中与H2S反应,生成的ZnS颗粒粒度分布窄,且被均匀包覆于聚合物基体中,粒径范围可控制在2nm-5nm之间。MarcusJones等以CdO为原料,通过加入Zn(CH3)2和S[Si(CH3)3]2制得了ZnS包裹的CdSe量子点,颗粒平均粒径为3.3nm,量子产率(quantumyield,QY)为13.8%。

2.2.2离子液法

离子液作为一种特殊的有机溶剂,具有独特的物理化学性质,如粘度较大、离子传导性较高、热稳定性高、低毒、流动性好以及具有较宽的液态温度范围等。即使在较高的温度下,离子液仍具有低挥发性,不易造成环境污染,是一类绿色溶剂。因此,离子液是合成不同形貌纳米结构的一种良好介质。Jiang等以BiCl3和硫代乙酰胺为原料,在室温下于离子液介质中合成出了大小均匀的、尺寸为3μm—5μm的Bi2S3纳米花。他们认为溶液的pH值、反应温度、反应时间等条件对纳米花的形貌和晶相结构有很重要的影响。他们证实,这些纳米花由直径60nm—80nm的纳米线构成,随老化时间的增加,这些纳米线会从母花上坍塌,最终形成单根的纳米线。赵荣祥等采用硝酸铋和硫脲为先驱原料,以离子液为反应介质,合成了单晶Bi2S3纳米棒。

2.2.3溶剂热法

溶剂热法是指在密闭反应器(如高压釜)中,通过对各种溶剂组成相应的反应体系加热,使反应体系形成一个高温高压的环境,从而进行实现纳米材料的可控合成与制备的一种有效方法。Lou等采用单源前驱体Bi[S2P(OC8H17)2]3作反应物,用溶剂热法制得了高度均匀的正交晶系Bi2S3纳米棒,且该方法适于大规模生产。Liu等用Bi(NO3)3•5H2O、NaOH及硫的化合物为原料,甘油和水为溶剂,采用溶剂热法在高压釜中160℃反应24-72h制得了长达数毫米的Bi2S3纳米带。

2.2.4微乳法

微乳液制备纳米粒子是近年发展起来的新兴的研究领域,具有制得的粒子粒径小、粒径接近于单分散体系等优点。1943年Hoar等人首次报道了将水、油、表面活性剂、助表面活性剂混合,可自发地形成一种热力学稳定体系,体系中的分散相由80nm-800nm的球形或圆柱形颗粒组成,并将这种体系定名微乳液。自那以后,微乳理论的应用研究得到了迅速发展。1982年,Boutonnet等人应用微乳法,制备出Pt、Pd等金属纳米粒子。微乳法制备纳米材料,由于它独特的工艺性能和较为简单的实验装置,在实际应用中受到了国内外研究者的广泛关注。

第7篇:纳米粒的制备技术范文

纳米材料的小尺寸效应使得通常在高温下才能烧结的材料如SiC,BC等在纳米尺度下在较低的温度下即可烧结,另一方面,纳米材料作为烧结过程中的活性添加剂使用也可降低烧结温度,缩短烧结时间。由于纳米粒子的尺寸效应和表面效应,使得纳米复相材料的熔点和相转变温度下降,在较低的温度下即可得到烧结性能良好的复相材料。由纳米颗粒构成的纳米陶瓷在低温下出现良好的延展性。纳米TiO2陶瓷在室温下具有良好的韧性,在180°C下经受弯曲而不产生裂纹。纳米复合陶瓷具有良好的室温和高温力学性能,在切削刀具、轴承、汽车发动机部件等方面具有广泛的应用,在许多超高温、强腐蚀等许多苛刻的环境下起着其它材料无法取代的作用。随着陶瓷多层结构在微电子器件的包封、电容器、传感器等方面的应用,利用纳米材料的优异性能来制作高性能电子陶瓷材料也成为一大热点。有人预计纳米陶瓷很可能发展成为跨世纪新材料,使陶瓷材料的研究出现一个新的飞跃。纳米颗粒添加到玻璃中,可以明显改善玻璃的脆性。无机纳米颗粒具有很好的流动性,可以用来制备在某些特殊场合下使用的固体剂。

