公务员期刊网 精选范文 粉末冶金的优缺点范文

粉末冶金的优缺点精选(九篇)

粉末冶金的优缺点

第1篇:粉末冶金的优缺点范文

关键词:粉末冶金;汽车零件;金属粉末;高性能

粉末冶金材料是指用若干种金属粉末或是金属粉末与非金属粉末作原料, 通过按比例配料、压制成形、烧结等工艺过程而制成的材料。这种生产工艺过程也就是粉末冶金法, 它属于一种不同于熔炼和铸造的方法。由于其生产工艺过程与陶瓷制品工艺极为相似, 所以粉末冶金法又被称为金属陶瓷法。粉末冶金法不仅是制造某些具有特殊性能材料的方法, 同时也是一种无切屑或少切屑的加工方法。它具有生产效率高、材料利用率高、节省机床和生产占地面积等特点。但其也存在一定的缺陷,如金属粉末和模具费用高, 制品大小和形状受到一定限制, 制品的韧性也较差。粉末冶金法常被用于制作硬质合金材料、结构材料、减磨材料、难熔金属材料、摩擦材料、过滤材料、无偏析高速工具钢、金属陶瓷、耐热材料、磁性材料等。

一、粉末冶金技术的含义及其特点

粉末冶金技术附属于材料制备和成形的加工技术,而作为粉末冶金的雏形就是块炼铁技术,块炼铁技术也是人类最初制取铁器的唯一手段,其对人类社会进步作出了巨大贡献。

1、 粉末冶金技术的含义

粉末冶金的方法其实诞生已久。人类早期通过机械粉碎法来制取金、银、铜和青铜的粉末,用来当作陶器等的装饰涂料。早在200年前,一些欧洲国家,如俄、英等国就曾大规模的制取海绵铂粒,并经过热压、锻和模压、烧结等加工工艺来制造钱币和一些贵重器物。1890 年,美国的库利吉发明用粉末冶金方法制造灯泡用钨丝,从而奠定了现代粉末冶金技术的基础。直到1910年左右,人们已经开始用粉末冶金法来大量制造了钨钼合金制品、青铜含油轴承、硬质合金、集电刷、多孔过滤器等,并逐步形成了一整套粉末冶金相关技术。上世纪30年代,旋涡研磨铁粉和碳还原铁粉技术问世后,从而为粉末冶金法制造铁基机械零件较快的发展机遇。从第二次世界大战后,粉末冶金技术得到了较快的发展,新型的生产工艺和技术装备、新的材料和制品不断出现,开拓出一些能制造特殊材料的领域,成为现代工业中的重要组成部分。

2、 粉末冶金技术的主要作用

由于粉末冶金技术的具有特殊优点,使其已成为解决新材料问题的有效途径,而且在新材料的发展中历程中发挥着举足轻重的作用。

粉末冶金技术由于其可以在最大限度地来减少合金成分发生偏聚,消除粗大且不均匀的铸造组织。在制备高性能稀土永磁材料、稀土发光材料、稀土储氢材料、高温超导材料、稀土催化剂、新型金属材料上具有独特的作用。同时还可以制备非晶、纳米晶、准晶、微晶以及超饱和固溶体等一系列高性能非平衡材料,这些材料由于具有优异的电学、光学、磁学和力学性能。因此可以较容易地实现多种功能类型的复合,充分发挥各组元材料各自的特性,是一种低成本生产高性能金属基和陶瓷复合材料的工艺技术。可以生产普通熔炼法无法生产的具有特殊结构和性能的材料和制品,如新型多孔生物材料,多孔分离膜材料、高性能结构陶瓷和功能陶瓷材料等。可以实现净近形成形和自动化批量生产,从而,可以有效地降低生产的资源和能源消耗。可以充分利用矿石、尾矿、炼钢污泥、轧钢铁鳞、回收废旧金属作原料,是一种可有效进行材料再生和综合利用的新技术。

二、粉末冶金技术的发展趋势

随着汽车和飞机零件以及切削和成形工具发展的需要,粉末冶金制造零部件的强度和质量都得到了较好的改善和提高。汽车制造业作为粉末冶金零件的最大用户,1996 年汽车行业占有美国粉末治金零件的市场份额的69%,成为美国粉末冶金零件的最大市场。发展粉末冶金需要制取新技术、新工艺及其过程理论。

1 、向全致密化发展

粉末冶金的重点是超细粉末和纳米粉末的相关制备技术,机械合金化技术,快速冷凝制备非晶、微晶和准晶粉末制备技术,粉末粒度、结构、形貌、成分控制技术,自蔓延高温合成技术。粉末冶金技术发展的总趋势是向超细、超纯、粉末特性可控方向发展,从而建立以“净近形成形”技术为中心的各种新型固结技术及其过程模过程理论,如粉末注射成形、挤压成形、喷射成形、温压成形、粉末锻造等。建立以“全致密化”为主要目标的新型固结技术及其过程模拟技术。

2 、向高性能化、集成化和低成本等方向发展

粉末冶金制造零部件相关的新的成形技术层出不穷,如:粉末注射成形、温压成形、流动温压成形、喷射成形、高速压制成形等新技术不断涌现。目前, 粉末冶金技术正向着高致密化、高性能化、集成化和低成本等方向发展。有代表性的铁基合金,将向大体积的精密制品,高质量的结构零部件发展;制造具有均匀显微组织结构的、加工困难而完全致密的高性能合金;用增强致密化过程来制造一般含有混合相组成的特殊合金;制造非均匀材料、非晶态、微晶或者亚稳合金;加工独特的和非一般形态或成分的复合零部件。

3 、粉末冶金产业化发展

由于相邻学科和相关技术的相互渗透和结合.更赋予了粉末冶金新的发展活力。粉末冶金新工艺层出不穷。粉末冶金产业化是指这些技术已比较成熟。甚至在一些国家已有生产规模,但主流还处于研究成果向产业化转化的过程之中。其工艺、设备、市场等已为产业化准备了条件,可以产业化,取得社会效益和经济效益。主要是指该技术实现产业化、集群化、模块化发展。其主要应用领域有汽车用粉末冶金零部件,汽车制造业仍是粉末冶金(PM)发展的牵引力;粉末注射成(PowderInjection Molding(PIM))温压成形技术(Warm Compaction)在众多为提高PM 件密度的生产方法中。温压成形技术被认为是最为经济的一种新工艺。本文将重点介绍以下产业化技术:

① 温压技术

温压技术在上世纪90 年代被誉为粉末冶金技术上重大突破,并于1990年取得了第一项采用一次压制烧结工艺制备高密度铁基(P / M)零件的美国专利。该技术可以使烧结钢中的孔隙度降低到6 %左右,而传统技术的孔隙度为10%以上,产品的密度能达到7.3g/cm3或以上,因此较大程度的拓宽了高密度、高强度烧结钢零件在工业上广泛应用的可能性。

② 模壁

模壁和温压是两个平行的提高铁基结构零件密度的方法。近年来,发展最迅速的是干模壁技术,即采用静电的方法,从而将干剂粉末吸附到模壁上进行,从而很好的避免了湿模壁在制备过程中压坯表面易于粘粉的缺点。

③注射成形

金属注射成形(MIM)是一种将塑料注射成形与粉末冶金技术结合而成的近净成形技术,此技术也是国内外公认的21 世纪粉末冶金的主流技术,被称为“第五代加工技术”。而且该技术也最适于用来大批量生产一些三维复杂形状的零件,同时还可以实现自动化连续作业,从而大大提高生产效率。目前,在一些发达国家,MIM技术已经成为一项最具竞争力的金属成形技术,而且开始大量用于不锈钢粉末冶金生产。

三、粉末冶金机械零件的制造现状与挑战

我国粉末冶金技术起步较晚,自1958年诞生以来,一直是处在蹒跚学步的状态中,而且一直不被人们重视,被当做是一个没有前景的小行业来对待。然而从世界粉末冶金行业发展状况来看,粉末冶金行业却是一个最具市场活力,发展速度极快,同时应用范围也是最广的冶金技术,尤其是日本在粉末冶金技术方面发展飞快,每年生产烧结含油轴承十几亿只。直到上世纪80年年代初,在我国体制改革的大潮中,粉末冶金零件行业正式划归当时的“基础件工业局”进行管理,并结束了粉末冶金零件行业自身自灭的状态,从而得到相应的发展机遇。我国自上世纪90年代至今约20多年间,粉末冶金零件得到迅猛发展,同时也经受住了金融危机的不利影响。

表1是我国自2007-2011年间粉末冶金分会53家会员企业的数据进行统计的结果,虽然我国粉末冶金行业目前显示出盎然生机,但也面临着各方面的挑战。现笔者将自己的针对其中的一些问题以及看法和相应的意见提供给大家参考:

四、粉末冶金机械零件制造技术在汽车行业的应用现状与前景

近年来,由于人们生活观念的改变,同时人们的环保意识也不断提高,因而轻量化的汽车也越来越受人们的亲睐,从而汽车工业也开始大量使用轻质合金材料,如铝合金、镁合金来生产汽车零部件。也正是由于粉末冶金能够很好的避免成分偏析,又可以满足具有各种特定性能的零部件一次性成型的要求。

目前粉末冶金汽车零件主要有两个市场,一个为汽车生产商市场,另一个为汽车维修服务点,即维修配件市场。而汽车生产商市场则是粉末冶金零件的主要市场,通常情况下,汽车生产商会与粉末冶金零件制造企业进行定向合作,从而导致其他零件制造企业难以插足获利。而维修配件市场相对来说则要开放的多,而且需求量也较大,但大多都是存在某些质量问题的货物。从表2可知,我国在汽车制造行业中对粉末冶金技术制造的零件的使用量只有日本的2/3左右,但我国的粉末冶金制造的零件的总量却要比日本的多,可见粉末冶金汽车零件的市场潜力是巨大的。

我国目前汽车行业正处于蓬勃发展期,因此也给我国粉末冶金零件制造企业带来了难得市场机遇。同时根据美国一家信息分析中心预测,2020年我国汽车销量将达到2000万辆,届时中国将超过美国成为全球汽车销量第一的国家。而我国粉末冶金汽车零件的主要制造企业有三十多家,且其主要生产的零部件为汽车所使用的一些轴承或者是小配件,总体呈现出还是处于相对来说较为低端的位置,而关于发动机或调速箱等关键部位的零部件则基本上是整体通过国外进口,同时随着全球经济一体化趋势的不断加速,我国粉末冶金企业毕竟面对国际化市场,这对我们来说既是机遇也是挑战。因此就需要我国粉末冶金企业把握机遇,迎难而上,主动积极的溶于国际化市场当中。

参考文献

[1]韩凤麟.粉末冶金零件与汽车工业[J].新材料产业,2007(11):31-38.

[2]杨伏良,甘卫平,陈招科.粉末粒度对高硅铝合金材料组织及性能的影响[J].材料科学与工艺,2006,14(3):268-271.

[3]印红羽,张华诚.粉末冶金模具设计手册[M].北京:机械工业出版社,2002.

[4]李祖德,李松林,赵慕岳.20世纪中、后期的粉末冶金新技术和新材料(1)――新工艺开发的回顾[J].粉末冶金材料科学与工程,2006,11(5):315-322.

[5]刘文海.铝合金新材料的发展动向[J].机械工业杂志,2007,291:160-162.

[6]黄培云.粉末冶金原理[M].北京:冶金工业出版社,1997.

第2篇:粉末冶金的优缺点范文

公司概述

×某粉末冶金股份有限公司是某市重点扶持发展的企业,某省轻工系统“销售利税五十强”企业。该公司于一九九七年投资万元,新建厂房多平方米,新厂区位于某市高新技术产业园区。

×某粉末冶金股份有限公司现有总资产万元,其中固定资产万元。现有职工人,中等专业学校以上毕业生人。年产量吨,总产值万元,利税多万元。公司拥有—吨粉末冶金专用成型压机和精整压机共台套,铁基、铜基、烧结炉台套,并配有后续机、精加工仪表车床等加工设备。公司产品,主要包括铁基、铜基、铁铜基,系列含油轴承、摩托车减震器零件,铁基粉末冶金结构件、汽车拉申件。产品畅销东北、华北、华东地区,并与一些大公司建立了产销关系。而且公司根据目前情况建立了自己的销售方针和生产战略方针。公司无论在产品产量、生产规模还是生产能力都已成为长江以北最大的粉末冶金生产企业。

行业状况

×粉末冶金制品的应用范围十分广泛,从普通机械制造到精密仪器;从五金工具到大型机械;从电子工业到电机制造;从民用工业到军事工业;从一般技术到尖端高技术,均能见到粉末冶金工艺的身影。粉末冶金是制取金属粉末,及采用成形和烧结工艺将金属粉末(或金属粉末与非金属粉末的混合物)制成材料和制品的工艺技术。它是冶金和材料科学的一个分支学科。

×随着世界经济全球化的发展和我国加入世贸组织,制造业在国民经济中发挥着越来越重要的作用。作为集化工、冶金、机械等为一身的粉末冶金行业近年来发生了巨大的变化,特别是随着中国汽车工业的快速发展,带动了对粉末冶金机械零件日益增长的需求。粉末冶金机械零件已成为我国汽车、摩托车、家电、工程机械、纺织机械、农用运输车等诸多行业中不可缺少的基础零部件,其市场需求和应用领域不断扩大。十五期间,粉末冶金零部件的需求量将从年的吨增长到吨。其中汽车行业粉末冶金零部件的总需求量将从吨增加到吨,增长幅度近。这为粉末冶金行业提供了不可多得的发展机遇和巨大的市场空间。汽车零部件企业家,三资多家,年全行业销售产值亿元,同比增长。

×下表是粉末冶金行业企业主要经济指标四月份完成情况表:

×(资料来源:中国粉末冶金网)

×序号

×指标名称

×单位

×本月完成

×同期完成

×同期比

×

×工业总产值(现行价)

