公务员期刊网 精选范文 材料加工技术范文

材料加工技术精选(九篇)

材料加工技术

第1篇:材料加工技术范文

【关键字】材料加工 新材料 加工技术 制造业

1.前言

材料加工是一门多学科交叉的学科,它涉及的内容包括材料、物理、力学、机械、信息等,它涵盖的内容有很多,主要包括金属塑性成形、表面处理、粉末冶金成形等方面[1]。材料技术的发展对材料的生产和改性有巨大促进作用,从而使得材料生产效率有了较大提高,生产成本得以降低,材料使用寿命得到保证,同时,这也对促进分析研究新型材料、使研究成果产业化发展有着重要意义。今天,各种新技术的发展日新月异,然而,材料加工技术仍然是无可替代的,它对国民经济的发展起着十分重要的作用。如今,随着科学技术的飞速发展,不断有新的材料加工技术出现。在机械制造行业里,材料加工有着举足轻重的地位,在制造行业中起着基础作用。

2.材料加工技术的发展现状

从20世纪至今,出现了许多新型材料与新材料技术,主要代表有高温超导材料、纳米材料等,造成这种现象的重要因素是飞速发展的科学技术,如电子信息技术和航空航天技术,这些技术大大促进了新型材料的研究,许多新材料技术得到了开发。

然而,仍有个重要的问题存在,新型材料的研发与材料加工技术发展并没有达到同步,这样大大制约了新型材料的发展与运用。比如,一种性能优越的新型材料,具备很好的实用性,但是由于没有适宜的加工技术,导致该材料的规模化生产和利用效率低下且成本较高,制约了材料的发展,使得高性能的材料没有得到很好的运用。由此看来,发展材料加工技术的任务势在必行。

21世纪以来,材料加工的发展将会体现出的主要特征有:

(1)实现材料加工工艺与材料性能设计的统一。要实现这个统一,将会在材料加工技术领域发生重大变革,这是进入发展加工工艺技术的标志。

(2)在生产加工过程中对材料各个方面精确控制。要做到这些,不仅需要高度发展的计算机模拟仿真技术,还需要完备的数据库系统。

20世纪90年代,材料加工技术的革命已经开始,其中,就如今的发展情况来说,人工点阵与复合材料特别能代表此次的革命,尤其是人工多层膜材料以及各种层状复合材料。

3.材料加工技术的展望

3.1材料加工技术总体发展趋势

材料技术的发展对材料的生产和改性有巨大促进作用,从而使得材料生产效率有了较大提高,生产成本得以降低,材料使用寿命得到保证,并且,这也对促进分析研究新型材料、使研究成果产业化发展有着重要意义[2]。随着科学技术的飞速发展,材料加工技术快速地发展,不断有新的材料加工技术出现。该技术的总体发展趋势,可以总结为三点,分别是过程综合、技术综合、学科综合。

(1)过程综合。过程综合的趋势涵盖了两层意思,第一,实现材料加工工艺与材料性能设计的统一,使新型材料的研发与材料加工技术发展同步,使各个环节紧密地联系在一起;第二,指的是材料加工技术的各个过程的统一,这也可以称作短流程化。

(2)技术综合。材料加工已经逐渐发展成为结合多种学科的一门科学,材料加工技术综合了其它学科,使得材料加工得到了长足发展,如制备技术与信息技术的综合。

(3)学科综合。学科综合在许多方面都有所体现,主要表现为三个方面:第一,与传统三级学科相结合,例如与铸造技术综合;第二,与二级学科综合,例如与材料物理与化学综合,从一定意义上来看,与二级学科的综合是由现代科学技术的发展要求造成的,要求根据使用需求对材料性能进行设计,在这一层面进行学科综合的主要特点是,各学科间界限逐渐变得不清晰,各学科相互渗透;第三是与其他一级学科的综合,是材料科学与工程学科以外学科的综合[3]。

3.2金属材料加工技术的主要发展方向

上文着重叙述了材料加工的总体发展趋势,现在着重对金属材料今后的主要发展方向进行论述,发展方向主要包括六个方面:

(1)缩短常规材料加工流程化,提高加工效率。今后的材料加工趋势将打破传统成形加工方式,使得材料加工工艺流程得以简化缩短,有效简化工艺环节的冗余部分,最终连续化生产,从而达到提高效率的目的。

(2)成形加工技术更加先进,对组织和材料性能进行高效精确的控制。使得传统材料品质得到很大提升,更便于使用。对于难以加工的材料,将会大大提升其加工性能,并开发出高附加值的材料。

(3)材料设计、制备与成形加工一体化,有效简化材料加工工艺流程,实现连续化生产,从而达到提高生产效率的目的。

(4)进行新技术研发,开发先进的制备技术与成形技术,研发新材料,例如,大块非晶合金制备与应用技术、电磁约束成形技术等。

(5)运用计算机科学,对材料加工过程中的数值进行模拟仿真,并利用所得数据建立相应材料的数据库,这将大大促进材料加工技术的发展。

(6)材料制备与加工的智能化,这是材料制备加工新技术中最被关注的研究方向,智能化的生产与加工可以使材料生产的可靠性以及生产效率都得以提升,并使得原材料的消耗及废弃物的排放减少。

4.结语

从20世纪至今,出现了许多新型材料与新材料技术,如电子信息技术和航空航天技术,这些技术大大促进了新型材料的研究,许多新材料技术得到了开发,材料加工技术的过程、技术以及学科综合得以深化。材料技术的发展对材料的生产和改性有巨大促进作用,从而使得材料生产效率有了较大提高,生产成本得以降低,材料使用寿命得到保证,并且,这也对促进分析研究新型材料、使研究成果产业化发展有着重要意义。材料加工技术以其在科技中无可替代的地位,对我国国民经济的发展起着十分重要的作用。

【参考文献】

[1]曾大本.面向汽车轻置化材料加工技术的发展动向[J]铸造纵横

第2篇:材料加工技术范文

关键词 脆性材料;工程陶瓷;陶瓷加工;特种加工

中图分类号TM28 文献标识码A 文章编号 1674-6708(2014)119-0119-02

0引言

陶瓷材料具有良好的耐高温耐腐蚀性能、强度高、硬度高,是优良的高性能材料。随着陶瓷材料学的发展,其制备技术也越来越多,陶瓷材料的性能也逐步得到提高。陶瓷材料可以用到空间探测、航空航天等高技术领域中。

陶瓷材料的原子通过共价键、离子键结合,而金属材料通过金属键相结合,所以陶瓷材料与金属材料有完全不同的性质。陶瓷材料在常温下对剪切应力的变形阻力很大,且硬度很高。由于陶瓷晶体是由阳离子和阴离子以及它们之间的化学键组成的,化学键具有方向性、原子堆积密度低、原子间距大,使陶瓷显示出很大的脆性,加工产生的缺陷多,所以是典型的难加工材料。发展高效低成本的加工技术十分重要。