二、纳米材料在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。

日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米TiO2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米SiO2是一种抗紫外线辐射材料。在涂料中加入纳米SiO2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

三、纳米材料在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使经济效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米TiO2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的TiO/SiO2负载型光催化剂。Ni或Cu一Zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革。

四、纳米陶瓷材料增韧改性

陶瓷材料作为材料的三大支柱之一,在日常生活及工业生产中起着举足轻重的作用。但是,由于传统陶瓷材料质地较脆,韧性、强度较差,因而使其应用受到了较大的限制。随着纳米技术的广泛应用,纳米陶瓷随之产生,希望以此来克服陶瓷材料的脆性,使陶瓷具有象金属一样的柔韧性和可加工性。英国著名材料专家Cahn指出纳米陶瓷是解决陶瓷脆性的战略途径。所谓纳米陶瓷,是指显微结构中的物相具有纳米级尺度的陶瓷材料,也就是说晶粒尺寸、晶界宽度、第二相分布、缺陷尺寸等都是在纳米量级的水平上。要制备纳米陶瓷,这就需要解决:粉体尺寸、形貌和分布的控制,团聚体的控制和分散,块体形态、缺陷、粗糙度以及成分的控制。Gleiter指出,如果多晶陶瓷是由大小为几个纳米的晶粒组成,则能够在低温下变为延性的,能够发生100%的塑性形变。并且发现,纳米TiO2陶瓷材料在室温下具有优良的韧性,在180℃经受弯曲而不产生裂纹。

许多专家认为,如能解决单相纳米陶瓷的烧结过程中抑制晶粒长大的技术问题,从而控制陶瓷晶粒尺寸在50nm以下的纳米陶瓷,则它将具有的高硬度、高韧性、低温超塑性、易加工等传统陶瓷无与伦比的优点。上海硅酸盐研究所研究发现,纳米3Y-TZP陶瓷(100nm左右)在经室温循环拉伸试验后,其样品的断口区域发生了局部超塑性形变,形变量高达380%,并从断口侧面观察到了大量通常出现在金属断口的滑移线。Tatsuki等人对制得的Al2O3-SiC纳米复相陶瓷进行拉伸蠕变实验,结果发现伴随晶界的滑移,Al2O3晶界处的纳米SiC粒子发生旋转并嵌入Al2O3晶粒之中,从而增强了晶界滑动的阻力,也即提高了Al2O3-SiC纳米复相陶瓷的蠕变能力。

论文关键词:纳米技术化工生产催化应用

第8篇:纳米粒的制备技术范文

2.补白

3.机械合金化制备NiAl(Cr,Nb)粉体温雨,李嘉,王宁,李洪峰,王俊,WENYu,LIJia,WANGNing,LIHong-Feng,WANGJun

4.微波均相沉淀法制备Ce:(Y,Gd)3Al5O12荧光粉王勇,袁鹏,王介强,WANGYong,YUANPeng,WANGJie-qiang

5.双层球形颗粒的光散射计算刘蕾,王华睿,于彬,许亚敏,沈建琪,LIULei,WANGHua-rui,YUBin,XUYa-min,SHENJian-qi

6.中空玻璃微珠粒度分布分形特征及其与空隙率关系的研究吴成宝,段百涛,WUCheng-bao,DUANBai-tao

7.基于FLUENT的平面涡流分级机导流特性研究李双跃,李洪,任朝富,刘继光,李进春,LIShuang-yue,LIHong,RENChao-fu,LIUJi-guang,LIJin-chun

8.锑掺杂氧化锡包覆氧化钛浅色导电粉的过程与模型王剑华,彭关怀,孔令彦,郭玉忠,WANGJian-hua,PENGGuan-huai,KONGLin-yan,GUOYu-zhong

9.石英管上SnO2薄膜面功率密度的优化工艺纪雄,JIXiong

10.高频振动磨超细粉碎黄芪试验研究陈宇红,CHENYu-hong

11.分级技术在中药超细粉体生产中的应用王劲,郭天德,WANGJin,GUOTan-de

12.酸性铬蓝K染料敏化纳米TiO2的实验研究尹振泉,刘素文,裴重华,冯光建,YINZhen-quan,LIUSu-wen,PEIChong-hua,FENGGuang-jian

