公务员期刊网 精选范文 变压器继电保护原理范文

变压器继电保护原理精选(九篇)

变压器继电保护原理

第1篇:变压器继电保护原理范文

关键词:变压器;继电保护测试;电力设备;电力系统;电力故障 文献标识码:A

中图分类号:TM772 文章编号:1009-2374(2016)04-0142-02 DOI:10.13535/ki.11-4406/n.2016.04.071

在电力系统中,变压器是进行配送电力的重要设备之一,在很多行业中被广泛应用。但是变压器在运行的过程中,经常会出现故障问题,直接影响电力系统的正常工作与可持续性发展,其中,当有大容量的变压器发生故障的时候,会严重威胁到整体的供电设备。随着科学技术的不断发展,对变压器继电保护工作提出了更高的标准,因此,要增强变压器继电保护测试的研究与探讨,推动电力事业的发展步伐。

1 进行变压器继电保护测试研究的重要意义

当前,计算机系统的广泛应用,比传统的常规型等继电保护拥有更多的特性。随着科学技术的发展,将计算机通信技术、仿真技术等应用到变压器继电保护测试中,其中数字化在变压器继电保护中的应用,大大推动了继电保护测试点的发展。新兴的变压器继电保护安全监测的方法是推动变压器可持续发展的重要因素,改变了传统变压器继电保护工作的方法,以全新的形式展现出来。将传统的变压器继电保护测试与先进的科学技术紧密地结合在一起,研究出符合社会发展的需要的新兴测试原理,给变压器继电保护测试工作锦上添花。

2 变电站继电保护

2.1 变压器继电保护的工作原理

变压器继电保护的工作原理是依据变压器在运行的过程中出现故障的时候,继电保护进行有效的工作运转。例如:电压突然升高或降低、瓦斯发生爆炸现象、温度猛然升高、频率降低、电流增加等现象的发生,继电保护及时地发现问题并做出实时保护措施,将发生故障的电闸自动跳闸,将温度与瓦斯做非电量的保护。要想保证继电保护在跳闸时的准确性与安全性,就要确保计算经验数据的可靠性。保证继电保护工作的准确性,将保护的范围控制在1.3~1.5之间。继电保护的灵敏系数要控制在1.2~2之间,其中包括发生故障时的最小数值与保护动作值,因此要有参考地进行选择。

2.2 变压器继电保护的分类

变压器继电保护分为五类:一是发电机保护。发电机是由四个部分组成的,即电机外部短路、定子绕组相间短路、匝间短路、定子绕组接地,此外,还包括对称过负荷、定子绕组过电压、励磁回路等。出口方式是以缩小故障影响范围、停机。二是电力变压器保护,是为了更好地引出线相间与保护绕组的作用。中性点设置可以直接在电力网中部与外部接地短路引起的电流和中性点过电压中通过。线路的保护要依据电压的级别、电网接地的方式、输电线路、架空线、电缆的长度等进行保护。三是母线的保护,变电站的发电设备与变电站的母线之间要设置专门的继电保护装置。四是电力电容器的保护,可能会出现两种情况,即由于电容器内部出现故障引发了短路等现象的发生和电容器与断电器之间出现了连线的故障。在电容器组中,某一个地方出现了故障问题,都会引发电压与其连接的母线出现没有电压的现象。五是高压电动机的保护,高压电动机可能会出现定子绕组接地故障、定子绕组匝间短路故障、定子绕组超负荷故障或者是同步电动机消磁现象,同步电动机出现非同步电流的现象等。通过变压器继电保护的分类可以看出,计算机技术的广泛应用使得继电保护装置更加可靠、安全、稳定。依据不同等级的线路实验不同等级的保护装置,自动进行保护策略的调整工作,保证继电保护测试工作的质量。伴随着通信技术的发展与壮大,既提升了变电站的安全运行效率,又给信息保护工作提供了方便与快捷。

2.3 变压器继电保护的特点

变压器继电保护的特点包括三个方面:一是可靠性非常高,有合理的配置,良好的质量技术性能,正常运行中的维修、保护、管理等。在继电保护的整个系统中,采用了数据库与方法库的信息管理模式,方便了系统的全面升级与维护工作,在运转的过程中,将分散式的传输转变成集中式的运输过程。换言之,将网络数据库与规则库进行集中管理,保证其中一个工作站发生故障,不会影响到整体的正常运转。二是实用性非常强。在进行电力运行的过程中,会出现一些故障等原因的问题,继电保护有效地针对这些问题进行二次的保护措施,保证数据、系统的完整性。继电保护工作具有分析、统计等特点,大大方便了工作人员的有效操作,实用性非常强,提升了继电保护的运行水平。三是远程控制能力。利用计算机系统进行串行通信的功能,与远方的变电站中的计算机系统有效地进行通信活动,实现了微机的远程控制功能,确保在无人操作的情况下继电保护工作正常运行。

3 变压器继电保护产生的新技术的特点

3.1 61850新技术的发展

伴随着国家出台的相关政策,推动了61850新技术的发展与壮大,给变压器继电保护测试项目带来了新的希望、新的特点、新的发展目标。将仿真技术与新型的计算机系统等有效地应用到变压器继电保护测试工作中,兴起了新的继电保护工作任务。现在研究工作的重要内容就是如何创造新型的变压器继电保护系统与技术;如何发展信号系统,保证科学技术的需求等工作内容,需要工作人员进行长期的、不懈的努力与创新。研究工作人员要以变压器继电保护的技术为优先考虑的对象,发挥其自身的特点与优点,研究出更加可靠的、稳定的继电保护系统,将继电保护系统的优势发挥出更大的作用(如图1所示,61850新技术变电站的体系结构图)。

3.2 保护功能与自动化功能结合

要结合当下变压器继电保护的技术与条件,针对低压保护在实际中的融合保护与测控功能进行有效结合,总结出新兴的保护技术。随着新技术的不断发展与61850新型产品的生产与研发,推动了变压器继电保护系统与计算机仿真技术的有效结合,形成一个新的整体,这个新整体逻辑还是在现有的区域中,但是实际的物理装置已经在另一个区域中了,并发挥着自身的作用,这种新型的特点将计算机自动化与变压器继电保护系统有效地结合,发挥出更大的功效(如图2所示)。

3.3 统一硬件平台带来的整体性

按照正常的推理来讲,厂家生产的硬件平台与保护的原理是没有关系的,在这种情况之下,既可以维持硬件的稳定性能,又可以保证变压器继电保护系统的整体协调运转。发展到今天,已经有很多的生产厂家将硬件平台进行有效的统一处理,带来了整体性能。但是,还有一定的不足之处,例如:体育整体的硬件不能做到完全的替换工作,即便可以进行替换,也需要更改一些硬件的设备。另外,对于那些可以进行替换的硬件设备来说,作为一个复杂性的整体,由于受到参数与复杂等因素的影响,没有了在进行实际操作时的性能。只有做到真实意义中的一键替换工作,才能降低工作人员的工作量,保证硬件的整体性能。

4 目前变压器继电保护检测仍需增添的内容

变压器继电保护发展到今天为止,已经取得了非常大的成绩,但是还需要进行不断完善与进步。要在原有的基础之上,结合变压器继电保护的原理与发展方向进行有效的改进与研发工作,不断找到新的特点,本文从以下两个方面进行了细致的说明:

4.1 变压器继电保护之中时间同步能力的检测

到目前为止,有很多种时间同步技术,并在不断更新与发展中,这项技术在变压器继电保护工作中的广泛应用,推动了继电保护工作的发展与进步。时间同步技术大大地解决了不同继电保护装置中的同时间不同步的现象,保证了不同的变压器继电保护装置之间进行了同步的作用。时间同步分析比故障分析的作用更大,但是,时间同步在检测方面还有很多不足之处,仅仅是在时间同步装置中才会发挥作用,需要将变压器继电保护装置中的同步测试能力放在优先考虑的范围之内,才能达到整体的装置处于时间同步的效果。到目前为止,时间同步技术在变压器继电保护工作中测试与广域中的测试都发挥着重要的作用,并保证了继电保护装置的效果与准确性。

4.2 变压器继电保护装置可靠性检测

最近几年的变压器继电保护测试发展的过程中,将样品功能的测试与性能方面检测作为工作的重点,很少涉及到继电保护装置的使用寿命与稳定性的检测工作,系统检测变压器继电保护装置的设备还很不完善,有待进一步研究与探讨。优点有:随着仿真技术的不断进步与发展,制造出微机型的变压器继电保护装置,并得到广泛的应用。要从两个方面进行继电保护装置的可靠性测试活动:一是考虑装置的硬件设备是否可靠;二是设备装置的软件是否可靠。

5 结语

综上所述,对于今天的变压器继电保护技术已经不能只依靠传统的技术与性能,要不断进行研发工作,将现代化科学技术应用到变压器继电保护工作中,发挥出继电保护工作的特点与性能,大大提升工作效率,保证变压器在正常运行中的稳定性与安全性,提升供电工作的质量,推动电力事业的不断发展与壮大。

参考文献

[1] 陈雨华.探讨变压器继电保护测试发展方向[J].科技视界,2015,(9).

[2] 杨小兵.变压器继电保护可靠性探讨[J].价值工程,2014,(14).

[3] 王维俭.变压器保护运行不良的反思[J].电力自动化设备,2013,(10).

第2篇:变压器继电保护原理范文

摘要:近年来,随着继电保护装置的微机化,老旧的电磁型继电器逐步退出了历史舞台。文章以DcD一2型差动继电器的整定计算过程为

>> 主变压器差动继电器保护原理与故障分析 变压器差动保护 浅论变压器电量保护(微机保护继电器)调试及计算方法 变压器瓦斯继电器自动保护研究 电力变压器气体继电器保护的探讨 变压器差动保护探究 变压器差动保护探析 变压器差动保护动作分析 变压器比率差动保护效验 浅析主变压器差动保护 浅谈变压器差动保护 浅谈变压器气体继电器的应用 浅谈变压器保护 变压器保护研究 小议配电变压器的保护措施及常识 变压器保护分析之差动保护 浅谈变压器差动保护带负荷测试 浅谈变压器差动保护校验 变压器差动保护的简单介绍 变压器差动保护校验小结 常见问题解答 当前所在位置:中国 > 科技 > 小议变压器DCD-2电磁型差动继电器保护计算 小议变压器DCD-2电磁型差动继电器保护计算 杂志之家、写作服务和杂志订阅支持对公帐户付款!安全又可靠! document.write("作者:未知 如您是作者,请告知我们")

申明:本网站内容仅用于学术交流,如有侵犯您的权益,请及时告知我们,本站将立即删除有关内容。 摘要:近年来,随着继电保护装置的微机化,老旧的电磁型继电器逐步退出了历史舞台。文章以DcD一2型差动继电器的整定计算过程为例,分析了差动继电器的工作原理和特点,提出了该类差动继电器的整定计算方法。关键词:DCD-2差动继电器;整定计算;变压器中图分类号:TM772

文献标识码:A

文章编号:1009-2374(2011)22-0061-02

第3篇:变压器继电保护原理范文

关键词:备自投;电压互感器;反充电

1 系统及运行方式说明

系统为220KV系统,正常运行方式下,#01启备变作为#1、#2机厂用电备用电源,#02启备变作为#3、#4机厂用电备用电源,如图1:

#01、#02启备变保护采用电磁式继电器保护,#3机的备自投回路采用继电器接点联琐回路,YJJ、YZJ-A、YZJ-B作为厂用电备用电源监察继电器;#4机的备自投回路采用DCS[1]快切卡件,它需要取系统A相电压作为启备变电压监察判断量,若系统电压消失,则快切卡件会闭锁,#4机的厂用电备自投功能自动退出,而快切卡件所取的系统电压则是#02启备变运行于I母时经I母刀闸切换(1ZZJ)后或者是运行于III母时经III母刀闸切换(2ZZJ)后的系统电压,如图2:

图中1G为262 I母刀闸,2G为262 III母刀闸,+KM、-KM为262开关控制回路电源。因此在#02启备变转为检修状态前应将1ZZJ(为#4机快切卡提供I母线系统电压)用纸片垫住,同时将继电器YZJ-A、YZJ-B(供#3机厂用电备用电源监察使用) 用纸片垫住,以保证运行人员操作#01启备变作为#3、#4机厂用电备用电源时的备自投回路畅通。选择垫1ZZJ而不垫2ZZJ是因为在#02启备变送电前可能需要腾空III母,利用母联3开关串代262开关对其进行充电和电流二次回路相量测试。

2 事件经过

2005年4月25日,#02启备变高压侧262开关大修结束,由于此次大修更换了三相SF6 CT,因此#02启备变在转为热备用前需腾空III母,用母联3开关串带262开关测相量。在运行人员腾空III母后合上262 III母刀闸的同时,运行于I母的#1发电机掉闸,检查#1发变组保护屏有“失磁t1”保护动作信号。

3 原因分析

这是一起由于电压互感器二次反充电造成保护动作的事件。通过电压互感器二次向不带电的母线充电称为反充电,对于220KV电压互感器,变比为220/0.1,停电的一次母线(III母)即使未接地,其阻抗(包括母线电容及绝缘电阻)虽然较大,假定为1MΩ,但从电压互感器二次侧看到的阻抗只有1000000/(2200)2≈0.2Ω,近乎短路,故反冲电流较大(反冲电流主要决定于电缆电阻及两个互感器的漏抗),将造成运行中的电压互感器二次侧小开关跳开或熔断器熔断。在#02启备变停电前,将I母电压切换继电器1ZZJ用纸片垫住,在运行人员合262 III母刀闸前将纸片取下,但是1ZZJ继电器机构卡涩,闭合的接点并没有打开,运行人员合上262III母刀闸后III母电压切换继电器2ZZJ动作吸合,通过继电器1ZZJ和2ZZJ将I母二次电压和III母二次电压并列,I母二次电压通过III母PT二次向不带电的III母反充电,造成I母PT二次小开关跳开,220KV母线电压波动,此时运行于I母的#1发电机运行状态为:有功205MW、无功21Mvar、转子电压224V,系统电压和转子电压均低于#1发变组保护装置(南自WFBZ-01)中失磁保护低电压整定值,如图3。

此原理中系统电压没有TV断线判据,而且系统电压低,整定值没有设置门槛值,因此TV断线时保护装置可能会认为是系统电压低,此时#1发电机所发无功较少,相应的转子电压较低,图中可以看出,系统电压低与转子电压低满足失磁t1保护的条件,加之失磁保护整定值Kf[2]=0.35偏低,造成#1发电机解列。

4 整改措施

#1发电机掉闸是由于WFBZ-01发变组保护装置失磁t1保护逻辑和整定值Kf的不合理造成的,为了设备的安全稳定运行,依据《华北电网调度管理规程》,及时对Kf进行重新整定(Kf=0.828),并联系南自公司改进了失磁保护原理,如图4:

新的失磁保护原理更趋于合理,无论机端电压低还是转子电压低必须同时满足阻抗圆判据保护才可以动作,并设置机端电压TV断线条件闭锁,避免由于TV断线而导致保护误动作。

第4篇:变压器继电保护原理范文

关键词:电力变压器继电保护电流保护气体保护差动保护

中图分类号:TM411 文献标识码: A 文章编号:

1 引言

电力变压器是供配电系统中最重要的电气设备,它的故障将对供配电系统的正常运行造成严重的影响,同时大容量的变压器也是十分贵重的器件,因此对电力变压器的下列故障及异常运行方式,应装设相应的保护装置:绕组及其引出线的相同短路和中性点直接接地侧的单相接地短路;绕组的匝间短路;外部相间短路引起的过电流;中性点直接接地电力网中外部接地短路引起的过电流及中性点过电压;过负荷;油面降低;变压器温度升高或油箱压力升高或冷却系统故障。

对于高压侧为6~10kV的车间变电所主变压器来说,通常装设有带时限的过电流保护。如果过电流保护动作时间大于0.5~0.7s,那么还应装设电流速断保护。容量在800kV•A及以上的油浸式变压器和400kV•A及以上的车间内油浸式变压器,按规定就装设瓦斯保护,又称气体继电保护。容量在400kV•A及以上的变压器,当数台并列运行或单台运行并作为其他负荷的各用电源时,应根据可能过负荷的情况装设过负荷保护。过负荷保护及瓦斯保护在变压器内部有轻微故障时,动作于信号,而其他保护包括瓦斯保护在变压器内部有严重故障时,一般动作于跳闸。

对于高压侧为35kV及以上的工厂总降压变电所主变压器来说,也应装设过电流保护、电流速断保护和瓦斯保护;在有可能过负荷时,也需装设过负荷保护。如果单台运行的变压器容量在10000kV•A及以上或并列运行的变压器每台容量在6300kV•A及以上时,则要求装设纵联差动保护来取代电流速断保护。

2 变压器的电流保护

变压器的过电流保护

变压器的过电流保护主要对变压器外部故障进行保护,也可作为变压器内部故障的后备保护。变压器过电流保护的组成、原理与线路过电流保护的组成、原理完全相同。变压器过电流保护动作电流的整定计算公式与线路过电流保护的基本相同,只是式中的取为(为变压器的额定一次电流)。变压器过电流保护的动作时间按“阶梯原则”整定,与线路过电流保护完全相同。但是对车间变电所(电力系统的终端变电所),其动作时间可整定为最小值(0.5s)。

变压器过电流保护的灵敏度,按变压器低压侧母线在系统最小运行方式下发生两相短路时的高压侧穿越电流值来检验,要求Sp1.5。

变压器的电流速断保护

变压器的电流速断保护主要是对变压器的内部短路故障进行保护。其组成、原理与线路的电流速断保护完全相同。变压器电流速断保护动作电流的整定计算公式也与线路电流速断保护的基本相同,只是式中的取为低压母线的三相短路电流周期分量有效值换算到高压侧的短路电流值,即变压器电流速断保护的速断电流按不小于低压母线三相短路电流周期分量的有效值来整定。

变压器电流速断保护的灵敏度,按其保护装置装设处(即高压侧)在系统最小运行方式下发生两相短路的短路电流Ib来校验,要求Sp1.5。

变压器的电流速断保护,与线路电流速断保护一样,也有“死区”。弥补死区的措施,也是配备带时限的过电流保护。

变压器的过负荷保护

变压器过负荷保护的组成、原理与线路的过负荷保护完全相同。其动作电流的整定计算公式与线路过负荷保护的基本相同,只是式中的取为变压器的额定一次电流。

3 变压器的气体保护

变压器的气体保护即为气体断电保护,又称瓦斯保护,是保护油浸式电力变压器内部故障的一种基本的继电保护装置。

气体保护的主要器件是气体继电器。它装设在变压器的油箱与储油柜之间的连通管上。为了使油箱内产生的气能够顺畅地通过气体继电器排往储油柜,变压器安装应取1%~1.5%的倾斜度;而变压器在制造时,连通管对油箱顶盖也有2%~4%的倾斜度。

气体继电器主要有浮筒式和开口杯式两种类型,现在广泛应用的是开口杯式。在变压器正常运行时,气体继电器容器中的上、下开口油杯都是充满油的;而上、下油杯因各自平衡锤的作用而升起,此时上、下两对触点都是断开的。

当变压器油箱内部发生轻微故障时,由故障产生的少量气体慢慢升起,进入气体继电器的容器,并由上而下地排除其中的油,使油面下降,上油杯因其中盛有残余的油而使其力矩大于另一端平衡锤的力矩而降落。此时上触点接通信号回路,发出音响和灯光信号,这称之为“轻瓦斯动作”。

当变压器油箱内部发生严重故障时,由故障产生的气体很多,带动油流迅猛地由变压器油箱通过连通管进入储油柜。大量的油气混合体在经过气体继电器时,冲击挡板,使下油杯下降。此时下触点接通跳闸回路(通过中间继电器),使断路器跳闸,同时发出音响和灯光信号(通过信号继电器),这称之为“重瓦斯动作”。

4 变压器的差动保护

前述线路及变压器的各种保护有一个共同的特点,就是动作参数的整定必须与相邻元器件的保护相配合,因此就不能快速切除被保护线路末端附近的故障,这在高压电网中往往不能满足系统稳定性的要求,对发电机、变压器等贵重电气设备也不能满足快速切除故障以减轻损失和避免事故扩大的要求。

而变压器差动保护,从原理上不反应相邻元器件上发生的故障,因而不需与相邻元器件的保护配合,所以可实现保护范围内全范围速动。

差动保护分纵联差动和横联差动两种形式,纵联差动保护用于单回路,横联差动保护用于双回路。

变压器的差动保护主要用来保护变压器内部以及引出线和绝缘套管的相间短路,并且也可用来保护变压器内部的匝间短路,其保护区在变压器一、二次侧所装电流互感器之间。纵联差动保护是利用比较被保护元器件各侧电流的幅值和相位原理而构成的。

参考文献:

[1]江文 许慧中 供配电技术[M] 北京:机械工业出版社 2005

[2]夏国民 供配电技术[M] 北京:中国电力出版社 2004

第5篇:变压器继电保护原理范文

【关键词】 差动保护 比率制动 复合电压闭锁过流 调试计算 差动继电器 后备保护

随着电网系统运行方式的不断更新,电气设备及各种用电负荷的继电保护类型也逐渐增多,其中变压器保护在各种继电保护中显得格外重要,变压器保护的项目、类型及计算方法决定了被保护的设备或电网系统是否能正常运行。下面将就各种变压器保护项目、调试和计算方法进行详细说明。

1 变压器差动保护的原理及特点

双绕组变压器的纵联差动保护单相原理接线如图1所示,它是按比较被保护变压器两侧电流的大小和相位的原理来实现的。变压器两侧各装设一组电流互感器1TA、2TA,其二次侧按环流法接线,即若变压器两端的电流互感器一次侧的正极性的线圈并联接入,构成纵联差动保护。其保护范围为两侧电流互感器1TA、2TA的全部区域,包括变压器的高、低压绕组、引出线及套管等。