1陶瓷材料的车磨削加工技术

陶瓷材料的脆性极高,似乎很难将陶瓷与车削联系起来,但是陶瓷材料的压痕实验表明如果选用合适的金刚石刀具角度和切削参数仍然可以实现陶瓷材料的延性加工。相关的实验也表明采用超硬刀具材料都可以加工陶瓷材料。李湘钒超精密车削陶瓷材料的实验表明采用W-Co类硬质合金可以加工陶瓷零件。日本的原昭夫曾采用聚晶金刚石刀具车削Al2O3和Si3N4陶瓷。目前车削陶瓷材料主要选用金刚石刀具。在刃磨性能上单晶金刚石刀具优于聚晶金刚石刀具,它们都属于微量切削,去除率较低,加工质量和精度难以保证,还有待于进一步的研究。

磨削可以满足硬金属的加工要求,因而也可以成为陶瓷材料的主要加工方法,其精度和效率比较适中。磨削陶瓷材料一般选用金刚石砂轮,金刚石砂轮磨削材料时磨粒切人工件,磨粒切削刃前方的陶瓷表面材料受到挤压,当压力值超过陶瓷材料承受极限时被压溃,形成碎屑。同时磨粒切人工件时,由于压应力和摩擦热的作用,磨粒下方的材料会产生局部塑性流动,形成变形层,当磨粒切出时,由于应力的消失,引起变形层从工件上脱离形成切屑。从成屑机理上看陶瓷

材料的去除方式仍然是脆性的。磨削加工后的表面残留了大量的加工缺陷,因此深加工就成为必然的工序。为了降低深加工的成本,近年来提出了延性域磨削的概念。延性域磨削以提高磨削表面质量为主要目标,采用调整磨粒排布方式以及精密修整等技术来实现陶瓷材料的高效精密加工。陶瓷材料的磨削还存在砂轮磨损堵塞以及加工效率低等问题,这些问题有待于进一步的研究。

2陶瓷材料的特种加工技术

超声加工是在加工工具或被加工材料上施加超声波振动,在工具与工件之间加入液体磨料或糊状磨料,并以较小的压力使工具贴压在工件上。加工时,由于工具与工件之间存在超声振动,迫使工作液中悬浮的磨粒以很大的速度和加速度不断撞击、抛磨被加工表面,加上加工区域内的空化、超压效应,从而产生材料去除效果。超声加工比较适合陶瓷材料表面脆性的特点,这种方法加工的表面质量较好,容易实现加工自动化。其缺点是加工效率较低,工具寿命较低。

激光加工陶瓷材料,是利用能量密度极高的激光束照射到陶瓷材料表面上,光能被陶瓷表面吸收,光能部分转化为热能,使局部温度迅速升高产生熔化以至气化并形成凹坑。随着能量的继续吸收,凹坑中的蒸气迅速膨胀,把熔融物高速喷射出来,同时产生一个方向性很强的冲击波,这样材料就在高温、熔融、气化和冲击作用下被蚀除。激光加工高效环保,但光斑表面的温度梯度容易形成陶瓷材料表面的微裂纹,而且激光设备昂贵,使用成本较高。

电火花加工主要是通过电极间放电产生高温熔化和汽化蚀除材料。电火花加工适合于导电材料的加工。因为陶瓷材料是电绝缘体,所以必须采取特殊工艺。一种高压电火花加工方法是在尖电极与平电极间放入绝缘的陶瓷材料工件。两电极间加以直流或交流高电压,使尖电极附近的介质被击穿,发生辉光放电蚀除。另一种加工方法是在薄片陶瓷工件上压放一块薄金属网作为辅助电极,辅助电极和工具电极分别与脉冲电源的正负极相连,并放在油类工作液中,当脉冲电压施加到两极间,便在工具与辅助电极间产生火花放电;当电火花穿过工件上的辅助电极时,由于金属材料的气化喷射或溅射等作用使陶瓷零件表面导电,加工得以持续。还有一种加工方法是在陶瓷的表面涂覆导电材料进行电火花加工。电火花加工仍面临加工效率低、加工表面质量难以保证等问题,这些有待于进一步的研究。

3特种加工辅助车磨削技术

车磨削加工的效率相对较高,但其对工具的要求非常高,而且陶瓷材料的表面质量难以保证,对于成形陶瓷零件的加工也较难。为了提高陶瓷材料的加工精度以及加工范围,在车磨削加工中引入特种加工技术将会同时获得较高的加工效率和表面质量。

超声磨削加工,是在磨削加工的同时,对工具或工件施加超声频率振动,充分利用超声波的高频振动和空化作用去除材料,超声磨削加工方式较适用于陶瓷材料的加工,其加工效率随着材料脆性的增大而逐渐提高。超声磨削技术可以明显降低磨削温度、增加砂轮使用寿命、提高加工精度和表面质量。

激光辅助车削技术是将激光照射到刀具附近的陶瓷材料,在车削陶瓷材料的过程中,材料剪切区域因激光产生高温软化,减小了陶瓷材料的切削阻力,增加了陶瓷材料的加工延性,从而达到了陶瓷材料的高效延性加工。

在线电解磨削技术是将电解技术引入到磨削过程中,通过连续有限量的电解作用来蚀除砂轮表面的金属结合剂从而对砂轮进行修整以达到微粉磨粒不断出露的目的。在线电解技术是日本理化研究所研究的成果,加工陶瓷材料可以达到超精密加工的水平。

4结论

陶瓷材料在高技术领域中应用的广泛性促进了其加工技术的研究。陶瓷材料硬度高脆性大,采用传统的车磨削技术进行加工难度比较大,而特种加工技术效率低成本高,所以采用传统的车磨削技术与特种加工技术相结合的方法将是以后陶瓷加工技术研究的趋势。

参考文献

[1]李湘钒.工程零件的车削工艺探讨[J].苏州大学学报工学版,2002,22(1): 70-73.

[2]中井哲男.切削完全烧结陶瓷的研究结果[J].工业材料,1983,16(2): 31-55.

[3]张贝.磨粒切厚可控的脆性材料延性域磨削基础研究[D].南京: 南京航空航天大学机电学院,2013.

第3篇:材料加工技术范文

关键词:聚合物 注射成型技术 挤出成型技术 微孔泡沫塑料

材料是技术进步的核心内容。材料之间的竞争和替代对于现存市场和新市场的竞争还必然持续下去。对于高分子材料,其主要性能不仅仅取决于分子的化学结构,还取决于于材料的形态。而材料的形态主要是在其加工过程中形成的。

一、高分子材料成型的加工技术

1.聚合物动态反应加工技术及设备

高分子材料成型加工工业的发展目前在我国占有极其重要的地位,但是我国的高分子材料成型的加工技术的开发目前还处于初步阶段。高分子材料成型加工是高能耗过程作业,无论是挤出、注射还是中空吹塑成型塑料原理都必须经过熔融塑化及输送这一基本和共性的过程,目前普遍采用的设备包括螺杆挤出机和螺杆注射机等。

聚合物反应加工技术是以现双螺杆挤出机为基础发展起来的。聚合物动态反应加工技术及设备与传统技术无论是在反应加工原理还是设备的结构上都完全不同,将聚合物反应挤出全过程引入到电磁场引起的机械振动场,从而达到控制化学反应过程、反应制品的物理化学性能以及反应生产物的凝聚态结构的目的,这就是聚合物动态反应加工技术及设备。该技术首先从理论上突破了控制聚合物单体或预聚物混合混炼过程及停留时间分布不可控制的难点,解决了振动力场作用下聚合物反应加工过程中的质量、动量及能量传递及平衡问题,同时从技术上解决了设备结构集成化问题。

