公务员期刊网 精选范文 虚拟仿真实验技术范文

虚拟仿真实验技术精选(九篇)

虚拟仿真实验技术

第1篇:虚拟仿真实验技术范文

关键词:虚拟仿真技术;印刷包装实验教学;印刷机操作

新工科和工程教育认证对学生的实践操作能力和科技创新能力提出了更高的要求,理工类高校开始着手探索新的实验实践方法,提高学生的动手操作能力,以适应快速发展的印刷行业[1]。印刷工程和包装工程专业都属于应用叉学科,学科属性的特点决定了本科层次人才培养定位在“培养具有较强实践能力和创新能力的,适应于行业发展需要的复合型高级专门人才”[2]。因此,在印刷包装专业教育过程中,实验实践教学的重要性不低于理论教学,并且经过多年的发展与探索,印刷包装专业教育不断规范,质量逐步提高,印刷包装实验实践教学也在逐渐完善。但是,针对大型印刷设备的实验实践教学一直都没有合理、合适、有效的教学手段。虚拟仿真教学依托虚拟现实、多媒体、人机交互、数据库和网络通信等技术,构建高度仿真的虚拟实验环境,因此,虚拟仿真技术是对传统实验实践教学有效补充[3]。将虚拟仿真技术引入印刷包装实验教学中,可以让每一位学生无成本体验印刷设备的操作,掌握设备相关参数的设置和故障解决方法,将大幅提高印刷包装实验教学的质量和效率。

1目前印刷包装实验教学现状

印刷工程和包装工程专业的实验教学一直都是教学环节中不可或缺的部分,实验教学为理论知识的运用提供了方式方法,并且在新工科的教育背景下,印刷包装实验教学也得到了快速发展,但是仍面临着一些不足。

1.1小型印刷适性仪实验教学

目前对印刷设备的基本原理和工艺流程的实验教学基本依赖于小型印刷适性仪,印刷适性仪体积小、占地小、价格便宜,高校实验室可以购买多台套,以满足较多学生的需要。但是印刷适性仪与真实的印刷机在实操上差别较大,学生仅能对设备理论进行一定的实验验证,不能真实体验印刷设备的实操和故障分析。

1.2大型印刷机实验教学

印刷设备体积大、占地大、价格昂贵,购买的高校不多,即使有实力购买,也仅1台套,因此也存在一些问题:1)人机比太高。由于学生人数较多,而印刷设备仅1台套,人机比太高,在额定的实验学时里无法满足每一位学生系统性学习设备操作,对于印刷故障分析更是无法较好地完成,进而导致实验教学质量下降和效率低下。2)实验材料消耗大。印刷设备开机需要消耗大量的人力、电力及财力资源,相关耗材主要有:印版、承印物、油墨、润版液、清洗剂等,一旦开机后设备为连续工作状态,材料消耗量大,成本高。学生在初期学习时,操作不熟练会造成设备损坏,同时还会影响设备的精度,设备的折旧率较大,造成的损失比较严重。3)设备操作复杂。大型印刷设备操作环节复杂,需要有一定的操作经验和熟练程度,学生在初期学习时,尤其是女生在面对这个“庞然大物”时会有胆怯,这需要一个适应过程,任何贸然操作都会有一定的事故风险。另外,实验学时也满足不了积累经验的长时需要。

2基于虚拟仿真技术的印刷包装实验教学优势

2.1虚拟实验的理念

虚拟实验室(VirtualLaboratory)概念是由美国弗吉尼亚大学的威廉ꞏ沃尔夫(WilliamWolf)教授于1989年首先提出的,它描述了一个基于网络通信技术和多媒体仿真技术的虚拟实验室环境[4]。虚拟仿真技术可生成一个三维可视化虚拟环境,借助人机交互设备和位置跟踪设备,把人的控制信息和现实中的相关空间信息传递到虚拟现实环境,从而把人、现实世界和虚拟空间结合起来,融为一体[5,6]。虚拟仿真技术已被越来越多的学科引入,尤其是在大型、危险系数高的设备实操上,比如航天领域、化工领域、消防领域、各种车辆领域等。

2.2基于虚拟仿真技术的印刷包装实验教学优势

1)虚拟场景的真实化。印刷设备的虚拟场景以真实印刷车间为背景,较好地还原了印刷车间内部场景,这使学生在操作时更熟悉真实印刷车间,为后期实习和工作提供了适应期。虚拟印刷车间里除了有印刷设备,还有温湿度调节、看样台等,还可以根据需要增加纸库、印版打孔和清洁平台等。学生不仅可以进行印刷设备的操作,还可以进行上机印刷前的准备工作和印刷后的质量测控等操作,体验感更加真实。2)虚拟印刷机操作流程的可反复性。大型印刷机体积大,操作复杂,教师在实验学时中仅能讲解一遍设备操作流程,留给学生实操的学时较少,即使有一定的操作时间,也仅能让学生体验危险系数较低的操作环节。整个教学环节中,教师不仅需要进行讲授和操作,还需注意学生操作的安全性,实验负担较重,而学生大部分时间都在听和看,实操时间少,最后的实验教学效果远远达不到教学目标——通过该实验使学生能够掌握印刷设备的操作和故障解决。虚拟印刷机可保证每位同学一台套操作系统,与教师讲解同时进行操作学习,在后续的实验环节,可独自反复进行印刷设备操作,没有任何印刷耗材的成本,这种虚拟教学环境可大幅提高学生掌握印刷设备操作的效率。3)设备故障分析和解决的可操作性。对于印刷包装专业学生,掌握印刷设备操作流程仅是第一步,更关键也是更难的学习环节在于印刷设备故障的分析和解决,这需要学生积累一定的实操经验后才能真正掌握。通过对印刷设备故障进行分析,可以对理论知识有更深刻的理解,也可以更冷静地面对实际印刷设备操作过程中出现的各类故障。但小型印刷适性仪由于结构与印刷设备差别较大,不能体现出完整的印刷故障种类;大型印刷设备在实验教学中无法实现让学生学习多种印刷故障。虚拟印刷机拥有故障题库,基本包括了所有在实际印刷设备操作过程中遇到的故障,学生可通过反复、大量的故障分析操作,快速积累实操经验,为后期大型印刷机实操打下良好的基础。

