公务员期刊网 精选范文 精密机械加工范文

精密机械加工精选(九篇)

精密机械加工

第1篇:精密机械加工范文

关键词:精密机械;加工;抛光工艺;应用;解析

中图分类号:

TB

文献标识码:A

文章编号:1672-3198(2013)20-0193-01

0 引言

随着工业的发展,机械加工的精度和复杂度在不断的进步,尤其是微型计算机的出现,在工业控制领域得到了广泛的应用,极大的提高了加工的效率,使机械加工可以自动化的运行,并具有一定的智能性,在出现问题时,可以通过系统内置的人工专家系统,自行的解决一些问题。这些技术上的进步,都是为了提高机械加工的精度和效率,从机械加工的发展可以看出,不同时期的机械产品,最大的区别就体现在加工的精密性上。如现在人们的日常生活中,经常能看到很多微型、复杂的机械产品,在制造这种产品的过程中,必然会使用精密机械加工技术。无论在汽车大型机械产品还是钟表等微型机械产品中,都需要抛光工艺,机械产品越精密,对抛光工艺的要求也就越高,因此要想提高精密机械加工的水平,必须对先对抛光工艺应用进行研究。

1 精密机械加工技术简述

1.1 精密机械加工技术的概念

在不同时期,精密机械加工技术的概念也有一定的差异,主要的差别就体现在表面的粗糙度上。这个标准只是暂时的标准,随着机械加工水平的提升,精密机械加工的精度一定会得到大幅的提升,从机械加工的发展就可以看出,在工业发展的初期,汽车等大型机械产品就可以称为精密加工。除了加工的精细之外,最新的概念也包括了加工的效率,在以往的机械加工中,为了提高加工的准确性,需要消耗更大的工作量,这样必然会消耗更多的时间,因此降低了加工的效率,这显然不符合现代工业发展的情况。因此最新的概念中,在促进加工精度进步的同时,也要促进加工的效率的进步,精密加工的方法有很多,如抛光布轮、砂带磨削等,通常情况下,精密机械加工技术都是通过更新加工设备,来促进加工的精度和效率的进步。

1.2 精密机械加工的特点

与普通的机械加工相比,精密加工除了在加工精度上有更高的要求外,加工的效率也有一定的提升,这符合目前机械制造的发展趋势。随着机械加工领域的发展,加工的设备和技术都在不断的进步,为机械领域的进步提供了基础,加工的准确性和效率逐渐提高,逐渐就形成了精密机械加工的概念。由此可以看出,精密机械加工的第一个特点就是自身不断进步,精密机械加工技术随着时间的推移,加工的精度不断提高。其次在不同的机械产品加工中,精密机械加工会表现出不同的形式,如涂附磨具的加工中,砂带磨削就具有很高的加工精度,而且加工的效率很高,正是由于砂带磨削的这些特点,使其在精密机械加工中得到了广泛的应用。但是目前砂带设备的生产技术,大多掌握在国外的公司中,国内的砂带机床还处于起步阶段,机床的自动化程度较低,与国外的产品相比,质量也有一定的差异,要想提高我国机械加工设备生产水平,必须建立在精密机械加工特点的基础上。

1.3 精密机械加工中表面处理技术

在机械加工中,表面处理技术一直都受到人们的重视,表面的处理不仅关系到产品的美观,也是赋予材料表面某种功能特性。通常情况下,表面处理技术有两种方式,第一种就是在表面加上一些覆盖层,第二种就是利用物理和化学等手段,对材料表面的形状、成分等进行改变。在具体的机械加工中,可以使用物理作业的方式等方式,在零部件表面增加一层具有特殊性能的材质;也可以使用热处理等技术,来改变材质表面的形状和成分。但是在进行这样的表面处理技术之前,首先要对材料的表面进行抛光处理,只有材料表面的光滑度达到一定的标准后,才能进行下个环节的加工。由此可以看出,抛光是机械加工表面处理的第一个环节,也是非常重要的环节。

2 精密机械加工中抛光工艺的应用

2.1 抛光工艺的概念

在机械加工中,抛光就是利用一定的设备,对零部件的表面进行处理,从而降低零部件表面的粗糙度,这样的加工工艺就是抛光。在实际的加工过程中,抛光不能提高零部件的几何尺寸和精度,只是针对零部件表面的一种加工工艺,除了使工件表面更加光滑外,有时候需要消除工件表面的光泽,也可以通过抛光来实现。随着抛光工艺的发展,已经出现了化学抛光、CMP抛光等技术,利用这些先进的抛光工艺,极大的提高了加工零件表面的光滑度,同时也在一定程度上提高了加工的效率,尤其是抛光机床的使用,使得抛光加工可以自动化的进行,最大程度上减少人员的操作。现在的机械加工精度已经达到了微米级别,人眼已经无法直接进行观察,依靠人员操作显然无法完成加工,因此现在的抛光加工在向自动化和智能化发展。智能化的抛光工艺需要建立在诸多领域技术结合的平台之上,计算机技术就是必备的技术之一。此外,还需要机械加工技术,由于抛光技术一般主要应用于机械再加工中。对于目前的抛光技术而言,其还有很大的发展潜力,并能够在未来的发展过程中不断融入新的技术,从而改善现在抛光技术中存在的不足。当然,为了能够让抛光技术更加具备实用性和有效性,要进一步发展技术,从而更加满足现代以及未来技术领域的需求。

2.2 抛光工艺在精密机械加工中的应用

传统的机械加工中,由于对精度的要求较低,因此采用的是原始的手工抛光方式,随着工业水平的提高,人们对机械设备也有了更高的要求,出现了机械加工的方式,与手工抛光相比,这些机床设备大幅的提高了加工的精度,半自动化的加工方式,也极大的提高了抛光的效率,因此在实际的加工中,机械抛光得到了广泛的应用。但是在机械产品向复杂化和精密化发展的今天,机械抛光的加工出来的零部件,表面的镜面亮度和程度,都达不到产品规定的标准。为了满足精密机械加工中抛光的要求,现在的加工中都采用Lapping,利用这种加工方式,工件表面的精度可以达到2微米,粗糙度达到Ra0.01微米,完全能够满足现在精密机械加工的标准。Lapping使用起来非常方便,如目前常用的氧化锆研磨剂,由于辅助材料的配比不同,研磨剂可以有液体、膏体、固体三种状态,液态的研磨剂可以直接进行抛光使用,而膏体和固体的研磨剂,可以加水稀释成液态,也可以直接进行使用。在实际的抛光过程中,应该根据加工零部件的形状、材料等,针对性的选择一种研磨剂。在抛光的过程中,需要添加一定的抛光剂,保证后期的抛光效果。同时,现在化的抛光工艺也逐步发展成熟,并逐步应用到机械生产中,成为了现代主流的抛光技术。此外,对于机械再加工而言,由于需要更多的精度加工,机械表面的光滑度要求也越来越高,从而导致抛光工艺的技术革新。总之,抛光工艺在机械再加工中占据非常主流的地位,并能够在一定程度上完善机械的加工效果。