13.液相法制备纳米镍粉研究进展熊杰,廖其龙,宁海霞,XIONGJie,LIAOQi-long,NINGHai-xia

14.多孔矿物材料的孔道结构及应用进展赵磊,董发勤,王光华,贺小春,ZHAOLei,DONGFa-qin,WANGGuang-hua,HEXiao-chun

15.粉体性能对浓相气力输送特性的影响杜滨,衣华,部聪令,刘宗明,DUBin,YIHua,BUCong-ling,LIUZong-ming

16.炭黑在气力输送系统中的破碎原因的分析金秋华,李志华,JINQiu-hua,LIZhi-hua

1.中国沙漠化及其防治张仁健,周家茂,曹军骥,ZHANGRen-jian,ZHOUJia-mao,CAOJun-ji

2.乙酸异戊酯共沸干燥法制备低团聚掺锑氧化锡纳米微粉杨芬,张学俊,甘复兴,YANGFen,ZHANGXue-jun,GANFu-xing

3.纳米碳酸钙湿法表面改性的研究粉体技术 宋晶,李友明,唐艳军,SONGJing,LIYou-ming,TANGYan-jun

4.纳米CoFe2O4颗粒制备及性能研究国秋菊,郑少华,苏登成,GUOQiu-ju,ZHENGShao-hua,SUDeng-cheng

5.ZnO粉体在水中的分散及稳定性研究王香,薛晓花,许小华,曾松岩,WANGXiang,XUEXiao-hua,XUXiao-hua,ZENGSong-yan

6.超细煤粉的静电分散研究李桂春,纪守峰,LIGui-chun,JIShou-feng

7.热塑性模型沙颗粒表面修饰叶菁,芦露华,杨利民,YEJing,LULu-hua,YANGLi-min

8.超细氢氧化镁阻粉体表面改性研究李艳玲,毛如增,吴立军,冀克俭,刘元俊,尤瑜升,LIYan-ling,MAORu-zeng,WULi-jun,JIKe-jian,LIUYuan-jun,YOUYu-sheng

9.电子废弃物资源化处理现状王铭华,孟博,郭庆杰,刘会娥,陈爽,WANGMing-hua,MENGBo,GUOQing-jie,LIUHui-e,CHENShuang

10.阻燃剂用超细氢氧化铝的制备、应用及展望王建立,和凤枝,陈启元,ChenQi-yuan,WANGJian-li,HEFeng-zhi,WANGJin,ChenQi-yuan

11.浙江丰利的超微粉碎设备获"浙江名牌产品"称号吴宏富

12.超细粉磨技术在氧化铁生产中的应用杨春保,朱春启,YANGChun-bao,ZHUChun-qi

13.碳化硼超细微粉团聚及解决方法蔺雷亭,王振国,LINLei-ting,WANGZhen-guo

1.湿度变化对TEOM(R)1400a系列环境颗粒物监测仪PM10质量浓度观测的影响屈文军,张小曳,,赵元茂,王亚强,曹国良,严立文,QUWen-jun,ZHANGXiao-ye,WANGDan,ZHAOYuan-mao,WANGYa-qiang,CAOGuo-liang,YANLi-wen

2.超细粉体对水泥基材料力学性能的影响乔宏霞,何忠茂,刘翠兰,朱彦鹏,杜雷,魏智强,QIAOHong-xia,HEZhong-mao,LIUCui-lan,ZHUYan-peng,DULei,WEIZhi-qiang

3.石粉圆度的Fuzzy性及其Fuzzy模式识别杨华山,方坤河,龙娈珍,宋军伟,YANGHua-shan,FANGKun-he,LONGLuan-zhen,SONGJun-wei

4.直接共沉淀法制备掺杂α-Fe2O3及其气敏性能的初步研究刘海峰,彭同江,孙红娟,LIUHai-feng,PENGTong-jiang,SUNHong-juan