×万元

×

×

×

×

×工业销售

×万元

×

×

×

×

×其中:出货量

×万元

×

×

×

×

×产品销售收入

×万元

×

×

×

×

×粉末冶金机械零件产量

×吨

×

×

×

××(图)

×中国汽车工业协会副秘书长沈宁吾月日在“首届中国汽车及零部件产业发展论坛上”说,中国汽车零部件制造水平总体上达到世纪年代末国际水平,基本满足国内引进车型的配套要求。

×但是目前我国粉末冶金行业也存在着很多问题,例如研发能力弱,工业装备落后,产品水平低。在粉末冶金产品结构方面,结构零件约占机械零件总产量的,而国外约占;产品精度方面,与国外企业相比,国内一般企业相差约—个级别;内在质量和外在质量均有较大差距,稳定性欠缺。粉末冶金产品趋同化现象严重,低档产品多,生产过剩;高档产品欠缺,市场供不应求,只能寻求从国外进口。

×公司面临环境×××微观环境

宏观环境

某粉末冶金股份有限公司

政策

环境

社会

技术

供应商

竞争对手

市场状况

公司环境可以从两个方面来分析:微观和宏观环境。微观环境主要指公司内部运营状况,可以从的角度来分析;而宏观环境是指与企业有关的各个环节,包括:供应商,竞争对手和市场状况。如下图所示:

×

×(图)

微观环境:公司内部情况

从公司的运营状况来看,该企业在行业内并不具有绝对优势,具体分析如下:

政策:由于该行业基本属于完全竞争行业,并不存在政策的偏袒,所以每家企业面临着同样的政策背景。从这点上来看,该企业没有优势。

环境:主要指企业所处的地理环境。某市并不是一个很利于企业成长的环境,因为即使在某省,某市都不算是很发达的地区,而且该市周围并没有大型的汽车、摩托车等生产商(最近的也在北京、天津)。所以在企业所处环境上,该企业并没有优势。

×社会:在东北、华北、华东地区,该企业有一定的社会知名度,但是仍然有一些比较强的竞争对手,而且每个企业都有自己的产销网络,所以如果每家公司都保持现有优势,不出现临时的重大变故,不会轻易丢失客户,但这种情况下也很难大规模地拓展市场。所以从社会这方面来看,该企业在自己的产销网内有非常大的优势,但从整个行业来看,该企业的优势并不十分明显。

×技术:该公司虽然是该行业在长江以北最大的企业,但该行业的技术门槛比较低,而且对下游企业——汽车、摩托车等企业有比较强的依附力,所以如果一些大型的汽车生产商如果想要涉足该行业,很容易培养起来竞争力很强的企业。所以技术上,该企业也不存在很大的优势。

宏观环境

原料供应商:目前公司的铁粉原料都由山西阳泉提供,此供应商在铁粉生产领域属大型企业,产量大而且稳定,公司目前只有这一家原料供应商。这样有利于建立长期稳定的供货渠道,也有利于形成长期的供销同盟以提高行业的竞争门槛,限制竞争对手的发展;但是也存在一些缺点,首先这样会使公司受限于供应商,而失去了从供应商方面削减成本的机会,同时如果供应商出现问题,例如产量和价格波动较大,公司想要立即找到合适的供应商将会加大成本,给公司造成巨大损失。在这方面公司应该改变这种单一的进货渠道,积极寻找新的原料提供商,一方面可以自己主动寻找,另一方面可以以招标的形式,吸引供应商。这样可以在原料成本方面掌握主动权,分散风险,同时可以保证原料供应。

×市场状况:我国经济改革的进一步加快,以及我国加入世贸组织,为我国的经济市场带来了新的活力。作为一个新兴的行业粉末冶金也有了一个更为广阔的市场。随着人们消费水平的提高,对汽车、摩托车及各类家电需求量巨增,这些产品的配件市场也有了更大的发展潜力。有需求就有竞争,作为市场先入者的衡水粉末冶金公司应该趁行业竞争不是十分激烈的时候努力扩大市场,培养自己的核心竞争力,努力成为行业的领导者。

×竞争对手:作为一个生产粉末冶金产品的中型集体所有制企业,其在技术和管理领域都存在着较为严重的问题。衡粉的竞争对手主要分为两类,一类是技术、规模都领先的较大型企业,一类是小型的私营企业。第一类企业主要集中在南京、上海、宁波、重庆地区,其规模大,而且大多是合资企业,有着雄厚的资金、大量的专业人员和先进的技术,在产品档次上有着不可比拟的优势,而此时中国的零配件市场最短缺的就是高档次的产品,此类无论在国家政策还是技术引进方面都有很强的优势。这类企业的产品技术含量高,中等产品占的比重不大,低档次附加值低的产品几乎不生产。第二类企业,大都为私营的小型企业,主要集中在江浙一带,其在管理方面占有一定优势,一般是老总一个人做决定,管理紧促;管理人员少,各方面费用小,成本低,因此在价格方面有很大竞争力;而且大部分是新发展起来的,设备较为先进,但产品多为低档次产品;由于其规模小,生产能力有限,产量受很大限制。鉴于该公司目前的技术及规模情况,一时很难进入高档次产品市场,竞争能力很弱。因此将中低产品市场作为目标市场是最佳选择;和私营小企业相比,该公司具有较大规模的生产场地,产量大而且稳定,原料采购量大,可取得较优惠的价格,原材料成本低,工人多,生产能力充足,有比较正规的管理体系,能够从整个市场分析,制定公司长远发展计划。因此该公司在中低档产品的市场上有很大的优势。

设计市场营销计划设计营销计划的思路企业的整体战略规划确定了企业的任务和目标,市场营销战略在其中起关键性的作用。市场营销计划包括的内容有内容提要、当前营销状况、威胁与机会、营销目标、营销策略、活动程序、预算、控制。企业要想制定一套切实可行的营销计划,就必须针对以上内容做相应的调研、预测,充分了解并分析营销环境、营销信息系统、消费者市场、组织者市场,确定细分市场及目标市场。

公司的发展方向有以下三种选择:首先,以扩大生产原有产品为重点,这样可以减少风险,有利于企业的稳定发展,但不利于企业的长久发展,通过对企业的产品线分析看,该企业的产品宽度不够,如果仍然按照现在的产品结构发展,企业很难有长足的进步。其次,为用户提供相关的备品备件及跟踪服务,这样可以使企业从生产上向服务提供商转型,从行业价值链的角度看,生产商的利润总是越来越低,而服务提供商可以长久保持较高的利润,所以可以考虑公司的转型。其三,开发新产品,这是最难的,但是企业必须做的,没有能适应新市场的新产品,就无法使企业在近期的发展中取得领导者的地位,无论是转型还是扩大规模都无法谈及。

公司是否开发一项新产品,是否进入一个特定的市场,取决于市场是否拥有足够大的发展空间,进而取决于对市场的准确衡量和预测。消费者的需求、动机以及购买行为的差异性,是市场细分的根据。粉末冶金行业的主要消费对象是一些大型机械设备、汽车、家电企业,市场领域广泛,加之目前我国制造业的快速发展和经济的进一步开放,使粉末冶金市场有了更大的发展潜力,但同时也存在行业发展快的风险。该公司位处某省某市,交通相对比较便利。目前将市场定位在长江以北地区,尤其是山东、天津和东北地区,因为这些是制造业较为集中的地区。公司在作市场细分时,根据销售对象的行业分类,也是分为三部分:汽车、摩托车和家用电器。

×目标市场是在细分市场的基础上进行的,它根据市场细分标准选择一个或一个以上的细分市场,并作为企业营销对象的市场。一个细分市场要能成为理想的目标市场,必须具备三个条件:拥有一定的购买力,有足够的销售量和营业额;有较理想的尚未满足的消费需求;市场竞争还不激烈,竞争对手未能控制市场。目前,该公司将江南地区作为一个新的目标市场的所在地,一方面江南地区的纺织业发达,汽车制造业潜力巨大;另一方面,公司在生产技术方面较为领先,产品质量再同类产品中处较高水平,易于进入市场。在制定具体的目标市场策略时,企业有三种选择:无差异市场策略、差异市场策略和密集性市场策略。基于目前公司的规模教小,而且资源有限,可以采取以密集性市场策略为主,同时在局部实行差异市场策略。在江南地区不仅有知名品牌的汽车产地,而且随着我国汽车业的快速发展,和人们汽车消费的大量增长,使得一大批中小型汽车发展起来。针对市场情况,该公司可以将汽车零配件作为主产品进入,同时顾及纺织机械配件。

产品策略

×它一个综合性的概念,它包括产品组合策略、新产品开发策略、产品寿命周期策略、商标策略、包装策略、服务策略等一系列内容。

目前该公司的产品线长度为,既产品主要包括三个大的项目:汽车配件、摩托车配件和家电配件。从宽度上来看,汽车配件主要是汽车发动机上的配件;摩托车方面主要是减震器;家电方面主要是洗衣机上的旋转轴和空调上的平衡块。从一般意义上来讲,产品线长度主要是为了减少企业对下游企业的依附性,一般情况下大于或等于就算比较适中;而宽度主要是为了减少企业的市场风险,至少应为。由此可见产品线长度为,下游行业为个,比较适中;但宽度只有,每个行业只有一种主要产品,所以宽度较窄。如果产品线不做改进将不利于公司的长期发展。建议公司扩大产品线宽度,增加产品种类。

×产品生命周期:指产品从进入市场到被市场淘汰为止所经历的全部时间包括导入期、成长期、成熟期、衰退期。判断产品生命周期阶段的方法有两种,一是以销售增长率为标准,一般来讲成长期产品的销售增长率一般比较平稳,在相当长一段时间内保持大致相同的增长率,而成熟期增长率将会下降直至,随后进入衰退期;另一种是与市场的同类产品作对比,包括性能、技术含量和成本,一般来讲新产品至少在这三个方面里有一个方面是优于企业当前产品的,所以企业应该不定期对市场上的产品进行测评,以避免落后市场。然后根据已掌握的信息,预测各阶段的延续时间与增长速度。

×针对产品处于不同的生命阶段,相应制定市场营销策略。一般来讲,产品处于导入期时,应该采取保持产品性能的策略,使产品在用户心目中留下一个比较好的印象;在成长期时应该加大产品宣传力度,扩大产品的知名度;在产品进入成熟期后,销量达到最高点,增长速度缓慢,同时生产力过剩,市场竞争加剧,此时企业可采取延长产品生命周期的策略:市场改革策略、产品改革策略和市场销售组合策略。其中,市场改革策略主要指将现在的产品推向尚未开发的细分市场,比如行业的转换或者地点的转移,以此来使原有产品获得新的生命力,降低产品开发的成本;产品改革策略主要指改进现有产品,在现有产品基础上开发出新的产品,通过命名和宣传的不同达到开发新市场的目的;最后一种市场销售组合策略是指通过组合不同产品,通过捆绑策略来进行市场竞争。

×从该公司的情况来看,该公司的产品有一部分正在从成熟期转向衰退期,这部分产品以前是或者现在仍是公司盈利的主要支柱之一,但产品的盈利能力在不断下降,而且从产品本身来讲,产品在技术方面已经完全成熟,性能方面的改进空间已经很小。例如摩托车减震器,此产品销量最近几年并没有多大增长,为了延长其周期,公司可以尝试在新的市场,比如南方市场来推广这些已经成熟的产品,因为这些产品已经成熟,容易打开市场,同时又可以延长产品的生命周期,降低成本。

×该公司还有一部分产品正在处于导入期。但这部分产品有的是公司刚研发出来的,市场风险比较高;有的是专门为配合大企业推出新的成品而专门开发的,比如平衡块是专门为做的,虽然依附于大企业会降低新品推广的市场风险,但由于推广主体是,所以即使产品推广成功,主要的获利者是,该公司不能从中获得较高的利润。所以,公司应该对前者进行周密的市场推广计划,通过更多的前期预测来降低风险,并从中取得尽可能高的利润。

×该公司在判断产品生命周期方面,以销售增长率为标准,但是由于其信息通道欠发达,使得销售与产品生产相对滞后,产品积压较严重。所以企业应该加大信息通道建设,搜集各方面的信息,使企业能够准确预测产品发展前景;在另一方面,公司应该同时与同类产品作比较,多收集信息,可以利用网络上的报价,判断产品所处生命阶段,及时调整生产,避免供不应求或产品积压。

新产品开发:随着科学技术的进步,产品的生命周期日趋缩短,为了更好的适应环境,继续生存,企业就必须将新产品开发作为企业营销的一项重大决策。为使新产品开发减少风险获得成功,企业应遵循几个原则新产品的开发要符合国家规定、新产品要适应科学技术发展的趋势、开发新产品应考虑结构相似工艺相近的原则。更重要的一点就是企业要进行准确的市场调查和研究,要保证企业的新产品有足够的发展空间和盈利空间。

×粉末冶金产品开发的关键是模具的设计和制造。某公司虽然其在技术上已达到国内较先进的水平,但还存在许多缺陷,一方面是由于国内整体水平不高,另一方面由于企业较小,资金有限,不能大规模的进行市场开发。公司在新产品开发方面建立了自己的研发室,但是专业技术人员少,科研设备落后。针对公司自身的不足,在新产品开发方面,企业可以选择独立开发和联合开发这两种方式。对于技术含量低,市场前景广阔的产品,企业可以自行研发,取得专利权,以赢取较高的利润。而专业性水平高的产品,可以采用联合开发,一方面可以与大中院校建立合作关系,利用其完备的科学理论和设计基础为公司服务,公司可以作为学校的实验基地。目前企业已于河北工业大学建立良好的合作关系,研究开发了与空调器配套的铸造黄铜平衡块。另一方面可以与客户建立联合开发项目,与顾客建立良好的反馈关系,由于是与顾客共同研发,因此产品无论是质量还是设计均合乎顾客的需要,但这样的产品可能属于为单一企业量身定做,可能市场前景并不广泛,而且由于专利转让问题,企业并不一定有完全的市场开发权利,所以这种新产品开发模式不一定能为企业带来高利润。

