公务员期刊网 精选范文 超高层结构设计范文

超高层结构设计精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的超高层结构设计主题范文,仅供参考,欢迎阅读并收藏。

第1篇:超高层结构设计范文

【关键词】超高层建筑;结构设计

一、工程概况

二、基础设计

根据岩土工程勘察报告及场地地震安全性评价报告知该场地为中软土,为了避免塔楼与塔楼外地下室产生的沉降差异,经过方案比较后对塔楼基础采用钻(冲)孔灌注桩,持力层为微风化岩层,微风化岩单轴抗压强度14MPa。其中桩芯砼强度等级C35,桩径1200mm,单桩竖向承载力特征值约10000kN,桩长24~40米,底板承台厚3000mm。基础埋深11米,满足高规条文不少于房屋高度1/18的要求。两层地下室采用柱下单独基础,以强风化层(局部硬塑粘土层)为持力层,地下室底板(相对标高-9.0m)厚度700mm,地下室顶板厚度180mm。塔楼外地下室底板承受水浮力较大,采用抗拔锚杆抵抗地下水浮力,锚杆抗拔力特征值360kN,设计水位取室外道路路面。

三、结构设计

该工程主体结构抗侧体系为钢筋混凝土剪力墙结构,梁板混凝土等级C45~C25,剪力墙混凝土等级为C55~C35。剪力墙抗震等级为一级(短肢剪力墙抗震等级为特一级);无上部结构地下室部分框架结构的抗震等级为三级。

四、构造加强措施

(一)本工程5号楼单体高度为抗震设防7度地区超B级高度,因此在抗震构造方面有针对性地采取了如下措施:

1)为加强底部剪力墙的截面强度,本工程除了严格控制落地剪力墙的轴压比不超过0.50外,还采取比规范更为严格的构造措施:适当提高剪力墙底部加强部位水平及竖向分布筋配筋率至0.6%;约束边缘构件配筋率提高至2.0%,向上逐步过渡至1.5%。

2)标准层以上楼梯、电梯筒周边连接薄弱处楼板加厚至120、150mm,加强楼梯、电梯筒周边板的配筋,板筋双层双向贯通布置,并加强边梁的配筋及构造。

3)剪力墙底部加强部位,每两层设置一道配筋加强带(暗梁),以提高剪力墙底部加强部位的延性。

(二)罕遇地震、中震时的弹性地震作用下落地剪力墙承载力复核:

2)适当提高结构抗震性能要求,采用中震的地震影响系数对结构作中震作用下的弹性内力分析,采用材料强度设计值,对底部加强部位剪力墙强度验算,以确保重要构件在中震时处于弹性工作状态。经验算, 5号楼X、Y方向落地剪力墙在中震地震作用下的弹性剪应力水平分别为0.584MPa(0.028 fc)和0.551MPa(0.026fc),均满足不大于0.176fc的要求。

五、结束语

本工程5号楼为超B级高度建筑,设计人通过较为详细的计算分析,使得各项控制性指标都能够满足相关规范的要求。针对超限情况,设计中对部分重要结构计算分析结果进行了复核和对整体结构构造措施方面进行加强处理,保证整体结构实现“小震不坏,中震可修,大震不倒”三阶段设防水准,结构整体安全可靠,关键构件具有足够的延性,从而确保了结构的抗震安全性。本文相关结果可供类似结构设计参考。

参考文献

第2篇:超高层结构设计范文

1.1抗震设防烈度

对于超过100m以上的建筑物,在不同强度的抗震设防烈度下,对于建筑物的高度要求也是不尽相同的。一般情况下,抗震设防烈度在8度的区域不适宜建设300m以上的建筑物,超高层建筑适合建设在抗震设防烈度在6度的地区。

1.2结构方案

对于一个优秀的建筑设计师来说,在设计中首先就要考虑到建筑物的结构方案问题,尤其对于超高层建筑来说,如果结构方案选择不当,将会引起整个方案的调整,因此,在设计单位进行建筑方案设计时,需要有结构专业参与到设计当中。

1.3结构类型

在超高层建筑结构类型的选择上,我们不但要充分考虑到拟建方案所在地的岩土工程地质条件,同时要考虑到该区域的抗震度要求。另外,为了节约建筑成本,我们还需要充分考虑到在工程造价问题以及施工的合理性问题,同等条件下选择造价较低的合理的结构类型。

2超高层建筑的结构设计

2.1风载荷

在超高层建筑的结构当中,由于建筑结构的第一自振周期与其所在地面卓越周期相差很大,随着建筑物高度的不断增加,风载荷的影响要远远大于地震对建筑物的影响,特别是对于一些比较柔的超高层建筑,风载荷是它结构设计中的控制因素。因此,我们有必要对风载荷进行专业地研究。一般情况下,我国规定风载荷的计算公式为Wk=βzμsμzW0,其中μz为风压高度的变化系数。其中A类地面:μz=0.794Z0.24;B类地面:μz=0.479Z0.52;C类地面:μz=0.284Z0.40。在《建筑结构荷载规范》当中,对200m以上的超高层建筑也进行了相应的规范,其中就包括在对超高层建筑确定非圆形截面横风向风振等效风荷载情况时,要求必须进行风洞试验。它的主要目的在于通过试验对建筑外形的空气动力进行进一步优化,同时确定围护结构以及主体结构的风载荷的标准值,对设计整体进行优化。3.2重力载荷对于超高层建筑,在设计时要考虑到重力载荷的传力情况,实现合理的传力途径,因此在设计时对于重力载荷的途径要尽可能地直接明了,同时要充分考虑到因建筑外圈框架和核心筒之间轴压比之间的差异而造成的变形差对水平构件产生的影响。一般采用一些施工的处理方法连接框架与核心筒。

2.3混合结构的设计

在超高层的建筑当中,很多时候都会采用混合结构设计,混合结构分为3种,而在实际中常用的是圆钢管或者是矩形钢管的混凝土框架与钢筋混凝土核心筒的混合结构,以及型钢混凝土框架与钢筋混凝土核心筒(内外框梁为钢梁或型钢混凝土梁)的混合结构两种。每种结构类型在设计上对钢材用量的需要也不尽相同。在设计中,要考虑到对型钢、圆钢管混凝土中柱钢骨的含钢量,严格按照技术规程的要求进行控制,同时,在钢筋混凝土的核心筒要设置型钢柱,这样就可以确保型钢混凝土、筒体延性相同,从而促使它们两者之间的竖向变形减小。对于结构抗侧刚度无法满足变形需要的混合结构,我们采取相应措施进行弥补。比如,设置水平仲臂析架的加强层,或利用避难层或设备层在外框或外框筒周边设置环状析架。

3超高层建筑结构设计的关键点

3.1构造设计要合理

在对超高层建筑物进行设计时,必须保证构造的设计谨慎并合理,重点要注意对一些薄弱的部位进行加强,避免出现薄弱层,充分考虑到温度应力对建筑物的影响以及建筑物的抗震能力,注意构件的延性以及钢筋的锚固长度,在对平面和立面进行布置时要确保平整均匀。

3.2计算简图要合适

计算简图是对建筑物结构进行计算的基础,它直接关系到超高层建筑的结构安全。为了保证结构的安全性,我们必须从计算简图抓起,慎重研究,合理选择,对于存在于计算简图中的误差,要保证其值控制在技术规程允许的范围内。

3.3结构方案选择要合理

建筑方案的合理性取决于结构方案是否合理,因此,在选择结构方案时不但要充分考虑到经济因素,还要充分考虑方案的结构形式和结构体系,同时能够充分结合设计要求、材料、施工以及自然因素等来确定结构方案,确保结构方案的合理性。