2.以动态反应加工设备为基础的新材料制备新技术

2.1信息存储光盘盘基直接合成反应成型技术。该技术克服了传统方式的周期长、中间环节多、能耗大、易污染及成型前处理复杂等诸多问题,将光盘级PC树脂生产、中间储运和光盘盘基成型三个过程整合为一体,结合动态连续反应成型技术,研究醋交换连续化生产技术,研制开发精密光盘注射成型装备,达到节能降耗、有效控制产品质量的目的。此技术的研究实现,加强了我国在该领域内的发言权。

2.2聚合物/无机物复合材料物理场强化制备新技术。这种设备的关键在于将电磁场引起的机械振动场引入到聚合物反映挤出全过程,达到控制化学反应的过程、反应生成物的凝聚态结构和反应制品的物理化学性能的目的。

2.3热塑性弹性体动态全硫化制备技术。这项技术主要是为了解决材料共混加工过程中共混物相态反转的问题,需要将振动力场引入混炼挤出全过程,通过控制硫化反直进程,实以达到混炼过程中橡胶相动态全硫化。

二、高分子成型主要技术方法

1.挤出成型技术

挤出成型技术包括单螺杆挤出、双螺杆挤出和柱塞式挤出。其原理是利用螺旋杆加压,将塑化好的聚合物连续的从挤出机的机筒挤入机头,融化的聚合物通过机头口模成型,牵引拉出后进行冷却剂定型,最终形成制品。具体又可细分以下几个方面:

1.1反应挤出工艺。此工艺是连续地将单体聚合并对现有聚合物进行改性的一种方法,由于使聚合物性能可以多样化、功能化并且可以使工艺操作简单、生产连续和经济适用而重视

1.2挤胀成型技术。此技术是一种塑性成型方法,适于制作一些精细的制品,常采用注塑、旋转模塑或吹塑方法成型。

1.3挤出注射组合技术。此种技术是将挤出的聚合物与其他注射进的非熔融状成分混合后成型的过程。

1.4共挤出技术。共挤出技术需要两台或两台以上的挤出机共同工作,每台挤出机出一种聚合物,最终同时挤出多种聚合物并在一个机头中成型的技术。

1.5固态挤出工艺。此工艺主要是指聚合物在固态的时候即低于熔点的条件下被挤出口模。

2.注射成型技术

简单来说,注射成型技术就是将熔融状态的聚合物注射到固定形状的模具中,待冷却成型后形成高分子材料制品的一种工艺。由于绝大多数塑料都可以采用注塑成型,因此拓宽了这种工艺的应用范围。另外这种工艺具有生产时间短、产品尺寸稳定、生产操作简单等许多优点,因此在行业中具有重要地位。具体有以下几种技术:

2.1注射结构发泡成型技术

结构发泡制品是一种具有致密的表皮层和内部微细小孔的芯层的连体发泡材料,其单位密度强度和刚度比同种未发泡的材料高3~4倍。广泛用于建筑、家具、家电、日用品、农业等领域。此项技术相对于传统的成型工艺取得了一定的进步,保留了其优点,摆脱了其缺点如产品强度不够生产时间长等,且进一步拥有产品重量轻差异小等优点。

2.2电磁式聚合物动态塑化注射成型

电磁式聚合物动态塑化注射成型的关键在于在注射装置中布置电磁式直线脉冲,在聚合物塑化、初涉、成型的全过程中,均保证在电磁场产生的机械震动下进行,使得整个成型过程处于周期性的振动状态。

2.3微孔泡沫塑料注射成型

与传统的塑料发泡技术相比,微孔泡沫塑料注射成型技术不需要添加其他化学成分,也分为简写成型、连续挤出成型机注射成型等技术。主要包括热诱导相分离法、单体聚合反应法及超饱和气体法。

2.4复合熔芯注射成型技术

复合熔芯注射成型技术分为三个主要阶段:第一阶段是制备复合熔心即将模具型芯金属放入预制的铸造母槽中定位,并教主低熔点合金成型后进行外形修整。第二各阶段是熔芯的注射成型即将已经制备好的复合熔心再次仿佛模具中并进行注射成型。第三是熔芯分离即低熔点合金、嵌件及塑件加热后分离的过程。

3.吹塑成型技术

吹塑成型指的是通过气体压力使闭合在模具中的热容型坯吹胀形成中空制品的方法。这种方法由于模具只需要凹槽,因此设备造价低适应性强,并且和成型复杂形状的制品。是第三种最常用的高分子材料成型方法。

三、结束语

近年来,多个新型成型装备国家工程研究中心在出色完成了部级火炬计划预备项目和国家“八五”、“九五”重点科技计划(攻关)等项目同时,非常注重科技成果转化与产业化,使其有自主知识产权的新技术与装备在国内外推广应用。塑料电磁动态注塑机已开发完善5个规格系列,投入批量生产并推向市场;塑料电磁动态混炼挤出机的中试及产业化工作已完成,目前开发完善的4个规格正在生产试用。我国必须根据自身的实际情况来发展高分子材料成型加工技术及设备, 把握技术前沿,培育自主知识产权。促进科学研究与产业界的结合,加快成果转化为生产力的进程,加快我国高分子材料成型加工高新技术及其产业的发展是必由之路。

参与文献

第4篇:材料加工技术范文

【关键字】高分子材料;成型加工技术;进展研究

中图分类号:O63 文献标识码:A 文章编号:

1前言

近些年来,随着科学技术的不断发展,高分子材料在众多领域中被广泛的应用。高分子材料主要是通过对商品的制造来凸显其价值所在。就目前而言,高分子材料成型加工技术也越来越受到广泛的关注,因此,要想充分的利用高分子材料,就要对其成型加工进行深入的研究和探讨。

2高分子材料成型加工技术的发展状况

近些年来,就高分子材料而言,其合成工业的发展有了很大的突破。其中取得进步最大的就是造粒用挤出机,通过对其结构的改进,使得其产量有了很大的提高。在20世纪60年代进行造粒主要采用的是单螺杆的结构挤出机,这样产量就相对较少;到了70年代到80年代的时候,有了一定的改善,主要采用的是连续混炼机和单螺杆挤出机相结合来进行造粒,这时的产量就有了一定的提高;在80年代中期之后,进行造粒主要采用的就是双螺杆挤出机和齿轮泵相结合的模式,这是的产量已经提升很大的一个高度;到了2010年的时候产量已经提升了3亿吨的产量。除此之外,通过对高分子材料合成技术的应用,可以对树脂的分子结构进行简单明了的控制,因此可以进行大规模的生产运作,并且还可以有效的降低生产成本。

就目前而言,高分子材料的成型加工技术主要追求的就是提高生产率、提高使用性能以及降低生产升本。而在制作的方面所追求的就是尺寸变小、质量变轻。在加工成型方面,主要追求的就是研发的周期逐渐变短,而且要注重环保。