×在产品精度方面,公司积极引进精加工设备和电子检测仪,使产品在国内同类产品中处于领先水平。在产品质量方面,各车间配有质量检测员,不定期进行产品抽查,而且建立了责任制以及最低次品率,以保证产品质量和最低损耗率。同时公司也在研究新的原料,提高产品质量,尤其是产品的耐磨性和抗压性方面。在产品档次方面,公司应该积极在国外寻求合作伙伴,随着关税降低,刺激了大量电子机械以及汽车等商品的进口,给我国的机械配件行业也带来了很好的发展机遇,主要是高档次产品市场。该公司应该积极利用自己技术优势和地理优势,开拓高档次产品,并且积极引进资金,争取早日进入高档次市场。

×品牌和包装策略:在我国企业的品牌意识不强,自我保护意识差。在粉末冶金行业也是如此,而且因为其产品大都为配件产品,想树立自己的品牌就显得更为困难。该公司目前还没有自己的注册商标,在以前这并不影响公司的销售,但随着行业竞争激烈程度的加深,以及市场的对外开放,零配件市场也在进一步趋于正规化,拥有自己的品牌已经十分必要了。在树立自己品牌方面,该公司可采用两种策略。一部分专业性产品,例如为公司生产的平衡块可以和名牌大企业建立关系,只作为其配套公司;一部分基础产品,例如摩托车减震器,此类产品任何品牌摩托车都要使用,这类产品,公司应该有自己的品牌。在品牌推广方面,对于专业性产品,企业应该保持产品的质量,并加大与大型厂商的联系进行一对一营销;对于基础产品,公司应该加大对用户的营销,使产品在最终用户心目中留下好的口碑,促使成品生产商选择自己的产品,同时也要对成品生产商进行一对一营销,双管齐下。

定价策略

×价格是商品价值的货币表现。买卖双方一次交易是否成功,往往取决于价格的高低。同时价格也是反映市场变化最灵敏的因素,也是市场营销组合因素中最活跃的行为。调整价格成为企业间竞争的主要手段。

×企业定价主要考虑的因素主要有:

×一、成本。这是生产商定价的主要标准,也是最简单的标准。主要是因为企业的产品涉及行业较多,对每种商品都设计独特的定价模式会大大消耗企业的精力,所以只好采取这种最简单的以成本为主要因素的定价方法。

×二、需求和利润。主要考虑到企业的财务收益,单纯的利润因素将不能使企业在激烈的行业竞争中取得优势,所以企业必须考虑行业需求。

×从对企业的调研来看,企业定价目标主要有以下几种:一、以利润为中心的定价目标,它包括最大利润目标、投资收益率目标和满意利润率目标。当企业的产品在市场上处于绝对有利地位时,可实行高价、高利政策,但这种目标不可能长期维持,必然遭到多方抵制、竞争甚至政府干预。二、以销售为目标,包括销售增长率目标和提高市场占有率目标。企业如果想提高销售量和市场占有率可采取降价的策略。三、以保持现状为目标,此目标主要是企业想让企业保持现有的优势,不被其他企业追上。

×从目标和因素的对比来看,该企业现有的定价因素能够在一定程度上达到企业的目标。以成本为导向主要是为了保持利润,而以销售和利润为辅是为了保持现状并扩大销售量,所以现在的定价策略比较合理。

在实际的实施中,该公司在定价方面确立了以利润为目标的定价策略,公司根据上年销量和价格来确定今年的产品价格,而且相应制定年销售额和年利税额。在定价方法上,公司目前采取成本导向定价,因为目前粉末冶金产品同质化严重,产品差异较小,这时候就必须考虑成本,根据竞争对手来制订价格。所以在原材料方面,粉末冶金产品主要是铁粉和铜粉,因此产品定价主要基于原材料的涨幅以及市场供销情况。由于近期钢铁类价格上涨,公司采取了提价措施。但是目前该公司的竞争对手多为小企业,其成本很低,只靠成本定价并没有优势。所以公司应该多考虑从需求和利润角度来定价,时刻关注市场,掌握供求状况和竞争状况,制定灵活的定价策略,以适应市场多变的需要。但是价格不可以波动次数太多,以免影响公司的信誉度。

销售渠道策略

×选择有效的销售渠道对公司来说至关重要。销售渠道简单的划分为直接销售渠道和间接销售渠道。不同的产品策略、市场策略,决定着不同的渠道策略。是利用现有的渠道,还是建设新的渠道,主要基于两方面的分析:(一)、产品品类的一致性和目标消费群体的一致性(二)、成本和风险。

×该公司根据自身状况选择了直销策略,这主要是基于公司产品的性质以及消费群体的特点而决定的。粉末冶金产品是生产资料性质的,主要是汽车、机械等大型产品的配套零件,大多为批量生产,批量订购,而且消费群体多为汽车、家用电器、纺织机械等大型企业,目标市场比较明确、集中。因此,与其设立中间商,不如直接与最终消费者联系,进行针对性的销售,从而降低价格,并保持利润,同时可以与顾客建立良好的信息反馈关系,了解顾客的需要,不断开发新产品,或与顾客共同研究开发,而成为其盟友公司。在这种直销关系中,也遇到了问题,由于需求市场较为分散,业务员显得尤为不足,但是培养一个业务员成本又很大,因此在目前公司欲扩大规模之时,可以适当设立几个中间商作为联系客户的桥梁。

×该公司下设两个销售子公司,分别负责不同地区的销售。这样便于搜集信息,了解整个市场动态。而且,可以刺激公司内部的良性竞争,使两个销售公司的职员努力开拓市场,提高销量。可是虽然公司的销售量有所上升,但在销售过程中也存在着很多问题,例如业务员短缺,信息匮乏,市场竞争激烈,这些使得公司的市场占有率并没有明显提高。因此在采取直销策略时,也应适当增加其他渠道,例如公司想要开发江南地区的市场,但是只靠本公司业务员是很难的,这时公司应该采取本地化策略,可以在这个地区寻找商或者设置分公司,利用当地的营销关系和人才,帮助企业打入江南地区的市场。

×目前,公司已成为长江以北最大的粉末冶金行业,在老客户方面,衡粉大部分产品主要是客户主动联系,虽然已与多家企业建立了长期的产销关系,产品销售情况也比较不错,但是这样难免有些被动,所以在与老顾客可以采用主关系营销,定期与老顾客联系,并给予一定优惠,这样一方面可以给顾客良好的印象,另一方面也可以通过其为公司做免费广告,进一步开发新的顾客。具体实施可以根据厂商与本公司的合作时间提供不同的打折优惠,例如:合作时间超过十年的八折优惠,年的九折优惠等等。

×公司目前外销占总销量的很小一部分,而且多为附加值低的产品,主要是贸易公司主动联系的,公司并没有出口权,也没有固定的国外客户。公司现在并没有将外销列在计划范围内,也没有积极寻求国外客户,这将使公司丧失很多的顾客。鉴于公司目前的销售能力,不可能直接接触国外顾客,因此建议公司利用网络资源,关注供求信息,主动联系需求者;或者积极与国际贸易公司联系,提供出口产品。

×但是企业规模并没有太大发展,长此以往,公司的市场优势可能会受到其他发展快的公司的威胁,因此公司不能只局限于保持老客户,应该积极开拓新的市场领域和产品领域。公司内部应该加快更新设备,增加产品线,扩大规模。

×同时,针对于我国粉末冶金行业中小企业较多,零配件又是主要产品,在贸易渠道的开发上可以走集群化发展道路。所谓集群,是指一群独立又相互关联的中小企业依照专业化分工和协作建立起来的组织。一方面可通过专业化生产,避免产品的趋同化;另一方面可以利用大企业的信息和技术资源,增强开拓市场的能力。

促销策略

第3篇:粉末冶金的优缺点范文

关键词 :锰粉末冶金应用前景

引言: 元素锰早在1774年就被发现,但是,在钢铁工业中的重要作用直到1856年发明底吹酸性转炉,以及1864年发明平炉炼钢法之后,才为人们所认识。现在,锰作为有效而廉价的合金化元素,已成为钢铁工业中不可缺少的重要原料。约90%锰消耗于钢铁工业,用量仅次于铁,其余10%消耗于有色金属冶金、化工、电子、电池、农业等部门[4,5]。

锰及其化合物是生产粉末冶金材料的常用原料。于1950年便已经被人们认识到锰在粉末冶金材料中的重要性。此后,锰在粉末冶金工业中的应用逐渐扩大。通过开发母合金技术和预合金技术,开发了含锰系列的高强度烧结钢。并且,在其它粉末冶金材料中作为主要组元或添加组元,发挥了重要作用。本文就锰在粉末冶金材料中的应用情况进行综述。

一 锰在高强度烧结钢中的作用

将锰和硅作为合金元素同时添加的低合金烧结钢,表现出良好的强化效果和烧结尺寸稳定性,价格便宜,具有很强的竞争优势[7,8]。据相关报道,1250℃保温60 min烧结的Fe-3.2%Mn-1.4%Si-0.4% C合金,拉伸强度达800~1000 MPa。烧结铁和烧结钢主要用于制造机械零件,在选择合金元素时,必须注意到其对尺寸稳定性的影响。在一般情况下,加入硅会引起压坯在烧结时收缩,而加入锰则会引起压坯膨胀。同时加入锰和硅,能够较好控制烧结体的外观形状和尺寸[9]。在测定的5种成分试样的尺寸变化ΔL/L0中,发现Fe-2.0%Si-2.0%Mn和Fe-2.0%Si-4.0%Mn基本与纯铁相同,尺寸变化为 1.2%~1.4%;而Fe-4.0%Mn较高,约为1.7%;Fe-2.0%Si较低,约为0.7%[10]。其中列举了几种含镍、钼、铜、锰、硅烧结钢的力学性能,如表1。可以看出,同时添加锰和硅合金元素的烧结钢具有很高的性能。

同时,烧结时锰升华并形成蒸气。图1给出了Fe-45%Mn-20%Si合金在600~1200℃条件下的锰蒸气压。在添加的锰足够多的情况下,锰蒸气填充到压坯空隙中有效防止其它元素发生氧化[12,13],并在铁颗粒表面沉积,通过表面扩散、体积扩散等均匀渗入铁颗粒,甚至颗粒中心,加快合金化速率[14]。在对Fe-2.0%Si-4.0%Mn试样进行观察,发现有瞬时液相形成。液相促使合金元素快速扩散,并可能克服母合金颗粒表面氧化物层的抑制作用,使合金元素达到高度均匀化[10]。

二 改善铁基烧结材料的切削加工性能

烧结钢中添加硫化锰(MnS)后能有效减小切削力,改善其切削加工性能[22~26]。在铁基材料中,硫化锰是一种脆性的而又有作用的金属夹杂物,其强度远低于铁基体。硫化锰在材料中的作用相当于孔隙,它破坏铁基体的连续性,降低强度,从而使切削力减小。韩蕴秋等研究发现[27],烧结钢中含有锰、硫元素之后切削性能得到有效的提高,锰和硫含量分别为0.318%和0.21%的600MS牌号铁粉,烧结制得样品的平均切削力仅为295MPa,远远低于锰、硫含量较低的牌号SC-100.26的688 MPa。尹平玉等的实验结果表明[28],往Fe-2%Cu-0.5%Mo-0.6%C烧结体系中添加硫化锰粉末后,材料的切削性能大大改善。而且,添加剂对材料的烧结温度、硬度以及尺寸精度均无明显影响。

经过实验表明,304L奥氏体不锈钢中添加硫化锰后钢粉的成形性和烧结性能发生明显变化。硫化锰粉的加入降低了压坯密度,在硫化锰含量低于0.6%时,压坯收缩比和烧结坯密度随添加剂含量升高而降低;而高于0.6%之后却上升。添加硫化锰粉之后,烧结钢的耐腐蚀性变差,经10%浓度的FeCl3腐蚀液浸泡之后,样品质量损失随硫化锰添加量的增加而增加[29]。硫化锰对粉末冶金烧结钢的疲劳断裂有重要影响,裂纹萌生于样品表面或表面下层的空洞,并以多种模式扩展,但是添加硫化锰并没有改变烧结钢的疲劳机理[30,31]。同时,还发现烧结钢的抗挠强度、断裂韧性等性能不仅受硫化锰添加量的影响,而且与添加剂颗粒大小也有明显关系。硫化锰相主要分布于基体颗粒之间或孔隙当中,而颗粒内部却很少,因而硫化锰晶粒尺寸对上述性能具有直接的影响[32]。

三 烧结钢表面渗锰

烧结钢常需防磨损保护而进行热处理,包括:表面淬火、碳氮共渗、软氮化、渗硼等。采用这些方法可以获得硬化表面,但或多或少使零件尺寸变大。不宜对硬化零件作精整处理,只能以磨加工进行尺寸修正。渗锰处理可用于制造烧结耐磨零件,并能够保证零件的尺寸精度不变,避免上述缺点。使得锰的表面合金化可以在烧结过程中进行,从而免除附加的工序如渗碳、硬化和磨削。渗锰生成奥氏体锰钢表面硬化层,其性能类似于高锰钢。

表面经锰扩散处理的零件,其特性对在磨损和高温工况应用具有特殊的价值。Pohl测定了表面渗锰试样的硬度和强度(试样经450℃回火1h)。据作者的结果,在450℃测试温度下,表面渗锰零件的硬度高于碳氮共渗零件,两者分别约为400HV0.05和350HV0.05;而且,相对于室温下的硬度值,表面渗锰零件下降不多,仍有室温的80%,但碳氮共渗零件仅有50%。表面渗锰零件疲劳强度高于碳氮共渗零件,且随回火温度上升而线性增加,于450℃的值比室温时高8%。