5.硬质木炭、竹炭超细粉碎技术研究刘宏英,杨毅,邓国栋,姜炜,李凤生,LIUHong-ying,YANGYi,DENGGuo-dong,JIANGWei,LIFeng-sheng

6.脱脂奶粉分散稳定性的实验研究詹世平,刘华伟,李卓,陈淑花,张欣华,黄慧,ZHANShi-ping,LIUHua-wei,LIZuo,CHENShu-hua,ZHANGXin-hua,HUANGHui

7.水力溢流分级在超细α-Al2O3粉体中的应用研究陈玮,王庆伟,陈燕,李晋峰,CHENWei,WANGQing-wei,CHENYan,LIJin-feng

8.聚合物分散剂对纳米TiO2水悬浮液分散稳定性的影响黄毅,彭兵,柴立元,程明明,苏维丰,HUANGYi,PENGBing,CHAILi-yuan,CHENGMing-ming,SUWei-feng

9.补白

10.纳米颗粒在火焰中聚结过程湍流稀释的数值模拟李云,陈石,谢洪勇,LIYun,CHENShi,XIEHong-yong

11.纳米γ-Fe2O3的室温固相反应工艺研究王鹏飞,李亚东,WANGPeng-fei,LIYa-dong

12.超临界流体制备超微粉体的研究进展李青山,王新伟,杨德治,吴丽娜,王庆瑞,王善元,LIQing-shan,WANGXin-wei,YANGDe-zhi,WULi-na,WANGQing-rui,WABGShan-yuan

13.镍包覆型复合粉末的制备及其在热喷涂领域的应用尹春雷,于月光,任先京,曾克里,谢建刚,王凤娥,YINChun-lei,YUYue-guang,RENXian-jing,ZENGKe-li,XIEJian-gang,WANGFeng-e

14.玻璃微珠的应用研究进展杨玉香,邵谦,葛圣松,YANGYu-xiang,SHAOQian,GESheng-song

15.多元复合理论在透明薄膜母料研制中的应用刘伯元,陈更新,王梓刚

1.消光法粒度测量中折射率反演问题研究徐峰,蔡小舒,苏明旭,任宽芳,XUFeng,CAIXiao-shu,SUMing-xu,RENKuan-fang

2.补白

3.粉体技术 沙尘和灰霾天气下毛乌素沙漠地区大气气溶胶的光学特征车慧正,张小曳,石广玉,李杨,赵剑琦,屈文军,,CHEHui-zheng,ZHANGXiao-ye,SHIGuang-yu,LIYang,ZhaoJian-qi,QUWen-jun,WangDan

4.GRIMM1.107颗粒物分析仪和RP2000气溶胶采样仪在北京城区的测试对比李杨,张小曳,车慧正,孙俊英,LIYang,ZHANGXiao-ye,CHEHui-zheng,SUNJun-ying

5.亚洲沙尘影响台湾期间大气悬浮微粒之粒径大小及化学组成变化趋势袁中新,邵承宗,陈敏宗,黄明和,YUANChung-shin,SAUCheng-chung,CHENMing-chung,HUANGMing-her

6.黄芩超微饮片的HPLC指纹图谱研究蔡光先,王实强,谢谊,CAIGuang-xian,WANGShi-qiang,XIEYi

7.动态光散射在颗粒检测中的应用刘桂强,杨冠玲,何振江,韩鹏,岳成凤,李丰果,彭力,喻雷寿,李仪芳

8.BET法间接测定石粉颗粒的圆度杨华山,方坤河,YANGHua-shan,FANGKun-he

9.纳米复合磁流变液的流变特性陶剑青,程海斌,李祥辉,TAOJian-qing,CHENGHai-bin,LIXiang-hui

10.单质铝水解机理研究(Ⅲ)--单质铝水解结晶过程研究刘建良,孙加林,徐茂,胡劲,施安,施鸿,LIUJian-liang,SUNJai-ling,XUMao,SHIAn,HUJing,SHIHong