3.4基础方案选择要合理

在进行基础方案的设计中,设计师要考虑到载荷的分布情况,工程所在的自然因素、地质条件,施工方的施工条件,周围建筑物对所设计建筑物造成的影响等各方面因素,以此来确保基础方案的选择既经济又合理,达到最优效果。

4结语

第3篇:超高层结构设计范文

一工程概况的地基基础 某项目地上建筑面积为13.45万m,地下建筑面积为4.3万m,总建筑面积为17.75万m。根据岩土工程勘察报告,本工程场地地基土层为第四纪冲海积的黏土和淤泥层,基底岩性为侏罗纪熔结凝灰岩,场地内无液化土层。宾馆塔楼柱下荷载最大达3.8×104kN,商务塔楼柱下荷载最大达3.5×104kN,采用大直径灌注桩,平板式桩筏基础。经优化比较,桩径 700~1100较为合理。商务楼和宾馆塔楼下筏板厚度为3m,其他位置底板采用厚板式,板厚为1.2m。针对本工程塔楼和辅楼预期存在的沉降差异问题,在各塔楼与辅房之间设置后浇带,并配合相应的后浇带处理措施和大体积混凝土浇筑措施,解决了超长结构混凝土的收缩裂缝问题和塔楼与辅楼间的沉降差异在基础底板中产生过大内力的问题。 二结构设计与计算 ⑴结构体系。塔楼外框架柱采用现浇钢筋混凝土柱,钢筋混凝土柱外框架体系将作为有效的承重支撑,大部分竖向荷载通过轴力方式向下传递,而混凝土核心筒除了承受竖向荷载外,其主要功能是提供强大的抗侧力能力。《建筑抗震设计规范》规定:6度区现浇钢筋混凝土框架一核心筒结构适用的最大高度为150m,本工程两塔楼的房屋高度均为161.1In,仅超过11.1m;本工程属B级高度,而《高层建筑混凝土结构技术规程》规定:6度区框架一核心筒结构B级高度建筑的最大适用高度为210m,还有48.9m才超限;大跨度钢结构连廊的存在使得本工程属于特殊类型的高层建筑(大跨度连体)。但由于本工程塔楼高宽比H/B为4.4并不大,两塔楼的平面及竖向结构特性变化较少,且连廊与塔楼采用弱连接,对塔楼耦合影响小。计算分析结果也表明无异常薄弱层出现,且以风荷载为控制水平作用。综上所述,本工程有两项轻微超限,设计时采取必要的抗震加强措施,在技术上是可行的,顺利通过设计审。 ⑵弹性计算。本工程采用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析与设计软件SAT–WE》、《特殊多、高层建筑结构分析与设计软件PM—SAP))及美国CSI公司的国际通用结构分析与设计软件ETABS等三个程序进行整体计算,均采用抗震耦联分析并考虑偶然偏心。用SATWE程序进行弹性动力时程分析。两塔楼的自振特性计算结果见表1和表2,三个软件的计算结果较接近,从侧面反映出结构模型和分析的正确性。结构的主要振型以平动为主,扭转为主的第1自振周期与平动为主的第1自振周期之比,宾馆塔楼分别为0.577、0.605、0.538,商务塔楼分别为0.593、0.603、0.529,均小于0.85,满足《高层建筑混凝土结构技术规程(JGJ3—2002)》的要求。

风荷载及多遇地震作用下的结构反应计算是结构设计中的重要内容,结构在风荷载及多遇地震作用下结构最大点位移和最大的层间位移角,可见在风荷载和地震作用下的层间位移角度均小于规范限值。两塔楼产生的最大屋面位移及最大层间位移角均是X方向风荷载作用下产生的,其中商务塔楼最屋面位移为93.44mm,最大层间位移角为1/1537;宾馆塔楼最大屋面位移为82.83mm,最大层间位移角为1/1743。最大层间位移角均小乎规范所规定的限值1/800。本工程塔楼属于风荷载为控制水平作用,在考虑偶然偏心影响的水平地震作用下,楼层竖向构件最大水平位移和层间位移与其平均值之比小于规范限值,说明结构具有很好的抗扭刚度。 地震作用下楼层剪重比也是结构整体分析的重要内容,计算结果表明,两塔楼各层x方向和Y方向的层间地震剪力均满足规范的最小剪重比要求。宾馆塔基底框架和核心筒的x方向倾覆力矩分别为2.83×105kN•m,6.55X105kN•m;Y方向倾覆力矩分别为2.66×105kN•m,8.09×105kN•m。商务塔基底框架和核心筒的x方向倾覆力矩分别为3.21×105kN•m,6.08×105kN•m;Y方向倾覆力矩分别为2.37×105kN•m,7.66×105kN•m。核心筒所占倾覆力矩沿结构高度始终大于总地震倾覆力矩的50%,表明对于整体结构安全度是可靠的。 ⑶弹性时程分析。按照《岩土工程勘察报告》确定的场地类别,采用《工程场地地震安全性评价报告》提供的地震动参数,选择两组实际地震记录波和一组人工模拟地震波进行弹性动力时程分析。每条时程曲线计算所得的结构底部剪力大于CQC法求得的底部剪力的65%,三条时程曲线计算所得的结构底部剪力的平均值大于CQC法求得的底部剪力的80%。CQC法计算结果基本包络三条时程曲线计算所得的平均值,仅在结构顶部的少数楼层地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,设计时将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络要求。除此以外,结构内力和配筋可直接按CQC法计算结果采用。 ⑷中震不屈服分析和动力弹塑性分析。如前所述,本工程平面及竖向结构特性变化较少,多遇地震下的计算结果也无超限情况出现,鉴于本工程建筑等级较高为确保结构安全可靠,我们依然对其进行了中震不屈服验算,使剪力墙、柱、连梁和框架梁等重要抗震构件在中震作用下不屈服。 通过中震不屈服计算和判断,两塔楼结构体系中竖向构件在中震作用下保持着良好的弹性性能,而水平构件特别是连梁则有部分进入屈服状态,通过调整连梁和框架梁的配筋和对部分连梁截面进行调整,才使所有主要水平构件不进入屈服状态。这从设计上保证了中震不屈服的落实,体现了地震中各构件的屈服顺序基本上是首先连梁屈服,其次有部分框架梁屈服,而竖向构件则未出现屈服情况。 三主要技术及措施 ⑴空中连廊支承结构抗震加强措施。连廊弱连接支座留足连廊两端活动空间确保不出现下坠,采用抗拉铰接万向支座,并用侧面限位器固定,确保水平荷载直接传递到塔楼主结构。支承连廊的框架柱抗震等级提高为一级,以确保安全性。 ⑵连廊及顶部塔楼结构抗震加强措施。连廊采用空间钢结构桁架,钢筋混凝土楼板的形式,并进行专门设计。顶部莲花座高度较高且外形复杂,采用将芯筒适度上升,外复钢结构形成莲花座外形的结构设计,能极大地减轻自重保证结构强度,从而有效克服鞭梢效应,且施工方便。 ⑶平面扭转不规则抗震加强措施。主要采取调整抗侧力构件的布置,使质心与刚心尽量重合,并加大结构的扭转刚度,以减小结构扭转效应,使结构各楼层的位移比不大于1.4。例如由于塔楼平面存在局部凸出圆弧,部分楼层的x向最大水平位移与平均层间位移比值超B级高度的1.4,最大达到1.47,最终通过适当加宽圆弧内柱子x向柱宽,并加强两柱联系梁刚度得以解决。 ⑷侧向刚度不规则抗震加强措施。适当加大立面变化处楼层的板厚及配筋,并采用双层双向配筋,加强与立面变化楼层相交的竖向构件的配筋,如25层局部凸出圆弧结束,竖向构件截面变化则避开25层,并适当加强24~26层竖向构件配筋。 四结束 超高层建筑双塔结构是一种非常复杂的结构体系,如何科学合理地设计超高层建筑结构已成为一个急需解决的问题。超高层建筑应采用合理的计算模型,通过多种分析进行比较,证明结构设计是可靠的,因此设计者要足够重视抗震设计。