四锰基阻尼材料

据1976年的相关报道,通过粉末冶金方法已开发成功Mn-Cu阻尼合金。烧结在露点较低的氢气中进行,最终烧结温度取决于锰含量,含55%Mn的合金约900℃,含75%Mn的合金升高到1075℃。当锰粉粒度由-100目减小到-325目时,烧结密度和拉伸强度略有增加。60Mn-40Cu合金在真空中烧结,如果烧结温度不低于氢中烧结,则锰将显著挥发。压坯在加热过程中先有百分之几的膨胀,当温度接近最终烧结温度时才发生收缩。表3列出了60%~75%Mn合金(含1%粘结剂)的拉伸强度和硬度数据。试样在氢气中加热,于760℃保温0.5h,860℃保温1h,最终烧结温度保温1h,可获得最大拉伸强度。孔隙和其他组织特性降低力学性能,但增加相对阻尼性能。材料烧结后便可获得良好的阻尼性能,从简化工艺和降低成本的角度出发,这一点是可取的。

以锰为基体的阻尼材料包括Mn-Cu、Mn-Fe及Mn-Ni合金等[33]。在Mn-Cu系的烧结过程中,表现为锰进入铜的单向扩散机制,生成单相固溶体[34]。Mn-Cu合金是良好的阻尼材料,在对Mn-Cu(70%Mn)合金回火过程中的衰减能力进行了研究[35],发现:在回火过程中,经过预先淬火的烧结样品内的γ固溶体具有与普通铸造合金极为相似的衰减方式;但不同的是,即使回火温度达到460℃,烧结合金的衰减强度也相对较低。他们认为,造成这一现象的原因与合金优异的化学均匀性有关。增加合金中铜含量,密度、硬度、声波传播速率以及泊松比等均随之提高,但杨氏模量与体弹性模量之比(E/K)却减小。E/K在2.0~2.4范围时,高锰含量对应的高E/K值的合金具有更优异的阻尼性质。烧结Mn-Cu合金含有α-Mn和γ-MnCu相,其阻尼常数在10-1量级,并且对温度和频率不敏感。当Mn-Cu合金1123K淬火后,仅由γ-MnCu单相构成。单相合金的对数衰减率与温度关系曲线上存在两个峰,分别位于223K和460K位置,该双峰强度均高于铸造生产的M2052合金。作者认为,位于223K的主峰是由微观结构中的孪晶界面引起,而另一个峰则源于面心正交结构(fct)的γ-MnCu向面心立方结构(fcc)的转变。此外,含铜、镍组元的锰合金有很高的热膨胀系数,在多种领域有应用前景,如用作热响应控制器件中的双金属片。

五锰在铝合金中的应用

锰元素添加于铝合金中通常是经熔炼-破碎后按照粉末冶金工艺完成。在熔炼冷却时,采用高的冷却速率,以避免粗大的Al6Mn相的形成,为此,在尝试了以MnAl薄饼或锰粉注射两种方式添加到铝合金基体中[38]。结果表明,前一方式依靠组元之间反应释放的热量,使锰的固溶过程不需要额外的设备就可以维持,整个过程所需温度较低;而且,材料性能对锰颗粒尺寸依赖程度小。而采用后一种方式时,由于通过高速气流载入锰金属粉末,需要补加设备。此外,采用该方法工艺周期长,操作温度也明显高于第一种方式。同时,发现锰粉粒度不论在大于还是小于最佳尺寸时,均不利于材料性能。

Al-Mn合金是常见的铝合金,它由α固溶体和Al6Mn金属间化合物两相组成[39]。金属间化合物对合金的力学性能影响很大,随化合物含量的增加,合金屈服应力和抗疲劳强度明显上升,而延伸率却降低(尤其在较低温度的工作环境中)[40]。在Al-Mn合金中添加少量铬之后合金性能改变明显,在等研究了Al-(6~8)%Mn-(1~3)%Cr合金的力学性能与成分之间的关系后。结果表明在Mn+Cr含量高于8.8%之后,合金强化程度因沉淀而明显上升。Al-7Mn-3Cr合金具有最佳的强化效果,拉伸强度达到480MPa,同时延伸率为7%。在铬添加量较低时,合金中沉淀出Al6Mn第二相;当铬添加量较高时,形成Al7Cr相,对热挤压的合金样品进行热处理后,体系中生成G相,即(Mn,Cr)Al12相。第二相的形成对影响合金微观组织和力学性能均表现出显著影响。在Al-Mn合金中加入硅元素也取得了较好的效果,Hawk等采用快速凝固技术制备了Al-12.6Mn-4.8Si合金[42]。经350℃退火处理100h后样品的微观组织非常稳定,强度和延伸率没有下降现象,在室温至380℃区间,拉伸强度从465MPa降到115MPa,延伸率从 6%上升至12%;当温度上升至425℃后,延伸率进而增加到30%。同时,合金的强度、塑性取决于应变速率,高的应变速率下强度和塑性均有所提高。蠕变测试结果表明,在测试温度范围内,合金的蠕变激活能在100~230 kJ/mol之间,应力指数介于3~5间。粉末冶金工艺制备的高强度AlMnCe合金比传统合金具有更高的耐磨损性能[43]。Al90Mn8Ce2合金在753~793K、1.2GPa条件下等静压制成形后,具有最佳的压缩强度和硬度,分别达到900MPa和26HRC,强度的提高归因于合金细小的晶粒和第二相强化[44];研究发现Al90Mn8Ce2合金具有优异的耐磨损性能,如在773K条件下,该合金的耐磨损能力是普通A355铝合金的3倍。还发现材料中的Al6Mn、Al4Ce以及Al2O3等第二相硬质颗粒,对合金耐磨损性能提高有利。

六 结束语

锰作为粉末冶金材料的主要成分或添加剂,对改善材料性能和开发新材料起到重要的作用;而且,锰的资源丰富,价格低廉。研究和开发锰的应用,无论在科学理论上还是在生产实践上,均具有重要的意义。随着市场需求的扩大和材料科学技术的发展,锰的应用前景必将更加广阔。

但是,锰的扩大应用遇到了来自自身的障碍,那就是锰容易氧化,而氧化物又难于还原。在粉末冶金生产过程中,锰的氧化一直是十分棘手的问题。随着制粉技术和烧结技术的发展,防止锰氧化的问题有所缓解,但仍未彻底解决。在提倡扩大应用锰的同时,还应加强这方面的研究,寻找合理的措施。

参考文献:

[1]杨志忠. 中国锰系铁合金的现状与发展趋势[J]. 中国锰业,2005,23(4):1-6.

[2]江权. 锰的存在及应用[J]. 中国锰业,2001,19(3):36-38.

第4篇:粉末冶金的优缺点范文

随着新材料、新技术的不断发展与应用,材料的轻型化、节能化、智能化、环保化已经成为 21 世纪材料科学发展的主题。轻质高强金属基复合材料由于具有更高的比刚度、比强度,在强调材料轻型化的今天,受到越来越多的关注。在金属基复合材料的制备工艺中,粉末冶金工艺方法由于其工艺温度低及近净成形等特点, 使其具有独特的优越性并被广泛采用[1]。粉末冶金(PM)方法最初主要应用于一些难熔材料和高熔点金属,由于这些材料塑性差、变形困难,制备过程中主要采用粉末冶金工艺方法。粉末冶金工艺中的经典烧结理论的研究也是基于高熔点、脆硬材料的[2]。但是,建立在脆硬材料之上的经典烧结理论是否适用于低熔点、低密度的材料,至今仍在研究之中。以往的烧结工艺研究,为了了解烧结后材料显微组织的演变,是将烧结后的试样重新打磨、抛光成金相试样后,在光学金相显微镜下观察其组织的改变。这一方法的缺陷在于得出的试验结果只是烧结完毕后试样组织的变化,对于二元或多元合金系金属粉末而言,无法实时了解烧结过程中基体粉末和添加的合金粉末颗粒间的烧结机理和显微组织的演变过程。用粉末冶金方法制备金属基复合材料,在烧结阶段,基体与外加增强相之间一般不发生反应[3],烧结工艺的设计是依据基体材料而定。由于铝合金的烧结温度低于纯铝的熔点,因此,在烧结过程中我们可以利用高温光学金相显微镜对整个过程进行原位观察。为了验证经典烧结理论中的“球-球烧结模型”对铝、镁等屈服强度比较低的粉末体系是否依然有效,西安交通大学材料学院柴东朗课题组成功利用自行改制的高温光学金相显微镜,对二元铝基纯金属粉末体系的烧结过程进行了原位观察,即在烧结的同时,实时观察金相试样表面组织的演变过程,并将烧结过程录像存入计算机,发现了许多先前未有报道的新成果,为材料的试验及检测开创了一条新路。

2 试验装置的改造

为了能做到烧结过程的原位观察,试验装置必须要解决两个问题,一是烧结炉要足够小,可以放在光学金相显微镜下对试样进行实时观察,并有冷却系统和控温系统;二是光学金相显微镜的镜片要耐高温,同时要具备成像系统,以便及时将光学信息转换成数字信号,并输入到计算机中以数字格式存储起来,使试验者可以实时观察。经过不断的探索与试验,课题组终于成功研制了可以用于原位观察的高温光学金相显微镜。

课题组自制的高温光学金相显微镜是在普通的光学金相显微镜基础上加以改造的,增加了成像系统和加热系统。结构框图见图 1。成像系统由光学成像系统和数码转换系统两部分构成,数码转换系统的作用是把拍摄到的图像由光学信号转换成数字信号,并存储为数字格式。通过数码转换系统,可以对实验过程拍摄动态连续图像,并根据需要截取成静态单幅图像。整个烧结过程均由成像系统实时录像,并可通过计算机原位观察。加热系统的作用则是实现在给定温度和保护气氛下的烧结,由加热坩埚以及水冷系统、气体保护系统、温控系统和电源等五部分组成,结构示意图如图 2 所示。加热坩埚位于电阻线圈中部,位置偏上,控温仪的热电偶安放在加热坩锅下方、线圈中部的位置。利用电阻线圈直接加热,加热效率高。加热台周围设计成空心环道以便通冷却水使设备降温;加热台上部也有通孔,当烧结某些易氧化材料时通入惰性气体进行保护。烧结时,可通过高温光学金相显微镜对试样表面变化的动态全过程进行实时录像,并可通过计算机原位观察为了进一步研究烧结时加热方式对烧结过程的影响,课题组还对高温光学金相显微镜的电源作了不断改进,使之不仅能实现阶梯式升温,而且能实现震荡式加热。

3试样制备

3.1 试样冷坯的制备

原位观察所用试样均采用粉末冶金法(PM)制备,主要工艺流程如图 3 所示。从烧结加热台示意图(图 2)可以发现,由于热电偶放在试样下方,因此,控温仪显示的温度并不是试样表面的温度。试样只有做得尽可能薄,才能使观察面的温度接近控温仪显示温度。为了保证试验结果的可比性,我们在制作试样时,尽量使所有试样厚度相等;由于加热台中的坩埚直径只有φ10mm,试样也必须做得直径小于 φ10mm;为了保证试验结果的可重复性和真实可靠性,我们把同一种试验材料的试样先制成 φ30×3.5mm 的冷坯,再进行切割分离、磨制后制成 φ7×3mm 的小试样,然后对每一个小试样,按照金相试样制备方法做成金相试样。

3.2金相试样的制备

随着科技的进步和发展,许多先进高端的检测设备被越来越多地应用到新材料的研制和产品检验中去。但是光学金相检验始终是最普遍最广泛的一种主要手段。在光学金相检验中金相试样的制备是获取清晰照片和正确结论的重要环节。利用光学显微镜对试样进行观察时,其观察到的信息主要来自试样表面颜色深浅的变化。我们在制作金相试样时也是依据试样表面不同区域能量的差异或不同相颜色的差异,通过腐蚀剂的作用,使其显示不同的颜色。腐蚀程度深的区域对光的散射严重,腐蚀程度浅的区域对光的散射轻微,这样,在光学显微镜下观察,颜色就有暗、亮之分,从而能分辨出试样表面的细微结构,如晶粒边界、相界、析出物等。用于原位观察的试样由于在压制冷坯时表面已经比较平整,因此,在金相试样的制备过程中只需经过砂纸细磨、抛光、腐蚀等过程。前两个过程的制备方法与一般金相试样制备并无差别,只是腐蚀过程有其自身的特殊要求。腐蚀的目的是将金属的显微组织显现出来。常用的金相组织显示法有化学腐蚀法、电解腐蚀法、金相组织特殊显示等[4]。本课题组采用的是化学腐蚀法。

在普通金相试样的腐蚀中一般经常使用氯化铁盐酸水溶液进行化学腐蚀。课题组在利用原位观察法进行烧结原位观察时发现,原位观察用的试样不能按照常规金相试样的制作方法制作,原因在于经过深度腐蚀的试样,在光学显微镜下观察,还未开始烧结时,外加硬质相颗粒颜色已经很暗,接近于黑色,以致烧结开始后无法观察颗粒表面是否已经发生了变化;如果抛光后的试样不进行腐蚀,又观察不到颗粒边界,也无法了解颗粒边界在烧结过程中的变化。课题组经过不断摸索与反复试验,针对铝基二元合金系试样,调制出浓度极低的腐蚀液,成分为:氢氟酸 1%、盐酸 1.5%、硝酸 2.5%,水 95%。腐蚀开始时,用吸管取出一滴腐蚀液,滴至试样表面 30s左右后立即用清水冲洗、擦酒精、吹干,这样腐蚀出的试样烧结时观察效果最好。此时,腐蚀后的试样只显示出颗粒在基体中的边界,颜色与基体差别不大,而基体和颗粒中的晶界则看不出来。图 4 为烧结时原位观察中截取的烧结试样照片。(a)为烧结前经轻微腐蚀后的试样。此时,可清晰地分辨出外加颗粒在基体中的轮廓。(b)为烧结10 min 时,颗粒周围发生的组织演变,其中黑色部分表明颗粒与基体间已形成共晶液相。