3柔印虚拟仿真实验的应用

印刷工程和包装工程专业学生的柔印实验曾使用过柔印适性仪,但是满足不了印刷机实操的要求;也曾使用过柔性版印刷机,但是其体积大、操作复杂,在实验学时里无法让每一位同学进行实操,教学效果不理想。实验室引入虚拟仿真技术后,可以真实再现印刷机工作场景,也提供了印刷机反复实操的机会,学生通过虚拟印刷机的操作,可快速掌握印刷机操作流程,通过故障题库积累解决印刷机故障问题的经验。

3.1柔印虚拟仿真综合性实验

柔印虚拟仿真综合性实验包括实验设计、实验操作、印刷样张评价、故障练习四个方面。1)实验设计。柔性版印刷机在印刷过程中主要涉及到的参数有印刷压力、印刷速度、套准精度、墨量变化等方面,学生可以自主选择三个参数进行实验设计,比如:印刷压力的增大或减小、印刷速度增大或减小、某一颜色墨量减小或增大。2)实验操作。在本次实验中实验操作分两步,一是根据老师讲解学校虚拟印刷机的操作,二是根据实验设计进行虚拟印刷机的操作。掌握柔性版印刷机实操是本次实验项目的教学目的之一,虚拟印刷机形象地展示了柔性版印刷机的每一个细节,包括输纸结构、印刷单元、干燥单元、印后加工单元。每一位学生都可以在教师讲解下学习印刷机的操作步骤,再进行反复操作,这个过程没有任何印刷耗材的成本。掌握印刷机的实操后,可根据实验设计进行印刷参数的设置操作。3)印刷样张评价。印刷样张是体现印刷参数变化的载体,虚拟印刷机除了提供印刷机操作界面,还有可显示印刷样张的界面,每一步操作后都可获取一张新的印刷样张。同时也提供了可以进行印刷样张虚拟测量的仪器,可以测量密度、网点扩大、叠印率等质控指标。在印刷参数改变后可以获取新样张,通过虚拟测量仪器测试样张上各色的密度、网点扩大和叠印率,进而分析印刷压力、印刷速度和墨量变化对质控指标的影响。4)故障练习。为了提高印刷机操作的熟练度,虚拟印刷机提供了大量故障练习题,学生可以随意选择练习题进行实操,通过故障分析和解决的反复、大量操作,学生可快速积累一定的实操经验,为后期实习和工作奠定一定的基础。虚拟印刷机以印刷机操作时间和印刷耗材成本为基准,对每一道故障练习题进行成本核算。学生在进行故障练习题的操作时,只有时间短、操作准确、不浪费耗材才能获得较低成本,这也促使学生反复进行故障练习题的操作。在这个过程中,学生不仅可以收获印刷机操作的熟练度,还可以积累一定的故障分析和解决经验。

3.2实验考核

本实验考核分为三个部分:实验设计和操作、实验数据分析和故障练习成本。1)实验设计和操作。实验设计和操作部分主要考核实验设计的合理性和实验操作的正确性,实验设计是否能够体现出柔性版印刷机的重要印刷参数;虚拟印刷机操作的正确性,比如印刷参数设置的正确性;印刷样张获取和测量的准确性,样张变化与印刷参数的变化一致,虚拟测量仪器测量准确。2)实验数据分析。学生能够记录测量数据,对数据进行分析,表示出随着印刷参数的变化,质控指标的相应变化情况。数据记录完整,数据分析合情合理。3)故障练习成本。每一道故障练习题都会显示总成本,教师在服务器上就可以清晰看到每一位同学的印刷成本,以此作为实验考核的指标之一。

3.3实验完善

虚拟印刷机在印刷样张质控指标的测量方面有待完善,可以改善测量仪器显示真实度,测量数据模拟的多样性,增强学生的测量真实感。

4结语

虚拟仿真技术的引入改变了固有的印刷包装实验教学模式,解决了教师教学困扰和学生实验学习困难。教师在教学中可以更完整地讲解印刷机操作的细节,也有时间解决每一位同学的实验问题;而每一位同学都可以体验印刷机的操作,还可以反复、大量进行操作,这些都是以往的印刷机实验教学所不能实现的。未来,可以将更多的虚拟仿真技术引入到实验教学环节中,以培养学生综合设计和创新能力为出发点,构建高水平软件共享虚拟实验、仪器共享虚拟仿真实验和远程控制虚拟实验等教学资源,不仅可以提高教师教学能力,还有利于更好地调动学生的学习积极性,更好、更快地实现培养和锻炼创新型、复合型应用人才的目标。

参考文献:

[1]杨京渝,彭丽,蔡振华.新工科下虚拟仿真技术平台在电气类专业中的应用探讨[J].科技风,2021,10:111—113.

[2]焦利勇.印刷工程专业三层次递进式实验教学探索与实践[J].轻工科技,2013(3):139—140.

[3]陈润,孙界平,琚生根,等.构建计算机虚拟实验教学质量保障体系[J].实验技术与管理,2017,8(34):107—110.

[4]曾芬芳.虚拟现实技术[M].上海:上海交通大学出版社,1997:10—13.

[5]杨卓,郑亚雯,陈英,等.虚拟仿真技术在轻化工程(染整)实践教学中的应用[J].纺织服装教育,2021,5(36):482—486.