11.高温防护涂层研究进展姚明明,缑英俊,何业东,YAOMing-ming,GOUYing-jun,HEYe-dong

12.水泥工业生态化及其相关的技术和设备(续)韩仲琦,HANZhong-qi

13.改善氢氧化铝阻燃性能的研究肖亚明,冯晓明,XIAOYa-ming,FENGXiao-ming

14.循环流化床锅炉物料循环系统维护王大飞,刘林,邵珠超,WANGDa-fei,LIULin,SHAOZhu-chao

1.超纯水中杂质对光子相关谱法测量纳米颗粒粒径的影响周述苍,杨冠玲,刘桂强,曾思明,韩鹏,黄洁,陈超雄,ZhouShucang,YangGuanling,LiuGuiqiang,ZengSiming,HanPeng,HuangJiebin,ChenChaoxiong

2.补白

3.悬移质泥沙颗粒分析结合法遵循原则及方法研究封光寅,余国莉,郭焕林,马胜虎,陈冬,FengGuangyin,YuGuoli,GuoHuanlin,MaShenghu,ChenDongHttP://

4.激光粒度测量中的一种无模式综合反演算法陈琪星,王燕民,ChenQixing,WangYanmin

5.粉体混合均匀性定量评估模型的建立与研究陈,罗启文,任慧,ChenWenge,LuoQiwen,RenHui

6.氧化铝空心微球的制备黄智,廖其龙,HuangZhi,LiaoQilong

7.十八烷基三甲基溴化铵为模板合成有序介孔氧化硅及其表征苗继斌,钱家盛,章于川,MiaoJibin,QianJiasheng,Zhangguchuan

8.高温固相法制备CaCO3:Eu3+,Li+红色荧光粉刘军,康明,孙蓉,杨定明,LiuJun,KangMing,SunRong,YangDingming

9.电厂余热蒸汽粉碎Ⅲ级粉煤灰的研究舒朗,卢忠远,严云,乔欢欢,余博,安金鹏,ShuLang,LuZhongyuan,YanYun,QiaoHuanhuan,YuBo,AnJinpeng

10.麦饭石用于功能纸填料的实验研究刘晓华,盖国胜,宋宝祥,LiuXiaohua,GaiGuosheng,SongBaoxiang

11.氮掺杂二氧化钛纳米粉体的制备及光催化性能的研究冯光建,刘素文,修志亮,俞娇仙,FengGuangjian,LiuSuwen,XiuZhiliang,YuJiaoxian

12.液体介质对高能球磨制备W-TiC纳米复合粉体的影响于福文,吴玉程,陈勇,陈俊凌,种法力,YuFuwen,WuYucheng,ChenYong,ChenJunling,ChongFali

13.超细粉体的团聚机理和表征及消除粉体技术 王觅堂,李梅,柳召刚,胡艳宏,WangMitang,LiMei,LiuZhaogang,HuYanhong

14.多孔和高分散材料比表面积、孔结构标准物质研究进展王海,宋小平,刘俊杰,张文阁,WangHai,SongXiaoping,LiuJunjie,ZhangWenge

15.碳化硼抗弹陶瓷的制备方法及应用王正军,WangZhengjun

16.铌酸锂粉体的制备和研究进展宁海霞,廖其龙,丁建旭,熊杰,NingHaixia,LiaoQilong,DingJianxu,XiongJie

1.纳米粉体商品化技术的进展梁勇,LIANGYong

2.单质铝水解机理研究(Ⅰ):水解反应发生原因分析刘建良,孙加林,徐茂,施安,胡劲,高勤琴,LIUJian-liang,SUNJia-lin,XUMao,SHIAn,HUJing,GAOQin-qin

3.第七届3R-循环经济国际会议及工业展览会(R'05)

4.制备低团聚掺锑氧化锡超细粉体的新方法吴湘伟,陈振华,黄培云,WUXiang-wei,CHENZhen-hua,HUANGPei-yun

5.我国废旧线路板回收利用与无害化处理技术获得重大进展

6.溶胶-凝胶法制备Ba1-xSrxTiO3超微粉的干凝胶热分解过程聂越峰,尹荔松,林国淙,张进修,NIEYue-feng,YINLi-song,LINGuo-cong,ZHANGJin-xiu