3 结语

抛光作为机械加工中一种重要工艺,在传统的机械加工中,就受到了人们的重视,随着工业的发展,机械产品变得越来越复杂和精密,对抛光工艺提出了更高的要求,因此抛光工艺也从原始的手工加工变成机械加工,能够满足批量生产的需要,同时也在一定程度上提高了加工的精度。通过全文的分析可以知道,抛光工艺在精密机械加工中,具有非常重要的地位,现在广泛使用的Lapping,可以同时提高抛光加工精度和加工的效率,而且根据抛光工件的特点,可以针对性的选择液体、膏体、固体状态的研磨剂。

参考文献

[1]王健,郭隐彪,朱睿.光学非球面元件机器人柔性抛光技术[J].厦门大学学报(自然科学版),2010,(05):636-639.

第2篇:精密机械加工范文

1.1高速精密加工技术的发展

高速精密的加工技术的运用领域中,最为典型的行业要数航空航天领域和汽车领域。作为高技术含量的机械工程技术的技术之一,高速精密加工技术有较高的生产效率和精度的加工和表面质量的特点,同时,生产成本也较低。为了有效提高加工速度和降低零件表面的粗糙程度,这就要求宏观尺度或者部分微细零件加工中要运用高速精密加工技术,增强各部件配合的准确性和合理性,同时还有延长机械使用寿命和降低实现机械能耗与运行费用的特点。近年来,受到机械工程技术发展的影响,应运而生了传动技术的智能化、集成化特点。具体来说,智能化集成化传动技术是指“在机械生产过程中,将传统的动力传动技术与网络、信息、数字、总线等先进技术进行融合,实现传动件在线实时监测、实时控制、自我诊断和修复以及多种元件与功能的集成技术。”而智能化、集成化的传动技术在机械工程中的运用不仅能够实现产品性能的提高,简化机械系统,还可以实现系统柔性的提高,提升传动效率。此外,在机械工程传动技术的运用方面,智能化、集成化又具有以下几个特点:一是可以实现在线的监测工作,以及自我诊断和修复的功能;二是可以通过该技术进行在线远程实时操控;三是集成多种元器件和功能;四是即插即用方便快捷的特点。

1.2数字化的工厂技术

数字化工厂技术在近年来,随着机械领域的发展而发展,并且正不断成为一种高新的机械工程技术。实际情况下,通过对数字化技术,尤其是在网络技术的利用上,数字化工厂正逐步完善。这样有利于对工厂所有数据的随时调用,包括内不数据以及外部的数据更方便快捷的获取。还能对计人员以及制造人员智慧与知识进行融合,从而更好地实现产品的设计、生产和管理、销售等方面的现代化。数字化工厂技术具有集成化、透明化和智慧化的特征,这种方式在国际上受到广泛的关注与运用,甚至于很多发达国家通过这种技术的运用,特别是在全球化的驱使下,全球协同设计和制造的工程都对此表示支持,对机械工程技术的发展不断加强。

2机械工程技术的发展情况

如今,机械领域正面临着深度调整和增长模式变化的巨大压力,新型的节能环保技术已然成为机械工程中不可或缺的部分,并不断地促进机械产品不断向绿色化迈进。同时,不断融合各个学科致使他们产生交叉的现象。这将会为技术系统的变革带来不小的突破,也许还会引发新一轮技术革命的产生,智能化和绿色化逐渐成为机械工业的走向,同时它的服务化也随之发展。此外,随着我国的科研、制造和设计体的系越来越完善,我国的机械工程技术水平也同步提高。通过引进、和吸收的方法,不断增强和实现自我完善等功能。具体来看,目前的机械工程技术的发展情况可以概括为:在不断提升的机械设备组合其功能也在不断加强,这就促使机械设备的产率功效获得大幅度提升。而机械设备在在线检测和适应功能等方面的增强,也导致机械设备可以在工作运行的前提下,实现自我检测、调整和适应的效果。为了进一步保障机械生产的稳定性和持续性,以上提到的在不停机的情况继续运行功能的实现,更有利于生产效率的保证,还能促进设备在防护和检修方面其工作水平的提高,

3结论

第3篇:精密机械加工范文

关键词:班组;能力提升;模型分析

能力提升是企业深化改革、转型发展的永恒主题。机械加工班组作为机械加工制造具体工作的执行者,作为制造企业组织生产经营活动的基本单位和最基层组织,其生产能力和管理水平高低不仅是企业优劣形象的体现,也是衡量企业素质及管理水平高低的重要标志,同时也直接影响企业生产决策的实施,影响着企业目标利润的最终实现。航天企业担负着不断探索太空未知领域和国防建设的神圣使命,高技术、高精度、高可靠性以及高安全性产品是企业的终生追求,为此,全面提升机械加工班组生产能力和管理水平是确保企业按时高质量交付产品的重要保证,是新时期企业增强市场竞争力、加快“战略转型、改革创新”的坚实基础。从机械加工班组能力提升专题调研统计结果看,部分班组管理仅停留在班组人员调动和生产排班上,没有发挥班组管理的领导和示范作用,现有制度执行不力、组员综合素质不强、解决生产中实际问题方法不多、承接繁重科研生产任务勇气不足,很大程度上是班组成员能力低下,不能适应一流企业一流生产能力的新要求,如何提升每个班组成员在“精益生产、安全生产、创新生产”以及生产班组在“现场管理、人文管理、基础管理”方面全面提升综合能力是我们目前迫切需要研究的课题。

一、模型建立分析

(一)精密机械加工班组能力提升的三支柱模型

以杨国安的组织能力三角模型(以下简称杨三角模型)为基础,通过加以改进为精密机械加工班组能力提升模型,模型正视图如图1。这个三支柱模型比杨三角模型更为清晰直观,通过运用组织能力的三支柱模型来打造精密机械加工班组能力。该模型的三根支柱即杨三角模型的三个角,而地基是构成支柱的基石,也即管理工具和方法。三个支柱原则上一样强,相互匹配,又相互影响、相互作用,促使精密机械加工生产班组能力提升成功。精密机械加工班组生产能力提升成功方程式:精密机械加工班组能力提升成功=班组成员能力*机器设备能力*环境优化能力,精密机械加工班组能力提升模型俯视图如图2.构成班组能力三支柱模型的基石是能力评估、课程设计、专题培训、柔性制造系统、“7S”管理、完善制度和文化落地等工具,三支柱分别是班组成员能力提升、班组设备升级、班组生产环境和人文环境改善,它强调以班组成员能力提升为内核,配合设备升级和环境改善,共同提升班组能力,突出了“人”与“机器设备”、“环境”的协调和适应,更强化了班组组织能力提升理论的可操作性。这三个要素在实践中是影响班组能力提升的最关键内因,三支柱模型也满足了精密机械加工班组发展需要的各类条件,更契合了以用户为导向的科研生产管理体系的要求。