第2篇:虚拟仿真实验技术范文

关键词:: 数字电路;实时连续仿真; 时间片分割

引言:

电路虚拟实验作为虚拟实验的组成部分,正在由以仪器仪表为测量工具的传统分析方法逐步向以计算机为工作平台的虚拟分析方法过渡,同时由于社会对网络教育的强烈需求和相关技术的快速发展,使得虚拟电路实验和远程教育日益结合,成为网络虚拟现实研究的新热点。通过对相关技术进行了可行性分析,结合多年的教学实践经验,开发了虚拟电路实验平台,系统分为客户端的用户界面层、服务器仿真引擎的数据处理层、仿真层以及客户端和仿真引擎之间的传输层。其中实时连续仿真则是在开发的过程中遇到的一个技术难点。由于实时性和多用户同时仿真的需求,系统在后台采用了分割时间片的技术,并根据电路状态的连续性,在时间片的结束点保存电路状态,在开始点重置电路状态,从而支持实时连续的远程电路实验。

一 虚拟实验的研究现状

虚拟实验分为有实验室支撑的实验模式和没有实验室支撑的实验模式。前者是一种"虚拟仪器版面一硬件设备"操作的模式。后者没有真实的实验室作为支撑,全部使用仿真技术、虚拟现实技术以及网络技术等高科技手段创造虚拟实验环境,实验者像在真实的环境中完成实验的各个环节,比前者更经济,更容易建立实验系统,也更方便实验者,是目前乃至今后的主要发展方向。电子电路虚拟实验作为虚拟实验的组成部分,也得到了快速的发展。而针对远程教学的仿真软件,或者着重于多媒体演示,功能简单,交互性差,或者没有强大的后台支持。远程教学仿真软件不能利用单机版的仿真软件,建立功能强大,交互性强,能够实时连续仿真的远程虚拟实验平台,使得远程实验教育难以得到有效发展。

二 虚拟电路实验平台的系统构架设计

要设计的"虚拟电路实验平台"系统,硬件构架采用B/S结构,用户通过装有Flash插件的浏览器与实验平台交互,搭建电路,并观察输出结果。用户信息和实验信息保存在MySql数据库中,后台的核心XSPICE仿真软件,进行仿真计算。系统的软件构架设计如下:1)界面层采用多媒体技术构造实验板及各种元器件,用来与用户交互并显示仿真结果。2)传输层通过socket传输XML格式的实验数据,实现客户端与仿真引擎的数据交换。3)数据处理层解析XML格式的用户实验操作的数据,并转换为.Cir文件所需的语法格式;构造XSPICE所需的仿真输入文件(.Cir);分析XSPICE仿真后的输出文件(.Out),提取实验所需数据; 以XML格式封装仿真数据,准备发送。4)仿真层调用XSPICE进行仿真计算。XSPICE是一个优秀的电路仿真软件,它把Cir文件作为仿真参数文件输入,由仿真程序运算后得到仿真结果,输出到Out文件。

三 实时连续仿真技术的实现

在基于仿真的远程电路虚拟实验系统中,往往需要使用电路仿真软件,如SPICE、XSPICE等,通过它们的瞬态仿真功能获得电路输出数据,先仿真电路状态变化的全过程,再输出全部仿真结果。在电路实验中,模拟电路虚拟实验往往瞬间就可以达到稳定状态的,之后电路状态就不再变化。像这样的电路,在进行仿真的时候可以只显示电路达到稳定之后的状态,也就是只显示一次。正好符合SPICE、XSPICE等仿真软件的要求。类似的还有自动脉冲输入的数字电路。下面以接有自动脉冲输入的时序逻辑电路为例,讨论实时连续仿真技术。

1.分段仿真原理。真实情况下的实时连续仿真,实验者只要按下仿真开关,电路就会源源不断地把数据显示在界面上。但是仿真引擎使用的XSPICE并不是一个实时连续仿真软件,在使用XSPICE进行电路瞬态仿真计算的时候,必须等到XSPICE仿真结束才能得到仿真结果,进而分析显示。而XSPICE的这种功能特性与虚拟实验中所要求的连续不断地计算并显示电路输出数据,并能根据用户的交互实时作出响应是有矛盾的。为此,可以采用分段仿真的方法,即设定一仿真时间段tb,仿真引擎让XSPICE每次瞬态仿真只计算tb 时间长度的电路输出数据,然后将数据发送到客户端,客户端则按照结果数据中的时间戳在相应的时间点上改变显示输出。等到tb时间之后,客户端得到的数据显示完毕.仿真引擎再计算下一个tb 时长度的电路数据并发送给客户端。

在电路实验教学中,多数电路并不复杂,输入时钟信号的频率也不太高,因此基本可以满足这一要求。仿真引擎每次仿真一个时间片的数据,并把它传送给客户端,客户端以仿真结果中的时间戳为序,把数据保存在一个FIFO队列中,然后根据时间戳依次从队列中取出数据进行显示。当客户端发现队列中的仿真数据即将被显示完时,就发送一个队列空的请求到仿真引擎。考虑到网络传输时间和仿真程序的运行时间的消耗,客户端发送继续仿真的请求需要有一个时间上的提前量,尽量避免出现冒泡FIFO队列已空,而客户端还未收到仿真引擎的下个时间片的仿真结果,导致显示出现停顿的情况。

2.电路状态重置。由于时序电路的输出是由电路的输入和当前状态决定的,因此在进行分段仿真时,必须保存每个时间片结束时的电路状态,并在下一个时间片的仿真开始时用它来设置电路的初始状态,从而可以保持在整个仿真过程中电路状态的连续。可以把第i个时间片的t时刻的电路状态表示为:

Sit=[αφ],i∈[i,+∞],t=[0,tb]其中 α=[α1,α2,…,αn]T 为各触发器状态,n为电路中的触发器数,φ= [φ1,φ2,…,φm ] 为各输入时钟脉冲源的相位,m为电路中的输入源数。那么时间片i中,t时刻的电路状态与0时刻电路状态的关系是:Sit=F(Si0,t),其中F是由实验电路决定的状态变换函数。

3.用户交互。上述仿真算法中,整个仿真过程被分割成一个个时间片来分段仿真,每一个时间片的仿真结果是在认为这个时间片内没有用户交互,实验电路的结构和参数没有发生变化的情况下得到的。然而,用户有可能在一个时间片的任何时刻对实验电路进行操作,例如调整了信号发生器的信号输出频率或者幅度、按下了电路板上的按钮等。在发生了用户交互的情况下,由于电路已经发生了变化,有可能导致电路的输出也发生变化,因此这个时间片中剩余的还没有显示的数据就将成为无效数据。所以当发生用户交互时,客户端需要清空未显示的数据队列,向仿真引擎发送交互请求,并传送交互时间t1,仿真引擎根据发生交互的时间点,可以根据当前时间片的输出数据计算出t1时刻的电路状态St1i,其中i是发生交互的时间片编号。