第5篇:粉末冶金的优缺点范文

本文阐述的是一款自动离合器的原理及选材工艺特点;自动离合器可在驾驶室内完成前桥分离和结合操作,具有手动离合器不可比拟的优点。我们利用了汽车厂丰富的供应商资源,在材料和工艺结构上面和相关合作厂家合作开发,经过半年努力,这款离合器先后通过了台架实验、吉林工业大学汽车实验室的十万次不间断啮合分离疲劳试验以及7500公里的不同路况的测试,在达到良好经济效益的同时具备批量生产的条件。

关键词 气动离合器;负压;两驱四驱的转换;不锈钢粉末多孔烧结材料

中图分类号U46 文献标识码A 文章编号 1674-6708(2014)119-0110-02

1 简介

这款自动离合器装在前轮与半轴之间(图2),它通过发动机的进气负压抽真空,使离合器内部齿轮元件动作,从而使车轮与半轴结合或分离。实现四轮驱动和两轮驱动的转换;它的直径为105mm,高度仅为55mm,结构紧凑,同时原车不需要做太大的改动(换装一个内孔不带花键的转向节,图2),因为它的安装孔位置相同,将原车的前轮突缘取下,装上气动离合器,用螺栓固定好便可以了。

2 自动离合器的原理、特点

离合器壳体1的底部开有三个孔洞,作为外界空气的进入通道;外界空气由此进入,通过透气板的过滤进入壳体内部;透气板的作用是将外界带有粉尘的空气过滤干净,以免进入内部加剧磨损;弹性囊8通过塑料压紧挡圈11压紧在壳体上将壳体内部与外界大气隔离,它的作用是以空气负压作为动力推动外啮合齿轮5部件动作。

外啮合齿轮5可以沿离合器壳体1内部的键槽滑动,但不能转动,为从动件;内啮合齿轮6内花键与汽车半轴外花键啮合,与汽车半轴保持静止状态,为动力输入件。

转向节上加工出孔道(通向转向节内部),利用发动机进气岐管负压抽真空,这样转向节的内部(转向节与半轴之间的空隙)便也产生了负压;因为转向节、气动离合器总成、半轴、刹车盘通过油封、端面密封、弹性囊8(通过塑料压紧挡圈11压紧在壳体上将壳体内部与外界大气隔离)等措施形成密闭空间,与外界大气保持隔绝,同时因为发动机保持连续运转,整个转向节内部、气动离合器内部便保持了一定的负压。

由于内外界空气存在压力差,外界空气便通过透气板7进入壳体内部使弹性囊8膨胀,推动尼龙垫9移动,尼龙垫9移动进一步推动外啮合齿轮5,外啮合齿轮5压缩波形簧4向前移动,从而与内啮合齿轮6啮合;在没有负压时,波形弹簧4释放弹力使外啮合齿轮6复位;通过以上的动作,使半轴与车轮啮合或分离,使车辆在两驱与四驱之间自由转换。

3 材料分析

由于篇幅所限,只对气动离合器几个重要部件的材料作简要的概括分析。

3粉末冶金在气动离合器中的应用

3.1 自作用的铜基粉末冶金轴承

在两驱状态时,内啮合齿轮与壳体之间有相对转动,所以在这个位置需要一款轴承来满足要求;

具有自作用的铜基粉末冶金轴承经过对比选择,作为最终的方案被采用; 铜基粉末冶金系粉末冶金多孔材料之一,这种制品是在零件压制成型过程中,粉末颗粒之间形成均匀分布的孔隙,并利用其孔隙浸渍油及其它性材料,组成良好的自减磨材料;当滑动时产生热量,油受热膨胀便会从中渗出,起到减磨作用,当滑动停止,由于粉末冶金内部微小孔洞的毛细现象,将油会吸入内部,从而不需要加油。

使用时,不可用汽油或煤油等有机溶剂进行清洗,以防洗去轴衬内部浸渍的剂;另外此种零件不可进行磨削加工,以免使轴衬孔隙被磨屑微粒所堵塞 ,以至造成磨屑损伤对偶件的表面。建议在使用时,最好用机油浸渍一天,或在120℃机油内煮2小时,冷却后装机。

经过7500km路试后拆解,情况良好,没有出现烧蚀或划伤对偶件的现象出现;同时经过三座标测量仪精确测定,其最大磨损量仅为0.008mm,满足使用要求。

3.2 不锈钢粉末多孔烧结材料的透气板

透气板安装于离合器总成的最外处,离合器壳体外侧装有轮毂罩,轮毂罩起到一定的防护作用,透气板虽然不直接接触外界,但在越野等某些情况下污水、小的石子都有可能通过三个环形孔接触到透气板;而透气板的作用就是保证离合器总成内部环境的干净,将粉尘、砂石、油污等隔绝在外,保证弹性囊8的正常工作,可以允许有少量的水渗入。

所以经过研究我们对透气板的技术要求如下

1)具有较高的机械强度,能承受车轮飞溅起的石子的冲击;

2)具有防锈功能,能耐酸碱的腐蚀;

3)透气性能可以根据负压大小调整,同时能有效地隔绝外界粉尘的侵入;

4)由于透气板直接和弹性囊接触,要求其外观光滑平整,以免划伤弹性囊;

5)价格低廉。

我们在开发过程中对透气板的材质经过层层的筛选,最终选择了一种叫做不锈钢粉末多孔烧结材料,这种材料具有透气性好、强度高、成本低、易于清洗的特点。它的原理是将一定直径的不锈钢颗粒通过模具压紧,再通过真空烧结(以防止氧化),使不锈钢的颗粒之间粘连,达到一定的强度,它的优点是间隙可以根据颗粒的大小、烧结时间、烧结温度等调整;它的形状也可以利用模具来保证,以适用离合器壳体的大小。

通过计算分析及试验,将不锈钢粉末烧结后形成的孔隙大小设在一定的范围,即能保证透气性,又能有效隔绝粉尘的进入,并且在外表面有污物时,可以用水或毛刷进行清洁,而不用担心生锈的问题,维护方式方便高效。

3.3 硅胶材质的弹性囊

弹性囊的材质原来选用氯丁橡胶,这种材质的特点是弹性、曲挠性比较好,同时耐油性,耐臭氧性,那服饰及耐老化性较好,但最主要的是其低温特性较差,在达到零下-40℃时,氯丁橡胶材质已经变硬,不能实现扩张、收缩的功能;

我们与厂家经过试验,选用了添加了某种成分硅胶材质作为弹性囊的材料,经过试验它最大可以耐受-50℃的低温,在这种低温下仍可以保证很好的伸张动作,所以使用硅胶作为弹性囊的材料是较为合适的。

4 结论

最后,经过7500公里砂石、涉水、爬坡、越野等各种路况的路试,通过模拟实际情况进行两驱、四驱以及两驱四驱的转换;路试结果相关使用要求。

本离合器同时顺利通过了吉林工业大学汽车实验室的验证,验证的规范按照国家相关的要求并参照产品的具体特性来制定,从另一方面说明了该产品的可靠性。

参考文献

第6篇:粉末冶金的优缺点范文

模具使用寿命取决于抗磨损和抗机械损伤能力,一旦磨损过度或机械损伤,须经修复才能恢复使用。目前可采用的修复技术有电镀、电弧或火焰堆焊、热喷涂(火焰、等离子)等。电镀层一般很薄,不超过0.3mm,而且与基体结合差,形状损坏部位难于修复,在堆焊、热喷涂或喷焊时,热量注入大,能量不集中,模具热影响区大,易畸变甚至开裂,喷涂层稀释率大,降低了基体和材料的性能。

利用激光熔覆的方法可实现对模具的修复。用高功率激光束以恒定功率p与热粉流同时入射到模具表面上,一部分入射光被反射,一部分光被吸收,瞬时被吸收的能量超过临界值后,金属熔化产生熔池,然后快速凝固形成冶金结合的覆层。激光束根据cad二次开发的应用程序给定的路线,来回扫描逐线逐层地修复模具。由于激光束的高能密度所产生的近似绝热的快速加热,对基体的热影响较小,引起的畸变可以忽略,特别是经过修复后的模具几乎不需再加工。

1 激光修复系统

激光修复技术是集高功率激光、计算机、数控机床、cad/ cam、先进材料、数控技术等多学科的应用技术。修复系统主要由硬件设备和制造过程软件组成。硬件设备包括激光器、数控系统及工作台、送粉装置、光路系统、水冷装置、保护气系统和在线控制所涉及的数据采集装置。软件系统包括制造零件成型软件擞据通讯和在线控制软件。激光修复过程如图2所示。co2激光器发出的激光经cnc数控机床z轴(垂直工作台)反射镜后,进入三维光束成形聚焦组合镜,再进入同轴送粉工作头,组合镜和工作头都固定在机床z轴上,由数控系统统一控制。载气式送粉器将粉末均匀输送到分粉器的同轴送粉工作头。

模具位于cnc数控工作台x-y平面上,根据cnc指令,工作台、组合镜和送粉头按给定的cad程序运动。同时加入激光和粉末,逐层熔敷。在温度检测和控制系统作用下,使模具恢复原始尺寸。为保证熔覆材料(金属粉末)和基体(模具)材料实现冶金结合,以及模具的尺寸精度、表面光洁度和材料性能,需将φ50mm圆形多模1kw-5kw高功率激光束变换成强度均匀分布的圆形光束,光斑尺寸可调(光路系统),并配有水冷系统和光束头气体保护系统,同时需重点考虑同轴送粉装置和现场控制系统的设计。

1.1 同轴送粉装置

稳定可靠的粉末输送系统是金属零件修复质量的重要保证。粉末输送的波动将影响修复的质量。激光修复对送粉的基本要求是连续、稳定、均匀和可控地把粉末送入激光熔池。送粉装置由送粉器和同轴送粉嘴组成。在送粉器的粉斗下部,由于平衡气压的作用形成气固两相流化,并从导管开孔,随载气输送粉末。送粉量由输送气体的压力调节,拓宽了送粉范围,实现从5g/min-150g/min均匀连续可调送粉,送粉精度高达±5。设计的载气同轴粉嘴,消除了气体压力波动引起的4路送粉不均匀,并使工作距离加大,且连续可调。

1.2 模具修复过程的控制

在理论上,熔池温度场决定修复过程的宏观与微观质量,因此在激光熔覆层质量控制过程中,表征熔覆层熔池温度场的实时检测非常重要。采用红外测温技术来检测激光加工区域的温度场,结合温度场标定结果推导出实际的温度场信息,来控制激光器功率输出值以及cnc机床的运动速度,以保持熔池温度稳定,避免零件由于过热或温度不均产生裂纹气孔等缺陷。虚线范围内所示的是比色测温仪,光路系统选用单台相机,切换不同滤色片的单通道图像记录方式。滤光片及其控制保证两个滤光片(804.5nm和894.6n m)交替置于数字相机图像记录光路中,移动响应时间<10ms,由计算机控制的高精度步进电机实现准确定位。软件包括三部分:①控制滤光片转入记录光路机械控制部分;②进行实时的同步图像采集、处理以及温度场标定和计算;③用测量温度变化量所得到的过程参数,调节激光功率和机床运动速度。

1.3 激光修复模具工艺参数

激光修复伴随着传热、辐射、固化、分子取相及结晶等物理和化学变化,是个多参数过程。激光功率p、扫描速度、送粉量、熔池温度等都会对其产生影响。因此必须把参数合理地组合,以确保修复工作是在涂覆特性可知的情况下进行。在激光熔敷过程中,如果不采用特殊的工艺过程对基材的热输入量进行控制,将会使熔敷层与基体结合程度不理想,或在熔层表面和熔敷层与基材的过渡区产生裂纹。因此,合理地选择工艺参数是激光熔覆技术用于模具维修的关键因素。

根据物理冶金原理,熔敷材料和基体材料必须加热到足够高的温度才能满足实现冶金反应所无原则的条件,最终形成几何外形规则的熔敷层,见图1,根据经验,应尽可能使熔敷材料加热到较低的温度,这样可以减小熔敷裂纹、畸变倾向,也可避免熔敷材料的烧损和蒸发,需控制熔化材料的熔点(取基体、粉末材料两者最高熔点)tm+(50-100)℃。参考温度场计逄,理论上p取值为1kw-2kw、为2mm/s-4mm/s可满足上述要求,至于熔覆层表面不平度,可通过调节送粉量实现其最小化。

2.2 试验方法

试验用横流连续波5kw-co2激光器,光束模式为多模,光斑直径为4mm,基体材料(模具)为5crmnmo钢,试样尺寸80mm×60mm×10mm,由于ni合金粉流动性好,与基材相结合后表面光洁,价格适中,故选用了ni60镍基合金粉末材料。试验选定激光功率p为1.5kw 。

3 试验结果分析

3. 1工艺参数对模具修复性能的影响

从熔覆层组织可以看出,激光与粉末材料相互作用充分,稀释率适中,在熔覆层内各层间组织与层内组织稍有差别,层内组织均匀细小致密,层间组织较粗大。由此可知,激光修复可以在相当宽的范围内获得组织均匀、细小致密和性能优异的修复层。测量1~3层硬度变化为85hv0.2。

试验结果表明,粉末在与激光相互作用时,如果激光功率p>5kw且扫描速度<1mm/s,基体因加热温度过高而被烧损,表面出现折皱以及气孔等质量问题。究其原因熔覆过程熔池内搅拌加剧,基体元素与金属粉末元素相互扩散严重,熔覆层开裂、变形敏感性明显上升。当激光功率p=1kw~2kw、扫描速度=2mm/s~4mm/s范围内均可得到较理想的激光熔覆层。此外,若加热温度过低无法充分熔化,难于达到修复模具的目的。扫描速度过大时出现熔覆层不连续现象,其结合强度不够。稀释率随扫描速度的增加,呈减小的趋势,而随送粉量的增大使稀释率有增加的趋势。

3.2 工艺参数对模具修复宏观形貌的影响

试验表明,在p和变化不大时,激光熔覆表面宏观形貌与送粉量关系密切,在其它条件相同的情况下,随的增大,熔覆层宽度有所变化(有变小的趋势),而熔覆层厚度明显增加,接触角加大。完全可以利用调节的方法改善熔覆层表面不平度。

第7篇:粉末冶金的优缺点范文

关键词: 3D打印; 增材制造; 金属粉体材料

中图分类号: TP 334.8文献标志码: A

Research Progress of Metal Materials for 3D Printing

ZHENG Zeng1,2, WANG Lianfeng1,3, YAN Biao1,2

(1.School of Materials Science and Engineering, Tongji University, Shanghai 201804, China;

2.Shanghai Key Lab of D & A for MetalFunctional Materials, Shanghai 201804, China;

3.Shanghai Aerospace Equipment Manufacturer, Shanghai 200245, China)

Abstract: 3D printing is a kind of rapid prototyping technology,which is also known as additive manufacturing technology and hailed as the core technology of the third industrial revolution.3D metal printing is considered to be the dominant direction of manufacturing in the future.Metal powder material is the material basis of metal printing and the breakthrough of the development of 3D printing.The paper summarizes the research status of metal powder materials for 3D printing,focuses on the application of 5 kinds of metal powder materials,such as Ti alloy,Al alloy,stainless steel,superalloy and Mg alloy in 3D printing and make the summary and prospects on their application.