从图1中可见,正常运行和外部短路时,因变压器两侧绕组接线不同而产生电流流过电流继电器(差动保护继电器)。流过差动继电器的电流,在理想情况下,其值等于零。但实际上由于两侧电流互感器特性不可能完全一致等原因,仍有差动电流流过差动回路,即为不平衡电流,此时流过差动继电器的电流为=(此公式表示相量之差),要求不平衡电流应尽可能小,保证保护装置不会误动作。当变压器内部发生相间短路时,在差动回路中由于改变了方向或等于零(无电源侧),这时流过差动继电器的电流为与之和,即=+(此公式表示相量之和)

由于Yd11接线变压器两侧线电流之间有30°的相位差,如果两侧的电流互感器采用相同的接线方式,将会在差动回路中产生很大的不平衡电流。

该电流为短路点的短路电流,使差动继电器KD可靠动作,并作用于变压器两侧断路器跳闸。

补偿方法为:将变压器星形侧的电流互感器接成三角形,而将变压器三角形侧的电流互感器接成星形。微机型变压器差动保护中可采用移相算法。将变压器绕组为Y接的那一侧的电流向前移相30°

变压器的差动保护的保护范围是构成变压器差动保护的两侧电流互感器之间的变压器及引出线。由于差动保护对区外故障不反应,因此,差动保护不需要与保护区外相邻元件在动作值和动作时限上互相配合,所以在区内故障时,可瞬时动作。

2 差动保护的调试及计算方法

(1)对GIS 变压器馈线柜或变压器保护屏中差动CT二次回路进行检查,检查接线有无松动情况。

(2)对差动CT进行变比、极性和直阻测量。

(3)核查差动CT变比、极性及接线情况后,查找二次原理图中差动电流高压侧、低压侧回路电流端子(GIS或变压器保护屏中),并将可同时输入六相电流的继电保护测试仪中的试验电流线接入差动,根据变压器接线组别、差动保护继电器类型以及差动CT的接线方式(7UT512、7UT612、SPAD346C、REF542等)选择高低压侧相位补偿,判断校正接线系数。

(4)分别从高低压侧差动保护CT二次侧(GIS柜或主变保护屏内)输入1A电流,检验其通道采样精度,变压器各侧差动保护CT二次动作值用下式计算:Idz=Kjx Kzd,式中Idz表示动作电流;Kjx表示试验接线系数(1或0.5),根据CT接线方式确定;Sn表示变压器额定容量;Un表示变压器各侧的额定电压;KCT表示变压器各侧的差动CT的变比。试验时,在变压器差动保护各CT二次侧加一相(或三相)电流,采用电流步进法,检查差动保护跳闸出口,记录差动保护动作值。

(5)试验时,应在变压器两侧同时加入三相电流Ie1、Ie2(Ie1、Ie2分别为变压器差动CT二次额定电流),同相电流相位差为150°,模拟变压器正常运行状态。三相差流均为0,证明三相对称负荷电流时,变压器微机差动保护装置不平衡电流很小,可以正常运行。

(6)进行上述工作后,改变任意一侧电流的幅值,而同相电流相位差保持150度(一次侧超前二次侧150度),三相差动电流明显增加,说明变压器容量、变比和CT变比整定正确。

(7)比率制动特性曲线试验。在进行该试验时,应在高压侧输入电流I1,相位为0°,在低压侧输入电流I2,相位为180°,逐渐减少低压侧电流I2,直至比率制动保护动作,通过保护装置读取差动电流Id和制动电流Ir,计算斜率K1、K2(K1=;K2=;K1为第一斜率,K2为第二斜率),例如(如表1):

(8)二(五次)谐波制动特性试验(单绕组单相通电)。保护装置在变压器空载投入和外部故障切除电压恢复时,利用二次谐波分量进行制动;当变压器发生内部故障时,利用基波进行保护; 当变压器外部发生故障时,利用比例制动回路躲过不平衡电流。检验差动保护的二(五)次谐波制动特性时,在变压器差动CT二次侧加入固定不变的50Hz基波电流和变化的100Hz(250 Hz)谐波电流,当谐波电流减小时,保护装置动作,谐波电流占基波电流比例应与整定值相符,投入为二次谐波制动,应在高压侧和低压侧分别进行试验。具体方法为:对变压器任一侧的一相加入50HZ电流I1,电流值在差动启动电流和速断电流之间,同时依次叠加入0.9k2·I1和1.1 k2·I1大小的100HZ电流,记录差动继电器的动作行为。差动继电器应在加入0.9k2·I1电流时可靠动作,在加入1.1 k2·I1电流时可靠不动作。(k2表示谐波制动系数)。

(9)不同微机保护继电器相位补偿电流计算。

1)7UT612保护继电器补偿电流的计算方法为:

星形侧补偿电流计算I1A=I1L1,I1B=I1L2,I1C=I1L3,

角侧补偿电流计算I2A=

I2B=

I2C=

2)7UT613保护继电器补偿电流的计算方法为:

星形侧补偿电流计算

I1A=I1L1,I1B=I1L2,I1C=I1L3,

侧的补偿电流

IA=(—1)/3*IL1-1/3*IL2-(1+)/3*IL3

IB=-(1+)/3*IL1+(-1)/3*IL2-1/3*IL3

IC=-1/3*IL1—(1+)/3*IL2+(—1)/3*IL3

从上面的三个公式可以看出当在侧A相单独加电流时,会同时在B相和C相产生差流,三相产生的差流分别为:

IA=(—1)/3*IL1=0.244*IL1

IB=-(1+)/3*IL1=-0.911*IL1

IC=-1/3*IL1=—0.333*IL1

其中的负号表示电流方向相反,当在侧A相单独加一个测试电流时,对于保护装置7UT613来说,B相产生的差流最大,如果要单独测试A相的差动跳闸,要注意的是B相的差动先动作,因此做试验时要求客户使用6相电流输出的测试仪器。

3)计算实例:变压器两侧容量Sn=50MVA,接线方式YD11,电压等级110KV/10KV

Y侧:CT:500/5A,Un=110KV,计算出额定的二次电流In=2.6244A;

侧CT:5000/5A,Un=10KV,计算出额定的二次电流In=2.8868A;

启动值:Idiff>=0.5In,差动速断:Idiff>>=4.5In.

比率制动为一段斜率:K=0.5.

在Y侧(高压侧)在A相单独加1A电流,观察保护的采样值是否正确:保护显示的差动电流和制动电流是否正确。

A差动计算值:Idiff=1A/In=1/2.6244=0.381,装置实际显示值:Diff=0.38

B差动计算值:Idiff=1A/In=1/2.6244=0.381,装置实际显示值:Diff=0.38

C差动计算值:Idiff=1A/In=1/2.6244=0.381,装置实际显示值:Diff=0.38

在侧(低压侧)A相单独加1A电流,观察保护的采样值是否正确:保护显示的差动电流和制动电流是否正确。这时装置A,B,C相均应该有相应的差动和制动电流。计算公式可由解出的上述公式得出如下:

DiffA=(—1)/3*IL1/In=0.244*IL1/In

DiffB=-(1+)/3*IL1/In=-0.911*IL1/In

DiffC=-1/3*IL1/In=-0.333*IL1/In

A相差动计算值:装置实际显示值

Diff=0.244*1A/In=0.244*1A/2.8868A=0.085Diff=0.09

B相差动计算值:

Diff=0.911*1A/In=0.911*1A/2.8868A=0.3156Diff=0.32

C相差动计算值:

Diff=0.333*1A/In=0.333*1A/2.8868A=0.1154Diff=0.12

在侧(低压侧)B相单独加1A电流,测试结果如下:

A相差动计算值:装置实际显示值

Diff=0.333*1A/In=0.333*1A/2.8868A=0.1154Diff=0.12

B相差动计算值:

Diff=0.244*1A/In=0.244*1A/2.8868A=0.085Diff=0.09

C相差动计算值:

Diff=0.911*1A/In=0.911*1A/2.8868A=0.3156Diff=0.32

测试差动保护的启动段Idiff>:

在Y侧(高压侧),A相单独加测试电流,

计算动作值为:Idiff>=0.5In=0.5*2.6244A=1.3122A.