3对于高分子材料成型加工技术的研究探析

3.1对聚合物的动态反应加工技术的探析

聚合物的反应加工技术是通过对双螺杆挤出机的发展基础而逐渐发展起来的。目前已经研发出一种能够进行连续反应和混炼相结合的螺杆挤出机,这种螺杆挤出机具有自己独特的优势,摆脱了传统挤出机运行是所存在的问题。随着我国经济的不断发展,对于聚合物反应成型加工技术也有了更大的需求。对于进行聚合物反应成型加工技术的主要反应挤出的主要设备,即PC连续化生产以及尼龙生产。近些年来,大多数国内外的企业所使用的反应加工设备都是较为传统的混合混炼相结合的设备来进行产品的改造。这样传统的模式存在很多的问题,比如说,在传热或者传质的过程当中,对于混炼和化学反应都很难进行控制,而且反应的产物分子数量和分布情况都具有不可控制性。除此之外,这种模式的设备话费量较大,耗能又较高,噪音比较大,这样也使得在进行加工的时候经常会出现问题。而聚合物动态反应加工过技术不同于传统的反应加工技术,无论在结构设计上还是在反应原理上都有了很大的改观和创新,这种技术主要是在聚合物反应基础的过程中引入电磁场并且引发机械振动场的作用,这样就可以对加工过程中发生的化学反应以及对反应所生成的物质的状态结构进行有效的控制。

聚合物的动态反应加工技术最重要的优点就是对聚合物的化学性能和预聚物混合混炼过程或者对停滞时间的分布进行可有效的控制,并且对聚合物在进行反应加工的过程中由于振动力场的作用其质量和能量的传递以及平衡问题进行了有效的保持和解决,与此同时,还在技术上有效的对设备的结构集成化进行了合理的解决。除此之外,这种新技术设备不但体积重量相对较小,耗能量还较小,噪音又小,而且其可靠性又高。正是由于这些优势,使得这种技术受到了广泛的欢迎。

3.2对基于动态反应加工技术的新材料制作技术研究

这种技术不同于以往的传统技术方式,其具有步骤简单、周期较短、耗能较低而且在储运过程中不易受到污染等优点,这种技术主要是将光盘级的PC树脂生产、中间的储运以及光盘盘基成型这三个步骤集合为一种新型的具有动态连续反应的成型技术。而这种新型的技术主要是进行对酯交换连续化生产技术的研究,并且对光盘注射成型的装备进行研发,从而能够有效的对生产产品的质量进行控制,并且能够达到节能低耗的作用。聚合物的这种新技术主要实在强大振动的剪切力场的作用之下,对高分子颗粒的表面特性以及功能结构进行具体的设计,并且在设计好的加工环境之下,可以选择不嫁或者少加化学改性剂的前提之下,充分的利用聚合物的性质,对高分子颗粒进行原位表面的改性、原位包覆以及强制的分散等环节。

4对于高分子材料成型方法的具体分析

4.1对于挤出成型的分析

这种方法主要是将塑化成型的高分子材料通过采用螺杆旋转加压的方式,通过挤出机进行连读的挤出成型。高分子熔融物就会通过挤出机的机口成型,并且通过相应的牵引装置将成型的产品从机口连续的引出,在这个过程中还要对其进行冷确定型,从而制作出所需要的产品。挤出成型这种方法主要是通过对高分子材料进行加料、塑化、成型以及冷却定型步骤来实现产品的制作。

4.2对于注塑成型技术的分析

4.2.1对于注塑成型技术的概括

这种技术主要用来生产结构复杂的塑料制品。因为这种技术的应用范围相对较广泛,成型的周期又相对较短,再加上产品生产的效率较高,对于尺寸较为精密,因此这种技术获得了广泛的应用,也是目前进行塑料加工使用最多的技术。就目前而言,绝大部分的塑料之所都可以使用注塑成型技术。如果想要使得制作出来的产品外观和内在的质量都达到标准,那么就要对原料的配方、挤出机的运行水准、对挤出机的设计和进行加工的精密程度都有着密切的关系。在进行成型的过程中,不但要注意过程的步骤和细节,而且还要注意成型的温度、挤出机工作的速度等等因素。

4.2.2对于注塑成型技术的技术组合分析

可以通过对不同材料进行不同的组合为特点的注塑成型技术;可以通过对惰性气体进行组合的注塑成型技术;可以通过对化学反应的整个过程为特点的注塑成型技术;可以通过压缩或者压制过程进行组合为特点的注塑成型技术;可以通过混合婚配进行组合为特点的注塑成型技术;可以通过对取向或者延伸的过程进行组合为特点的注塑成型技术;可以通过对模具移动或者加热进行组合为特点的注塑成型技术等等。

4.3对于吹塑成型技术的分析

这种技术主要通过气压的压力作用使得闭合在模具中的具有热熔性的分子材料进行吹塑,因此可以形成中空的制品。这种方法指目前发展最快的一种成型的方法。这种技术不仅设备的花费较低,适应性较强,而且可以制作较为复杂的制品。因此,这种方法也获得了广泛的应用。

5结束语

随着我国科学技术水平的不断提高,工业生产领域也随之有了很大的进步和发展,然而对于高分子材料的研究也有了进一步的突破,越来越多的领域也都随之投入到了对高分子材料研究的行列中。因此,对于高分子材料成型加工技术的研究也就变得越来越重要,只有不断的对高分子材料成型的加工技术进行深入的研究和分析,才能够有效的控制高分子材料成型的过程,因而才能够有效的促进对高分子材料的研究的发展和进步。

【参考文献】

[1]王勇,黄锐.炭黑复合导电高分子材料成型加工研究进展[J].工程塑料应用,2003(3).

[2]黄汉雄.高分子材料成型加工装备及技术的进展、趋势与对策(上)[J].橡塑技术与装备,2006(5).

第5篇:材料加工技术范文

关键词:激光技术 金属材料 加工工艺 应用

激光技术属于新兴的制造技术,具有自身的应用优势和规律,也已经形成了专业的激光理论。激光技术具有以下特点:一是单色性,二是相干性,三是方向性,四是高光强。目前,激光技术已经趋向成熟,但是还需要不断完善和调整,提高国内激光技术水平。

一、激光技术的应用优势

1.效率高。目前,激光切割是应用最为广泛的激光技术,应用于多个领域中。在汽车制造业中,主要应用激光技术切割钣金零件,不仅可以优化汽车零部件结构,还可以提高汽车的基本性能,在一定程度上降低了汽车的油耗。在航天工业中,主要应用激光技术切割铝合金。激光技术的广泛应用在一定程度上推动了工业和制造业的发展。随着激光束质量的快速提高,激光技术也广泛应用于金属材料加工中。激光技术可以切割以下性能的金属材料:一是高硬度,二是高脆性,三是高熔点,这也是传统切割技术所做不到的。激光技术在应用的过程中不会对环境造成污染,而且切割的效率非常高,可以在短时间内完成切割任务,适应性也非常强。