Keywords: 3D printing; additive manufacturing; metal powder materials

3D打印,即快速原型制造技术的一种,它是通过三维建模软件对零部件形状进行建模,再通过软件对三维模型进行切片,最终计算机输出数字信号控制专用3D打印机进行打印得到最终产品.近几年,随着3D打印技术的快速发展,它在航空航天、汽车、生物医药和建筑等领域的应用范围逐步拓宽,其方便快捷、材料利用率高等优势不断显现.目前金属3D打印技术主要有选择性激光烧结(SLS)[1]、电子束熔融(EBM)[2]、选择性激光熔化(SLM)[3]和激光近净成形(LENS)[4].其中选择性激光熔化为研究的热点,其使用高能激光源,可以熔融多种金属粉末.本文综述了常见的金属粉体材料以及其3D打印研究现状,并对金属粉体材料的运用进行展望.

1钛合金

钛合金具有耐高温、高耐腐蚀性、高强度、低密度以及生物相容性等优点,在航空航天、化工、核工业、运动器材及医疗器械等领域得到了广泛的应用[5-7].传统锻造和铸造技术制备的钛合金件已被广泛地应用在高新技术领域,如美国F14、F15、F117、B2和F22军机的用钛比例分别为:24%,27%,25%,26%和42%,一架波音747飞机用钛量达到42.7 t.但是传统锻造和铸造方法生产大型钛合金零件,由于产品成本高、工艺复杂、材料利用率低以及后续加工困难等不利因素,阻碍了其更为广泛的应用[8].而金属3D打印技术可以从根本上解决这些问题,因此该技术近年来成为一种直接制造钛合金零件的新型技术.

TiAl6V4(TC4)是最早使用于SLM工业生产的一种合金,现在对其研究主要集中于揭示疲劳性能和裂纹生长行为与微观组织之间的关系.Leuders等[9]认为必须在循环载荷作用下研究TC4合金SLM件的微观结构与组织缺陷之间的关系,采用机械测试、热等静压等方法,通过电子显微镜和计算机断层扫描观察到微米级别的孔隙是影响疲劳强度的主要原因,其中残余应力对疲劳裂纹增长的影响尤为显著.张升等[10]通过激光交替扫描策略制备出TC4合金试样,发现SLM成形TC4合金过程中的裂纹主要为冷裂纹,具有典型的穿晶断裂特征.这是由于SLM成形过程中激光熔化金属粉末产生高温梯度导致零件内部存在较高的残余应力,同时抗裂强度低的马氏体组织在残余应力的作用下产生裂纹,粗大的裂纹最终分解为较小的裂纹而终止扩展.

开发新型钛基合金是钛合金SLM应用研究的主要方向.由于钛以及钛合金的应变硬化指数低(近似为0.15),抗塑性剪切变形能力和耐磨性差,因而限制了其制件在高温和腐蚀磨损条件下的使用.然而铼(Re)的熔点很高,一般用于超高温和强热震工作环境,如美国Ultramet公司采用金属有机化学气相沉积法(MOCVD)制备Re基复合喷管已经成功应用于航空发动机燃烧室,工作温度可达2 200 ℃.因此,Re-Ti合金的制备在航空航天、核能源和电子领域具有重大意义[11-13].Ni具有磁性和良好的可塑性,因此Ni-Ti合金是常用的一种形状记忆合金.Ni-Ti合金具有伪弹性、高弹性模量、阻尼特性、生物相容性和耐腐蚀性等性能[14-18].另外钛合金多孔结构人造骨的研究日益增多[19],日本京都大学通过3D打印技术给4位颈椎间盘突出患者制作出不同的人造骨并成功移植,该人造骨即为Ni-Ti合金.

2铝合金

铝合金具有优良的物理、化学和力学性能,在许多领域获得了广泛的应用,但是铝合金自身的特性(如易氧化、高反射性和导热性等)增加了选择性激光熔化制造的难度.目前SLM成形铝合金中存在氧化、残余应力、孔隙缺陷及致密度等问题,这些问题主要通过严格的保护气氛,增加激光功率(最小为150 W),降低扫面速度等来改善[20-21].

上海有色金属第37卷

第1期郑增,等:3D打印金属材料研究进展

目前SLM成形铝合金材料主要集中在AlSiMg系合金.Kempen等[22]对两种不同的AlSi10Mg粉末进行了SLM成形试验.研究发现,不断优化工艺参数,可获得99%致密度和约20 μm表面粗糙度的成形性能.分析得出,粉末形状、粒径及化学成分是影响成形质量的主要原因.Buch等[23]研究获得了致密度达99.5%、抗拉强度达400 MPa的铝合金试样.Louvis等[21]对SLM成形铝合金过程中氧化铝薄膜产生的机理进行了分析,得到了氧化铝薄膜对熔池与熔池层间润湿特性的影响规律.赵官源等[24]认为SLM制造铝合金产生的结晶球化现象是因为铝合金对光的反射性较强造成的.

3不锈钢

不锈钢具有耐化学腐蚀、耐高温和力学性能良好等特性,由于其粉末成型性好、制备工艺简单且成本低廉,是最早应用于3D金属打印的材料.如华中科技大学、南京航空航天大学、中北大学等院校在金属3D打印方面研究比较深入.现研究主要集中在降低孔隙率、增加强度以及对熔化过程的金属粉末球化机制等方面.

李瑞迪等[25]采用不同的工艺参数,对304L不锈钢粉末进行了SLM成形试验,得出304L不锈钢致密度经验公式,并总结出晶粒生长机制.潘琰峰[26]分析和探讨了316L不锈钢成形过程中球化产生机理和影响球化的因素,认为在激光功率和粉末层厚一定时,适当增大扫描速度可减小球化现象,在扫描速度和粉末层厚固定时,随着激光功率的增大,球化现象加重.Ma等[27]通过对1Cr18Ni9Ti不锈钢粉末进行激光熔化,发现粉末层厚从60 μm增加到150 μm时,枝晶间距从0.5 μm增加到1.5 μm,最后稳定在2.0 μm左右,试样的硬度依赖于熔化区域各向异性的微结构和晶粒大小.姜炜[28]采用一系列的不锈钢粉末(主要为316L不锈钢),分别研究粉末特性和工艺参数对SLM成形质量的影响,结果表明,粉末材料的特殊性能和工艺参数对SLM成形影响的机理主要是在于对选择性激光成形过程当中熔池质量的影响,工艺参数(激光功率、扫描速度)主要影响熔池的深度和宽度,从而决定SLM成形件的质量.

4高温合金

高温合金是指以铁、镍、钴为基,能在600 ℃以上的高温及一定应力环境下长期工作的一类金属材料.其具有较高的高温强度、良好的抗热腐蚀和抗氧化性能以及良好的塑性和韧性.目前按合金基体种类大致可分为铁基、镍基和钴基合金3类[29].高温合金主要用于高性能发动机,在现代先进的航空发动机中,高温合金材料的使用量占发动机总质量的40%~60%.现代高性能航空发动机的发展对高温合金的使用温度和性能的要求越来越高.传统的铸锭冶金工艺冷却速度慢,铸锭中某些元素和第二相偏析严重,热加工性能差,组织不均匀,性能不稳定[30].而3D打印技术在高温合金成形中成为解决技术瓶颈的新方法.美国航空航天局声称,在2014年8月22日进行的高温点火试验中,通过3D打印技术制造的火箭发动机喷嘴产生了创纪录的9 t推力.

Inconel 718合金是镍基高温合金中应用最早的一种,也是目前航空发动机使用量最多的一种合金.张颖等[31]通过研究Inconel 718合金SLM激光工艺参数,发现随着激光能量密度的增加,试样的微观组织经历了粗大柱状晶、聚集的枝晶、细长且均匀分布的柱状枝晶等组织变化过程,在优化工艺参数的前提下,可获得致密度达100%的试样.钴铬合金具有良好的生物相容性,安全可靠且价格便宜,已广泛应用于牙科领域.钴铬合金不含对人体有害的镍、铍元素,由其制备而成的烤瓷牙已成为非贵金属烤瓷牙的首选.SLM制作合金烤瓷牙真正能够做到“私人订制”.Zhang等[32]发现通过SLM成形的钴铬合金烤瓷牙比铸造成形具有更高的硬度,经过脱氧和搪瓷烧制过程,合金与搪瓷实现完美结合,其释放钴铬离子含量符合ISO安全标准.

5镁合金

镁合金作为最轻的结构合金,由于其特殊的高强度和阻尼性能,在诸多应用领域镁合金具有替代钢和铝合金的可能.例如镁合金在汽车以及航空器组件方面的轻量化应用,可降低燃料使用量和废气排放.镁合金具有原位降解性并且其杨氏模量低,强度接近人骨,优异的生物相容性,在外科植入方面比传统合金更有应用前景[33-34].

Wei等[35]通过不同功率的激光熔化AZ91D金属粉末,发现能量密度在83~167 J/mm3之间能够获得无明显宏观缺陷的制件.在层状结构中,离异共晶βMg17Al12沿着等轴晶αMg基体晶界分布,扫描路径重合区域的αMg平均晶粒尺寸比扫描路径中心区域的要大.由于固溶强化和晶粒细化,SLM成形镁合金相比铸造成形具有更高的强度和硬度.NgCC[36]在氩气保护气氛中使用Nd:YAG激光熔化纯镁粉,随着激光能力密度的减小,试样的晶粒尺寸发生粗化,试样硬度随着激光密度的增加发生显著降低,硬度范围为0.59~0.95 GPa,相应的弹性模量为27~33 GPa.如何降低氧化和热影响区的影响,提高制件质量,需要进一步优化工艺参数,如通过镁以及镁合金不同粒径粉末的混合.

6总结与展望

3D打印技术自20世纪90年代出现以来,从一开始高分子材料的打印逐渐聚焦到金属粉末的打印,一大批新技术、新设备和新材料被开发应用.当前,信息技术创新步伐不断推进,工业生产正步入智能化、数字化的新阶段.2014年德国提出“工业4.0”发展计划,势必引起工业领域颠覆性的改变与创新,而3D打印技术将是工业智能化发展的强大推力.金属粉末3D打印技术目前已取得了一定成果,但材料瓶颈势必影响3D打印技术的推广,3D打印技术对材料提出了更高的要求.现适用于工业用3D打印的金属材料种类繁多,但是只有专用的粉末材料才能满足工业生产要求.3D打印金属材料的发展方向主要有3个方面:一是如何在现有使用材料的基础上加强材料结构和属性之间的关系研究,根据材料的性质进一步优化工艺参数,增加打印速度,降低孔隙率和氧含量,改善表面质量;二是研发新材料使其适用于3D打印,如开发耐腐蚀、耐高温和综合力学性能优异的新材料;三是修订并完善3D打印粉体材料技术标准体系,实现金属材料打印技术标准的制度化和常态化.

参考文献:

[1]史玉升,刘锦辉,闫春泽,等.粉末材料选择性激光快速成形技术及应用[M].北京:科学出版社,2012.

[2]刘海涛,赵万华,唐一平.电子束熔融直接金属成型工艺的研究[J].西安交通大学学报,2007,41(11):1307-1310.

[3]陈光霞,曾晓雁,王泽敏,等.选择性激光熔化快速成型工艺研究[J].机床与液压,2010,38(1):1-3.

[4]费群星,张雁,谭永生,等.激光近净成形NiCuSn合金[J].稀有金属材料与工程,2007,36(11):2052-2056.

[5]陈静,杨海欧,汤慧萍,等.成形气氛中氧含量对TC4钛合金激光快速成形工艺的影响[J].稀有金属快报,2004,23(3):23-26.

[6]宋建丽,李永堂,邓琦林,等.激光熔覆成形技术的研究进展[J].机械工程学报,2010,46(14):29-39.

[7]左铁钏,陈虹.21世纪的绿色制造――激光制造技术及应用[J].机械工程学报,2009,45(10):106-110.

[8]赵瑶,贺跃辉,江.粉末冶金Ti6Al4V合金的研制进展[J].粉末冶金材料科学与工程,2008,13(2):70-78.

[9]Leuders S,Thne M,Riemer A,et al.On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting:fatigue resistance and crack growth performance[J].International Journal of Fatigue,2013,48:300-307.