7.首届全国粉体表面改性技术专题研讨会

8.粉体技术 湍流扩散火焰数值模拟中若干影响因素的研究王利希,陈石,谢洪勇,WangLi-xi,ChenShi,XieHong-yong

9.高钛矿渣的粉磨特性研究张继东,ZHANGJi-dong

10.气流粉碎碰撞过程的计算机仿真崔岩,葛晓陵,CuiYan,GEXiao-ling

11.由光子相关谱反演微粒体系粒径分布方法的分析与比较王少清,陶冶薇,董学仁,任中京,WANGShao-qing,TaoYe-wei,DongXue-ren,RENZhong-jing

12.几种纳米水性涂料的抗菌及抗病毒作用研究桂芳,张卓然,郑丛龙,周大勇,李同信,梁文涛,GUIFang,ZHANGZhuo-ran,ZHENGCong-long,ZHOUDa-yong,LITong-xin,LIANGWen-tao

13.第六届全国颗粒测试学术会议

14.介孔材料的制备及表征钱家盛,王旭华,章于川,QIANJia-sheng,WANGXu-hua,ZHANGYu-Chuan

15.用电石废渣制备纳米碳酸钙的研究乔叶刚,QIAOYe-gang

16.超细干粉灭火剂周文英,杜泽强,介燕妮,寇静利,ZHOUWen-ying,DUZe-qiang,JIEYan-ni,KOUJing-li

17.纳米技术在建筑材料中的发展与应用魏智强,王政军,乔宏霞,戴剑锋,冯旺军,王青,闫鹏勋,WEIZhi-qiang,WANGZheng-jun,QIAOHong-xia,DAIJian-feng,FENGWang-jun,WANGQing,YANPeng-xun

1.哈密顿量明显与时间有关系统的量子论姜迅东,胡荣泽

2.中国颗粒学会2004年会暨海峡两岸颗粒技术研讨会(第一轮通知)