2.无污染。激光技术实际上就是把光斑直接照射到需要切割的物件表面,并通过激光斑和物件之间的相互作用使物件的表面在短时间内熔化。相比于传统的切割技术,激光技术属于新型高能加工技术,应用的过程不会对环境造成污染,减少能源的消耗,降低企业的材料加工成本。比如:3D激光技术主要应用于切割高强度的钢材料,对钢材料的毛边进行精细处理。如果钢材料的强度比较大,就必须使用3D激光技术。在应用激光技术的过程中,低热输入是激光技术的一大应用优势,因为很多材料在遇到高温时性能会发生变化。激光技术在焊接金属材料时不会对材料的外形造成影响,可以达到极高的精准度,而且激光焊接可以缩短焊接的宽度,提高了焊接的美观度。

二、激光技术在金属材料加工工艺中的应用

1.激光切割技术。激光技术使用光斑直接聚焦在金属材料上,并熔化金属材料,同时使用激光束气体把融化掉的金属材料吹走,保证激光束可以沿着设定好的轨迹切割,形成整齐的缝隙。激光切割技术是应用最广泛的激光技术,激光切割材料包括以下几类:一是有机玻璃,二是木板,三是塑料,四是不锈钢,五是碳钢,六是合金钢,七是铝板。在应用激光技术的过程中并不需要使用刀具,激光技术完全在计算机的操控下,可以实现任意形状的切割。激光切割实际上就是应用高功率密度来实现切割任务。在计算机的操控下,激光器通过脉冲放电,并输出激光,产生一定的频率和光束,光束又通^传到聚焦在被切割的金属材料上,进而形成多个光斑。相比于传统的切割技术,激光切割技术具有以下特点:一是切割质量高,二是切割速度快,三是柔性高,四是适应性强。激光切割技术的精准度非常高,精准度控制在0.05mm,速度可以达到每秒切割10米,而且不会受到金属材料硬度的影响。

2.激光焊接技术。激光焊接的特点有以下几个:一是速度快,二是非接触,三是变形小,比较适合连续性的金属材料在线加工。在金属材料加工工艺中应用激光焊接技术可以提高焊接效率,而且无污染。随着加工技术的快速发展,激光焊接技术水平也在不断提高。应用激光焊接技术可以实现曲线焊接,提高车身的灵活性,而且可以根据焊接材料的特殊要求进行焊接。激光焊接技术有以下几种:一是激光与电弧焊接技术,二是等离子弧焊接技术,三是高频感应热源复合焊接技术,四是双激光束焊接技术。不同的激光焊接技术特点不同,技术人员需要结合实际情况选择激光焊接技术,保证激光焊接技术应用的合理性。

3.激光打孔。激光打孔实际上属于比较传统的金属材料加工技术,相比于其他打孔技术而言,激光打孔技术的精准度比较高。激光打孔技术有着悠久的发展历史,激光打孔技术最早应用于钟表制造业,取得了不错的成就。西方国家应用激光打孔技术的时间比较早,经验比较丰富,我国与西方国家存在较大差距,我国激光打孔技术还不完善,还需要不断调整,加大激光打孔技术的研究力度,缩短与西方国家之间的差距,我国也需要结合实际情况合理的借鉴西方国家的先进经验,提高激光打孔技术水平。

4.激光打标。激光打标的应用性也非常强,激光打标实际上就是应用激光来对需要打标的物体进行照射,并合理的利用化学反映,以此来将标识长时间的留在物件表面。目前,激光打标被广泛应用于金属材料加工工艺中,激光打标技术的应用不会对金属材料的性能产生任何影响,这是传统打标技术所做不到的。激光打标技术也在不断完善和调整,提升打标的质量,已经成为国家的关键防伪手段,受到越来越多人的肯定。激光打标技术的应用不会对金属材料本身和性能产生任何破坏。

三、结语

目前,激光技术已经广泛应用于金属材料加工工艺中,属于新型高能加工技术,效率高,操作简单,而且无污染。其种类也在不断增多,激光技术使用光斑直接聚焦在金属材料上,并熔化金属材料,保证激光束可以沿着设定好的轨迹切割。应用激光焊接技术可以实现曲线焊接,提高车身的灵活性。激光打孔技术的精准度比较高,但是我国的激光打孔技术还需要不断调整和完善,缩短与西方国家之间的差距。激光打标实际上就是应用激光来对需要打标的物体进行照射,将标识长时间的留在物件表面。不同的激光技术具有不同的特点,技术人员需要结合金属材料的特点和实际需求来选择激光技术,保证激光技术应用的合理性。要提高我国的激光技术水平,相关部门还必须加大激光技术的研究和分析力度,合理借鉴西方国家的先进经验,发展前景十分广阔。

参考文献:

[1]马红超. 试论金属材料加工工艺中激光技术的应用[J]. 科技资讯,2016,(25):54+56.

第6篇:材料加工技术范文

论文关键词:基准转换,缓进磨削,磨削裂纹

1、前言

随着燃气轮机研制的不断发展,对动力涡轮的叶片加工需求也在不断变化。采用传统工艺方法进行新品叶片的研制加工,逐渐显露出一些不足。对于一些新工艺、新方法的有益尝试,显得越来越重要。

定向结晶高温合金材料,是传统的难加工材料,采用车、铣等加工方法来实现材料的去除是较为困难的。工艺上一般均采用磨削方式进行加工。磨削方式(尤其是缓进磨方式)加工的切削力较大,因此要求叶片的定位、压紧要牢固、可靠。

由于无余量精铸叶片的毛料基准点大都设在叶身上,为避免对定向合金材料直接压紧而导致材料再结晶,传统工艺路线是首先采用精密定位方式进行基准转换,将叶身上的毛料基准转换到规矩的定位方箱上,从而保证叶片加工时,叶片定位、压紧的可靠性。随着精密定位工艺的大量应用,带来的问题也越来越多。首先,锡、铋等金属对高温合金材料的性能有很大影响,如果去除不净存在较大的隐患。其次,精密定位方法的生产效率不高,污染较重。再有,精密定位方箱的制造数量大、成本高,且方箱数量制约着零件的周转数量。

因此,拟采用机械压紧的方式进行基准转换,通过工艺研究解决机械压紧方式压伤、压紧稳定性等问题,进而完成机械加工的整个过程。

作者简介:姜绍西,男,1975年生,中航工业沈阳黎明航空发动机(集团)有限公司叶片加工厂。研究方向弱刚性零件机械加工。公开多篇。

2、研制加工的难点

采用机械压紧方式进行基准转换,进而采用转换后的基准进行榫齿以及其它工序的加工,是定向合金材料涡轮工作叶片加工的一种新的尝试,也同样需要解决如基准转换的可靠性、定位的稳定性、压紧防压伤等问题。本文采用机械压紧方式进行基准转换的稳定性,防止产生材料再结晶现象。采用叶片榫齿缓进磨成型磨削试验,避免磨削裂纹。

3、试验方案的确定及实施

3.1 工艺路线的制定

该叶片工艺路线主要依据有关图纸及文件来制定。首先进行基准转换,选择毛料的六个定位点定位、压紧,磨加工出基准。然后利用转出的基准进行榫齿的磨削加工,接着以榫齿为基准进行叶片榫头及其它部位的加工。