[10]张升,桂睿智,魏青松,等.选择性激光熔化成形TC4钛合金开裂行为及其机理研究[J].机械工程学报,2013,49(23):21-27.

[11]Serp S,Feurer R,Kalck P,et al.A new OMCVD iridium precursor for thin film deposition[J].Chemical Vapor Deposition,2001,7(2):59-62.

[12]魏朋义,钟振刚,桂钟楼,等.合金成分对含铼镍基单晶合金高温持久及断裂性能的影响[J].材料工程,1999(4):3-6.

[13]Chlebus E,Kuz′nicka B,Dziedzic R,et al.Titanium alloyed with rhenium by selective laser melting[J].Materials Science and Engineering:A,2015,620:155-163.

[14]Bansiddhi A,Sargeant T D,Stupp S I,et al.Porous NiTi for bone implants:a review[J].Acta Biomaterialia,2008,4(4):773-782.

[15]Liu X M,Wu S L,Yeung K W K,et al.Relationship between osseointegration and superelastic biomechanics in porous NiTi scaffolds[J].Biomaterials,2011,32(2):330C338.

[16]Liu Y,Van H J.On the damping behaviour of NiTi shape memory alloy[J].Journal de Physique IV,1997,7(5):519- 524.

[17]EsSouni M,FischerBrandies H.Assessing the biocompatibility of NiTi shape memory alloys used for medical applications[J].Analytical and Bioanalytical Chemistry,2005,381(3):557-567.

[18]Bormann T,Müller B,Schinhammer M,et al.Microstructure of selective laser melted nickeltitanium[J].Materials Characterization,2014,94:189-202.

[19]Mullen L,Stamp R C,Brooks W K,et al.Selective laser melting:a regular unit cell approach for the manufacture of porous,titanium,bone ingrowth constructs,suitable for orthopedic applications[J].Journal of Biomedical Materials ResearchPart B:Applied Biomaterials,2009,89B(2),325-334.

[20]张晓丽,齐欢,魏青松.铝合金粉末选择性激光熔化成形工艺优化试验研究[J].应用激光,2013,33(4):391-397.

[21]Louvis E,Fox P,Sutcliffe C J.Selective laser melting of aluminium components[J].Journal of Materials Processing Technology,2011,211(2):275-284.

[22]Kempen K,Thijs L,Yasa E,et al.Process optimization and microstructural analysis for selective laser melting of AlSi10Mg[J].Physics Procedia,2011,22:484-495.

[23]Buch B D,Schleifenbaum H,Heidrich S,et al.High power selective laser melting(HP SLM) of aluminum parts[J].Physics Procedia,2011,12A:271-278.

[24]赵官源,王东东,白培康,等.铝合金激光快速成型技术研究进展[J].热加工工艺,2010,39(9):170-173.

[25]李瑞迪,史玉升,刘锦辉,等.304L不锈钢粉末选择性激光熔化成形的致密化与组织[J].应用激光,2009,29(5):369-373.

[26]潘琰峰.316不锈钢金属粉末的选择性激光烧结成形研究[D].南京:南京航空航天大学,2005.

[27]Ma M M,Wang Z M,Gao M,et al.Layer thickness dependence of performance in highpower selective laser melting of 1Cr18Ni9Ti stainless steel[J].Journal of Materials Processing Technology,2015,215:142-150.

[28]姜炜.不锈钢选择性激光熔化成形质量影响因素研究[D].武汉:华中科技大学,2009.

[29]黄乾尧,李汉康.高温合金[M].北京:冶金工业出版社,2002.

[30]张义文,杨士仲,李力,等.我国粉末高温合金的研究现状[J].材料导报,2002,16(5):1-4.

[31]张颖,顾冬冬,沈理达,等.INCONEL系镍基高温合金选区激光熔化增材制造工艺研究[J].电加工与模具,2014(4):38-43.

[32]Zhang B,Huang Q R,Gao Y,et al.Preliminary study on some properties of CoCr dental alloy formed by selective laser melting technique[J].Journal of Wuhan University of TechnologyMaterials Science Edition,2012,27(4):665-668.

[33]Froes F H,Eliezer D,Aghion E.The science,technology,and applications of magnesium[J].JOM:Journal of the Minerals,Metals & Materials Society,1998,50(9):30-34.

[34]Seal C K,Vince K,Hodgson M A.Biodegradable surgical implants based on magnesium alloysCa review of current research[J].Materials Science and Engineering,2009,4(1):012011.

第8篇:粉末冶金的优缺点范文

高炉渣综合利用情况

从国内外高炉渣的处理方法看,分为水淬渣和干渣,其中水渣作为一种有利用价值的资源和产品,已广泛应用于建材行业,因此水渣处理工艺也因此被国内钢铁企业普遍采用。根据水渣的脱水方式,水渣处理工艺又分为转鼓脱水法(图拉法)、渣池过滤法(底滤法)、脱水槽式(拉萨法)、提升脱水式(明特克法)。干渣的产生不仅会造成环境污染,而且破碎后用于路基垫层、筑路骨料、建筑用砂石料等,产品附加值低。目前国内大中型钢铁企业很少采用干渣处理方法,仅在水渣系统有故障或有特殊情况时采用,但在西部地区部分钢厂中,干渣仍占有一定的比例。

水淬渣具有良好的潜在水硬性,可作为优质的水泥原料,或可直接替代部分水泥用于混凝土生产。通过添加一定量的水渣微粉,可使其强度、抗硫酸盐侵蚀、抗氯离子侵蚀、黏聚性和抗离析等性能有所提高。近几年随着高炉渣综合利用的深度开发和技术的成熟,大部分钢铁企业建立了高炉水渣制水渣微粉生产线,据不完全统计,截止到2011年底,国内共有210余条矿渣细磨生产线,矿渣粉产能约1.4亿吨/年,消耗了国内65%以上高炉水渣,生产的矿渣粉产品现应用于世博会场馆、国家体育馆、京沪高铁、宁杭城际铁路、广深港沿江高速公路等重点工程中。但仍有一部分钢铁企业将水淬渣直接卖给水泥厂作混合材,水泥厂一般将水淬渣与熟料、石膏等共同粉磨,由于水淬渣易磨性较熟料差,难以磨细至理想的细度,致使水淬渣的活性不能充分发挥,限制了水淬渣在水泥中的掺量,不利于水淬渣的大量利用。

此外,高炉渣还可以生产一些用量相对不大,但极具经济价值的特殊用途产品,如生产矿渣棉、微晶玻璃、耐火材料等。

钢渣综合利用情况

钢铁企业一般都采用“破碎—筛分—磁选—磁选后废钢回收”处理钢渣。钢铁企业磁选后的钢铁尾渣除少量用于返回烧结和炼钢外,其余主要用于直接生产道路工程、钢渣砖制备、钢渣水泥、水泥和混凝土掺合料等,或外销于建材企业用于以上材料的生产。

1.返回烧结和炼钢,作为熔剂

目前钢铁企业利用钢渣中的残钢、氧化铁、氧化镁、氧化钙、氧化锰等有益成分,作为烧结矿的增强剂和代替熔剂,降低熔剂和固体燃料消耗,同时提高烧结矿的产量和强度,或作为转炉炼钢熔剂,可提高炉龄,促进化渣,缩短冶炼时间,降低造渣剂消耗。但钢渣中较高的硫或磷含量会产生富集作用,影响了大宗冶炼回用,消耗钢渣尾渣总量最高占总产生量的10%。

2.作为建筑原料或制备建材制品

钢渣尾渣可作为筑路渣、钢渣砂替代砂或石子用于道路基层、垫层、面层材料,降低成本。另外,钢渣经稳定化处理后可与粉煤灰或炉渣按一定比例配合、磨细、成型、养护,生产出不同规格的钢渣砖、免烧砖、砌块、路缘石等各种建材制品。如宝钢、宣钢、武钢、西宁特钢、陕西龙钢等钢铁企业均已建立混凝土砌块和透水砖、花砖、彩色地砖生产线,其中宝钢生产的碾压型整铺透水透气混凝土和机压型混凝土透水砖制品已应用于世博园区中心广场、世博公园等重大地面工程的铺设。

随着钢渣处理及应用技术的发展,武钢、马钢、日照钢铁、天津钢管、萍钢、陕西龙钢、唐山新宝泰、太钢、唐钢等钢铁企业已相继建成或在建共40余条钢渣粉生产线,年处理钢渣尾渣约1800万吨,通过将钢渣磨细可以激发钢渣的活性,代替水泥用于混凝土建筑工程,可降低混凝土水化热而产生的裂缝,提高混凝土的后期强度以及耐磨性、抗冻性、耐腐蚀性能。钢渣粉成本比水泥低30%,降低工程造价,为钢渣制备优质沥青混凝土耐磨集料开辟了道路,日益成为钢渣利用的一个重要的突破口,预计“十二五”期间将有较大的发展空间。为了进一步延伸循环经济产业链,钢铁行业联合建筑行业,相继成功开发了低热钢渣水泥、钢渣道路水泥、钢渣砌筑水泥等水泥品种。

含铁尘泥利用情况

含铁尘泥含铁较高,具有良好的经济价值。目前,大部分钢铁企业将粒度较大的含铁尘泥作为原料的一部分直接配入烧结混合料,过细的含铁除尘灰经造球后再作为烧结配料。此外,首钢、沙钢、本钢、宁波钢铁等企业建成污泥除尘灰制球生产线,将回收的各种含铁尘泥经沉淀烘干制球后作为转炉冶炼辅料,在转炉冶炼初期替代石灰石、烧结矿,起到一定的造渣剂、助熔剂的作用。太钢则以固体废弃物为“新矿山”资源,建立国内首套全功能冶金除尘灰资源化装置,通过富氧竖炉对红泥、冶金除尘灰、废钢、钢渣等固体废弃物进行冶炼,生产出铁水直接供给炼铁炼钢工序,排出的水渣进入太钢高炉矿渣超细粉装置加工成水泥原料,生成的煤气进入公司煤气管网统一调配使用,实现了废水、废气和废弃物的全部循环利用。

对于含铁品位较高的氧化铁皮(粉),除应用烧结、炼钢外,钢铁企业充分挖掘资源特性,生产铁氧体预烧料、氧化铁红、磁性材料、还原铁粉和粉末冶金产品等高附加值产品,实现铁素的价值提升。宝钢利用氧化铁皮还原的氧化铁红,再添加一定量镀锌废渣和锰元素,开发出二十多种锰锌铁氧体低损耗软磁材料品种,随着宝钢氧化铁鳞的产生量逐年增多,又相继成功开发了永磁材料,进一步丰富了产品种类,极大地推动了磁性材料行业的发展。马钢采用杂质低的优质铁鳞作为原料,建成了万吨级的还原铁粉生产线,不仅为粉末冶金行业提供了优质原料,同时提高了氧化铁皮的利用附加值,莱钢依托氧化铁皮等钢铁副产品,自主研发并掌握了轿车用高性能水雾化钢铁粉末规模化生产技术,形成年产8000吨和一条年产4万吨水雾化钢铁粉末生产线,用于轿车用正时带轮、发动机进排气阀座、油泵转子等粉末冶金结构零件,改变了国内水雾化钢铁粉末完全依赖进口的局面。

冶炼渣综合利用技术进展

针对钢铁渣尚未解决的关键环节,目前国内正在研究一批新的利用技术,经过初步的工业试验或产业化示范,其技术的先进性和经济可行性得到了初步证实,包括产业化推广类技术和重大关键研发类技术两大类。

1.产业化推广类技术

(1) 钢渣处理技术

矿渣已成为我国水泥混凝土行业宝贵资源,应用比较广泛,但钢渣在水泥工业中的研究与应用较为缓慢。一方面落后的钢渣处理工艺造成渣铁包裹严重,FeO及金属Fe含量高,制备水泥生料时会使粉磨电耗升高,成本增加;另一方面落后的钢渣处理工艺使钢渣中的f-CaO、f-MnO消解不完全,会引起水泥安定性不良。因此,钢渣处理工艺是钢渣实现资源化的前提与条件,钢渣处理工艺的好坏钢渣高价值资源化利用关系影响较大。

钢渣余热自解热闷技术是中冶建筑研究总院有限公司研发成功的钢渣热闷处理技术,2009年被国家环保部列入《国家先进污染防治示范技术名录》,并在鞍钢鲅鱼圈钢铁分公司、本溪钢铁公司、唐山国丰钢铁公司、首钢京唐钢铁公司、新余钢铁公司、九江钢铁公司、韶关钢铁公司、天铁资源公司、日照钢铁公司等近20个企业推广应用。

滚筒渣处理技术是将高温熔态冶金渣在一个转动的密闭容器中进行处理,在工艺介质和冷却水的共同作用下,高温渣被急速冷却和碎化,并被排出。所形成的滚筒渣粒度小而均匀,小于70毫米的粒渣所占比例大于80%。成品渣中性能较稳定,渣钢分离效果好,可以直接进行磁选。目前该工艺已在宝钢、马钢、宣钢、方大特钢等企业得到推广和应用外,已经输出到印度JSW和韩国浦项制铁集团等国际大型钢铁企业。

⑵ 钢渣棒磨技术与宽带新型磁选提纯技术装备

热闷处理后的钢渣通过宽带磁选机,同收钢渣中的废钢;再采用棒磨机剥离提纯,然后经双辊磁选机磁选,回收铁品位达90%以上,可直接代替部分废钢作为废钢冷料。通过优化工艺,钢渣中的金属铁回收率达98%。

⑶ 矿渣、钢渣复合微粉生产技术

符合国家标准《用于水泥和混凝土中的粒化高炉矿渣粉》和《用于水泥和混凝土中的钢渣粉》的钢渣粉产品已推广应用。由于矿渣粉的碱度低,大掺量时会出现钢筋锈蚀和碳化起砂等现象,因此需掺入碱性钢渣粉以改善矿渣粉的缺点,又可发挥钢渣粉后期强度高、耐磨性好等特点。因此,钢铁渣复合粉是混凝土最佳掺合料。