(二)班组成员能力提升策略

从针对调研结果进行统计分析的基础上,确定机械加工生产班组成员能力提升引入十个要素,十个要素分别为“生产能力评量、执行能力评量、创新能力评量、现场管理力评量、资讯收集力评量、人际沟通力评量、服务导向力评量、压力承受力评量、团队合作力评量、互助培养力评量”。根据要素对生产班组能力影响程度确定要素权重,对生产班组成员能力进行评估测评。首先进行量化评估,量化提升分值,确定提升方案,实施方案,二次反馈再评估,形成螺旋式上升闭环控制能力提升系统。班组成员能力螺旋式上升闭环控制系统流程图,如图3。综合提升分值=∑要素权重*[理论预期分值-(自评分值*40%+考核分值*60%)]针对综合提升分值,有针对性进行班组成员能力提升培训课程设计,培训形式采用“体验式活动、案例谈论、团队活动、游戏、影片、测试、专家授课”等环节,开展专题培训,培训结束后,再评估,将评估结果二次反馈,重新制定提升实施计划。

(三)精密机械加工制造系统自动化策略

近年来,精密机械制造加工班组使用的设备已经由普通机床向单机自动化和局部自动化转变,随着计算机科学的进一步发展,以刚性自动化为基础的精密机械加工制造系统不能适应多品种、中小批量产品的市场竞争和型号任务配套高精度需求,只有以计算机技术和柔性制造技术结合的柔性制造系统(FMS--FlexibleManufacturingSystems)才能适应这一要求。为此,在提高班组成员综合素质和能力的同时,探索提高精密机械加工制造系统柔性和加工精度的自动化策略已经成为提升机械加工班组生产能力的一个关键要素。西欧和美国的工业统计表明,机械产品生产中单件、中小批生产零件占90%,大批大量生产仅占10%左右;机床在多品种、中小批量生产中,用于加工工件的时间仅占机床全年可利用时间的6%;工件整个制造加工中在机床上加工的时间仅占5%。这些分析表明升级现有刚性自动化机械加工系统,引入柔性制造单元或柔性制造系统使生产班组存在提高生产率的巨大潜力。因为柔性制造系统是借助于自动化物料传输装卸与存储和一组加工、处理、监测、计算机控制(CNC)设备或装配站组成的制造系统,有可能充分发挥工序集中的加工中心功能,减少工件在生产过程中的流动与等待时间;同时才有可能“延长”机床工作时间,提高机床的利用率,综合这两方面以便提高精密机械加工班组制造生产率。

(四)生产环境优化策略

精密机械加工班组的生产环境改善包含“硬环境”和“软环境”建设两部分。“硬环境”注重生产现场管理优化,“软环境”注重人文环境改善即管理升级、制度完善、文化落地等策略。1.以“7S”管理(Seiri整理、Seiton整顿、Seiso清扫、Seikeetsu清洁、Shitsuke素养、Safety安全、Saving节约)为工具强化“硬环境”建设,推进“现场目视化管理”,设立现场区域管理看板、研制生产进度管理看板、人员管理看板,优化现场U型化布局、促进流程改善,以满足柔性制造单元精密加工中心对环境较高要求。2.人文环境改善包含两部分班组管理和班组优秀文化培育班组管理从纵向上应注重目标管理、生产管理、质量管理、技术管理、设备管理、成本管理、资料管理七个方面制度完善和管理升级。从横向上应加强人员管理包括班组成员思想管理、素质管理。精密机械加工班组在优秀班组文化建设上更应倡导精品文化、高效文化、“三严”文化、创新文化、学习文化、关爱文化,以班组文化清晰、明确的导向力、凝聚力、辐射力、汇集班组与个人同频共振的发展动力。与此同时要将班组的文化理念和价值观融入到班组的激励机制之中,用文化为班组管理注入新的活力,用机制支撑班组文化,从而引导班组成员思想、规范班组成员行为,激发班组成员潜能,引领班组健康发展。培育精品文化是精密机械加工班组提升“软实力”的需要,以精湛的技艺,通过精细管理,在精良设备上精益生产出精尖的产品,培育出精英人才,应该是精品文化生动写照。严肃的态度、严谨的作风、严格的管理即“三严”文化是从事航天高科技事业最起码的要求。

二、模型应用分析

精密机械加工班组能力提升的三支柱模型,通过在航天四㎡一所车铣削班组实践应用,在班组能力全面提升方面得到验证并取得实质性进展。(1)班组成员能力提升,以数控车床操作工李某为例,技能等级为高级工,参加工作时间三年,“能力评估模型”测评4分,针对性为其设计“柔性制造系统原理、自动化控制概论、局域网络技术、数控机床编程技巧”等一级培训课程,培训形式采用“体验式活动、案例谈论、测试、银川小巨人车床厂专家授课”四个重要环节。重点加强了李某在操作能力和创新能力方面的欠缺,经过两个月实践环节一期跟踪,二次测评提高到7分,能力提升超过预期。(2)现代制造系统升级,四㎡一所采取引进小型化与经济性FMS即FMC(FMC—FlexibleManufacturingCell柔性制造单元)5台设备。介于单机NC机床和FMS之间,即可以未来升级FMS或自动化工厂、车间的组成模块,亦可独立使用或组合FMC使用,配备网络终端,具备自动加工与刀具破损检监测控制功能;铣削加工采用卧式加工中心配备6个自动交换托盘双交换工作台,同时培养班组成员工业工程化生产习惯,以适应航天产品单件试制与小批量生产的自动化柔性生产能力,最终实现两班有人值守加一班无人看守的高效生产模式,真正意义上实现精益生产。实践证明目前FMC的运转工作利用率是MC的1.5倍,发挥了应有的效果。日本的经验证明:完成相同任务的FMC的投资可比MC系统投资省17.34%,而应用三年获取利润则是MC的90倍以上(按三年折旧完计)。操作人员只有MC的82.67%.(3)现场环境和人文环境改善,扩建车铣削班组近1000平方米厂房,坚持科学管理原则、经济效益原则、把握生产现场管理整体性、系统性、开放性等特征,重点树立“现场也是市场”的理念,在完善班组制度的基础上通过“7S”以及“目视化”星级现场管理活动强化生产现场管理、优化生产现场环境,逐步建立起比较有效的生产系统内部与外部、环境之间物质和信息交换与反馈系统。井然有序的生产现场不仅给客户留下深刻印象,同时改变了部分领导者把全部精力投入“外交”、抓市场、筹资金,而顾不上抓现场,认为即便抓了也“远水解不了近渴”的片面看法。优秀文化落地,车铣削班组组先后将“精品文化”、“三严”文化理念强化渗透到班组管理制度,通过强化制度执行,从而有效地弥补人的有限理性的不足,让文化理念深入“人心”,实现从自发到自觉的转变,再从文化反过来又进一步促进管理制度升级,促使班组不断突破成长上限,实现人文管理的深刻变革。