机加工前,首先安排固熔热处理。机加后,进行时效热处理等其它工序。其工艺路线如下:

毛料→磨基准→磨榫齿→磨盆、背向缘板→磨进、排气边缘板→磨进气边榫头侧面→特种工艺

3.2 基准转换

3.2.1 设计基准及工艺转换基准

毛料基准点选择如图一所示,在榫头背向延伸段上选取A1、A2两点,叶背型面的截面上选择一点A3,从而构成一个平面,限制了Y轴平移和Z轴、X轴旋转。在榫头和叶冠侧面缘板上各选取一点B4、B5点,限制了Y轴旋转和X轴平移。而在轴向方向选取一点F6点,限制了Z轴平移。这样叶片六个方向自由度被完全限制。

图一毛料基准点示意图

由于直接采用六个定位点进行定位、压紧来加工榫齿,其机械加工的稳定性差,尤其是榫头延伸段两个点定位,榫齿磨削中承担着绝大部分的压紧力。直接压紧可能会造成叶片压紧变形。为此,工艺安排基准转换,将延伸段两个定位点转换到榫头缘板上,用小平面代替定位点。(见图二)。

图二基准转换工艺要求

3.2.2 基准转换工装的设计

由于叶身A3点和F6点均在叶背上,转换的基准只能选择在背向缘板上。基准转换时,只能采用以背向定位,加工背向基准这种“反定位”的方式进行。这给基准转换的工装设计带来了难度。主要表现在:

1)以背向定位、盆向压紧,反向装夹叶片困难。

2)由于背向延伸段定位基准A1、A2点与加工面同在一个方向,需要避免加工干涉。

3)避免将延伸段两点作为加工的主要受力点。

我们设计了基准加工的专用工装,该工装依然以毛料六个定位点定位、压紧,但通过一些辅助结构巧妙的解决了上述问题。结构图见图三)。

图三夹具结构图

首先,夹具设计采用了类似正弦规的可翻转结构,整个夹具体可沿着转轴180°翻转。翻转后,以背向六点基准定位安装叶片,压紧压盖(压盖可翻转),整个夹具体沿转轴回转180°(翻转示意图见图四)。这种设计方法解决了反向装夹叶片困难的问题。

图四夹具体翻转示意图

其次,将叶背的A1、A2、A3点三点设计在一个定位板条上,定位板条为长条形状,其宽度可将三个基准点包围起来,同时露出被加工表面。加工时,将两片砂轮合并,中间用砂轮垫圈分隔,砂轮垫圈厚度比基准板宽度略宽(见图五),从而避免加工面与定位点干涉问题。

图五夹具基准板条示意图

夹具体整体翻转,装夹叶片后压紧压盖,缘板压紧块和叶身压紧块对叶片缘板实现压紧。夹具体回转,压紧夹具体。实际加工中,实际主要承载加工力的为缘板压紧块(见图六)。不再以延伸段两点作为加工的主要受力点。避免了榫齿磨削中造成叶片压紧变形。

图六夹具压紧结构示意图

通过对小批量试验件进行试验加工,加工尺寸合格且稳定,说明夹具设计能够满足工艺要求。

3.3磨榫齿

3.3.1 磨榫齿的要求

该工作叶片的榫头结构见图六。由于榫齿磨削以榫头背向缘板小平面为基准,工序中无法将盆、背榫齿加工出的同时加工出来,只能分开单独加工。

图六榫齿加工技术要求

3.3.2 磨榫齿工序定位基准点的选定

为尽可能减少基准转换造成的公差分配,减小加工难度,工艺上将磨榫齿的主要基准由背向延伸段两点转换到背向缘板上两个小平面上。其余点均采用原来的设计基准。

该工艺对夹、测具的统一性要求较高,若两者位置差异过大,会带来基准不统一误差,影响榫齿的加工质量。

3.3.3 加工参数的制定

砂轮:国产中华牌硅砂轮(砂轮牌号WA/PA80/100F14V35)

冷却液:选用进口马斯特系列产品中的水基合成液(牌号为C270)作为磨削专用冷却液,冷却液出口压力为0.8Mpa。加工参数见表一。

表一加工参数表

 

参数

进给速度(mm/Min)

切削深度(mm)

线速度(m/s)

循环次数

粗加工

50~60

0.5

22

2

精加工

100~110

0.1

第7篇:材料加工技术范文

论文关键词:钛合金材料,双圆弧榫头,磨削烧伤,腐蚀麻点

1、前言

钛合金材料双圆弧燕尾形榫头的加工,传统工艺是一直采用数控编程方法进行车削。该方法将叶片在整体盘定位后浇注固定,之后进行整盘组合车削。该方法能够保证叶片的设计要求,但在浇注的工装制造和修理、圆弧榫头齿形精度保证、齿形检测以及加工操作方面难度较高,而且由于整台加工,整台叶片超差或报废的风险较大。

采用数控强力磨削可实现单件成型磨削,是国际上普遍采用的方法,该方法工装结构简单,采用成型金刚石滚轮可实现齿形精度的保证,检测手段简单,易于操作,残余应力为压应力,应力状态好。

采用成型磨削的方法进行钛合金圆弧榫头加工的难点是容易产生磨削烧伤和腐蚀麻点。随着钛合金叶片叶身抛光试验的进行,选择适当材料的砂轮和适合的加工参数可有效解决钛合金表面抛光产生烧伤和腐蚀麻点等问题。因此,本次试验拟通过对设备冷却方式的改变、多种磨料及加工参数的试验,来实现钛合金材料双圆弧燕尾形榫头的加工,为钛合金圆弧榫头成型磨削提供经验。

2、圆弧榫头的结构、材料特性及加工可行性分析

2.1榫头的结构及设计要求

试验选择的叶片榫头为径向双圆弧结构,盆、背齿形为非对称形式,磨削加工时要保证齿形精度、齿形角度及各个圆弧R尺寸。其结构简图如图一所示。

图一双圆弧榫头结构简图

2.2钛合金材料的加工特性

钛合金材料属于我们传统意义上的难加工材料,尤其对于磨削加工,极易产生烧伤现象,经腐蚀出现麻坑或麻点,达不到设计使用要求。

3、试验加工过程

3.1工艺路线的制定

试验加工的工艺路线为:

浇注合金块磨榫头荧光检查榫头叶身型面加工……

为便于工装的制造和磨削试验的调整,该工艺路线将叶片的毛料基准通过浇注低熔点合金转换到方盒上。

3.2专用工装的设计

为保证磨削加工的位置精度,榫头磨削前采用低熔点合金进行浇注,完成基准转换,因此磨削加工所需的工装设计和制造上相对比较简单,夹具简图如图二所示。其中夹具设计时,将转接圆盘的中心与叶片的理论中心线重合,这样便于加工时零件中心的找正。转接圆盘上应预留与快速定位装置配合的连接孔。

图二磨齿工装图

3.3磨齿夹具与快换底座的连接

磨齿夹具是通过快速定位装置来实现与机床的连接。快速定位装置由两部分组成,一部分与磨齿夹具相连,一部分在机床工作台上固定。两部分通过四个呈90°的楔型齿和楔型槽相互配合,实现磨齿夹具在机床上的定位、固定和180°翻转。快速定位装置简图如图三。