将粒化高炉矿渣和钢渣分别磨细至400平方米/千克比表面积以上,并根据渣粉性质,按科学比例配制成钢铁渣复合粉作混凝土掺合料,可等量取代10%~40%,的水泥。钢铁渣复合粉配制混凝土可提高混凝土后期强度,改善其工作性和提高其耐久性。

⑷ 钢铁渣生产水泥技术

钢铁渣粉可与硅酸盐水泥熟料按一定比例配制成钢渣硅酸盐水泥、低热钢渣水泥、钢渣道路水泥等水泥品种。目前我国已有“钢渣硅酸盐水泥”、“低热钢渣矿渣水泥”、“钢渣道路水泥”、“钢渣砌筑水泥”的标准和产品,并在工程中应用,但规模不大,应大力推广。

2.重大关键工程技术

⑴ 钢渣余热利用及回收技术

我国钢铁工业产生冶金渣温度高达1400~1500℃,余热品质较高,极具开发利用价值,但是据统计我国钢铁工业熔渣的余热回收率不足2%。随着能源、环保瓶颈问题的日益加剧,近年来,国内的有关单位及科研院校都在积极地进行着高温冶金渣显热利用方面的研究,已成为我国钢铁行业未来几年内重要的节能环保技术之一。其中,首钢、宝钢、中冶建筑研究总院和中国京冶工程技术有限公司等单位分别开展了此方面的基础研究工作,有些技术已完成了中试,并即将进行工业化建设。

利用钢渣余热回收与封闭式连续处理及稳定化技术,首钢现已在北京地区建设一条1万吨级的钢渣余热回收处理试验线,试验结果表明,该技术能够同时实现钢渣余热回收、渣钢分离、钢渣稳定化处理以及钢渣尾渣混凝土制品制备,有效解决现有处理技术中作业周期长、处理效果差等系列问题,实现钢渣处理的自动化、机械化、装备化、密闭化、连续化,为后续该技术的产业化实施奠定了坚实的技术基础。

熔融高炉渣直接生产矿棉也是钢铁渣余热利用技术。目前我国每年需求岩矿棉一百万吨左右,今后我国城镇化进程的加快,整个建筑外墙保温市场前景广阔,并且随着国家对建筑节能和建筑防火问题越来越重视,具备防火吸音功能的低成本无机矿物纤维棉越来越受到重视。

⑵ 钢渣尾渣制备农业用肥料技术

钢渣中含有大量的硅、钙、铁、锰、磷等对农作物有益的元素,并且钢渣内大部分有害元素含量符合农业有关标准要求,对于改良土壤,满足农作物营养需求等方面十分有益。德国、日本等国在钢渣改良土壤方面研究与应用较多,利用渣中CaO缓慢中和改良酸性土壤。国内钢铁企业及科研院所一直以来积极研究开发钢渣在农业领域利用技术,提高钢渣产品的附加值。太钢在不锈钢渣毒害性、钢渣有害元素分离净化、肥料各种微量元素的稳定性、钢渣肥在农业种植实验效果等研究的基础上,于2011年开建不锈钢尾渣湿选处理、不锈钢尾渣干燥及肥料生产线,年产土壤调理剂、草坪肥、复合肥等钢渣肥料50万吨,应用于农业和高尔夫球场草坪,国内首次实现了钢渣生产肥料技术装备的产业化,对于钢铁工业实现钢渣高附加值利用起到示范和引领作用。

3.重大关键设备

近几年来,通过不断创新和引进、消化吸收国外的先进技术,钢铁渣综合利用技术装备水平不断提高。

⑴ INBA法高炉设备

高炉渣水力冲渣设备是在国外INBA法的基础上,我国自行创新研发的工艺设备,是无污染、冲渣质量好、蒸汽回收的生产技术装备,达到了国际先进水平。

⑵ 钢渣热闷设备

我国自行研发的钢渣余热自解热闷处理设备,主要用于消解钢渣中游离氧化钙、游离氧化镁使其稳定化。该设备适应液态钢渣直接热闷处理短流程工艺,自动化控制水平高,安全可靠,无废水排放,实现了节能降耗,达到国际先进水平。

⑶ 立磨粉磨粒化高炉矿渣粉磨设备

在引进、消化、创新的基础上,我国自行设计制造了粒化高炉矿渣粉磨设备——立式辊磨,并在国内推广应用,其吨产品电耗、设备生产能力和运转率均达到国际先进水平。

⑷ 卧式辊磨粉磨钢渣粉设备

在引进国外卧式辊磨设备基础上,消化、创新、设计制造了钢渣节能粉磨设备——钢渣粉卧式辊磨,加大了国内制造部件数量,降低了设备价格,满足了国内钢渣粉生产需要。

第9篇:粉末冶金的优缺点范文

关键词 压制成形,流变学,CAE优化分析

1前 言

计算机辅助工程(CAE)是利用计算机辅助求解复杂工程、产品结构的力学性能分析计算以及结构性能优化设计的重要工具。对于陶瓷墙地砖模具领域,CAE技术的应用尚未见相关报导。结合目前陶瓷墙地砖模具技术比较落后的现状,利用CAE技术对陶瓷墙地砖模具设计及其粉料压制成形机理,以及墙地砖产品综合力学性能等方面展开研究,可揭示模具设计过程中模具的受载特性、运动特性及其与粉料压制成形的相互影响,从而获得陶瓷墙地砖模具的优化设计方案。CAE技术为陶瓷墙地砖模具的设计提供了虚拟的设计平台,设计人员可以提前对设计过程中模具存在的缺陷进行修改并提出优化方案,缩短了设计周期,减少了模具生产成本,并提高了陶瓷墙地砖模具及砖坯的质量。

2陶瓷墙地砖粉料压制的成形机理

2.1 陶瓷墙地砖压制成形的过程

墙地砖坯体致密度和强度的提高是由于陶瓷粉料在适宜的成形压力作用下发生了以下变化:(1)固体颗粒的塑性变形和弹性变形;(2)固体颗粒互相移近和靠拢;(3)气体和水份在颗粒间隙中的移动;(4)气体受压后,有一部分溶解在水份中,其余部分经压模、底模与模框的缝隙逸出。由此可见,墙地砖坯体的压制成形过程实质上是陶瓷粉料各组分互相移动、变形,迫使孔隙率减少和坯体结构致密化的过程。

2.2 陶瓷墙地砖粉料压制成形机理的基本假设

墙地砖因形状简单,通常采用单向压制成形的工艺,如图1所示。坯体的受力分析如图2a所示,坯体在成形压力Py,侧压力Pc,底模反力Pm及摩擦力Pf的作用下保持平衡。由于在墙地砖坯体的压制过程中,陶瓷粉料中的颗粒在互相移动、靠拢以致压实成形的过程中需要克服摩擦阻力等,由此可见侧压力Pc沿压坯高度方向逐渐减弱至最底层;同时因坯体与模壁之间存在摩擦力的作用,致使底模反力Pm小于成形压力Py。但因墙地砖的厚度尺寸通常较小,并忽略摩擦力Pf的作用,致使底模反力Pm小于成形压力Py。

我们可近似地认为侧压力Pc沿压坯高度方向均匀分布,且底模反力Pm与成形压力Py近似相等,那么可得理想状态下坯体的受力分析示意(如图2b所示)。如果再进一步将分布力简化为集中力,可得坯体的受力分析示意图(如图2c所示)。显然它是建立在基本假设基础上的:(1)假设坯体为一刚性整体;(2)假设坯体在压制成形时,坯体与模腔内壁等产生的摩擦力忽略不计;(3)假设侧压力Pc沿压坯高度方向均匀分布。

2.3 成形压力对坯体压制成形过程的影响

当作用于陶瓷粉料上的成形压力大于固体颗粒的变形阻力、受压气体的变形阻力、固体颗粒之间的摩擦力及陶瓷粉料与模腔内表面的摩擦阻力时,固体颗粒就开始移动、变形,并互相靠近,结果迫使陶瓷粉料压实成形。其具体过程就是靠近压模上表面的陶瓷粉料层最先被压实,当这个陶瓷粉料层的颗粒互相靠近时,颗粒间的摩擦阻力就急剧地增大。此时,要使坯体压得更实就必须施加更大的成形压力,此成形压力同时还通过压模上表面的粉料层依次传递到邻近的粉料层上,直至最低层,由于成形压力在粉料层之间不断传递的过程中,有一部分消耗于克服颗粒变形、颗粒之间及颗粒与模腔内表面的摩擦损失上,所以离压模上表面越远,粉料层受到的成形压力越小,结构越疏松、致密度越低。

当成形压力与上述各种变形阻力及摩擦力相等时,陶瓷粉料的压制成形过程就处于相对平衡状态,坯体结构不再致密化,因此过大地增大成形压力,并不能使坯体变得更紧密或使坯体的强度更高。各种陶瓷粉料依其物理化学性质的差异,各有其最适宜的成形压力。这个成形压力既能保证坯体所要求的致密度和强度,又不会使坯体产生压制裂纹等缺陷。

3陶瓷墙地砖粉料压制成形过程的CAE优化分析研究

3.1 陶瓷墙地砖粉料压制成形过程数学模型的建立

陶瓷粉料压制成形是靠强大的压力使含有一定粘性颗粒的粉料在模具内产生流动、变形,最终压成致密的坯体。所以,陶瓷粉料的性能与其压制行为的关系(如粉料流动的快慢、变形的难易、作用力和变形力之间的关系等)成为压制成形过程中的关键因素。因此,用流变学的理论来建立粉料的流变模型和压制方程对于研究陶瓷粉料压制行为规律有重要的指导意义。

如图3所示,在刚模中粉料的表面施加压力σΔ(t),Δ(t)是单位阶跃函数。

假设刚模壁与粉料间不发生剪切应力,则在忽略重力时粉料间不发生剪切应力,此时粉料中各点x方向的正应力σx均为σΔ(t),为方便起见,以压应力为正,且σy=σx,由于刚模的限制,y和z方向应变εy=εx=0,只有x方向的应变εx,那要求解的未知数就是横向力σy 和竖向应变εx 。

以Tσ、Tε分别代表应力、应变张量,用上标O,d分别代表球张量和偏张量,

应力张量为:Tσ=TσO+Tσd(1)

应变张量:Tε=Tε0+ Tεd(2)

对于满足流变模型的各种粉料,应力球张量和应变球张量之间的关系可以认为是线弹性的,则有:

TσO=3EvTε0(3)

式中:

Ev――积弹性模量

应力偏张量与应变偏张量之间的关系,随着粉料的性质以及模型而异。借助粉末冶金技术,非线性K体比较接近粉体变形的实际情况,并且容易进行数学处理。非线性K体是由Hooke体(简称H体)与Newton体(简称N体)并联组成的。经过对H体与N体不同组合的数学模型的研究与对比,发现当非线性K体与非线性H体并联,所建立的数学模型就比较符合粉料压制机理。 依图4所示模型,其数学模型为:

式中:

σ=σ1+σy

σ1=σ2=σ3(4)

ε=ε1=εx

εx=ε2+ε3

式中:

――应力对时间t的导数

变换整理得:

式中:

M1,M2,M3,τ――与弹性有关的常数

m1 ,m3,K――指数常数

――应变对时间t的导数

图4所示的模型具有普遍性,可以较全面研究非线性粉料在压制成形过程中的流变行为,从而为陶瓷墙地砖模具设计及加工过程中工艺参数的选定提供了依据。

3.2 陶瓷墙地砖粉料压制成形过程CAE优化分析的探索研究

在对陶瓷墙地砖粉料压制成形机理全面分析的基础上,综合考虑墙地砖模具结构的具体设计要求以及原材料的性质、配方等因素,借助冶金技术中粉料在压制成形中的流变模型建立起相应的数学模型,继而采用华中科技大学国家模具重点实验室开发的HSCAE(华塑CAE)软件进行优化及动态模拟分析,从而改变了过去那种单靠人为经验来制定粉料压制成形的加工工艺,以及设计相应模具尺寸需要多次试模、反复修改,才能最后设计定型和制造模具的方法。

利用CAE技术对陶瓷墙地砖粉料压制成形过程进行仿真模拟,并在此基础上,提高模具的设计的效率,优化模具设计以及制造工艺。在后期的研究工作中,其工作重点将放在对粉料压制成形过程的仿真模拟,并结合陶瓷墙地砖实际生产情况及存在的问题,对现有的墙地砖模具进行CAE优化分析,并提出模具的优化设计方案,从而有效地提高墙地砖在压制成形过程中的综合性能。

4总结

陶瓷墙地砖粉料压制成形过程中的应力与应变是一个相当复杂的过程,由于在这个过程中,陶瓷墙地砖粉料的变形及运动状态满足粉末冶金技术中流变模型的条件,因此,在此课题中,笔者大胆借助粉料运动的流变模型建立相应的数学模型,为后面的CAE优化分析提供了有利的分析依据。CAE技术充分结合了陶瓷墙地砖的生产现状及工艺要求,在后期的研究工作中将逐步展开粉料压制成形过程的模拟仿真,并对墙地砖模具进行优化设计,从而提高墙地砖的综合性能。

参考文献

1 向卫兵.陶瓷墙地砖模具类型与分析[J].佛山陶瓷,2008,3

2 孙德亮.墙地砖常见缺陷分析[J].现代技术陶瓷,1998,3

3 王艳春.陶瓷墙地砖模具的设计[J].佛山陶瓷,2006,7

4 黄培云.粉末冶金基础理论与新技术[M].中南工业大学出版社,1987

5 王忠辉.陶瓷墙地砖在压制过程中缺陷的成因分析及预防措施[J].中国建材装备,1998,4

相关热门标签