测试动作值为:1.30A.

侧(低压侧),A相单独加测试电流时,注意的是B相的差动先动作,所以在测试时要注意。

由方程可以得出:

DiffA=(—1)/3*IL1/In=0.244*IL1/In

DiffB=-(1+)/3*IL1/In=-0.911*IL1/In

DiffC=-1/3*IL1/In=-0.333*IL1/In

其中IL1为测试电流

从上面的公式里可以求出要加的测试动作电流为

IL1=IB*In/0.911=0.5*2.8868/0.911=1.5844A

实际测试动作值:1.57A

在侧(低压侧),三相同时加电流就比较简单

(注意三相加的电流大小相等,角度依次为A相:0°B相:-120°C相:120°),计算动作值为:Idiff>=0.5In=0.5*2.8868A=1.4434A.

测试动作值为:1.44A.

测试保护的差动速断Idiff>>

在Y侧(高压侧),A相单独加测试电流,

计算动作值为:Idiff>>=4.5In=4.5*2.6244A=11.809A

测试动作值为:11.8A

在侧(低压侧),三相同时加电流(注意三相加的电流大小相等,角度依次为A相:0°B相:-120°C相:120°)计算动作值为:Idiff>>=4.0In=4.0*2.8868A=11.547A,测试动作值为:11.53A

在侧(低压侧),加单相电流时,要注意A相单独加测试电流时,注意是B相的差动速断先动作,计算动作电流需要乘上一个系数1.098(1/0.991)因为:

IB=-(1+)/3*IL1/In=-0.911*IL1/In,

IL1=IB*In/0.911=4.5*2.8868/0.911=14.2597A

测试保护的比率制动特性

制动为1In时,差动为0.5In时,差动保护动作

由方程:Irest=|I1|+|I2|,Idiff=|I1+I2|

I1为高压侧电流,I2为低压侧电流。

可以解出:

I1=0.25*In=0.25*2.6244=0.6561A

I2=0.75*In=0.75*2.8868=2.1651A

测试方法:

保持Y侧(高压侧),I1=0.6561不变,侧(低压侧)电流三相同时从1.8A慢慢增加,直到保护动作,记录动作值:2.16A.

保持侧(低压侧),I2=2.1651不变,Y侧(高压侧)电流三相同时从0.8A慢慢减小,直到保护动作,记录动作值:0.66A.

与计算结果相同。

测试比率制动的斜率

在斜线上抽几个点作为测试点:

保持Y侧(高压侧),I1=0.5In不变,侧(低压侧)电流三相同时从I2=0.5In慢慢增加,直到保护动作,

Irest=|I1|+|I2|

Idiff=|I1+I2|

由上面公式理论计算动作值为:I2=1.5In=1.5*2.8868=4.33A

斜率K=(Idiff/In)/(Irest/In)=(4.34/2.8868-0.5)/(4.34/2.8868+0.5)=0.5

4)其他保护继电器的计算方法应根据现场情况进行确定,计算方法相同,动作方程会有所不同。

3 变压器后备保护的调试方法

每台35kV及以上主变压器除差动保护外均设有后备保护,包括复合电压闭锁过电流保护、速断保护、过负荷保护。

复合电压闭锁过电流及其他电流保护的传动查找二次原理图,找到GIS开关柜变压器柜或变压器保护屏中用于过流等保护功能的保护CT二次回路的接线端子,利用短接线将GIS柜内复合电压保护的接点短接,由继电保护测试仪利用电流线引出三相电流至GIS柜内用于过流等保护功能的保护CT二次回路的接线端子,同时将微机保护继电器过流保护跳闸接点引入继电保护测试仪中的开入量,以便进行时间测量。利用继电保护测试仪向继电器输入电流至动作电流,保护继电器应能正常发出动作信号,合入断路器后,过流、速断保护应可延时或瞬时跳开断路器,过负荷保护可延时发出报警信号。

4 结语

综上所述,各种35kV及以上电压等级主变压器均会设有电量保护及非电量保护,而电量保护则是主变压器保护中最重要的项目,它的准确与否将直接影响变压器能否正常运行,并且电量保护项目设定是否完备能够直接影响变压器故障原因的判断。主变压器电量保护的类型会根据供电方式的不同而有所不同,差动保护、复合电压闭锁过电流保护等后备保护,作为电量保护中较为重要的保护项目,其调试和计算方法也因用于其相关保护的微机继电保护装置的种类、差动CT接线方式的不同及继电器操作方法的不同会有所不同,调试时应根据现场情况确定具体参数和计算方法,以便对用于变压器保护的各种继电保护装置进行更准确、更全面、更细致的调试,以检测继电保护装置的功能是否正常,更好地保障了供电系统运行的可靠性及稳定性。

参考文献:

[1]刘学军.继电保护原理[M].北京:中国电力出版社,2007.

[2]李骏年.电力系统继电保护[M].北京:中国电力出版社,199226-35.

[3]孟恒信.电力系统微机保护测试技术.中国电力出版社,2009年7月.

[4]谷水清主编.电力系统继电保护[M].北京:中国电力出版社,2005.

第6篇:变压器继电保护原理范文

【关键词】供电;差动保护;整定

1、差动保护的定义

电流差动保护是继电保护中的一种保护。正相序是A超前B,B超前C各是120度。反相序(即是逆相序)是A超前C,C超前B各是120度。有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序。

差动保护是把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。当设备出现故障时,流进被保护设备的电流和流出的电流不相等,差动电流大于零。当差动电流大于差动保护装置的整定值时,保护动作,将被保护设备的各侧断路器跳开,使故障设备断开电源。

2、差动保护的原理

差动保护是利用基尔霍夫电流定理工作的,当变压器正常工作或区外故障时,将其看作理想变压器,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。当变压器内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。

差动保护原理简单、使用电气量单纯、保护范围明确、动作不需延时,一直用于变压器做主保护。另外差动保护还有线路差动保护、母线差动保护等等。变压器差动保护是防止变压器内部故障的主保护。其接线方式,按回路电流法原理,把变压器两侧电流互感器二次线圈接成环流,变压器正常运行或外部故障,如果忽略不平衡电流,在两个互感器的二次回路臂上没有差电流流入继电器。

如果内部故障,流入继电器的电流等于短路点的总电流。当流入继电器的电流大于动作电流,保护动作断路器跳闸。

差动保护是变压器的主保护,是按循环电流原理装设的。主要用来保护双绕组或三绕组变压器绕组内部及其引出线上发生的各种相间短路故障,同时也可以用来保护变压器单相匝间短路故障。

在绕组变压器的两侧均装设电流互感器,其二次侧按循环电流法接线,即如果两侧电流互感器的同极性端都朝向母线侧,则将同极性端子相连,并在两接线之间并联接入电流继电器。在继电器线圈中流过的电流是两侧电流互感器的二次电流之差,也就是说差动继电器是接在差动回路的。