三、结论

第4篇:精密机械加工范文

关键词:机械制造 工艺 精密 加工 技术

近年来,我国制造行业发展迅速给机械制造工艺和精密加工技术提出了更高的要求。因此,加强该方面的技术研究对促进我国现代化建设具有重要意义。

1.机械制造工艺和精密加工技术特点

我国机械制造工艺和精密加工技术经过多年发展,整体水平获得较大程度提升。同时经过分析和总结注意到了机械制造工艺和精密加工技术具有以下特点:

1.1.相互关联性

机械制造工艺和精密加工技术的关联性,不仅体现实际生产过程中,而且在产品的研发、设计、加工等环节多有体现。众多周知机械制造工艺和精密加工,步骤之间联系较为紧密,例如在设计过程中某个细节未准确把握,往往给后期的生产造成较大影响。因此,为提高机械制造工艺和精密加工技术水平,工作人员应准确把握各工作环节的相互关联性,并落实到实际的工作之中,为机械产品的生产奠定坚实的基础。

1.2.系统性

机械制造工艺和精密加工技术具备一定的系统性,即需要综合运用新材料、自动化、传感器、信息、计算机等技术,以保证整个生产工作的顺利进行。同时,还要求各生产部门共同配合系统的完成设计、加工、生产等工作。

1.3.具有全球性特点

随着科技的发展世界各国科技、经济交流越来越频繁,一定程度上增加了技术竞争激烈程度,使我国的机械制造工艺和精密加工技术面临全球性挑战。因此,为了提高我国机械制造水平和竞争力,应不断探讨和研究新型的机械制造工艺和精密加工技术。

2.现代机械制造工艺与精密加工技术

2.1.现代机械制造工艺

现代机械制造工艺涵盖的层面较广,包括铣、车、钳、焊等诸多制造工艺。下面结合笔者多年现代机械制造焊接工艺实践经验,对常见现代机械制造焊接工艺进行认真探讨。目前,现代机械制造焊接工艺包括搅拌摩擦焊、螺柱焊、埋弧焊、电阻焊、气体保护焊等。

2.1.1.搅拌摩擦焊接工艺

搅拌摩擦焊接工艺由英国研发而成,曾在船舶、车辆、飞机、铁路等领域得到广泛应用。该焊接工艺具有较多优点,例如,焊接时仅需要焊接搅拌头,而不需要焊剂、焊条、焊丝等材料。而且在焊接铝合金时每个搅拌头焊接的焊缝达800m,且只需较低温度即可完成焊接任务。

2.1.2.螺柱焊焊接工艺

该焊接工艺指将螺柱和待焊物件的表面相互接触,接通电弧融化待焊物件表面,同时给螺柱增加一定的压力完成焊接的一种工艺。螺柱焊焊接工艺由拉弧式和储能式之分前者拥有较大的熔深,因此在重工业生产中应用较为广泛,后者熔深较小常应用焊接薄板。两种焊接方式在单面焊接上优点较为突出,例如,焊接时不需添加粘结、钻洞、打孔等操作。同时焊接时漏水、漏气机率较低,因此该焊接工艺在现代机械生产中应用广泛。

2.1.3.埋弧焊焊接工艺

埋弧焊焊接工艺主要通过燃烧电弧实现焊接,包括半自动和自动两种焊接方式,其中半自动埋弧焊方式不管移动电弧还时送进焊丝均需人工完成,具有较大劳动量目前已不再应用。而自动焊接方式移动电弧和送进铁丝由小车负责,操作者只需焊接即可。例如,焊接钢筋时为了提高焊缝质量主要应用电渣压力焊而取代传统的手工电弧焊。运用该工艺进行焊接时应选择合适的焊剂,尤其应保证焊剂的碱度应满足焊接要求。

2.1.4.电阻焊焊接工艺

利用该工艺焊接时需将待焊接物置于正负电极间,接通电源借助电阻热效应,使待焊接物表面熔化而实现焊接的工艺。该焊接工艺具有加热时间短、生产效率高、焊接质量高等诸多优点,广泛应用在家电、汽车、航空航天等机械生产领域。不过焊接后存在不易维修、所用设备成本高等缺点。

2.1.5.气保护焊焊接工艺

气保护焊焊接获得的热源来自于电弧,较为显著的特点为采用气体保护待焊接物。利用该焊接工艺焊接时电弧四周会产生气体保护层,将空气、熔池、电弧分割开来,以此避免有害气体影响焊接质量。焊接的关键在于应保证电弧充分、稳定的燃烧。实际施工时考虑到保护气体的价格,多使用二氧化碳作为保护气体而被应用在现代机械生产中。

3.精密加工技术

目前精密加工技术包括纳米技术、微细加工技术、超精密研磨技术、模具成型技术以及精密切削技术等。其中纳米技术属于先进工程技术和现代物理结合的产物,其能在硅片上刻写较多纳米级别宽的线,从而提高信息储存密度,因此在精度生产要求较高的机械生产中应用较为广泛;微细加工技术的出现满足了电子器件体积小的发展要求,因此常应用在精密机械设备制造中;生产集成电路硅片时,对其表面粗糙程度要求较高,传统的抛光和打磨方式已不能满足要求,此时超精密研磨技术的出现很好的解决了该问题,例如非接触研磨和弹性发射加工等;据相关资料显示电机、飞机、汽车等机械设备生产时多用到模具成型技术。在实际生产中对成型的精度要求较高,目前运用电解加工工艺能使模具精度达到纳米水平,提高了工件表面质量;生产器件时为满足精度要求常使用切削方法,该方法的运用一定程度上提高产品质量,不过生产过程中应避免工件、刀具、机床等因素的干扰,尤其要求机床具有较高的抗振性能和较小的热变形。因此需应用精密控制技术、精密定位技术等。另外,为满足生产要求也可提高机床主轴转速,例如超精密加工机床的精度每分钟转速高达几万转。

4.总结

现代机械制造工艺和精密加工技术与机械制造行业的蓬勃发展具有重要关系,尤其在我国现代化进程中相关部门应充分认识现代机械制造工艺和精密加工技术的重要性,在总结成功经验的基础上不断研究和探索新的制造工艺和加工技术,提高机械生产水平,为我国经济发展作出应有贡献。

参考文献:

[1]赵惠贤,田小英. 浅谈现代机械制造工艺及精密加工技术[J]. 科技风,2012,15:162.