参考文献:

第4篇:超高层结构设计范文

1 耐震建筑物、隔震建筑物与消能建筑物

中国大部分地区地处环太平洋地震带上,每年发生大地震机率甚高,因此建筑物之耐震设计非常重要。传统建筑物采用耐震设计规范设计建筑结构物,主要考虑强度与韧性,5.12地震后,由业界引进两种耐震新技术,一为隔震,另一为消能。其技术由研究阶段迈入实际应用阶段。此两种耐震新技术在日本阪神地震发生后,蓬勃发展;中国大部分地区与其它世界各主要受强震侵袭国家也不例外。自2008年5.12集集地震发生后,国内采用隔震消能新技术的建筑物案例与日俱增,规范也适应时势所驱,于耐震规范中列入专章包括了有关隔震与消能设计的规定。

1.1 耐震建筑物

耐震建筑物耐震设计之基本原则,系使建筑物结构体在中小度地震时保持在弹性限度内,设计地震时容许产生塑性变形,但韧性需求不得超过容许韧性容量,最大考虑地震时则使用之韧性可以达规定之韧性容量。

1.1.1 中小度地震:为回归期约30年之地震,其50年超越机率约为80%左右,所以在建筑物使用年限中发生的机率相当高,因此要求建筑物于此中小度地震下结构体保持在弹性限度内,使地震过后,建筑物结构体没有任何损坏,以避免建筑物需在中小度地震后修补之麻烦。一般而言,对高韧性容量的建筑物而言,此一目标常控制其耐震设计。

1.1.2 设计地震:为回归期475年之地震,其50年超越机率约为10 %左右。于此地震水平下建筑物不得产生严重损坏,以避免造成严重的人命及财产损失。对重要建筑物而言,其对应的回归期更长。于设计地震下若限制建筑物仍须保持弹性,殊不经济,因此容许建筑物在一些特定位置如梁之端部产生塑铰,藉以消耗地震能量,并降低建筑物所受之地震反应,乃对付地震的经济做法。为防止过于严重之不可修护的损坏,建筑物产生的韧性比不得超过容许韧性容量。

1.1.3 最大考虑地震:为回归期2500年之地震,其50年超越机率约为2%左右。设计目标在使建筑物于此罕见之烈震下不产生崩塌,以避免造成严重之损失或造成二次灾害。因为地震之水平已经为最大考虑地震,若还限制其韧性容量之使用,殊不经济,所以允许结构物使用之韧性可以达到其韧性容量。

1.2 隔震建筑物

隔震建筑物系在建筑物基面设置隔震层。该隔震层系由侧向劲度很低的隔震组件构成,让整体隔震建筑物之周期大幅拉长,藉以降低作用在结构物上之地震力。然因周期增加后,建筑物之位移增加很多,因此再配合消能组件,提高系统的阻尼比,进而降低位移量。最常用的隔震组件为铅心橡胶支承垫(lead rubber bearing,简称lrb),中间所加之铅心,就是来提供消能的,而拉长周期就靠橡胶层受水平剪力作用时具有低劲度的特性来达成。lrb消能的特性很稳定,虽经过多周次之作用,其强度、劲度及消能之能力并没有明显的衰减。

隔震建筑物另有一个特性,就是因为隔震层相对于上部结构软了许多,因此当其受地震水平力作用时,隔震层的相对变位很大,而上部结构的相对变位很小。因此有时为简单计,可以将上部结构视为刚体。

1.3 消能建筑物

消能建筑物就是加上一些阻尼器,藉增加建筑物的阻尼比来达到耐震的目的。依据耐震设计规范10.2节之定义,消能组件概分为位移型、速度型与其它型式。位移型消能组件显现刚塑性(摩擦组件)、双线性(金属降伏组件)或三线性迟滞行为,且其反应需与速度及激振频率无关。速度型消能组件因不同的阻尼比、劲度及材料可分为:包含固态与液态之黏弹性组件及液态黏滞性组件。第三类(其它)则含括所有不属于位移型与速度型的消能组件,其典型范例包括形状记忆合金(超弹性效应)、摩擦.弹簧组件,以及兼具回复力与阻尼的液态消能组件。

2 世界各国隔震建筑物发展现况

各国推展隔震建筑物数量不一,不过有一共通点,即大地震来临,往往成为催生者。如美国北岭地震(1994),日本阪神地震(1995),中国大部分地区集集地震(2008)等,虽然地震造成工程产官学界痛定思痛之痛楚,但经由其它建筑物损坏情形,终于肯定隔震建筑物在地震中的优越性。

3 耐震建筑与隔震建筑造价比较

由日本统计数据显示,隔震建筑物与耐震建筑物造价比较,建筑物高度在25m以下,隔震建筑物造价约为耐震建筑物造价之105%-109%;建筑物高度在25m-31m,隔震建筑物造价约为耐震建筑物造价之102%-104%;建筑物高度在31m以上,隔震建筑物造价约为耐震建筑物造价之99%-103%。

另比较隔震建筑物结构造价比较,办公室隔震建筑物之结构费用约占建筑物费用之18%,旅馆建筑隔震建筑物之结构费用约占建筑物费用之13%,医院隔震建筑物之结构费用约占建筑物费用之8%。显示越重要之建筑物,采用隔震建筑物设计,结构费用相对最经济。

4 隔震建筑新趋势

高层与超高层隔震建筑物,目前日本最高隔震建筑物为位于大阪城之西梅田超高层计划,地下1层,地上50层,屋突2层(src+rc),基础隔震,楼高177.4m,高宽比5.8:1,隔震型式有滑动支承,积层橡胶垫,及u型钢板消能器+fluid damper。

5 超高层隔震建筑物设计技术

超高层隔震建筑物设计技术主要有下列关键因素:

5.1 长周期建筑物之隔震效果

隔震建筑物之最优越抗震效果即在延长建筑物基本振动周期,但高层建筑物基本振动周期往往超过3秒,隔震后即使将建筑物基本振动周期拉长至5秒以上,由反应谱显示,两者加速度反应相差有限。但是在增加阻尼比降低地震位移反应,则有其贡献。

5.2 倾覆作用造成隔震组件受拉力

隔震组件设计时必须考虑拉力作用,因此拉力试验成为规范修订之首要任务。

5.3 风力作用

隔震层设计时必须考虑地震力作用,但是小地震或风力作用,隔震组件是否发挥功能?仍有待深入探讨。

结论

第5篇:超高层结构设计范文

关键词 :超高层建筑 结构设计 结构体系 整体倾斜

引言

一般情况下,高层的建筑概念设计有很多种,但对于加强高层建筑抗震能力的概念设计则运用的比较广泛。超高层建筑的设计以及施工通常都要耗费更多的财力和物力,因此控制好超高层建筑的质量和抗震效果至关重要。但如何设计高层建筑结构的方法却是不确定的,在这个过程中需要考虑建筑物的自身特征以及相关的外部因素。本文主要介绍的就是关于超高层建筑在进行结构设计时应当注意的问题,并作出提升超高层建筑结构设计质量的相关建议。