从理论上讲,正常运行及外部故障时,差动回路电流为零。实际上由于两侧电流互感器的特性不可能完全一致等原因,在正常运行和外部短路时,差动回路中仍有不平衡电流流过,此时流过继电器电流Ik=I1-I2=Iumb,要求不平衡电流应尽量小,确保继电器不误动。

3、差动保护的整定

3.1电量保护

3.1.1差动速断保护

(1)整定原则:按躲过牵引变压器空载投入时或短路故障切除后电源电压恢复正常时的最大励磁涌流进行整定(最大励磁涌流按7~10倍变压器额定电流计算,一般取为8倍)。

(2)整定计算:

式中: I e :变压器一次侧额定电流,NL:一次侧流互变比。

3.1.2 二次谐波闭锁的比率差动保护

(1)整定原则:差动电流保护应可靠躲过区外故障最大不平衡电流,满足灵敏度要求。

(2)整定计算

1)差动电流的整定:

式中:Kj:接线系数(差动保护二次接线系数,流互接Kj = 1.732,流互Y接Kj=1)。Kk:可靠系数,取1.2 ,I e :一次侧变压器额定电流,NL:一次侧流互变比。

2)二次谐波闭锁比例系数的整定:按15%进行整定。

3)平衡系数的整定:应根据各厂家说明书进行计算。

4)制动电流(拐点)及制动系数(斜率)

比率制动一般有2段式、3段式,其中:I1为第一段比率制动电流,一般设置为I e×Kj/高压侧流互变比;I2为第二段比率制动电流,一般设置为3I e×Kj/高压侧流互变比;K1为第一段比率制动系数,整定为0.3~0.5;K2为第二段比率制动系数,整定为0.5~0.7。

3.1.3 主变高压侧或低压侧低电压启动过电流保护

(1)整定原则:过电流保护的电流定值按躲过主变高压侧或低压侧额定电流整定,低电压保护的电压定值按躲过27.5kV母线最低工作电压整定。

(2)整定计算

1)起动电流整定:

式中:KK=1.2(可靠系数),Ie :变压器高压侧或低压侧额定电流,Kf=0.9(返回系数),NL―高压侧或低压侧流互变比。出现PT断线的情况,对具备自动抬高过电流功能的保护装置应按躲过最大负荷电流进行整定,按末端最小短路电流进行校核,当灵敏度不能满足时,应降低整定值来满足灵敏度要求。

2)动作电压整定:

式中:KK =1.15(可靠系数),Umin:最大负荷时的母线最低工作电压,Kf =1.05~1.1(返回系数),Ny―压互变比

3)灵敏度校验

低电压过电流保护主要校验低电压起动元件的灵敏度:

计算出系统在最大运行方式下,供电臂末端的短路电流Idmax,这时最大母线短路电压Udmax为: …… Z-供电臂阻抗(全长)

按远后备保护灵敏度不得小于1.2。

(3)整定时限:27.5kV侧应按馈线阻抗II段保护时限+t(0.2~0.3)整定 (综合自动化取0.2,110kV侧应27.5kV侧时限+0.3s,但应满足电力系统保护配合要求)。

3.1.4 零序过电流保护

(1)整定原则:作为变压器及相邻元件接地故障的后备保护,可按主变额定电流整定。

(2)整定计算:

式中:Kk =1.2(可靠系数),Ie :变压器高压侧额定电流,Kf =0.9(返回系数),NL:高压侧流互变比

(3)整定时限:3~5S。

3.1.5 过负荷

(1)整定原则:按主变额定电流整定。

(2)整定计算:

式中:Kk=1.2~2,Ie:变压器一次侧额定电流,Kf =0.9(返回系数),NL:一次侧流互变比

(3)整定时限:9~30S。

3.1.6 进线失压保护

(1)整定原则:按额定电压整定。

(2)整定计算:

式中:Ue:110kV进线额定电压,Kk=1.2(可靠系数),Kf =1.1(返回系数),Ny―压互变比。

(3)整定时限:根据电力系统情况整定,一般取3~6s。

3.2非电量保护

3.2.1 瓦斯保护

第7篇:变压器继电保护原理范文

关键词:继电保护;连环性;隐蔽性

继电保护是一门综合性的学科,它集数学、电子、电力、通讯等于一体,同时也是一门实践性很强的技术,继电保护问题既需要科学的理论,也需要处理工程问题的技巧。本人立足实践,从事继电保护10多年,发现了许多问题,积累了一些经验,现和大家一起探讨。

1 案例一

某110kV变电站110kV194断路器在热备用状态下重合。

1.1事故经过

×年×月×日,天气阴雨连绵,某110kV变电站110kV194断路器在热备用状态下重合,保护装置重合闸灯点亮,重合闸压板在合位,六氟化硫断路器储能电机在不停的打压。根据故障现象,首先排除断路器机构偷合的可能性,应该从保护的动作逻辑去考虑问题。

1.2原因分析

(1)重合闸压板打在投的位置,给开关重合闸提供了可能。运行规程规定热备用的断路器是不允许投重合闸的,运行部门管理不善。忘记退掉了。

(2)保护装置重合闸逻辑存在缺陷,没有采用“不对应”原理,采用的是只监视TWJ状态,即TWJ断开充电。正确的做法是采用合后继电器的动合触点与TWJ的动合触点串联。其实在上述原理下,若先给保护装置电源,后给断路器控制电源,重合闸同样会出口。

(3)直接原因为六氟化硫断路器储能限位开关靠近背档板,雨水渗了进去,致使接点接触不良,断路器发生控制回路断线,TWJ由合变分,保护装置充电,在经过一段时间,控制回路恢复正常,TWJ由分变合,断路器发生重合。

(4)储能限位开关接点接触不良,此时拌由储能电机打压应由过流过时继电器闭锁控制回路,经检查继电器损坏。

1.3经验教训

从这个案例分析原因中可以看出,如果雨水进不到断路器机构内,断路器储能限位开关接点就不会接触不良,即使接点接触不良,若此接点和合后继电器的动合触点串联,重合闸就不会出口,或者过流过时继电器动作重合闸也不会出口。即使重合闸出口,若运行人员不投保护重合闸压板,断路器也不会合闸,所以它们之间存在着连环性。隐蔽性则体现在:其一,保护和断路器厂家设计上的缺陷,保护人员不容易发现,其二,保护人员对保护装置校验的很多,却忽略了对开关机构内继电器定值的校验。所以作为一名继电保护工作者,我们平时应该把工作中的每一个环节都做好,不留死角。对机构内的过流过时继电器做好校验工作,还有防跳和非全相继电器。保护和开关厂家在设计方面多加考虑,避免类似的情况发生。加强运行人员的责任心,加强运行人员理论水平的提高。

2 案例二

某110kV变电站全站失电。

2.1事故经过

本站110kV两趟进线,桥接线,主变高压侧开关和进线共用开关。某日保护人员在主变保护屏后测试110kVI母电压。发生110kVI母PT失压,备自投动作,主供跳开,备供未合,全站失电。

2.2原因分析

(1)二次电压线A630凤凰端子排扣反。不动时与下面端子排B630还有一定间隙,此时电压正常,当测试A630时,由于表笔线对A630凤凰端子排的压力及晃动和B630发生短路,二次空气开关跳闸,110kVI母PT失压。首先排除了万用表没有问题,对端子排仔细检查发现扣反。