快速定位装置采用瑞士EROWA公司的产品,该产品重复定位精度高,确保了快换后良好的定位,保证手工翻转叶片后榫齿加工的一致性。

图三快换装置简图

3.4成型金刚石滚轮的设计

为了保证榫头尺寸一致性,以及磨削后叶片双圆弧榫头工作面母线直线度达到较好状态(0.005mm以下)。采用金刚石滚轮来保证砂轮形状精度。金刚石滚轮设计图如图四所示:

图四滚轮设计图

3.5试验加工

3.5.1初步试验

采用国产白鸽牌碳化硅砂轮(砂轮牌号GC80F5V35)进行试验;选用进口马斯特系列产品中的水基合成液(牌号为C270)作为磨削专用冷却液。按下表中三种加工参数进行加工。

按照既定的三种参数加工见表一,磨削表面较光洁,有轻微烧伤现象:

表一加工参数表

参数

进给速度(mm/Min)

切削深度(mm)

线速度(m/s)

1

30

0.5

25

2

40

0.8

25

3

50

第8篇:材料加工技术范文

【关键词】材料加工;计算机模拟;现状;未来发展

在我国市场经济产业中,制造业占据着重要地位,与我国综合国力提升有着密切联系。对材料加工过程计算机模拟的现状进行分析研究,可以充分了解现代制造技术的发展情况,有利于推动制造技术进步,促进我国材料加工技术未来发展与国际接轨。

一、材料加工过程计算机模拟的现状

现代化建设中,计算机模拟技术在材料加工的应用,成为了先进制造技术的额重要标志,使材料加工技术不断创新,对于提高制造技术水平发挥着重要作用。一般情况下,材料加工主要是指钢材、铸铁和铝合金等材料的加工,通过锻造、焊接和铸造加工等加工方法生产成所需产品,以保证企业的生产量。在进行材料加工产品的检测时,要对形状精度、结构情况、曲面和表面质量等严格检查,由于产品质量受到温度、加工技术、工序和生产环境等因素的影响,因此,材料加工产品质量的有效控制具有一定难度。

由于制造系统具有复杂、繁多的组成结构,因此,制造业具有多样性、复杂性和长期性,其中,包括产品设计、市场定位、产品生产、产品销售等,与企业经济效益不断增长有着密切联系。所以,材料加工过程的计算机模拟,是制造业不断发展的产物,根据材料加工的实际情况,设计合适的加工工序,提高企业生产力,使制造业生产加工技术得到不断优化。

在实际制造过程中,计算机技术的广泛运用,可以按照生产要求和客户需求,对产品进行设计、工艺规划、性能分析等,从而实现材料加工的虚拟化生产,使产品的研发时间减少、成本降低、生产周期变短,给材料加工产品生产质量不断提高提供可靠保障。在制造业的未来发展中,材料加工过程计算机模拟将成为重要研究对象和发展方向,对于推动材料加工技术不断创新具有重要影响。

二、材料加工过程计算机模拟的未来发展趋势

材料加工已经逐渐从宏观模拟向着微观模拟方向发展,进一步了解材料结构的微型结构,才可以确定更有效的加工工序,提高材料加工产品质量,促进产品数量不断增长,推动企业经济效益不断提升。因此,新世纪的制造业发展中,材料加工过程计算机模拟的未来发展趋势有如下几个方面:

(一)高精度和高效的三维有限元模拟

现代化建设中,制造业产品所需的生产加工技术要求越来越高,以有限元法作为素质模拟技术的核心,可以对产品的生产工艺、生产过程所受的应力、等,进行详细分析,还可以对产品进行快速的卸载和重装,计算出产品成型后的性能和使用效果,从而避免质量问题和使用安全问题出现,给企业长远发展提供了可靠保障。但是,实际制作加工过程中,运用二维进行材料生产过程的全面分析,已经不能满足计算量大、数据繁多、变化速度快等情况,使三维模拟分析成为了必然发展趋势。随着计算机运行速度和并行计算模式等方面的不断研发,高精度和高效的三维有限元模拟在材料加工过程中得到了应用,并推出相关软件,如A NSYS和LS-DYNA3D等,使计算机的运行速度和计算精度得到了很大提高,给材料加工技术水平不断提升提供了可靠保障。

(二)建立复杂、综合的模拟系统

在产品加工成形的过程中,需要按照生产要求和市场需求对产品进行相关参数设置,以满足产品成形后的各种形态和规格,反向模拟技术的运用,使材料加工设计变得更加方便和快捷,以及敏感性分析方法的应用,使产品设计得到不断优化。因此,建立复杂、综合的模拟系统,可以解决材料加工中存在很多问题,在材料的锻造、焊接、热处理等操作过程中,掌控全面的影响因素,对温度、晶粒变化、变形量、工具形状等进行及时调整,并建立相关数学模型,便于更好的进行材料加工过程的研究,提高计算机模拟的可靠性和准确性。

(三)材料微观模拟技术

在进行成分较多的材料加工时,需要根据加工工艺选择合适的加工工具和设置相对应的工艺参数,以保证加工产品的生产质量,提高产品的适用性。一般情况下,相关工艺参数的控制主要是指材料流动的顺序、热处理条件和产品保质方法等,因此,需要运用计算机技术进行材料加工的微观模拟,防止材料内部出现裂缝、变质等情况,从而保证加工产品的生产质量。在实际生产加工中,运用材料微观模拟技术,可以对材料的分子结构、晶体结构等进行分析,了解螺旋位错源结构、堆积-阻碍结构、界面结构等,并结合动力学知识进行研究,给材料加工过程计算机模拟的深入研究提供了有利依据。

(四)新模拟技术的研发

对于单一的材料加工来说,计算机模拟所包含的相关参数、物理量、数据、设计工序等比较简单,产品的质量可以得到有效保障。近年来,材料加工过程的计算机模拟已经朝着集成化、系统化发展,可以对材料加工的环境进行分析、对相关数据和大小进行高效化管理,同时,根据相关加工要求和设计需要,得出最优化的方案,使产品的生产质量和使用性能得到最大化提高。随着社会需求不断变化,制造业所需要生产的产品结构变得越来越复杂,新模拟技术的研发已成为了材料加工过程计算机技术应用的未来发展趋势,尤其是近来出现的一种新的无网格数值方法的发展,使函数变得更加连续、灵活,大大提高了计算机模拟处理相关问题的工作效率,保证了产品加工的精度,给制造业未来长远发展指明了发展方向。

随着计算机技术的不断推广,不断提高材料加工产品质量,促进产品数量不断增长,推动企业经济效益不断提升,才能保证企业生产力,促进企业可持续发展。

参考文献:

[1]时兰翠.木质材料加工过程碳储量变化研究[D].东北林业大学,2012.

[2]薛明.SPHD钢CSP热轧过程计算机模拟[D].武汉科技大学,2012.

[3]丹.计算机模拟技术在材料科学中的应用[J].内蒙古石油化工,2011,07:191-192.