一、 关于超高层建筑的结构设计特点以及相关要点

(一) 重力荷载迅速增大,控制建筑物的水平位移成为主要矛盾

由于超高层建筑相对于其他类型的建筑具有不同的特性,使得其建筑结构的设计也具有自身的一些特点。首先,超高层建筑在高度上具有其他建筑所不可比拟的特性。因此,随着建筑物的高度不断上升,其重力荷载也呈直线上升的趋势,作用在竖向构件柱以及墙上的轴压力也随之增加。在这样的条件下对于基础的承载力也就提出了更高的要求。与此同时,控制建筑物的水平位移也成为了主要矛盾,这种情况主要是由两方面原因所造成的。一方面,超高层建筑的高度较高,使得风作用效应加大;而风力的加大也就使得合力作用点的位置变高,从而使其对于建筑物产生的作用效应也就变得更大。另一方面,超高层建筑的高度过高使得其自身的重心位置也相应的被升高,建筑的结构自重也相应的加大,此时在地震作用下就将导致薄弱部位加速破坏。

(二) 竖向构件产生的缩短变形差对结构内力的影响增大

受力变形、干缩变形以及徐变变形都是竖向构件总压缩量的构成部分。通常情况下,受力变形都会在瞬时间完成,并且变形量能够根据胡克定律进行大致的测量。而干缩变形所需要的时间则相对较长,通过相关的统计数据对比可以发现,在一般条件下干缩变形量大致占总压缩量的三分之一左右。而耗时最长的就是徐变变形量,线性徐变能够通过公式进行相应的计算。而受到构件的总压缩量随着高度的不断上升而增大的影响,使得在超高层建筑中竖向构件产生的缩短变形差对于结构内力的影响也逐渐变大。

(三) 倾覆力矩增大,整体稳定性要求提高

超高层建筑由于在建设的过程中,高度不断上升使得侧向风力引起的倾覆力矩也会不断增加,随之而来的是抗倾覆力的要求也随之升高。许多具体的工程施工中都会采用增加基础埋深以及加大基础宽度或者是采取抗拔桩基等手段来达到保证整体稳定性的需求,来强化整体的稳定性。

(四) 防火防灾的重要性显现,建筑物的重要性等级升高

与此同时,在进行超高层建筑的结构设计时应当着重考虑防火防灾的功效,凸显出防火放防灾的重要作用。这是由于超高层建筑的一些建筑材料虽然具有耐热的特性,但是耐火的功效却不甚理想,一旦放生火灾的话极易造成重大的损失。并且由于高层建筑与地面之间的空间距离较大,高层中的人们很难找到有效的逃生途径也容易造成大的人员伤亡。此外,在出现地震等坍塌性事故时,需要较长的疏散时间,但超高层建筑大多采用钢筋混凝土结构,在长时间的疏散过程中极易发生其他的安全事故。与此同时,超高层建筑的投资一般都比较巨大,并且在所属区域一般都应是当做代表性建筑来建造的。所以超高层建筑无论是在经济上,还是在文化乃至政治上都具有较强的影响。为此,在进行超高层结构的设计时务必要强化结构设计的可靠性,强化建筑的整体性能质量。

(五) 控制风振加速度符合人体舒适度要求

一般情况下,风力的作用效果都会随着高度的升高而不断加强,在超高层建筑中风力的作用效果尤为明显。但是风振作用过于显著会影响到人们的舒适度,不利于人们的工作和生活,因此如何处理好风振及速度与人体舒适度之间的平衡成为了超高层建筑结构设计的重要问题。为此,必须控制好顶层的最大加速度,使其满足规定的限值。此外还要掌控好由风振带来的扭转加速度,通常情况下不应该超过标定的限值。与此同时,鉴于超高层建筑的高度较大,使得垂直于围护结构表面上的风载标准也迅速增大,所以围护结构必须进行抗风设计。

二、 超高层建筑结构设计的具体方法

进行超高层建筑的结构设计不仅要掌握好相关的要点,了解相关的结构特征,还要在具体的结构设计上合理的利用设计方法。首先,根据超高层建筑的自身特点就要做到减轻自重,减少地震作用。在这方面通常可以采用高强度轻质材料,全钢结构以及轻质隔断等都能够起到很明显的减轻结构自重,减小地震作用的效果。其次,就要降低风作用的水平力。降低风作用水平力的主要手段可以从减小迎风面积、降低风力形心以及选用体型系数较小的建筑平面形状来实现。其中为了减小迎风面积可以采用正方形的平面形式,如果计算对角线方向的迎风面宽则可以采用圆形的平面形式。而降低风力形心的方式主要可以通过采用下大上小的立面体型来实现,这种方式不仅可以有效的减小高风压在高处的迎风面积,也可以通过降低风作用的重心来使建筑物底部的倾覆总弯矩减小。与此同时,还应做到减少振动耗散输入能量。在这方面主要可以采取阻尼装置或者加大阻尼比的方式来实现。还要选择耗能、减振的结构体系,像利用偏心支撑的钢结构具有耗能的水平段,使用橡胶支座都能够做到有效的减振。最后需要完成的就是加强抗震措施。为了强化超高层建筑的抗震能力,就要从多方面共同入手。首先就要为建筑配有明确合理的计算简图,科学的分析地震作用以及相关的受力情况。大多数情况下,圆形、正多边形以及正方形等平面形状能够做到避免强弱轴的抗力不同和变性差异。但在具体的设计过程中也需要考虑到相应的问题。例如,要注意到结构平面形状是否做到对称,是否设置了多道抗震防线以及是否在满足了强度等方面的需求后采用了延性更好的结构材料等。此外,为了保证结构设计的科学性还应利用多个权威程序进行核算对比,使计算出的结果更加具有科学性和说服力。并且在设计上应当尽量向智能化方向偏转,增强对于结构设计的可控性。

结束语

超高层建筑结构的设计对于建筑的整体效果和实际功能质量具有重要的影响,但是适合的设计方法却也不是单一的。在进行设计方法以及方案的选择上,可以根据建筑的实际特点和需要来进行有针对性的选用。但终归来说,应当通过科学的设计方法使超高层建筑具备安全、舒适以及适用等方面的特征,达到相应的设计要求,满足社会以及公众的需要。

参考文献:

[1]邱仓虎,刘建平,张宇华,谢诗溶,杜文博. 对超高层建筑结构设计中几个问题的实践与思考[J]. 建筑结构,2012,07:22-26.