(2)有流闭锁定值设置过大,此时负荷较轻,备自投没有被闭锁住。

(3)跳主供开关的线接在手跳回路中,手跳把备自投给闭锁掉了,致使备供没有合上,全站失电。

2.3经验教训

从这个案例分析原因中可以看出,如果凤凰端子排没有扣反,PT就不会失压,即使PT失压,还有电流把关,备自投也不会动作,即使备自投动作,被供开关合上,全站也不会失电,可见它们存在着连环性。隐蔽性则体现在:其一,端子排扣反,平时肉眼是看不出来的,其二,定值是定值管理人员下发的,他们不下现场,现场实际负荷电流的大小只有保护人员才知道。所以作为一名继电保护工作者平时应加强对基建验收的把关,根据继电保护二次回路验收规范。用摇表对二次回路的绝缘测试合格。定值管理人员应加强对定值审核力度,定值大小要结合现场实际负荷情况下发。现场继电保护人员应该对保护进行整组传动,对二次回路的原理有比较深入的了解,坚决消除“重装置,轻回路”的错误思想。

3 案例三

某220kV变电站220kV东母线失灵保护动作。

3.1事故经过

×年×月×日,某220kV变电站220kV出线243双套纵联保护B相动作,B相断路器跳闸,重合闸动作于永久性故障,243断路器三相跳闸。由于B相故障电流依然存在,220kV母差失灵保护动作跟跳243断路器,随后跳开母联200断路器,最后跳开东母所有出线间隔,造成220kV东母失电。

3.2原因分析

(1)本间隔防跳采用的是机构内防跳,即电压型防跳,防跳的关键在于辅助开关常开接点转换时的时间要大于防跳继电器的动作时间,以保证防跳继电器有足够的时间吸合。但实际辅助开关常开接点转换时的时间30ms小于防跳继电器的动作时间为50ms。

(2)其中有一套保护系统重合闸时脉宽为120ms,大于断路器合闸时间和断路器合分操作时辅助开关转换时间之和,在断路器第二次分闸后依然存在合闸脉冲信号。由于防跳继电器的动作时间大于辅助开关合分转换时间,防跳继电器带电时间过短不能有效吸合,导致防跳回路不起作用不能切除合闸信号,断路器再次合闸。

(3)此断路器液压机构的合闸闭锁值设置过低,使得断路器分一合一分后又合了1次,此时分闸油压闭锁启动,导致需重新补压非全相动作进行分闸,实际上非全相动作之前故障已被母线失灵保护切除。开关保持在断位。增加了保护人员判断故障的难度。

3.3经验教训

从这个案例分析原因中可以看出,如果重合闸脉宽合适,断路器不会二次重合,即使二次重合脉冲存在,防跳回路也不会让断路器二次重合,即使防跳回路没有闭锁住,断路器如果只能进行一个合一分一合的操作循环,闭锁分合闸操作回路,断路器也不会二次重合。隐蔽性则体现在断路器机构内分立元件之间的配合以及和保护装置的配合,需要临时接人便携式录波器才能够监测到。所以作为一名继电保护工作者应督促断路器厂家提高二次回路分立配合元件的质量、选型和技术水平,满足微机保护动作速度快的要求。应该加强对新投运六氟化硫设备机构内二次回路的现场全面验收管理工作。

综上所述,几个案例之间虽然它们动作情况不同,但是它们有一个共性,就是动作的连环性和隐蔽性。若是继电保护把住其中任何一个环节的话,就不会不正确动作。每次继电保护不正确动作,都带来很大的隐蔽性,需要继电保护工作者投人很大的精力和时间去查找,期间还需要他们具备丰富的理论知识和平时不断积累的经验。

第8篇:变压器继电保护原理范文

关键词 电力变压器;继电保护;分析

中图分类号 TM404 文献标识码 A 文章编号 1673-9671-(2012)102-0213-01

变压器故障一般分为内部故障和外部故障两种,变压器的内部故障指油箱里面发生的故障,包括绕组的相间短路、绕组匝间短路和单相接地短路。内部故障是很危险的,因为短路电流产生的电弧不仅会破坏绕组绝缘,烧坏铁芯,还可能使绝缘材料和变压器油受热而产生大量气体,引起变压器油箱爆炸。变压器常见的外部故障是引出线上绝缘管套的故障,该故障可能导致引出线的相间短路和接地短路。

变压器的不正常运行状态由于外部短路和过负荷而引起的过电流、变压器温度升高及油面下降超过了允许程度等。变压器的过负荷和温度升高将使绝缘材料迅速老化,绝缘强度降低,影响变压器的使用寿命,进一步引起其他故障。根据上述可能发生的故障及不正常工作情况,变压器一般应装设瓦斯保护、纵联差动保护、电流速断保护、过电流保护、过负荷保护、单相接地保护装置。

1 瓦斯保护

瓦斯保护,是保护油浸式变压器内部故障的一种基本保护装置,又称气体继电保护。其主要元件是瓦斯继电器(气体继电器),它安装在变压器的油箱和油枕之间的连通管上。

在变压器正常工作时,瓦斯继电器的上下油杯不都是充满油的,油杯因其平衡锤的作用使其上下触点都是断开的。当变压器油箱内部发生轻微故障致使油面下降时,上油杯内其中盛剩余的油使其力矩大于平衡锤的力矩而降落,从而使上触点接通,发出报警信号,这就是轻瓦斯动作。当变压器油箱内部发生严重故障时,由于故障产生的气体很多,带动油流迅猛地由变压器油箱通过联通管进入油枕,在油流过瓦斯继电器时,冲击档板,使下油杯降落,从而使下触点接通,直接动作于跳闸。这就是重瓦斯动作。

如果变压器出现漏油,将会引起瓦斯继电器内的油也慢慢流尽。这时继电器的上油杯先降落,接通上触点,发出报警信号,当油面继续下降时,会使下油杯降落,下触点接通,从而使继电器跳闸。

2 变压器的过电流保护

变压器的过电流保护装置一般都装设在变压器的电源侧。无论是定时限还是反时限,变压器过电流保护的组成和原理与高压线路的过电流保护完全相同。变压器过电流保护的动作时间,也按“阶梯原则”整定。但对车间变电所来说,由于它属于电力系统的终端变电所,因此,其动作时间可整定为最小值0.5 s。

3 变压器的电流速断保护

变压器的过电流保护动作时限大于0.5 s时,必须装设电流速断保护。电流速断保护的组成、原理,与电力线路的电流速断保护完全相同。变压器的电流速断保护,与高压线路的电流速断保护一样,也有死区,即不能保护变压器的全部绕组。弥补死区的措施,也是配备带时限的过电流保护。

4 变压器的过负荷保护

变压器的过负荷保护是用来反应变压器正常运行时出现的过负荷情况,只在变压器有过负荷可能的情况下才予以装设,一般动作于信号。变压器的过负荷在大多数情况下都是三相对称的,因此,过负荷保护只需要在一相上装一个电流继电器。在过负荷时,电流继电器动作,再经过时间继电器给予一定延时,最后接通信号继电器发出报警信号。

5 变压器测压的单相短路保护

变压器低压侧的单相短路保护,可采取下列措施之一:

5.1 低压侧装设三相均带过电流脱扣器的低压断路器

这种低压断路器既作低压侧的主开关,操作方便,便于自动投入,提高供电可靠性,又用来保护低压侧的相间短路和单相短路。

5.2 低压侧三相装设熔断器保护

这种措施既可以保护变压器低压侧的相间短路,也可以保护单相短路,但由于熔断器熔断后更换熔体需要一定的时间,所以它主要适用于带不太重要负荷的小容量变压器。

5.3 在变压器中性点引出线上装设零序过电流保护

保护装置由零序电流互感器和过电流继电器组成,当变压器低压侧发生单相接地短路时,零序电流经电流互感器使电流继电器动作,断路器跳闸,将故障切除。

6 变压器的差动保护

变压器的过电流保护、电流速断保护和瓦斯保护各有优点和不足之处。过电流保护动作时限较长,切除故障不迅速;电流速断保护由于“死区”的影响使保护范围受到限制;瓦斯保护只能反映变压器内部故障,而不能保护变压器套管和引出线的故降。