四 结束语

第3篇:虚拟仿真实验技术范文

关键词:实验教学;虚拟仿真;计算机网络

一、在计算机网络课程中运用虚拟仿真技术的必要性分析

(一)虚拟仿真实验可以弥补硬件不能随时更换的局限由于计算机的发展速度快,而实验室的设备不可能随时更换,在计算机网络的实验教学中往往会出现硬件条件不能及时更新或购置更多的设备,不能满足实际实验需要的现象。例如:计算机网络课程中的路由器的配置实验,要是每个学生使用一台路由器是不太现实的。如果将虚拟仿真实验融入计算机教学,学生只需要在电脑上进行实验就可以完成实验任务,这样不仅缓解了设备条件的不足,节省了实验资金的投入,而且学生也能进行实际操作能力的锻炼。

(二)减少实验教学的经费投入在现实的实验教学中,通常需要大量的经费购置设备,采用虚拟仿真实验教学方式可以大大缩减实验教学经费。例如:计算机网络的实验教学中,学生进行网线制作实验,经常会出现不正确的线序排列、水晶头与线接触不良等情况发生,从而导致实验的失败。重复实验,就会造成实验用品的大量浪费,加大购置实验用品,这样势必会增加实验经费的投入。倘若采用虚拟仿真实验代替真实的实验,接水晶头和网线发生错误时,重新来做实验,不存在材料浪费的情况,这样可以大大缩减实验经费的投入,将更多的经费投入到其他教学工作和科研工作中。

(三)改善学生进行实验的操作的复杂性,培养学生动手实验的兴趣计算机网络课程中虚拟仿真实验的开设,一方面可以方便学生进行反复的实验练习,不用因为害怕因误操作损坏设备,害怕实验结果出不来,而不敢动手去做。在计算机网络课程中开展虚拟仿真实验,不用担心学生自身及实验设备的安全问题,使得学生可以放心大胆地进行实验,在反复的实验操作中归纳总结出一些实验规律,从而提高了学生动脑和思考能力,大大激发了学生动手操作的兴趣。另一方面,通过仿真实验系统有助于学生熟悉实验过程,对实验室的实验环境,实验设备进行详细的了解。学生可以很直观地观察到演示性实验的操作方法、步骤,甚至可以看到错误操作的实验结果,提高实验效果。在计算机网络课程中开展虚拟仿真实验,可以解决实验设备昂贵,购买设备的困难,经费不足等问题;可以解决落后的硬件条件无法满足实验需求的状况。虚拟仿真实验不仅丰富了计算机网络的实验教学内容,而且拓宽学生学术视野,同时使得学生在虚拟仿真实验中大胆进行创新、研究,从而开发学生创造性思维。

二、应用实例———利用三层交换机实现VLAN间路由

这个实验在现实中需要为每位学生配置一台三层交换机,连接键盘和网线,进行三层交换机的配置,或者一台交换机,所有的学生轮着使用,这样不是增加设备购置的负担,就是延长了做实验的时间。假若将真实实验和虚拟仿真软件相结合,所有的学生共用一台三层交换机,每位学生都可以从自己的电脑上完成这个实验,实验实施过程如下。

(一)技术原理1.启用三层的路由功能。由于三层交换机不仅带有部分的路由功能,还兼具三层路由功能和二层交换功能,而三层交换机的默认端口是二层口,因此必须使用noswitchport命令在相应端口启用三层的路由功能。2.实现VLAN相互访问。具有路由功能的三层交换机,在一个区域单位内可以通过直连路由来实现不同VLAN之间的相互访问;对于非直连路由,通过获取数据包的IP地址,然后根据路由表选择端口进行转发。三层交换机为每个接口配置相应IP地址,VLAN间的互连是利用SVI(交换虚拟接口)的方式来实现的,SVI为交换机中的接口分配适当的IP地址,并创建虚拟接口。

(二)实验说明在同一个局域网中,在交换机划分VLAN的基础上,PC0、PC2和PC1、PC3分别属于同一个VLAN分组(PC0、PC1和PC2、PC3分别归属同一个交换机),但同时还要实现两个分组之间可以相互访问;使用三层交换机代替原来的交换机,首先在三层交换机上分别设置各VLAN的接口IP地址。就像路由器上的接口一样,三层交换机将VLAN作为一种接口对待,再在各接入VLAN的计算机上设置与所属VLAN的网络地址一致的IP地址,然后把默认网关设置为该VLAN的接口地址。这样,所有的VLAN也可以互访了。

(三)实验过程1.在二层交换机上创建VLAN4、VLAN5,将端口4分配给VLAN4、端口5分配给VLAN5。2.将二层交换机与三层交换机相连的端口F0/2都定义为TagVLAN模式。3.在三层交换机上配置VLAN4、VLAN5,然后需要使用命令验证二层交换机VLAN4、VLAN5下的各PC间是不能相互通信的。4.设置三层交换机VLAN间的通信,创建VLAN4,VLAN5的虚拟接口,分别配置虚拟接口VLAN4、VLAN5各自的IP地址。5.使用命令查询三层交换机的路由表。6.将二层交换机VLAN4、VLAN5下的各个主机默认网关分别设置为相应虚拟接口的IP地址。7.使用命令来验证二层交换机VLAN4,VALN5下的各个主机之间是可以相互通信。

(四)实验设备Switch_29601台;Swithc_35601台;PC4台;直连线

(五)实验设备的配置PC0:IP地址:192.168.31.12子网掩码:255.255.255.0网关:192.168.31.1PC1:IP地址:192.168.32.34子网掩码:255.255.255.0网关:192.168.32.1PC2:IP地址:192.168.31.56子网掩码:255.255.255.0网关:192.168.31.1PC3:IP地址:192.168.32.78子网掩码:255.255.255.0网关:192.168.32.1将PC0、PC2和PC1、PC3划分到不同网关,此时两个网关分组无法相互连通PC1PingPC3replyPC1PingPC2timeout