3.高炉矿渣微细粉的粉体特性研究赵旭光,赵三银,文梓芸

4.纳米锑掺杂二氧化锡水悬浮液性质的研究王栋,林耀,顾利霞

5.我国纳米技术专利申请数居世粉体技术 界第三

6.镍纳米粉的比表面积和孔结构研究魏智强,乔宏霞,温贤伦,闫鹏勋

7.2004中国(青岛)国际新材料应用与制造技术展览会暨材料科技周

8.纳米锌/聚氯乙烯复合材料的研制和表征徐斌,楼白杨,白万金,刘宣国

9.远红外纳米氧化钛粉的制备王英姿,赵鸿,魏才业,杨中喜

10.硫化镉纳米粒子的制备研究马国华,彭同江

11.CM51A型冲击式超细粉碎机的应用研究王新江,吴治林

12.气流磨粉碎颗粒分析刘长江,杨云川

13.片状金属粉体在颜料及电子浆料中的应用叶红齐,苏周,周永华,杨鹰

14.锑掺杂二氧化锡导电机理及制备方法研究现状杨建广,唐谟堂,张保平,杨声海,陈艺峰

15.超声化学法制备无机纳米材料的研究进展卢小琳,国伟林,王西奎

16.寻求"四维破磨理论"联合攻关伙伴

17.纳米陶瓷粉体的制备沙菲,宋洪昌

1.我国现代粉体市场营销问题及策略孙成林

2.正交设计在溶胶-凝胶法制备单分散球形SiO2中的研究王金忠,赵岩,张彩碚

3.超细颗粒的相对论性时空新理论姜迅东,胡荣泽

4.三论变化电磁场中带电超微粒子的精确量子论姜迅东,胡荣泽

5.气流粉碎法制备超细粉体的效应分析李国康,杨云川,朱英杰

6.统计模试识别技术在单分散二氧化硅微球制备过程中的应用张辉,赵晓峰,唐清,李文超

7.磁流体的制备与性质研究任欢鱼,刘蕾,刘勇健

8.粉体技术 粉体制备中的逆粉磨行为应德标

9.一种用于精确分级的受阻沉降器赵洪力

10.超细无机粉体快速流态化的雾化分级研究刘春雨

11.纳米In2O3的制备与结构表征李晶,陈世柱

12.球形微米和纳米级SiO2的生产新工艺纪崇甲

13.粉体的自组织行为欧阳鸿武,刘咏,陈海林,何世文

第9篇:纳米粒的制备技术范文

纳米材料在结构、光电和化学性质等方面的诱人特征,引起物 理学 家、材料学家和化学家的浓厚兴趣。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学性质,使人们意识到它的 发展 可能给物理、化学、材料、生物、医药等学科的 研究 带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工生产领域也得到了一定的应用,并显示出它的独特魅力。

1. 在催化方面的应用

催化剂在许多化学化工领域中起着举足轻重的作用,它可以控制反应时间、提高反应效率和反应速度。大多数传统的催化剂不仅催化效率低,而且其制备是凭经验进行,不仅造成生产原料的巨大浪费,使 经济 效益难以提高,而且对环境也造成污染。纳米粒子表面活性中心多,为它作催化剂提供了必要条件。纳米粒于作催化剂,可大大提高反应效率,控制反应速度,甚至使原来不能进行的反应也能进行。纳米微粒作催化剂比一般催化剂的反应速度提高10~15倍。

纳米微粒作为催化剂应用较多的是半导体光催化剂,特别是在有机物制备方面。分散在溶液中的每一个半导体颗粒,可近似地看成是一个短路的微型电池,用能量大于半导体能隙的光照射半导体分散系时,半导体纳米粒子吸收光产生 电子 ——空穴对。在电场作用下,电子与空穴分离,分别迁移到粒子表面的不同位置,与溶液中相似的组分进行氧化和还原反应。

光催化反应涉及到许多反应类型,如醇与烃的氧化,无机离子氧化还原,有机物催化脱氢和加氢、氨基酸合成,固氮反应,水净化处理,水煤气变换等,其中有些是多相催化难以实现的。半导体多相光催化剂能有效地降解水中的有机污染物。例如纳米tio2,既有较高的光催化活性,又能耐酸碱,对光稳定,无毒,便宜易得,是制备负载型光催化剂的最佳选择。已有文章报道,选用硅胶为基质,制得了催化活性较高的tio/sio2负载型光催化剂。ni或cu一zn化合物的纳米颗粒,对某些有机化合物的氢化反应是极好的催化剂,可代替昂贵的铂或钮催化剂。纳米铂黑催化剂可使乙烯的氧化反应温度从600℃降至室温。用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化 科学 不可忽视的重要研究课题,很可能给催化在 工业 上的应用带来革命性的变革。

2. 在涂料方面的应用

纳米材料由于其表面和结构的特殊性,具有一般材料难以获得的优异性能,显示出强大的生命力。表面涂层技术也是当今世界关注的热点。纳米材料为表面涂层提供了良好的机遇,使得材料的功能化具有极大的可能。借助于传统的涂层技术,添加纳米材料,可获得纳米复合体系涂层,实现功能的飞跃,使得传统涂层功能改性。涂层按其用途可分为结构涂层和功能涂层。结构涂层是指涂层提高基体的某些性质和改性;功能涂层是赋予基体所不具备的性能,从而获得传统涂层没有的功能。结构涂层有超硬、耐磨涂层,抗氧化、耐热、阻燃涂层,耐腐蚀、装饰涂层等;功能涂层有消光、光反射、光选择吸收的光学涂层,导电、绝缘、半导体特性的电学涂层,氧敏、湿敏、气敏的敏感特性涂层等。在涂料中加入纳米材料,可进一步提高其防护能力,实现防紫外线照射、耐大气侵害和抗降解、变色等,在卫生用品上应用可起到杀菌保洁作用。在标牌上使用纳米材料涂层,可利用其光学特性,达到储存太阳能、节约能源的目的。在建材产品如玻璃、涂料中加入适宜的纳米材料,可以达到减少光的透射和热传递效果,产生隔热、阻燃等效果。日本松下公司已研制出具有良好静电屏蔽的纳米涂料,所应用的纳米微粒有氧化铁、二氧化钛和氧化锌等。这些具有半导体特性的纳米氧化物粒子,在室温下具有比常规的氧化物高的导电特性,因而能起到静电屏蔽作用,而且氧化物纳米微粒的颜色不同,这样还可以通过复合控制静电屏蔽涂料的颜色,克服炭黑静电屏蔽涂料只有单一颜色的单调性。纳米材料的颜色不仅随粒径而变,还具有随角变色效应。在汽车的装饰喷涂业中,将纳米tio2添加在汽车、轿车的金属闪光面漆中,能使涂层产生丰富而神秘的色彩效果,从而使传统汽车面漆旧貌换新颜。纳米sio2是一种抗紫外线辐射材料。在涂料中加入纳米sio2,可使涂料的抗老化性能、光洁度及强度成倍地增加。纳米涂层具有良好的应用前景,将为涂层技术带来一场新的技术革命,也将推动复合材料的研究开发与应用。