变压器的差动保护,主要用来保护变压器内部以及引出线和绝缘套管的相间短路故障,并且也可用于保护变压器内的匝间保护,其保护区在变压器一次、二次侧所装电流互感器之间。

差动保护分纵联差动和横联差功两种形式,纵联差动保护用于单回路,横联差动保护用于双回路。

综上所述,变压器差功保护的工作原理是:正常工作或外部故障时,流入继电器的电流为不平衡电流,在适当选择好两侧电流互感器的电压比和接线方式的条件下,该不平衡电流值很小,并小于差动保护的动作电流,可保护不动作;在保护范围内发生故障,流入继电器的电流大于差动保护的动作电流,差动保护动作于跳闸。因此,它不需要与相邻元件的保护在整定值和动作时间上进行配合,可以构成无延时速动保护。其保护范围包括变压器绕组内部及两侧套管和引出线上所出现的各种短路故障。

参考文献

[1]张利,张文,郭永新.变压器微机差动保护的频域算法[J].山东工业大学学报,2010,2.

[2]冯丽萍,董艳萍.浅谈10 kV供电系统中电力变压器的继电保护[J].长春大学学报,2009,2.

[3]黄海.电力系统变压器的故障诊断分析与解决措施[J].科技致富向导,2011,08.

第9篇:变压器继电保护原理范文

【关键词】电力变压器;继电保护

伴随着经济的迅速发展,我国的电力工业发展迅速,电力已走进了现代社会的方方面面,离开了电力,所有的家用电器将会停止运转,人们的日常生活将无以为继;工业系统更是少不了电力的支持,几乎所有的机械设备都需要电力的支持,因此维持电力的正常运转,十分重要。在现代电力系统中,变压器的作用十分的重要,电力变压器在供电系统中,可以有效地调节电气输出电路中电流的变化,相当于供电系统中的“自动开关”,起到自动调节、安全保护、转换电路等作用,因此一旦电力变压器发生故障,将直接影响供电系统的运行效果。[1]但是在现实的运转中,电力变压器经常会出现各种突发性的故障,危及电力的正传运转,因此做好电力变压器的继电保护设计,维持变压器正常运转,十分重要。

一、电力变压器运行中常见的故障分析

电力变压器的故障通常可以分为油箱内部故障和油箱外部故障两种[2]:

首先是油箱内部出现的故障,油箱长时间的处于工作状态,而且由于处于内部,维护人员难以经常观察到里面的情况,因此油箱内部的一些线圈,铜导线等会出现老化的现象,从而影响了油箱内部元件的正常工作状态,导致出现问题,另一方面,由于各种原因导致的内部结构短路,同时芯体作为油箱的一个重要组成部分,如果由于机械震荡,结构松散等原因出现问题而不能正常的工作,也会影响工作。由于电阻力的存在,油箱在长时间的通电工作中,会产生大量的热量,需要及时的传达到外界的环境中去,如果长时间的蓄积在内部,热量可能会传导至变压器的绝缘油中,这样极易造成油的分解与氧化,造成故障。

油箱外部出现的常见故障,油箱的引出线与绝缘套管出现问题,从而造成了相间或者是接地短路,导致出现问题,此外,如果电力变压器超出了规定的工作范围,也极容易造成各种问题需要加强警惕。

二、继电保护的工作原理

在现实的电力故障中,往往是一小部分地区出现问题,继而带动大部分地区的大面积停电,而这一小部分地区的电力故障,一般都是少部分的电力设备出现问题导致的,而局部的故障如果不能够及时的排出,就会广泛的影响其它设备和地区的电力正常运转,而继电保护装置则可以及时的自动将出现问题的设备从整个供电系统中删除,防止故障和损失的扩大和蔓延。当电力系统发生故障时,电流和电压会发生变化,安装的元件可以根据这些电力参数的变化进行比较,检测出出现故障的设备与正常设备的种种差别,从而判断故障部分。

三、电力变压器继电保护的设计方案

电力变压器在整个电力系统中的作用非常重要,因此它的稳定运行,直接关系到电网的安全,针对变压器经常出现的故障,继电保护装置可以有效的检测到电力变压器的运转状态,及时的将出现的问题反馈给相关的维修人员,在有重大的故障时,及时的切除问题设备,保障电力系统的安全稳定。

1.瓦斯保护装置

前面讲到,电力变压器常见的故障分为油箱内部故障和外部故障,瓦斯保护装置就是针对油箱内部问题进行检测和保护的设备。瓦斯保护装置主要的工作部分是气体变压器,当油箱的内部由于各种原因出现内部温度过高时,它可以保证油箱内部的温度保持正常,及时的排出多余的高温热量,瓦斯保护装置分为两种,轻瓦斯保护和重瓦斯保护,轻瓦斯保护的主要作用体现在它能够及时的检测内部气体的各种状况,并传达给工作人员,帮助其判断出现的问题;重瓦斯保护主要体现在油箱内部出现重大问题时,可在发出故障信号的同时,可以传出信号,直接的切断电闸,保护电力变压器,等待维修人员排除故障。

2.差动保护

差动保护以比较变压器高压侧、低压侧的电流大小和相位来实现作为构建原理。[3]如果电力变压器发生了故障,差动继电器内部的电流就会增大,约等于两侧电流互感器的二次电流之和差,此时,差动保护装置就会发出故障的信号,切断电力动保护装置在电力变压器继电保护中运用十分的广泛,差动保护装置具有灵敏度较高,结构简单,可靠性强等优点,在实际的使用中用途较广泛。

3.过电流保护

瓦斯保护装置的主要工作是针对油箱的内部状态,如果是油箱外部出现了问题,那么瓦斯保护装置就无能为力了,而过电流保护则可以检测到油箱外部出现的故障问题,可以成为瓦斯保护与差动保护的另一个后备保险装置,在外部的出线与绝缘套管出现问题导致短路,出现电流过大时做出检测,电流检测装置如果检测到不正常的电流数值时,就会发出故障信号,帮助维修人员及时处理问题,排除隐患。

4.速断保护

速断保护按照被保护设备的短路电流整定,当短路电流超过整定值时,则保护装置便会发出信号动作,指挥断路器跳闸,电流速断保护一般没有时限,为避免失去选择性,不能保护线路全长,因此存在保护的死区。为克服此缺陷,常采用略带时限的电流速断保护以保护线路全长。时限速断的保护范围不仅包括线路全长,而深入到相邻线路的无时限保护的一部分,其动作时限比相邻线路的无时限保护大一个级差。

结语

电力变压器是现代电力系统的重要组成部分,如果它出现故障,将会极大的影响电力系统的正常运转,电力变压器的常见问题主要分为油箱内部问题和外部的问题,继电保护设备可以有效的保护变压器,根据不同的工作原理,可以分为瓦斯保护,差动保护,过电流保护,速断保护四种方式,这几种方式都有各自的优点和缺点,在设计使用时应该全面地考虑,扬长避短,从而充分保护好变压器的安全运行,保证电力系统的的安全运行。

参考文献

[1]曾辉.浅谈供电系统中电力变压器的继电保护方法[J].机电信息,2012,(33).