第4篇:虚拟仿真实验技术范文

关键词:数字电子技术实验 虚拟仿真 改革与实践

中图分类号:G420 文献标识码:A 文章编号:1672-3791(2016)10(b)-0082-02

数字电子技术是笔者学校精品课程,目前正在进行网络资源共享课的建设,同时它也是理工科电气工程及其自动化、电气自动化技术、机械设计制造及其制动化、物联网工程、应用物理学和计算机科学与技术等专业的专业基础课。该课程不仅具有自身的理论体系而且实践性非常强。该课程主要的内容是解决数字电子电路相关理论的入门,学生能够在掌握基本理论的同时进行简单的设计,掌握分析和设计的基本方法和基本技能,为后学专业课的学习打下良好的基础。

以往的数电实验教学基本上是硬件实验室内部操作。学生在学习完理论课后,在实验课上直接通过实验台进行验证性操作或者简单设计再通过实验箱搭建电路,这样的操作设计性比较差,很多知识的掌握达不到加强巩固的效果。如果有一个好的实验平台能够让学生对所学的内容进行及时的验证,教学效果会大幅度地提高。对一些兴趣比较高、学有余力的学生还可以针对实际问题设计一些电路,然后在平台上练习,从而发现问题解决问题。去年该校购置了虚拟仿真平台,但是由于网络不稳定、平台的操作不熟练等因素影响,目前数电实验目前还停留在实验箱的阶段,虽然经过一定的改革增加了面包板,学生的动手能力有一定的提高。但因有许多问题出现,如初学者对原理掌握不牢固、理论知识跟不上实验内容效果不佳、教学评价和实验考核手段比较单一、设备的故障频发、设备升级不方便等诸多因素严重影响教学,也限制了学生的创造力和学习的主观能动性。

1 数字电子实验教学改革的意义

数字电子技术工程性和实践性极强,相应实验课程的开设,不仅可以帮助学生理解和掌握该课程的基本内容,还可以提高学生的动手能力,培养学生的创新思维。利用网络技术、计算机技术与虚拟仿真技术在计算机上构建一个虚拟实验室环境,提供可操作虚拟实验仪器,使学生在互联网上通过接近真实的人机交互界面完成实验,同时还提供网络实验教学的一体化管理功能[1]。该校在电类专业中开展了部分仿真课程的公共选修课和专业选修课,已经购置了仿真平台,以及计算机机房等硬件设备,对于数电实验的仿真有一定的基础。但是实践教学内容和人才培养模式还有一定的差距,而且并不互相兼容,需要系统的虚拟仿真实验机制来提高实验教学和管理的有效性和可行性。

采用虚拟仿真的数字电子技术实验的开设不仅可以弥补传统硬件实验的不足,提高学生学习的兴趣、动手能力的培养及综合素质的提升,而且具有以下几点优势。

(1)解决了传统实验资金不足或不能及时到位的现象。虚拟仿真不像硬件实验室那样需要比较高额的维护费用,而且维护起来不受时间和地点的限制,利于实验教学的管理。

(2)通过综合实验群,实现综合利用资源。数电实验涉及到信号的产生,数字电路的实现,可将虚拟软件平台和EDA实验室及信号与系统实验室等多个实验平台构建,共同完成综合性和设计性实验的仿真及操作。

(3)互动性较强。网络化实验室虚拟操作可以实现生与生、生与师、师与师之间的远程互动与交流。老师可以有效地对学生进行实验指导、监督和考核,学生通过交流很快地掌握实验内容,有效地进行实验操作。

(4)提升学生自主学习的能力。学生可以根据自身条件,除了完成老师交代的内容之外,设计自己喜欢的实验环境和实验模式,自我设计与创造,提高自我学习的能力、锻炼动手能力和设计能力。

(5)与科技发展同步,保证实验的先进性与前瞻性。及时有效地对虚拟软件进行更新,与时俱进地采用新的方法授课,引入新的实验内容,提高学生开展探索性、研究性、创新创意性实验。

2 虚拟仿真数字电子技术实验改革与实践的举措

为了培养中国特色应用技术型人才,教学中必须加强学生的技术理论、注重技术应用、突出实践教学,而加强实践性教学环节建设正是整个教学过程的一个基础。

2.1 改革教学过程

通过学习其他院校实验教学模式,根据当前信息网络技术发展特点,参考其教学经验与做法,对该课程的教学过程加以调整。针对不同的专业选用不同的教材,精选教学内容、精炼讲课题材。

2.2 完善教学大纲,实现人才培养目标,适应人才培养模式

通过课题组成员授课经验及学习研究的结果,商讨完善教学大纲,制定比较合理的实验教学考核机制,实现人才培养目标。

2.3 改革实践教学内容和方法

通过引入现代化的教学手段,推进实验教学方法和手段的提高及改革。构建以网络为载体的教学平台,借助一些虚拟软件实现虚实结合的实践教学方法。通过已有的虚拟仿真实验平台结合原有的硬件设备进行数字电子技术实验教学,提高了设备的利用率,降低了实验成本,提高了实验授课效果。通过改革实验教学内容,优化验证性实验,加强综合性、设计性和创新性实验,注重学生创新精神和实践能力的培养。

教学内容采用虚实结合的授课方式,突出实验多元化、层次化和系统性。具体实验内容由数制和码制、基本门电路的测试、组合逻辑电路、触发器、时序逻辑电路、脉冲的产生与整形、ADC和DAC、半导体存储器和可编程逻辑器件等构成。[1]通过虚拟实验电路的搭建,使学生对实际电路具有比较直观的认识,培养学生解决实际问题的能力。

2.4 建O综合实验团队

通过教师或学生自发组织相关协会构建综合实验团队,定期进行数字电子技术实践理论知识的讲授和电子线路的设计。形式可以多样化、多元化,如讲座、授课、竞赛和观摩等。

2.5 构建虚拟实验室,实现开放式教学

利用虚拟仿真实验教学平台、计算机网络和数字电子技术硬件实验室共同构建虚拟数字电子技术实验室,实现一个互联网上的虚拟实验环境。虚拟仿真实验教学平台主要包括实验教学管理、实验教学务管理、实验前理论知识学习、实验过程智能指导、实验结果自动批改、互动交流通知、实验教学效果评估和实验教学资源管理等9个模块,实现开放式虚拟仿真实验教学管理和共享。该平台不仅可以实现数字电子技术的实验操作,还可以扩展到课程设计和课程实训环节的教学。