第6篇:超高层结构设计范文

【关键词】工程;结构;设计

1 工程概况的地基基础

某项目地上建筑面积为13.45万m2,地下建筑面积为4.3万m2,总建筑面积为17.75万m2。根据岩土工程勘察报告,本工程场地地基土层为第四纪冲海积的黏土和淤泥层,基底岩性为侏罗纪熔结凝灰岩,场地内无液化土层。宾馆塔楼柱下荷载最大达3.8×104kn,商务塔楼柱下荷载最大达3.5×104kn,采用大直径灌注桩,平板式桩筏基础。经优化比较,桩径700~1100较为合理。商务楼和宾馆塔楼下筏板厚度为3m,其他位置底板采用厚板式,板厚为1.2m。针对本工程塔楼和辅楼预期存在的沉降差异问题,在各塔楼与辅房之间设置后浇带,并配合相应的后浇带处理措施和大体积混凝土浇筑措施,解决了超长结构混凝土的收缩裂缝问题和塔楼与辅楼间的沉降差异在基础底板中产生过大内力的问题。

2 结构设计与计算

(1)结构体系。塔楼外框架柱采用现浇钢筋混凝土柱,钢筋混凝土柱外框架体系将作为有效的承重支撑,大部分竖向荷载通过轴力方式向下传递,而混凝土核心筒除了承受竖向荷载外,其主要功能是提供强大的抗侧力能力。《建筑抗震设计规范》规定:6度区现浇钢筋混凝土框架一核心筒结构适用的最大高度为150m,本工程两塔楼的房屋高度均为161.1in,仅超过11.1m;本工程属b级高度,而《高层建筑混凝土结构技术规程》规定:6度区框架一核心筒结构b级高度建筑的最大适用高度为210m,还有48.9m才超限;大跨度钢结构连廊的存在使得本工程属于特殊类型的高层建筑(大跨度连体)。但由于本工程塔楼高宽比h/b为4.4并不大,两塔楼的平面及竖向结构特性变化较少,且连廊与塔楼采用弱连接,对塔楼耦合影响小。计算分析结果也表明无异常薄弱层出现,且以风荷载为控制水平作用。综上所述,本工程有两项轻微超限,设计时采取必要的抗震加强措施,在技术上是可行的,顺利通过设计审。

(2)弹性计算。本工程采用中国建筑科学研究院编制的《多层及高层建筑结构空间有限元分析与设计软件sat-we》、《特殊多、高层建筑结构分析与设计软件pm-sap))及美国csi公司的国际通用结构分析与设计软件etabs等三个程序进行整体计算,均采用抗震耦联分析并考虑偶然偏心。用satwe程序进行弹性动力时程分析。两塔楼的自振特性计算结果见表1和表2,三个软件的计算结果较接近,从侧面反映出结构模型和分析的正确性。结构的主要振型以平动为主,扭转为主的第1自振周期与平动为主的第1自振周期之比,宾馆塔楼分别为0.577、0.605、0.538,商务塔楼分别为0.593、0.603、0.529,均小于0.85,满足《高层建筑混凝土结构技术规程(jgj3―2002)》的要求。

风荷载及多遇地震作用下的结构反应计算是结构设计中的重要内容,结构在风荷载及多遇地震作用下结构最大点位移和最大的层间位移角,可见在风荷载和地震作用下的层间位移角度均小于规范限值。两塔楼产生的最大屋面位移及最大层间位移角均是x方向风荷载作用下产生的,其中商务塔楼最屋面位移为93.44mm,最大层间位移角为1/1537;宾馆塔楼最大屋面位移为82.83mm,最大层间位移角为1/1743。最大层间位移角均小乎规范所规定的限值1/800。本工程塔楼属于风荷载为控制水平作用,在考虑偶然偏心影响的水平地震作用下,楼层竖向构件最大水平位移和层间位移与其平均值之比小于规范限值,说明结构具有很好的抗扭刚度。地震作用下楼层剪重比也是结构整体分析的重要内容,计算结果表明,两塔楼各层x方向和y方向的层间地震剪力均满足规范的最小剪重比要求。宾馆塔基底框架和核心筒的x方向倾覆力矩分别为2.83×105kn・m,6.55x105kn・m;y方向倾覆力矩分别为2.66×105kn・m,8.09×105kn・m。商务塔基底框架和核心筒的x方向倾覆力矩分别为3.21×105kn・m,6.08×105kn・m;y方向倾覆力矩分别为2.37×105kn・m,7.66×105kn・m。核心筒所占倾覆力矩沿结构高度始终大于总地震倾覆力矩的50%,表明对于整体结构安全度是可靠的。

(3)弹性时程分析。按照《岩土工程勘察报告》确定的场地类别,采用《工程场地地震安全性评价报告》提供的地震动参数,选择两组实际地震记录波和一组人工模拟地震波进行弹性动力时程分析。每条时程曲线计算所得的结构底部剪力大于cqc法求得的底部剪力的65%,三条时程曲线计算所得的结构底部剪力的平均值大于cqc法求得的底部剪力的80%。cqc法计算结果基本包络三条时程曲线计算所得的平均值,仅在结构顶部的少数楼层地震剪力偏小,说明设计反应谱在长周期阶段的人为调整以及计算中对高阶振型的影响估计不足,设计时将对顶部楼层的地震剪力进行调整,满足对时程分析法的内力包络要求。除此以外,结构内力和配筋可直接按cqc法计算结果采用。

(4)中震不屈服分析和动力弹塑性分析。如前所述,本工程平面及竖向结构特性变化较少,多遇地震下的计算结果也无超限情况出现,鉴于本工程建筑等级较高为确保结构安全可靠,我们依然对其进行了中震不屈服验算,使剪力墙、柱、连梁和框架梁等重要抗震构件在中震作用下不屈服。

通过中震不屈服计算和判断,两塔楼结构体系中竖向构件在中震作用下保持着良好的弹性性能,而水平构件特别是连梁则有部分进入屈服状态,通过调整连梁和框架梁的配筋和对部分连梁截面进行调整,才使所有主要水平构件不进入屈服状态。这从设计上保证了中震不屈服的落实,体现了地震中各构件的屈服顺序基本上是首先连梁屈服,其次有部分框架梁屈服,而竖向构件则未出现屈服情况。

3 主要技术及措施

(1)空中连廊支承结构抗震加强措施。连廊弱连接支座留足连廊两端活动空间确保不出现下坠,采用抗拉铰接万向支座,并用侧面限位器固定,确保水平荷载直接传递到塔楼主结构。支承连廊的框架柱抗震等级提高为一级,以确保安全性。

(2)连廊及顶部塔楼结构抗震加强措施。连廊采用空间钢结构桁架,钢筋混凝土楼板的形式,并进行专门设计。顶部莲花座高度较高且外形复杂,采用将芯筒适度上升,外复钢结构形成莲花座外形的结构设计,能极大地减轻自重保证结构强度,从而有效克服鞭梢效应,且施工方便。

(3)平面扭转不规则抗震加强措施。主要采取调整抗侧力构件的布置,使质心与刚心尽量重合,并加大结构的扭转刚度,以减小结构扭转效应,使结构各楼层的位移比不大于1.4。例如由于塔楼平面存在局部凸出圆弧,部分楼层的x向最大水平位移与平均层间位移比值超b级高度的1.4,最大达到1.47,最终通过适当加宽圆弧内柱子x向柱宽,并加强两柱联系梁刚度得以解决。

(4)侧向刚度不规则抗震加强措施。适当加大立面变化处楼层的板厚及配筋,并采用双层双向配筋,加强与立面变化楼层相交的竖向构件的配筋,如25层局部凸出圆弧结束,竖向构件截面变化则避开25层,并适当加强24~26层竖向构件配筋。

第7篇:超高层结构设计范文

【关键词】超高层建筑;SRC型钢柱;结构设计中的问题;施工方法

1 超高层建筑结构设计应考虑的问题

1.1 采用SRC柱时,柱中型钢下端的埋置部位问题

高层及超高层建筑地下室的层数依据基础埋深、使用功能、地质条件综合确定,少则二至三层,多则四层及以上。如果地下室的竖向刚度和水平刚度能满足《抗规》6.1.14条和《高规》5.3.7条的相关要求,那么,地下室的顶板可作为上部结构的嵌固部位,即是说计算时可以地下室的顶板为固定端对上部结构(悬臂体)进行抗震、抗风等进行整体计算。《抗规》6.1.3条和《高规》4.8.5条规定,当地下室顶板作为上部结构的嵌固部位时,地下一层的抗震等级应与上部结构相同,地下一层以下的抗震等级可根据具体情况采用三级或更低等级。超高层建筑结构的底层柱及抗震墙,因要考虑延性和降低轴压比等技术因素,同时又要从使用上考虑尽可能减少竖向构件截面,以争取更大的使用率等非技术因素,往往采用SRC柱。如果为多层地下室,且嵌固端在首层,那么,在不考虑延性因素,轴压比能满足要求的前提下地下一层以下的柱是否可不设SRC柱。