[2]黄庆林,张伟,张瑞江. 现代机械制造工艺与精密加工技术[J]. 科技创新与应用,2013,17:33.

第5篇:精密机械加工范文

1现代机械制造工艺

(1)气体保护焊焊接工艺。气体保护焊焊接工艺是一种以电弧为热源、以气体为被焊接物体的保护介质的焊接工艺。焊接过程中,气体会利用自身功能在电弧周围形成一层强大的保护层,能发挥熔池及分割电弧与空气的作用,从而降低有害气体可能对焊接造成的危害性。另外还能促使电弧稳定、充分燃烧。较为典型的有二氧化碳保护焊等。

(2)螺柱焊焊接工艺。螺柱焊焊接工艺是确保螺柱一端接触到管件或板件的表面,直至接触面出现融化现象,增加螺柱压力来完成焊接。主要焊接方式包括拉弧式和储能式。两者均为单面焊接,其中拉弧式多用于重工业焊接,储能式则多用于薄板焊接。该焊接工艺在使用过程中不会出现漏气漏水等现象,因此得到广泛应用。

(3)搅拌摩擦焊焊接工艺。搅拌摩擦焊焊接工艺最早应用于车辆制造、飞机制造、铁路制造等众多机械制造行业,且随着经济的发展,其应用范围不断增加。当前,我国的搅拌摩擦焊焊接工艺已十分成熟,在焊接过程中仅会产生较少的消耗性材料,具有较大实用性。并且在对铝合金进行焊接的过程中,能直接焊接800m的焊缝,同时焊接温度也较低。

(4)电阻焊焊接工艺。电阻焊焊接工艺是在正负电极之间置入被焊接物体,并实施通电,通过电流接触被焊物体的表面及附近产生的电阻热效应而进行融化,促使其与金属融为一体。电阻焊焊接工艺优点众多,比如生产效率高、机械化程度高、焊接质量高、加热时间短等,所以被广泛应用到航空航天、汽车、家电等现代机械制造业中。

(5)埋弧焊焊接工艺。埋弧焊焊接工艺是指在焊剂层下燃烧电弧进行焊接,有自动和半自动之分。自动埋弧焊往往仅用于焊接,而焊丝及移动电弧则需要专门的小车进行输送。但是在半自动埋弧焊焊接中,焊丝及移动电弧往往需要手动输送,因此在发展过程中几乎被淘汰。另外,选用埋弧焊焊接工艺,应该特别重视焊剂的选择、碱度等最能体现焊接工艺性能、冶金性能、电流种类等级的重要技术标准。

2精密加工技术

(1)精密切削技术。通常情况下,精密切削技术是直接利用切削的方式得到高精度,所以对切削所得产品提出更好的要求。比如必须符合高精度表面粗糙度的要求。但值得注意的是,如果要利用切削方式得到高精度及高水平的表面粗糙度,就应该积极排除机床、刀具、工件及外界等因素的影响。比如为了不断提升机床的加工精度和准度,就必须选择有着较高刚度、较小热变形度、良好抗振性能的机床。

(2)超精密研磨技术。针对加工与其表面粗糙度达相符1~2mm,并利用原子级的研磨抛光硅片。以往的研磨、磨削、抛光等传统加工方法都不能满足工作需要。所以必须深入分析和研究新原理及新方法。正是在这样的发展背景下,超精密研磨技术应运而生,并在机械精密技工中发挥着越来越重要的作用。

3现代机械制造工艺及精密加工技术的联系与特点

(1)现代机械制造工艺及精密加工技术的关联性。就制造技术而言,现代机械制造工艺与精密加工技术都涉及机械行业的众多方面,比如在制造工程、产品设计与开发、产品工艺设计、加工制造、产品销售等,一旦这些环节中发生问题,会直接影响到整个工程链。所以必须高度重视现代机械制造业与精密加工技术之间的相关性,这样才能真正促使机械技术的进步和发展。因此在具体实践中,必须充分结合现代机械技术与精密加工技术,促进机械进步,实现技术的快速发展与进步。

(2)现代机械制造工艺及精密加工技术的系统性。现代机械制造生产是一项较为复杂的系统工程,在现代机械制造工艺及精密加工技术的使用过程,比如产品设计、生产及销售等过程中,会涉及到计算机信息技术、现代传感技术、生产自动化技术等众多技术。除此之外,还有可能需要应用新工艺、新材料、新管理方法等。所以,从整体上来说,机械行业的制造技术离不开多种现代先进科技技术的综合应用,这就使得现代机械制造工艺及精密加工技术有着较大的系统性。

(3)现代机械制造工艺及精密加工技术的全球化。当前,随着经济全球化的发展,我国的众多经济领域逐步实现了与国际的接轨,经济全球化趋势已发展围城当前社会发展的重要趋势。同时,经济全球化背景下,各国市场竞争加剧,我国机械制造业为提升企业在国内和国际市场上的竞争力,就必须紧跟时展步伐,积极引进国际先进机械制造工艺及精密加工技术,加大企业内部科研投入,培养高级技术人员,研发符合企业实际情况的机械制造工艺及精密加工技术,从而实现机械制造企业的健康及可持续发展。

第6篇:精密机械加工范文

关键词:现代机械;制造工艺;技术;精密加工

DOI:10.16640/ki.37-1222/t.2017.01.006

0 前言

在社会快速发展的今天,人们对物质的需求不断增加,为保证日后的各项产品能够符合需求,必须提升机械制造工艺水平。现代机械制造工艺的应用,在很大程度上推动了产品的更新换代,同时提升了产品本身的性能、安全性大幅度,减少了过往的缺失与不足,得到了较多用户的肯定。在精密加工技术方面,设计者通过将产品的细节内容进行深化处理,确保各方面的工作得到了预期的效果,为用户的生活、工作品质提升,提供了更多的帮助。