利用网络建立关于数字电子技术实验为主题的论坛,以促进不同用户间的信息交流,了解最前沿的数字电子技术实验,开拓视野[3]。

2.6 构建综合实验群

打破课程界限,实行多门实验交叉汇合,建立综合实验群。数字电子技术是一门逻辑性非常强的课程,逻辑变量的产生、传输和处理过程要求比较严谨,具有工程性和实践性两大特点。将已有的数电实验室、通信实验室、虚拟仿真平台和EDA、信号与系统等多个实验平台构建一个适用于工科专业的电类虚拟实验综合实验群,共同来完成综合性、设计性实验的操作,提高学生学习兴趣,促进教学效果的提高。

2.7 改革实验教材

针对该校转型发展的目标,该院在人才培养模式上也应有所变化,要促进电类学生知识、能力、素质的平衡协调发展,提高学生的工程实践能力和创新意识。结合实际情况改革实验教材。这样既能提高学生的创新意识,也能培养其解决实际工程问题的能力。

2.8 改革考评机制

过去的数字电子技术实验都是平时成绩加期末抽取实验操作一次性考核的方式进行。通过虚拟仿真后的试验考核方式采用考勤成绩、平时操作成绩、提交作业成绩、创新成绩综合考评。同时建立学评学、师评学、学评师的考核机制,共同进步,共同促进教学质量的提高。

3 结语

坚持“育人为本”“以生为本”的基本教育理念,培养应用技术型人才是我们的最终目标。通过实践证明,对已有的实验室及其设备进行合理整合,构建综合实验群,不仅可以实现数字电子技术综合实验和设计实验的有效进行,也可以实现其他实验的有效进行。

通过丰富的仿真实验、实训软件培养学生分析问题、解决问题的能力,提高学生设计和创新的能力;整合已有硬件资源和虚拟网络结合的方式使学生对实际电路有比较直观的认识,既提高了现有设备的利用率,降低了实验成本,又提高了实践教学的效果;最终促进学生“善学习、善实践、善应用”的专业素养和实践创新能力的培养。

参考文献

[1] 周伟英.基于虚拟实践平台的“数字电子技术”课程教学改革与实践[J].中国电力教育CEPE,2010(34):148.

[2] 刘炳灿.国家重点实验室建设的回顾和展望[J].中国高校科技与产业化,2005(11):28-31.

[3] 黄琳,丁宏刚.加强大型仪器设备资源共享平台建设 促进国家重点实验室对外开放[J].实验室研究与探索,2006,25(8):1002-1004.

[4] 姜兆纯.浅谈高校实验室设备管理人员的素养[J].中国现代教育装备,2006(4):29-30.

第5篇:虚拟仿真实验技术范文

关键词:高校;应急管理;实验教学;仿真技术

中图分类号:G647 文献标志码:A 文章编号:1674-9324(2015)27-0254-02

应急管理是公共管理的一个重要的分支领域,主要研究内容涵盖了应急管理所有重要环节,掌握城市应急管理的基本理论、方法、技术,能够快速有效、科学合理地处理各类公共危机事件,是城市管理实践对于公共管理人才的新要求。由于应急管理自身存在实践性、实操性强的特点,涵盖预防与应急准备、监测与预警等环节的城市应急管理实验室成为不可或缺的教学实训平台。近些年来,不少高校、科研机构、企业对应急管理实验教学系统进行了研究,开发了一些教学系统,总的看这些教学系统存在适应突发事件种类有限、仿真效果较差、定量评价和分析基本没有。本文将以应急管理教学仿真系统及首都经济贸易大学城市应急管理实验室为例,探讨解决城市应急管理实验室建设的问题与对策。

一、应急管理仿真教学系统及实验室建设现状

2003年7月28日召开的全国防治非典工作会议指出,要加快建立健全各种突发事件应急机制,大力增强应对风险和突发事件的能力。抗击非典催生了我国现代应急管理,也催生了我国的应急管理教育事业。到2008年,河南理工大学、防灾科技学院、劳动关系学院、华南农业大学先后开展了应急管理本科教育。近年来,我国应急管理教学培训呈现了如火如荼的局面,一些大学及科研机构纷纷成立了应急管理研究机构。2009年4月23日全国第一个应急管理学院在暨南大学成立,全国综合性大学基本都成立了应急管理研究所、应急管理研究中心或基地等。此外,各级党校、行政学院也都将应急管理作为党政干部培训的主干课程。回顾美国高校应急管理教育发展的历程,也不过20多年时间。1983年,北德克萨斯大学设立了美国第一个应急管理专业,授理学学士学位,到1995年只有4所大学设立相关专业。从1995年开始,应急管理专业在美国大学获得了快速发展,截至2007年,47个州的266所大学开设应急管理、国土安全等相关本科、专科专业或专业证书班,其中,62所大学开始应急管理全硕士授权专业,32所大学开始国土安全硕士授权专业,9所大学开设应急管理博士学位专业,3所大学开设国土安全博士学位专业。美国的联邦紧急事态管理局(FEMA)每年举办一次应急管理高等教育大会,召集全美国高校(现在也有国外高校参加)应急管理相关专业的代表讨论应急管理的热点问题和应急管理高等教育的发展方向,它已经成为美国推动应急管理教育和培训的发动机。国内高校应急管理实验室有两大特点:一是着重防灾和应急技术手段研究,研究过程中主要以航空、遥感等高科技手段为支撑。如:北京师范大学减灾与应急工程重点实验室主要侧重自然致灾因子研究,针对不同致灾因子设置不同配套设备的实验室,分布于全国相关灾害易发地。二是着重应急政策和管理等方面研究。如:中国科学院研究生院工程教育学院应急管理实验室,是在应急管理专业委员会和中国优选法统筹法和经济数学研究会的支持下,开展以应急资源、应急预案为主要内容的研究。