笔者认为,对超高层建筑结构SRC柱中的型钢应锚固到基础中,锚固在地下一层以下的柱中存在不安全因素,原因是:对带有地下室的高层建筑来说,目前计算时通用的做法是:考虑土体或大底盘对地下室的侧向约束,将地下室刚度进行放大。因此,将地下室顶板作为上部结构嵌固部位计算,和实际结构变形相比存在一定误差。某些超高层项目,出于多种理由本应将生根于基础面或基础中的SRC中的型钢,移至地下一层以下柱中,此做法,有待商榷[3]。

1.2 地基规范允许的基础整体倾斜对超高层建筑的整体稳定性影响问题

《地基规范》3.0.4.2条规定:计算地基变形时,传至基础底面上的荷载效应应按正常使用极限状态下荷载效应的准永久组合,不应计入风荷载和地震作用。相应的限值应为地基变形允许值。同时,《地基规范》5.3.4条对建筑物的地基变形允许值规定如下:多层和两层建筑的整体倾斜,当高度高于100m时,建筑物的地基变形允许值为0.002,也就是1/500。超高层建筑的基础一般为刚性基础,如果忽略高层建筑地下室的埋深、地下室外墙因土压力产生的摩擦力等要素对整体倾斜产生的约束作用。那么,上部结构也将有1/500的倾斜。

目前,大家公认重力二阶效应,一般由两部分组成。一是构件自身挠曲引起的附加重力效应,叫效应;二是结构在水平荷载或水平地震作用下产生侧移变位后,重力荷载由于该侧移而引起的附加效益,即效应。对一般高层建筑结构而言,效应的影响相对较小,一般能够忽略不计,由于结构侧移和重力荷载引起的效应相对较为明显,可使结构的内力和位移增加,位移较大时甚至导致结构失稳。故重力二阶效应实际上是效应。也即现行《抗规》与《高规》涉及的效应[4]。

高层和超高层建筑结构只要有水平侧移,就会引起重力荷载作用下的侧移二阶效应。其大小及结构侧移和重力荷载自身大小直接相关。高层和超高层建筑基础的整体倾斜,从理论上讲,会使高层建筑结构产生水平侧移,也会引起效应。现行《高规》或《抗规》有关涉及效应的规定中,似未明确考虑规范允许的基础整体倾斜对结构侧移的累积效应。作者认为,对超高层建筑来说,一般高宽比比较大,效应敏感。其结构弹性计算与弹塑性变形计算时,结构侧移中应考虑地基规范允许的基础整体倾斜值的累积侧移,同时考虑由此对结构整体稳定性的影响。

2 超高层建筑SRC型钢柱的施工方法

笔者所在工程主体结构地上43层,地下2层,嵌固位置为地下2层底板, 主体结构采用框架-核心筒结构,主体结构柱采用SRC型钢混凝土柱,钢骨柱为十字型截面,截面型号十900×500×20×28。根据本工程的特点,确定了如下的施工方法:

2.1 第一段钢骨柱及上部钢骨柱的吊装

安装前要对予埋件进行复测,并在基础上进行放线。根据钢骨柱的底标高调整好螺杆上的螺帽。然后钢骨柱直接安装就位。当由于螺杆长度影响,螺帽无法调整时,可以在基础上设置垫板进行垫平,就是在钢骨柱四角设置垫板,并由测量人员跟踪抄平,使钢骨柱直接安装就位即可。每组垫板宜不多于4块。垫板与基础面和柱底面的接触应平整、紧密。钢骨柱用汽车吊吊升到位后,首先将钢骨柱底板穿入地脚螺栓,放置在调节好的螺帽上,并将柱的四面中心线与基础放线中心线对齐吻合,四面兼顾,中心线对准或已使偏差控制在规范许可的范围以内时,穿上压板,将螺栓拧紧,并在钢骨柱四周及时拉设缆风绳确保其稳固,此时即为完成钢骨柱的就位工作。当钢骨柱吊装并校正完毕后,及时利用缆风绳进行固定,保证钢骨柱的稳定,同时通知土建单位对地脚进行扎筋、(二次)浇灌等施工,对钢骨柱进一步稳固。

上部钢骨柱的安装与首段钢骨柱的安装不同点在于柱脚的连接固定方式上不同。上部钢骨柱吊点设置在钢骨柱的上部,利用四个临时连接耳板作为吊点。吊装前,下节钢骨柱顶面和本节钢骨柱底面的渣土和浮锈要清除干净,保证上下节钢骨柱对接面接触顶紧。

2.2 钢柱校正

钢柱的校正主要有钢柱错口校正、钢柱轴线校正、垂直度校正及钢柱标高的调整。第一节柱柱脚的位移调整以基面中线与柱身中线对齐为标准,如有偏差,用千斤顶往反方向调整,千斤顶的反作用受力点可作用在劲性柱脚插筋的根部。第一节柱校正到位后用揽风绳拉住柱顶耳板与底板固定或用角钢与柱身焊接并支撑在混凝土地面上,且将柱底板与垫块围焊,以防柱钢筋施工过程中对钢柱的垂直度的影响[1];

上部柱校正完后应用马板在柱接头处将上段柱与下段柱相对固定,待钢柱对接焊完后将马板割掉;

钢柱标高的调整:对于标高偏差超规范的钢柱须对标高进行调整,对于标高偏差较大的须在加工厂进行调整,偏差较小的可以在现场调整,一般调整方法是在钢柱接头位置加垫铁;

钢柱轴线校正到正确位置后,进行钢柱垂直度复核,确保钢柱垂直度在规范允许范围内;

钢柱垂直度的校正采用两台经纬仪分别置于相互垂直的轴线控制线上(借用1m线),精确对中整平后,后视前方的同一轴线控制线,并固定照准部,然后纵转望远镜,照准钢柱头上的标尺并读数,与设计控制值相比后,判断校正方向并指挥吊装人员对钢柱进行校正,直到两个正交方向上均校正到正确位置。

2.3 钢骨柱垂直度校正及焊接偏差预留值

用两台经纬仪从柱的纵横两个轴向同时观测,依靠千斤顶进行调整。柱底部依靠揽风绳葫芦高速柱顶部,无误后固定柱脚,并牢固栓紧揽风绳。

由于钢骨柱接头焊接后会有一定收缩,因此钢骨柱在垂直度校正时必须预留焊接收缩值,外侧柱的垂直度误差,以向外侧倾斜3mm 控制预留焊接收缩量,高层的外侧柱在安装时外侧无揽绳拉点,所以在安放柱时有意识的将柱向外侧倾,内侧系上揽风绳,既保证安全性又保证容易调整的状态。

2.4 检查验收

钢骨柱吊装校正好后,通知监理单位验收构件校正结果,验收合格后进行下道焊接工序,焊接校正等工序施工完毕,在自检合格的基础上,通知监理单位、土建单位以及第三方检测机构进行现场检查,并做好相应的资料和影像记录[2]。

3 总结

应该根据超高层建筑结构设计实践,充分考虑超高层建筑结构设计中的问题,同时积极探析SRC型钢柱的施工方法,进而确保超高层建筑能够顺利发展。

参考文献:

[1]GB50009-2001 建筑结构荷载规范.