[4]马付建.超声辅助加工系统研发及其在复合材料加工中的应用[D].大连理工大学,2013.

作者简介:

房园(1993-),本科在读,大连理工大学,材料成型及控制工程专业

倪宇飞(1993-),本科在读,大连理工大学,电气工程及其自动化专业

第9篇:材料加工技术范文

关键词:汽车;新材料技术;发展现状;建议

0 前言

当前,我国汽车新材料技术发展现状不容乐观,汽车制造复杂,涉及较多的设计内容,对技术具有较高要求,而我国汽车新材料技术的发展却较为落后,在汽车制造方面,只能从事一些技术含量小的工作。如,零件制造、汽车组装等,对一些核心技术还难以掌握,严重影响了汽车制造业的发展,因此,对我国汽车新材料技术发展现状进行研究,提出有效的建议至关重要。

1 我国汽车新材料技术发展现状

在汽车制造业的带动下,汽车新材料研发工作受到广泛的重视,早在十五期间,就将汽车新材料技术开发,镁合金技术开发等汽车项目列为国家高新技术项目,并相继开发出了轿车急需的汽车材料,促进了汽车材料的技术进步,但是当前,我国汽车新材料技术发展仍处于初步探索阶段,还存在较多问题,发展现状不容乐观。[1]我国汽车新材料技术发展现状主要体现在以下几点:第一,我国汽车工业整体水平仍处于落后阶段,与国外技术存在较大差距,目前,技术落后主要体现在以下几点:首先,材料技术研发处于无序状态,自主创新能力差,缺乏原创性,其次,缺少有效的科技创新体制,成果难以形成产业化,仍处于大学与科研结构研究阶段,最后,技术含量低,产品结构不合理,无法满足市场需求。第二,在汽车新材料技术研究过程中,只注重材料本身的开发,对设计技术、制造技术以及回收与再生技术并不重视,也未进行更加深入的研究,使得新材料难以应用。第三,生产规模小、生产率低,产品质量差,汽车专用材料数量少且杂,很难满足生产规模,不利于批量生产。第四,技术研究基础薄弱,缺乏新材料,致使材料技术标准较为混乱,使得行业数据缺乏。

2 我国汽车新材料技术的主要发展方向

汽车新材料技术发展较快,未来的发展趋势较好,当前,汽车新材料技术的主要研究发展方向有三个,第一,高强度钢方向,高强度钢是发展的重点方向,需要投入大量的资金与精力,加大技术投入,为发展汽车工业提供新的材料,保证汽车新材料技术的快速发展。但是,高强度钢也存在一定问题,首先,自主能力不足,为高度钢的开发与生产增添了难度,其次,大部分企业产品质量不佳,与国外产品质量存在较大差距,致使钢材表面质量差,工艺与力学性能不稳定,存在分散性,钢材质量不佳,高强度钢的质量也会不佳。[2]第二,铝合金方向,铝合金方向是一个重点方向,我国铝矿资源丰富,并形成了完整的铝工业体系,为铝合金的生产创造了条件,使得铝合金技术与应用取得了较大的进步与发展,有助于满足汽车工业的需要。铝合金的发展还存在一些技术难点。首先,成本较高,不适合大面积应用。其次,产品的标准化与系列化程度不高,生产未达到专业化,致使铝合金的纯度不够,力学性较差。最后,铝板材料不健全质量较差,尺寸不准确。[3]第三,镁合金方向,镁合金能够充分利用我国的镁资源,将镁资源变为镁产业的优势,设计出高强高韧、耐热,不易变形的镁合金材料,使其发挥出重要的作用,创造出更多的价值。

3 我国汽车新材料技术发展的几点建议

3.1 制定合理的汽车新材料发展计划

汽车新材料发展计划是技术发展规划策略,涉及科学技术等主题,研究合理的汽车新材料发展技术十分重要,有助于促进我国汽车新材料技术发展。制定合理的汽车新材料发展计划需要做到以下几点,第一,设计一条合理的技术发展路线,路线需要包括阶段目标以及技术重难点,通过设计合理的发展路线,可以将技术难点逐渐划分为小问题,逐步攻克,解决问题,突破重难点,促进技术的发展与进步。第二,组织相关专家学者外出学习,汽车新材料技术专业性较强,在研究中遇到了较多问题,到达了瓶颈,为解决此问题,需要安全专业人员以及相关专家外出学习,参考国外的先进技术,制作经验,产业政策以及科技发展战略,为我所用。吸取其中的经验,学习国外技术长处,提高技术研发能力以及创新能力。

3.2 加强汽车企业间的技术合作

汽车企业发展离不开竞争,同样也离不开合作,通过合作,能够实现共赢,促进企业发展,提高企业市场竞争力与核心竞争力的有效途径。加强汽车企业间的技术合作需要做到以下几点。第一,企业间进行技术合作,通过技术合作实现优势互补,取长补短,实现资金的合理配置,有效利用资金与资源,从而提高企业的市场竞争力,促进企业的进步发展。第二,提高企业间的合作层次,扩大合作范围,技术合作只是企业间合作的一小部分,为提高合作效果,实现企业间的共赢,需要扩大合作范围,在多个层面进行合作,充分利用合作企业的长处,实现利益的最大化,为企业发展创造有利条件,实现企业的共赢。

3.3 建立汽车新材料技术创新体系

汽车新材料技术的发展离不开创新,只有提高创新能力,建立创新体系,才能够促进汽车新材料技术的快速发展,有效进行新材料技术研发。建立汽车新材料技术创新体系需要做到以下几点,第一,加强材料供应商、材料研发机构、汽车制造企业之间的合作,协调三者的工作,建立以企业为主体的,新材料生产、开发、应用为一体的创新体系,提高企业的自主创新能力,使企业新材料的创新研发紧密切合市场需求,具有广泛的应用价值,以此达到促进企业发展的目的。第二,建设新材料技术设计基地,加大研发力度,为新材料技术的创新发展创造条件,相关企业可以在高等院校以及科研结构分别建设不同的生产基地,为技术的发展奠定良好的基础。

3.4 技术与新资源开发共同发展

技术与新资源大发展是促进企业进步发展的主要手段,通过发展技术,研究新材料的开发,能够为今后汽车业的发展奠定较好的基础,促进汽车企业稳步发展,因此,利用新材料代替传统材料,利用新技术代替原有技术十分重要,通过技术与新资源开发的共同发展,能够为企业的发展创造有利条件。技术与新资源开发发展的关键在于实现汽车的轻量化,轻量化是指利用新材料的物理特性提高汽车性能,将其应用于实际生产之中,促进汽车新材料技术的进步发展,提升汽车的市场竞争力。

4 结语

汽车新材料技术的发展,影响着汽车制造业的发展,做好汽车新材料技术研究工作,提升技术能力与水平,掌握核心技术力,提升自主创新力,加大资金投入与技术投入,对新材料,新技术进行研发,具有重要意义。总之,本文的研究具有重要价值,有助于促进汽车新材料技术的发展,推进社会的进步。

参考文献:

[1] 丁志华,马明亮,欧阳卫强,黄强.汽车工程材料的现状与发展趋势分析[J].热加工工艺,2013(24).