二、首都经济贸易大学应急管理虚拟仿真实验室建设定位

1.强化首都核心功能与发展城市应急管理的需要。《北京城市总体规划》(2004―2020)中首次提出:北京未来的发展定位是“国家首都、世界城市、文化名城和宜居城市”。世界城市的主要特征表现为国际金融中心、决策控制中心、国际活动聚集地、信息中心和高端人才聚集中心五个方面。北京市“十二五”规划明确指出:提高城市抗灾应急能力,要按照“平灾结合、以防为主、快速反应、措施有效”的原则,完善体制机制,建设具有强大危机应对能力的城市。虽然经过SARS事件处置和奥运会承办工作,北京城市应急管理水平得到提升,但就建设世界城市的目标看,城市应急保障能力还有较大差距,尤其是理论和实操能力兼具的应急人才的缺乏,制约了城市应急管理发展速度。

2.专业学科发展的需要。当前我校公共管理、管理科学与工程等学科发展日益强化各相关学科的相互交叉与融合,集中聚焦在城市运行管理决策平台上,突出城市应急管理研究与应用的重要性。我校城市经济与公共管理学院本科有行政管理、城市管理、公共事业管理和土地资源管理四个专业,研究生培养有公共管理一级学科和区域经济二级学科,我校信息学院有管理科学与工程博士点,安全工程学院有安全工程相关本、硕专业。建设智慧化的城市安全运行管理、突发事件应急预测与评估管理实验系统有助于各个学科融合发展、共同提高,符合我校“十二五”规划发展要求,得到学校各方面的保障与大力支持。

3.应用型创新人才培养模式的需要。随着人才培养目标向复合型、应用型管理人才转变,必然要求教学方式从单纯课堂灌输的传统教学模式,向融入更多操作技能和社会实践的实验教学模式转变。实验教学重视培养动手和实践操作能力,发展实验教学已成为我国教育事业“十二五”规划和我校“十二五”规划确定的发展任务与目标。面向城市的公共管理专业具有实践性、操作性强的特点,必然要求实验室作为教学支撑。城市应急管理实验室将满足行政管理(含电子政务)、城市管理(含区域经济管理)、公共事业管理、土地资源管理诸专业本科学生、MPA、区域经济硕士以及北京市相关干部培训的迫切需要,成为首都各级党政机关及其领导干部进行应急管理模拟演练的实训基地。

4.整合资源构建智慧城市管理教学研究平台的需要。城市经济与公共管理学院拥有城市国际化、城乡一体化、都市圈、城市环境建设、政府监管与公共管理等研究平台,均有明确的和长期的研究方向,在教委的支持下,积累了大量世界主要城市统计数据、京津冀地区大城市统计数据、北京市各年代各专业层次规划图册。另外,已建设的数字城市实验室和其他科研项目还积累了一些设备。但由于数字城市实验室按常规学生上机机房式教室标准配置,难以适应智慧城市发展背景下的城市公共管理人才培养和教学研究新要求,通过建设城市应急管理实验室整合上述数据和设备,建立一个以北京大都市区为模板的城市运行研究平台,可以实现最终建成满足城市管理决策、运行和危机应对三大功能的“智慧城市实验研究中心”的发展目标。

三、应急管理实验教学仿真系统的特色

1.管理方法与地方实际相融合。利用应急仿真教学系统,可以搭建具有三维效果的当地路网图。同时可以输入当地实际的OD数据、流量数据、信号灯配时数据,紧贴城市布局和城市运行实际,具有动态仿真效果。

2.交互体验与动态演示相融合。应急仿真教学系统是构建全部关键环节的实操平台,教师可以通过键盘和鼠标点击操作,制造各类应急事件;仿真后台可以对事件的进展与演变进行实时仿真。学生分组进行操作,各部门负责人有单独操作平台,也有信息传送、汇总、平台,教师利用这个平台可以提问,并汇总学生传输的答案。

3.常态管理与应急管理相融合。由于应急仿真教学系统具有强大的仿真功能,且能够进行跟踪记录,记录每一时刻的路网平均车速、主要路口等灯排队长度、道路流量等重要数据,所以应急管理实验中心既能开展应急管理教学,也能对日常管理措施调整、大型活动组织等开展仿真研究和教学工作。

4.学生主导与教师引导相融合。在应急管理教学活动中,学生分组进行操作,各部门负责人单独操作,也有信息传送、汇总、平台,整个过程体现学生为主,教师为辅的新型教学理念。主要可以开展的教学项目:一是指导学生搭建路网、构建三维模型和图景,从而加深对现实路网的认识,熟悉应急地理信息,同时学生搭建的路网和三维模型可以储存下来,并入应急仿真教学系统,扩大应急演练教学的地理范围;二是开展应急处置演练培训与教学、科研工作;三是组织开展应急预案设计、评价与优化。

5.虚拟仿真与实景展示相融合。应急仿真教学系统可以与实景沙盘实现互联互通,即通过改变系统中的交通流量、信号配时、LED等数据信息实现对实景沙盘中相关信息的调整与控制。实验中心分为虚拟体验室和实景展示室,分别承担虚拟仿真突发事件处置过程和沙盘演练、实景展示应急管理相关知识。

6.多元主体主观评价与系统定量评价相融合。评价应急管理的优与劣、成与败,需要检测很多指标,其中数据指标通过综合评价系统实时记录从准备阶段到措施实施后阶段虚拟预算、预案实施、临时措施、城市运行变化等信息数据来实现。获得数据包括:路网实时平均车速、道路实时流量、重要路口等灯车辆排队长度、救援车辆运行速度与时间等,其他数据可以定制。

本项目计划通过2~3年的研究和实践,经过总结、再调研与多方论证,计划建成地震危机模拟与感知分析实验教学系统、城市交通应急智慧管理模拟教学系统、城市应急实验室智能管理系统、跨平台协同应急模拟演练教学系统等先进且实用的实验系统,通过这些系统的建设最终搭建满足城市运行、管理、决策和危机应对实验功能的“智慧城市运行与应急管理实验中心”。

参考文献:

[1]郑彦平,贺钧.虚拟现实技术的应用现状及发展[J].信息技术,2005,(12).