[2]刘大海.高层建筑结构方案优选.北京:中国建筑工业出版社,2008.

第8篇:超高层结构设计范文

关键词:基本原则;控制技术;抗震设计

中图分类号:S611文献标识码: A

随着经济的迅速发展,超高层建筑越来越多,并且向着普遍化、更超高化、功能综合化、管理智能化、环境生态化的方向发展,高层建筑的设计问题变得日益突出。设计人员不仅要掌握先进的设计方法及各种先进软件,还要掌握高层建筑的设计原理、设计特点、体系选择、抗震设计等方面的知识,如此才能使设计达到技术先进、经济合理、安全适用、确保质量的基本原则。

1 超高层建筑结构体系类型及减震、抗震结构设计的基本原则

1.1超高层建筑的结构体系类型

超限高层建筑的类型主要有大底盘、大裙房、多塔楼建筑带有外挑、悬挑层的建筑。超限高层建筑经常采用的结构体系有钢筋混凝土框架―核心筒结构, 它的整体性、抗侧刚度好;混凝土钢框架结构, 具有自重轻、断面小、承载力大的优势; 随着技术的发展, 在高层住宅中也出现了新的结构体系, 如现浇框架―短肢剪力墙、现浇框支― 短肢剪力墙。

1.2 超高层建筑减震、抗震结构设计的基本原则

1.2.1 结构构件应具有必要的承载力、刚度、稳定性、延性等方面的性能。

(1)结构构件应遵守“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)”的原则。

(2)对可能造成结构的相对薄弱部位,应采取措施提高抗震能力。

(3)承受竖向荷载的主要构件不宜作为主要耗能构件。

1.2.2 尽可能设置多道抗震防线

(1)一个抗震结构体系应由若干个延性较好的分体系组成,并由延性较好的结构构件连接协同工作。例如框架- 剪力墙结构由延性框架和剪力墙两个分体组成。

(2)强烈地震之后往往伴随多次余震,如只有一道防线,则在第一次破坏后再遭余震,将会因损伤积累导致倒塌。抗震结构体系应有最大可能数量的内部、外部冗余度,有意识地建立一系列分布的屈服区,主要耗能构件应有较高的延性和适当刚度,以使结构能吸收和耗散大量的地震能量,提高结构抗震性能,避免大震时倒塌。

(3)适当处理结构构件的强弱关系,同一楼层内宜使主要耗能构件屈服后,其他抗侧力构件仍处于弹性阶段,使“有效屈服”保持较长阶段,保证结构的延性和抗倒塌能力。

(4)在抗震设计中某一部分结构设计超强,可能造成结构的其他部位相对薄弱,因此在设计中不合理的加强以及在施工中以大带小,改变抗侧力构件配筋的做法,都需要慎重考虑。

1.2.3 对可能出现的薄弱部位,应采取措施提高其抗震能力

(1)构件在强烈地震下不存在强度安全储备,构件的实际承载能力分析是判断薄弱部位的基础。

(2)要使楼层(部位)的实际承载能力和设计计算的弹性受力的比值在总体上保持一个相对均匀的变化,一旦楼层(部位)的比值有突变时,会由于塑性内力重分布导致塑性变形的集中。

(3)要防止在局部上加强而忽视了整个结构各部位刚度、承载力的协调。

(4)在抗震设计中有意识、有目的地控制薄弱层(部位),使之有足够的变形能力又不使薄弱层发生转移,这是提高结构总体抗震性能的有效手段。

2 超高层建筑结构的减震控制技术

目前, 我国和世界各国普遍采用的抗震体系和方法是传统的抗震体系和方法, 即对基础固结于地面的建筑结构物适当调整其结构的刚度, 允许结构构件( 如梁、柱、墙、节点等) 在地震时进入非弹性状态, 并具有较大的延性, 使结构物"裂而不倒"。这种抗震设计原则, 在很多情况下是有效的, 但也还存一些问题和局限性。

因此在实施抗震设防时,必须寻找一种既安全(在突发的超烈度地震中不破坏、不倒塌) ,又适用(适用于不同烈度、不同建筑结构类型,既保护建筑结构, 又保护建筑物内部的仪器设备) ,又经济(不增加建筑造价)的新的抗震新体系, 这就是建筑结构减震控制新体系。这样, 隔震体系、消能减震体系、结构被动及主动控制体系就应运而生了。而由于隔震、消能和各种减震控制体系具有传统抗震体系所难以比拟的优越性, 即明显有效减震( 能使结构地震反应衰减至40%~10% 或更低)、安全、简单、经济及适应性广等,它将作为一种崭新的抗震体系和理论, 必将引起专家们的关注。

隔震和减震体系类型主要有:隔震、摩擦耗能体系、被动控制体系、主动控制体系和混合控制体系。

3 超高层建筑结构的抗震设计

3.1建筑体型和结构体系

超高层建筑平面和立面的选定, 和结构的可行性、经济性密切相关。由于高层建筑是以水平荷载为主要控制荷载, 所以在抗震设计中为达到“ 小震不坏, 大震不倒” 的设计原则, 应力求平面布置简单、规则和对称, 避免有应力集中的凹角、收缩和楼、电梯间的偏置, 尽量减少扭转的影响。在风力作用下则要求建筑物外形选择合理, 提高结构的刚度。圆形、椭圆形、正多边形, 都可以大大减少风荷载影响。采用刚度较大的建筑, 可以减少风振影响和避免建筑物较大的位移。同时为了使结构具有良好的受力特性, 并满足建筑上的使用要求, 还必须选择一个合适的结构体系。

3.2适宜的刚度

在超高层建筑结构设计中, 恰如其分地确定建筑物的刚度是十分重要的。建筑物的刚度既不宜过大,结构刚度越大, 自振周期就越短, 建筑物的截面及自重也越大, 地震时受到的地震力也越大。

但也不宜将建筑物结构设计的过柔。过柔的建筑, 在风力或地震力的作用下, 会产生过大的位移及变形, 因此影响建筑物的强度、稳定性和使用性。此外, 通过调整刚度可避免地震时建筑物的震动与场地土的震动特性相同而引起共振, 造成建筑物严重破坏或倒塌。

3.3结构计算

3.3.1确定总的结构计算层及划分计算标准层

在项目中由于地下室为车库(含6级人防),主楼的中心为筒体之外均为大统间, 所以把地下室作为一层计算。

3.3.2周期折减系数

在框架剪力墙结构中, 结构的自振周期一般采用计算的方法确定, 由于在计算中只考虑了主要承重结构(梁、柱和剪力墙)的刚度, 而刚度很大的砌体填充墙的刚度在计算中未反映, 仅考虑其荷载作用。因此计算所得的周期较实际周期长。如果按此计算地震力偏小, 偏于不安全。所以必须对计算周期进行调整折减。

3.3.3连梁刚度折减系数

剪力墙中的连梁跨度小, 截面高度大, 因此连梁的刚度也大。在地震力作用下其弯矩、剪力很大, 难以按弹性分析结果去设计。现考虑到地震时允许连梁局部开裂, 可采用连梁刚度折减系数βy 。最低可取到0.55。