1 现代机械制造工艺

1.1 气体保护焊接工艺

从工艺本身来分析,现代机械制造的过程中,必须减少侵入性的操作,要将机械的完整性更好的呈现出来,在不影响性能的情况下,提高机械产品的外观美感,这样才能得到市场的更大欢迎。气体保护焊接工艺的运用,主要是将气体作为电弧介质,同时针对电弧和焊接区域进行有效的保护处理[1],最终得到的机械产品,将会在各个性能指标上大幅度的提升。例如,二氧化碳气体保护焊接的应用,可以将工作的成本有效降低,同时还提高了机械产品的质量,即便是在维护的过程中,也可以取得较好的成效。就气体保护焊接工艺本身而言,其在操作上是非常简单的,基本上不会出现熔渣的现象,同时在焊接的速度上比较理想,得到了行业内的较高认可。

1.2 电阻焊工艺

现代机械制造的过程中,在工艺选择上必须按照多元化的模式来开展,不能总是在传统的层面上努力。我国作为一个发展中国家,倘若在现代机械制造工艺上表现的非常单一,则很容易在后续的工作上形成恶性循环。电阻焊工艺的应用,直接推动了现代机械制造向前发展。对于电阻焊工艺而言,其主要指的是将被焊接的工件,有效的压紧在两个电极之间,而后通过焊接的电流,将产生的电阻热进行充分的利用,进而将工件的接触面,或者是将工件的相邻区域位置,进行有效的熔化处理,或者是达到预期的塑性状态[2]。电阻焊在操作的过程中,虽然在理论上比较丰富,但是具体的应用手段比较简单,加热的时间并不算长,工艺的成本也比较低廉,是目前主流的现代机械制造工艺。

2 精密加工技术

2.1 精密切削技术

就目前的工作而言,任何一项产品的问世,都会经过市场的不断考量与筛选,最终能够被消费者所认可的产品,必定在技术上拥有过人之处,可以经受各种专业技术手段的分析与测评。现如今,精密加工技术得到了广泛的欢迎,普遍认为的观点是,该项技术的落实,能够在很大程度上促进产品的精细化水平提升,告别过往的粗糙现象[3]。精密切削技术,作为重要的体现内容,是最常用的技术手段。该技术的应用,可以将刀具、工件、机床的使用数量大幅度的减少,同时将机床的运转速度进行有效的提升,保证得到的产品,可以在误差上几乎为零。除此之外,精密切削技术在应用的过程中,还可以根据不同的加工要求以及市场的消费趋向,阶段性的做出革新处理,主要是从细节上进行有效的改良,保证消费者能够获得更好的产品体验。

2.2 精密研磨技术以及纳米技术

在现代化的工作当中,精密加工技术的落实,同样要在多样化方面有所努力,凭借单一的内容,根本无法满足广泛的要求,在很多方面都容易造成严重的缺失现象。精密研磨技术及纳米技术,是社会及行业追求的主流内容,产生的积极影响比较突出。精密研磨技术在集成电路板硅片的加工制造中具有重要的作用,并且随着现代科学技术的发展,精密研磨技术也有了新的发展,当前超精密研磨技术已经较为成熟并有了应用,在机械加工领域展现出了优势。纳米技术是现代先进的工程技术和现代物理学科理论的结合,经过多年的发展研究,纳米技术已经发展成熟,包括在硅片上刻字都已经不再是技术难题,纳米技术的发展使得信息存储密度有了巨大的增长,在应用领域具有深远的意义。

3 总结

本文对现代机械制造工艺与精密加工技术展开讨论,从客观的角度来分析,现代机械制造工艺比较完善和健全,能够满足社会上的需求;精密加工技术的操作,越来越符合社会的发展趋势,很多产品的开发,都能够对生活、工作产生较大的推动作用,很少出现严重的隐患。在今后的工作中,应该将机械制造工艺进一步的拓展,针对不同的产品,应用出合理的工艺流程,克服细节方面的不足。在应用精密加工技术的过程中,则需进一步简便操作手段,提高指标。

参考文献:

[1]黄庆林,张伟,张瑞江.现代机械制造工艺与精密加工技术[J]. 科技创新与应用,2013(17):33.

第7篇:精密机械加工范文

一、加工原理误差

加工过程由于采用了近似的加工方法,近似的传动或近似的刀具轮廓而产生的加工误差。

1.1采用近似的加工运动造成的误差

在许多场合,为了得到要求的工件表面,必须在工件或刀具的运动之间建立一定的联系。从理论上讲,应采用完全准确的运动联系。但是采用理论上完全准确的加工原理有时使机床或夹具极为复杂,致使制造困难,反而难以达到较高的加工精度,有时甚至是不可能做到。如在车削或磨削模数螺纹时,由于其导程t=πm,式中有π这个无理因子,在用配换齿轮来得到导程数值时,就存在原理误差。

1.2采用近似的刀具轮廓造成的误差

用成形刀具加工复杂的曲面时,要使刀具刃口做得完全符合理论曲线的轮廓,有时非常困难,往往采用圆弧、直线等简单近似的线型代替理论曲线。如用滚刀滚切渐开线齿轮时,为了滚刀的制造方便,多用阿基米德基本蜗杆或法向直廓基本蜗杆来代替渐开线基本蜗杆,从而产生了加工原理误差。

二、机床几何误差及磨损其对加工精度的影响

加工中刀具相对于工件的成形运动一般都是通过机床完成的,因此工件的加工精度在很大程度上取决于机床的精度。机床制造误差对工件加工精度影响较大的有:主轴回转误差、导轨误差和传动链误差。

2.1主轴回转误差

主轴的回转误差直接影响被加工工件的形状和位置精度,可分解为径向跳动、轴向跳动和角度摆动。由于存在误差敏感方向,加工不同表面时,主轴的径向跳动所引起的加工误差也不同。例如,在车床上加工外圆或内孔时,主轴的径向跳动将引起工件的圆度误差,但对于端面加工没有直接影响。车端面时,主轴的轴向跳动将造成工件端面的平面度误差,以及端面相对于内、外圆的垂直度误差;车螺纹时,会造成螺距误差。主轴的轴向跳动对加工外圆或内孔的影响不大。主轴的角度摆动对加工误差的影响与主轴径向跳动对加工误差的影响相似,主要区别在于主轴的角度摆动不仅影响工件加工表面的圆度误差,而且影响工件加工表面的圆柱度误差。

2.2导轨误差

导轨在机床中起导向和承载作用,它既是确定机床主要部件相对位置的基准,也是运动的基准。它的各项误差直接对形状精度产生影响。导轨在水平面内的直线度误差将直接反映在被加工工件表面的法线方向(误差敏感方向)上,对加工精度的影响最大。导轨在垂直平面内的直线度误差对加工精度影响很小,一般可忽略不计。前后导轨的平行度误差会使工作台在运动过程中产生摆动,刀尖的运动轨迹为一条空间曲线,使工件产生形状误差。