3. 在其它精细化工方面的 应用

精细化工是一个巨大的 工业 领域,产品数量繁多,用途广泛,并且 影响 到人类生活的方方面面。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用。如在橡胶中加入纳米sio2,可以提高橡胶的抗紫外辐射和红外反射能力。纳米al2o3,和sio2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高。国外已将纳米sio2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用。在有机玻璃中加入经过表面修饰处理的sio2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入a12o3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性。一定粒度的锐钛矿型tio2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高。超细tio2的应用还可扩展到涂料、塑料、人造纤维等行业。最近又开发了用于食品包装的tio2及高档汽车面漆用的珠光钛白。纳米tio2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景。在环境 科学 领域,除了利用纳米材料作为催化剂来处理工业生产过程中排放的废料外,还将出现功能独特的纳米膜。这种膜能探测到由化学和生物制剂造成的污染,并能对这些制剂进行过滤,从而消除污染。

4. 在医药方面的应用

21世纪的健康科学,将以出入意料的速度向前 发展 ,人们对药物的需求越来越高。控制药物释放、减少副作用、提高药效、发展药物定向 治疗 ,已提到 研究 日程上来。纳米粒子将使药物在人体内的传输更为方便。用数层纳米粒子包裹的智能药物进入人体,可主动搜索并攻击癌细胞或修补损伤组织;使用纳米技术的新型诊断仪器,只需检测少量血液就能通过其中的蛋白质和dna诊断出各种疾病,美国麻省理工学院已制备出以纳米磁性材料作为药物载体的靶定向药物,称之为“定向导弹”。该技术是在磁性纳米微粒包覆蛋白质表面携带药物,注射到人体血管中,通过磁场导航输送到病变部位,然后释放药物。纳米粒子的尺寸小,可以在血管中自由流动,因此可以用来检查和治疗身体各部位的病变。对纳米微粒的临床医疗以及放射性治疗等方面的应用也进行了大量的研究工作。据《人民日报》报道,我国将纳米技术应用于医学领域获得成功。南京希科集团利用纳米银技术研制生产出医用敷料——长效广谱抗菌棉。这种抗菌棉的生产原理是通过纳米技术将银制成尺寸在纳米级的超细小微粒,然后使之附着在棉织物上。银具有预防溃烂和加速伤口愈合的作用,通过纳米技术处理后的银表面急剧增大,表面结构发生变化,杀菌能力提高200倍左右,对临床常见的外科感染细菌都有较好的抑制作用。

微粒和纳粒作为给药系统,其制备材料的基本性质是无毒、稳定、有良好的生物性并且与药物不发生化学反应。纳米系统主要用于毒副作用大、生物半衰期短、易被生物酶降解的药物的给药。

纳米生物学用来研究在纳米尺度上的生物过程,从而根据生物学原理发展分子应用工程。在金属铁的超细颗粒表面覆盖一层厚为5~20nm的聚合物后,可以固定大量蛋白质特别是酶,从而控制生化反应。这在生化技术、酶工程中大有用处。使纳米技术和生物学相结合,研究分子生物器件,利用纳米传感器,可以获取细胞内的生物信息,从而了解机体状态,深化人们对生理及病理的解释。