3.3.4连梁高度的取法

连梁的高度一般情况下为洞口顶至上层楼面,或下层洞口至上层洞口底。但有时当上下两层层高不同并且洞口离地、楼面距离不统一时, 往往会出现连梁高度大于层高高度的现先。

3.3.5梁扭矩的折减系数

由于在结构受力计算中, 没能考虑楼板的作用。梁的计算扭矩远大于实际所承担的扭矩, 特别是对于现浇楼板结构,因此应对梁扭矩折减,折减取值范围0.4-1.0。

3.3.6计算时构件刚度及配筋超限的调整

为了使结构受力合理可行, 需要进行结构调整。使其具有合适的刚度和内力。当刚度过大时, 可采用减小构件截面尺寸的方法或开洞的方法加以解决。结构计算的孔洞开设位置, 可结合剪力墙的受力特性来进行。一般单肢剪力墙长度不宜大于8m。

3.4墙肢端部配筋的调整

在地震力作用下, 墙肢端部钢筋是主要受力钢筋, 由偏压、偏拉计算决定。当计算值较小, 按构造配置。当若干个墙肢交汇于一点时, 局部配筋则会太多,而使设计困难, 为此必须进行相应的调整。

4 结束语

随着经济的发展及社会需求的多样性,建筑的高度越来越高,体型变得更加复杂,并且建筑设计追求多功能、多变的使用空间及丰富的立面设计效果。因此,就常采用复杂高层建筑结构体系,从而使超高层建筑抗震工作成为结构设计的重点。

参考文献:

[1] 李洪恺.高层建筑结构抗震设计之我见[J].科技与企业,2012,(13).

第9篇:超高层结构设计范文

关键词:筒中筒结构;抗震等级;B级超限;抗震构造加强措施

中图分类号:TU973+.31文献标识码:A 文章编号:

1 工程概况

本工程位于天津滨海新区于家堡金融区内。由一栋超高层主楼与两栋附楼组成,设三层地下室,地下三层高4.800米,地下二层高3.90米,地下一层高5.650米。地上主楼54层,总高233.850米,首层层高6.0米,二层、三层层高5.4米,避难层层高5.1米,其它标准层层高4.2米,采用筒中筒结构。附楼A地上四层,总高度21.150米,采用框架结构。附楼B地上7层,总高度34.950米,采用框架剪力墙结构。主楼地上部分设抗震缝与附楼断开,地下室连成整体不设缝。

2 抗震设计

2.1本工程抗震设防烈度为7度,设计基本地震加速度值为0.15g,设计地震分组为第一组。

2.2抗震设防类别:乙类。

2.3建筑场地类别为Ⅳ类,场地土类型属于软弱土,特征周期0.55s。

2.4本场地等效剪切波速νse=131m/s<140m/s,场地覆盖层厚度大于80米。

2.5本场地属非液化场地。且可不考虑震陷的影响。

2.6本工程多遇水平地震影响系数最大值αmax=0.12,罕遇水平地震影响系数最大值αmax=0.72。

2.7抗震等级:主楼地上54层,采用砼筒中筒结构,抗震设防类别为乙类,抗震措施按8度(0.20g)采用,外筒抗震等级特一级,内筒抗震等级特一级。地下一层抗震等级同地上主体,地下二层抗震等级采用一级,地下三层抗震等级采用二级,逐层降低。

因本工程抗震设防类别为乙类,根据《分类标准》[1]及专家意见,地震动参数按《抗规》[2]取值,小震、中震特征周期按插值取0.55s,大震计算时特征周期相应增加0.05,大震阻尼比可比小震适当提高取0.07~0.08。

3主体设计

3.1本工程地上部分分为三个独立的单体,54层办公,7层商业和4层交易大厅,各单体间设防震缝分开,缝宽按8度(0.20g)设置,达到中震下不碰撞原则。主楼与附楼B入口门厅处采用钢结构,一端与附楼B采用铰支座连接,一端与主楼采用滑动铰支座连接,滑动铰支座变形量按中震考虑。

3.2 主楼平面为直角梯形,尺寸48.6x58.6米,左上切角。主楼采用筒中筒结构,结构高宽比233.85/37.510=6.23,满足《高规》[3] B级高度高层建筑结构适用最大高宽比要求。内筒高宽比233.85/17.950=13。建筑在左侧主入口设置三层通高大堂,大堂大厅总高度16.800米,右侧银行办公部分设置二层通高共享空间,总高度11.4米。外框筒除角柱外其它外框筒柱自首层顶6米标高处至二层顶标高16.8米为一分为二Y形柱,柱子斜率25.6:1。其中二层楼板开洞率大于30%。主楼4至46层为标准层,其中16,29,42层为避难层,47层至顶层左侧平面逐渐外倾,外倾斜率16.1:1.右下角逐渐内倾。出屋顶机房间层高6.7米。

3.3主楼54层,总高度233.85米,采用钢筋混凝土筒中筒结构。超过上表中7度(含0.15g)混凝土结构筒中筒150米的限值。根据《高规》[4]规定,B级高度钢筋混凝土高层建筑筒中筒结构的最大适用高度为230米,本工程属超B级高度超限高层。

3.4外筒平面内梁截面600X700,外筒与内筒之间采用普通钢筋混凝土现浇密肋梁板结构,主要梁截面200X600,标准层板厚100mm,另外二层开洞楼板边板厚加至180mm,三层板厚加至150mm,四层板厚加至120mm。外筒主要柱截面尺寸,内筒主要剪力墙截面尺寸及混凝土强度等级沿高度竖向变化情况如下:

楼层 标高 内筒主要墙厚度 外筒主要截面 砼强度

机房层 231.900~238.600,500,250 600X600,600X550, C40

51层~54层 212.600~231.900 600,500,250 600X500,600X800C40

46层~50层 195.800~212.600 500,300 600X700,600X750 C45

43层~46层 178.100~195.800 500,300 600X800C50

33层~42层 136.100~178.100 600,300 600X800 C55

21层~32层 84.800~136.100 800,700,400 800X800,700X800 C60

13层~20层 50.300~84.800 900,800,400 1100X800,1000X800 C60

4层~12层 16.700~50.300 1000,900,400 1200X800 C60

2层~3层 5.900~16.700 1200,1000,400 1500X800,1300X800 C60

-3层~2层 基础~5.900 1200,1000,400 1500X1800,1300X1800 C60

4.超限处理措施

超限内容: 总高度超B级高度,二层楼板开大洞,竖向构件不连续

4.1 超B级高度

4.1.1 采用两个不同的空间分析软件(PMSAP与MIDAS)进行分析比较,采用考虑扭转耦联的振型分解反应谱法,并考虑双向地震和偶然偏心的影响。

4.1.2 采用弹性时程分析法进行多遇地震下的补充计算。弹性时程分析所取地面运动最大加速度为55gal,按建筑场地类别和设计地震分组选用2条天然波和1条人工波。控制每条波计算所得的结构基底剪力不小于振型分解反应谱法计算结果的65%,三条波计算所得的结构基底剪力的平均值不小于振型分解反应谱法计算结果的80%。

4.1.3 进行弹塑性动力时程分析,验算结构在罕遇地震下的弹塑性层间位移角是否小于规范限值,判断薄弱层位置并予以加强,根据塑性铰出现的顺序、位置、多少等情况,对薄弱构件予以加强。

4.1.4 通过调整内外筒竖向构件截面和布置,以及内外筒连梁高度,控制结构两个主轴方向第一振动周期之比不小于0.8。控制扭转为主的第一周期与平动为主的第一周期之比不大于0.85。

4.1.5 控制竖向构件截面尺寸、砼强度及其配筋沿高度均匀变化,使得各层的侧向刚度不小于相邻上部楼层侧向刚度的70%或其上相邻三层侧向刚度平均值的80%。