2.3传动链误差

切削过程中,工件表面的成形运动,是通过一系列的传动机构来实现的。传动机构的传动元件有齿轮、丝杆、螺母、蜗轮及蜗杆等。这些传动元件由于其加工、装配和使用过程中磨损而产生误差,这些误差就构成了传动链的传动误差。传动机构越多,传动路线越长,则传动误差越大。机床传动链误差是影响表面加工精度的主要原因之一。

三、刀具、夹具的制造误差及磨损

刀具误差对加工精度的影响随刀具的种类不同而不同。一般刀具(如车刀、镗刀及铣刀等)的制造误差,对加工精度没有直接的影响;定尺寸刀具(如钻头、铰刀、拉刀及槽铣刀等)的尺寸误差,直接影响被加工零件的尺寸精度;成形刀具(成形刀、成形铣刀以及齿轮滚刀等)的误差,主要影响被加工面的形状精度。而刀具的磨损会直接影响刀具相对被加工表面的位置,造成被加工零件的尺寸误差,夹具的作用是使工件相对于刀具和机床具有正确的位置,因此夹具的制造误差对工件的加工精度(特别是位置精度)有很大影响。夹具的制造误差由定位误差、夹紧误差、夹具的安装误差、导引误差、分度误差以及夹具的磨损组成。夹具的磨损会引起工件的定位误差。

四、工艺系统受力变形引起的误差

工艺系统是一弹性系统,在加工时由于切削力、夹紧力和传动力等作用会产生相应变形破坏了刀具和工件间的正确位置,从而产生加工误差。

4.1切削过程中受力点位置变化引起的加工误差

切削过程中,工艺系统的刚度随切削力着力点位置的变化而变化,引起系统变形的差异,使被加工表面产生形状误差。

4.2切削力大小变化引起的加工误差——误差复映

工件的毛坯外形虽然具有粗略的零件形状,但它在尺寸、形状以及表面层材料硬度上都有较大的误差。毛坯的这些误差在加工时使切削深度不断发生变化,从而导致切削力的变化,进而引起工艺系统产生相应的变形,使得零件在加工后还保留与毛坯表面类似的形状或尺寸误差。当然工件表面残留的误差比毛坯表面误差要小得多。这种现象称为“误差复映规律”,所引起的加工误差称为“误差复映”。除切削力外,传动力、惯性重力、夹紧力等其它作用力也会使工艺系统的变形发生变化,从而引起加工误差,影响加工精度。

五、工艺系统受热变形引起的误差

机械加工中,工艺系统在各种热源的作用下产生一定的热变形。由于工艺系统热源分布的不均匀性及各环节结构、材料的不同,使工艺系统各部分的变形产生差异,从而破坏了刀具与工件的准确位置及运动关系,产生加工误差。尤其对于精密加工,热变形引起的加工误差占总加工误差的40%~70%。

5.1机床热变形对加工精度的影响

机床受热源的影响,各部分温度将发生变化,由于热源分布的不均匀和机床机构的复杂性,机床的各部件发生不同程度的热变形,破坏了机床各部件原有的相互位置关系,影响加工精度。不同类型的机床由于热源不同,对加工精度影响也不同。

5.2刀具热变形对加工精度的影响

尽管在切削加工中传入刀具的热量只有3%~5%,但由于刀具的尺寸和热容量小,故仍有很高的温升,从而引起刀具的热伸长并造成加工误差。粗加工时刀具的热变形对加工精度的影响可忽略不计;对于加工要求较高的零件,刀具的热变形对加工精度影响较大,使加工表面产生形状误差。例如用高速钢刀具车削时,刃部的温度高达700℃~800℃,刀具热伸长量可达0.03mm~0.05mm。

5.3工件热变形对加工精度的影响

工件的热变形主要是由切削热引起的,热变形情况与加工方法和是否均匀受热有关。

5.3.1工件均匀受热

对于一些简单的均匀受热工件,如车、磨轴类件的外圆,待加工后冷却到室温时其长度和直径将有所收缩,由此而产生尺寸误差;加工盘类零件或较短的轴套类零件,由于加工行程较短,可以近似认为沿工件轴向方向的温升相等。对于较长工件(如长轴)的加工,开始走刀时,工件温度较低,变形较小。随着切削的进行,工件温度逐渐升高,直径逐渐增大,因此工件表面被切去的金属层厚度越来越大,冷却后不仅产生径向尺寸误差,而且还会产生圆柱度误差;对于轴向精度要求较高的工件(如精密丝杠),其热变形引起的轴向伸长将产生螺距误差。

第8篇:精密机械加工范文

关键词:机械加工;工艺;影响

引言

机械加工的工艺主要是对机械设备运用对零部件加工,零件的加工过程中,对精密度是有着严格要求的,只有充分重视精密度的严格控制,才能真正促进零件加工水平提高。从理论上对机械加工工艺的研究分析,以及对零件加工精度影响的分析,就能有助于从理论上给予支持。

1机械加工工艺和零件加工精密度关系

机械加工工艺的优化实施,对实际零件加工的要求能得以满足,对零件的质量控制也比较有利。对机械加工完善后就要实施检验工作,对于不符合规范的零件淘汰掉,机械加工的工艺流程能够严谨的呈现,就对零件加工精密度有着直接影响[1]。具体机械加工工艺的实施,对合格零件的程序也有着改造作用,结合相应标准对零件加工的要求要严格实施,这样就能有效避免外界因素干扰。机械加工的工艺是多样化的,在对零件的精度控制方面也有着不同要求,只有提高了机械加工的整体工艺水平,才能有助于机械加工的精密度控制。所以机械加工工艺和零件加工的精密度就有着比较密切的关系。

2机械加工工艺对零件加工精密度影响和提高策略

2.1机械加工工艺对零件加工精密度影响

机械加工工艺对零件加工精密度的影响是多方面的,其中的热变因素影响就比较突出,主要是机械加工中机床出现了热变的问题。在对零件加工中,机床是一直不停的使用的,在机床和构成部件出现了相互摩擦之后,机床的局部以及整体产生热量,在热胀冷缩的原理下,机床的温度就会随即升高面对机床的契合度就会产生影响[2]。这样在对零部件加工的时候,受到机床自身的结构没有合理化呈现,这就必然会影响零件加工的精度。热变影响当中的工件热度也是比较突出的,零件的实际加工过程中,会和机床以及刀具等接触摩擦产生热量发生变形,这就影响了零件的质量,会造成工件变形等。数控技术在当前的零件加工中得到了广泛应用,数控机械加工的工艺实施中,对零件精度产生的影响也比较深远。数控机床的应用有着其自身的优势,编程原点的选择上对加工的精度影响比较大。编程原点的选择恰当性对零件加工精度会造成直接影响,还有是编程的数据处理方面对零件加工精度影响也比较大。以及加工的路线和插补运算等,都会对零件加工的精密度产生影响。

2.2机械加工工艺零件加工精密度提高策略

机械加工工艺实施中,对零件加工的精密度进行提高,就要从多方面充分重视,对机械加工的工艺系统设备的整体质量要得以提高,系统的应用要完善化。完整的零件加工系统设备,对零件产品的质量保障就比较有利,这也是机械加工的核心[3]。所以在对机械加工工艺系统设备的完善实施中,可通过新技术的引进,对加工系统中的不足进行弥补,对系统设备的研发力度要不断的加强,对机械系统设备的维护管理工作要加强重视,这些措施方法的实施对零件建工精度的控制就有着积极意义。注重对温度的合理化控制。机械加工过程中产生的问题对零件的精密度就有着直接影响,所以为保障零件加工的精密度就要充分重视加工温度的有效控制。机械设备运行的速度比较快,温度就会升高,在这一过程中要通过冷水的方法进行降温。对零件进行打磨的的时候,砂轮的高速旋转和零件的摩擦就会产生很大热量,在温度上升后在和零件接触的时候就比较容易造成零件的变形。所以通过冷水的方法降温就能有效避免这一问题出现。减少外力影响零件加工。机械加工工艺实施后,零件就会受到外力因素的影响。在受到挤压力以及摩擦力等因素的影响下,对零件加工的精密度就很难得以保障。所以在这一过程中,就要充分重视零件加工工作人员要对机械加工设备进行检查,发现设备的构件比较紧的时候就要做出适当的调整[4]。另外就是要定期的对机械加工设备的表面实施打磨处理,最大限度的降低设备表面和零件产生摩擦力,从而有效保障零件加工的质量。充分重视对零件制作过程的有效控制。机械加工工艺的实施中,在对零件的加工中,零件加工过程中的就显得比较重要。要最大化的降低机械设备加工的几何精度误差。对机械设备的检查工作实施就显得比较关键。要从多方面对机械设备自身的误差进行检验,对已经用于零件加工作业的设备要结合实际的需求进行改造,对零件产生的误差原因要详细分析。总结数据资料的分析,以及机床运行系统当中输入数据的准确性等。找到了机械设备自身存在的问题之后,针对性的加以解决,这样就能提高零件加工的精密度。在这些层面得到了充分重视,才能真正有助于零件加工的质量水平提高。

3结语

综上所述,对机械加工工艺的实施,要注重对零件的精密度保障,只有如此才能有助于零件的正常使用。在机械加工工艺实施中,会受到诸多层面的因素影响,对零件加工的精密度就很难得到保障。所以通过从理论层面对零件加工精密度的研究分析,就能从理论上为实际零件加工提供理论依据,从而促进零件加工的整体质量提高。

参考文献:

[1]司立坤,刘鑫.机械零件加工精度测量技术及相关问题阐述[J].科学大众(科学教育),2016(11).

[2]亓文学.浅谈机械加工工艺对零件加工精度的影响[J].现代制造技术与装备,2016(11).

[3]李明明,白志红.机械加工工艺技术误差分析与控制[J].工业技术创新,2016(05).

第9篇:精密机械加工范文

机械设计技术。机械设计技术包括机械工艺结构设计、结构设计、材料选择和设计方法等。随着时代的发展传统的机械设计方法在一些方面如数控机床设计、汽轮机叶片设计、节能电机设计等,已越来越难以达到现代设计要求。当前,设计方法已从经验设计、直觉设计发展为先进理论与有效方法设计,在各个设计阶段充分利用先进理论和有效方法来解决问题,成为现代机械设计的发展趋势。现代设计涉及到优化设计、仿真设计、系统工程等内容,应用信息技术和科学设计方法能有效提高设计水平和设计效率,促进设计技术发展。

机械制造工艺。(1)高精度。精度是现代机械制造工艺的重要要求,尤其是在国防、科研、航空航天等领域中,对精度的要求更加严格;(2)高效率。高效率能极大的提高加工速度,缩短加工周期,如在冷加工工艺通常采用三种方式提高效率:使用陶瓷刀具、金刚石刀具、涂层刀具等加快切削速度;采用新的加工工艺如在加温和震动中切削,使用化学腐蚀、激光等方式进行加工;集中加工,将各类加工设备集于一体,在计算机的控制下完成切削加工;(3)高柔性。柔性加工是机械制造发展的重要方向,柔性加工包括加工的灵活性、多适应性和加工品种的多样性等。近年来,各种工业机器人和数控机床的使用使得柔性加工更加现实。柔性制造系统可分为柔性制造自动线、柔性制造单元和柔性制造系统,均以数控设备为基础,以自动运储系统相连接,通过计算机的控制完成多种零件的生产加工。

精密加工技术

精密切削技术。用直接切削来得到高精度仍是常用的方法,然而,要想得到高水平和高精度的产品,必须尽可能的减少刀具、机床和工件等因素的影响。如要求机床具有高刚度、小热变形和抗震性能,就必须有更先进的技术,如精密控制技术、空气静压轴承、微驱动与微进给技术等,此外,提高机床转速也是有效的办法,当前的超精密加工机床早已提高到每分钟几万转。

模具成型技术。当前,汽车、电机、飞机、仪表和家电产品中至少有三分之一的零件是通过模具加工制造的。模具加工的关键在于如何提高模具的加工精度,这也是衡量一个国家制造水平的重要标志。电解加工工艺能使模具精度达到微米级,解决工件表面质量的问题,尤其利于复杂腔型的加工。

超精密研磨技术。超精密研磨技术通常用于集成电路基板硅片的加工,其表面粗糙度要求达到1—2毫米,传统研磨、磨削和抛光很难满足其加工要求,须进行原子级抛光。因此,各种新方法、新原理的超精密研磨技术应运而生,如用于弹性发射加工、流体动压型悬浮研磨的非接触研磨,通过加工液促进化学反应的化学研磨等。新的研磨方法与原理极大的促进了超精密研磨技术的不断发展。

纳米技术。纳米科学是涉及到多个学科的科学,是先进工程技术与现代物理学相结合的产品。几年来,纳米机械技术取得了快速的发展,能够在硅片上刻画纳米宽的线,这充分表明信息存储的密度提高了若干个数量级。

微细加工技术。随着科技的不断发展,电子元件的体积也越来越小而使用频率则越来越高,能量消耗也应越来越低。超微细粒子技术的问世使得半导体加工精度达到了几百个埃的程度。

总结