第6篇:虚拟仿真实验技术范文

一、虚拟仿真技术概述

虚拟仿真技术是虚拟现实技术和系统仿真技术的合称[2]。虚拟仿真技术又叫虚拟仿真或者模拟技术,是将一个真实的系统用虚拟的方法模仿出来。虚拟仿真技术是随着计算机技术发展而逐步形成的一种实验研究技术,是数学推理、科学实验之后人类认识客观规律的第三类方法,已逐渐成为人类认识和改造客观世界的通用性、战略性技术[3]。虚拟仿真技术在多媒体技术、虚拟现实技术、网络通信技术等技术的基础上,将仿真技术与虚拟现实技术结合在一起,构建逼真的虚拟环境。虚拟仿真可以是一个模拟器,一个仿真软件,或者一个数学模型等[4]。虚拟仿真技术应用在军事演习、医学手术模拟、广告宣传等。近年来,随着计算机技术与网络技术的发展虚拟仿真技术广泛地应用于实验教学,虚拟仿真实验已经成为一种新的教学模式[5]。

虚拟仿真技术在实训中具有真实性、交互性、开放性及扩展性[6]。真实性是指虚拟仿真实训中实验环境具有很强的真实感,学习者在虚拟仿真实训中感觉进入了真实的实训室,操作虚拟设备,体验真实的操作过程。交互性是指学习者可以通过键盘、鼠标操作虚拟设备,虚拟设备会在真实实训中所出现的现象。开放性是指可以将虚拟仿真实训以网页的形式,学习者可以随时随地进行虚拟实验,突破了时空的限制。扩展性是指虚拟设备或虚拟软件等可以实现灵活地配置与组合,而且更新与维护方便,可以对虚拟设备或虚拟软件进行二次开发。

二、Packet Trace软件在计算机网络实训中的应用

(一)Packet Trace软件简介

Packet Tracer是思科公司开发的一种虚拟仿真软件,可供网络课程的初学者在虚拟环境中设计网络、配置网络、排除网络故障。该软件采用图形化用户界面,学习者可以通过鼠标拖曳设备及配置线构建网络拓扑;提供的数据包在网络中的流动过程可以适时地观察网络状态;可通过IOS配置对设备进行配置管理,锻炼学习者检查、排除网络故障的能力。

Packet Trace支持大量的设备仿真,比如路由器、交换机、Hub等各类网络连接设备的仿真,每类设备还提供不同的型号;双绞线、同轴电缆、光纤等各种传输介质的仿真;DNS、FTP、WEB、DHCP等服务器的仿真;还可以仿真很多模块。而真实的实训环境中往往不可能提供这么全面的实训设备。Packet Trace运行很多网络协议,支持TCP/IP协议,UDP协议、OSPF协议、HTTP协议、SMTP协议、Telnet协议等常见协议,及不常见的ARP协议、Ethernet协议、HDLC协议、ICMP协议、IPv6等协议。Packet Trace支持逻辑空间设计及物理空间设计两种模式。Packet Trace中的数据包可采用实时传输模式和仿真传输模式,实时传输与真实传输过程一样,仿真传输可以看到数据传送的过程。

(二)Packet Trace软件的应用

假设某公司需要构建自己的网站,并在网站上提供邮件系统服务。通过分析,为了完成本实验需要用到的设备有:首先需要一台网站(Web)服务器、一台邮件(E-mail)服务器;另外还需要一台域名解析(DNS)服务器(通常可以由专门的机构提供,为了方便在仿真软件中构建了自己的DNS服务器);还需要几台可以上网的PC机;为了将这些设备连接起来,需要一台交换机。还需要配置每个服务器的协议及每个服务器和PC机的地址;如果需要远程登录交换机还需要对交换机进行配置。这个实验可以在真实的环境中完成,也可以在虚拟仿真软件Packet Trace中完成。以下先通过Packet Trace软件进行虚拟仿真实验。

1.构建网络拓扑

将Web服务器、E-mail服务器、DNS服务器、两台PC机拖曳进主界面,并连接好配置线,将设备分别重命名,得到实验的网络拓扑,如图1所示。

图1  网络拓扑结构图

2.配置各设备

(1)配置DNS服务器。鼠标单击DNS服务器,首先在Desktop选项中选择“IP Configuration”设置静态分配(Static),设置好各地址参数,其中IP地址192.168.1.2;然后在Config选项卡中设置GLOBAL项中的Gateway为:192.168.1.1,DNS Server为192.168.2;最后将DNS项以外的其他协议全部关闭,并在DNS中添加网站(fly.com)及邮箱(pop3.163.com,stmp.163.com)的域名解析,如图2所示。

图2  DNS域名解析配置

(2)配置Web服务器。鼠标单击Web服务器,在Desktop选项卡中配置好IP Configuration中各地址,IP地址为192.168.1.8;然后在Config选项卡中设置GLOBAL项中的Gateway为:192.168.1.1,DNS Server为192.168.2;再后将HTTP项以外的其他协议全部关闭,还可以在此处修改网页代码,以修改网页的显示内容。

(3)配置邮件服务器。点开E-mail服务器,配置好IP Configuration中各地址,IP地址为192.168.1.3;然后在Config选项卡中设置GLOBAL项中的Gateway为:192.168.1.1,DNS Server为192.168.2;再后将E-mail项以外的其他协议全部关闭,并在E-mail项中设置Domain name及添加邮箱用户名及用户密码。

(4)配置交换机。如果交换机不需要远程登录进行配置管理,则无需配置。如果需要进行远程登录管理那么需要给交换机配置地址。交换机配置地址需要通过IOS配置方式。给交换机配置地址为192.168.1.253。点开交换机,进入CLI选项,回车后键入命令,下面进行简单的配置命令:

Switch>en//进入特权模式

Switch#conf t //进入全局模式

Switch(config)#inter vlan 1(默认交换机的所有端口都在VLAN1中)//创建并进入VLAN1的接口视图

Switch(config-if)#ip address 192.168.1.253 255.255.255.0//在VLAN1接口上配置交换机远程管理的IP地址

Switch(config-if)#no shutdown//开启接口

Switch(config-if)#exit//回到全局配置模式

(5)配置两台PC机的地址。点开PC0,在Desktop选项中选择“IP Configuration”设置静态分配(Static),设置好各地址参数,其中IP地址192.168.1.4。PC1的设置同PC0,其中IP地址为192.168.1.5。

3.测试验证实验

(1)验证网站功能。在PC0(或PC1)上,点开进入Web Brower选项,输入网址fly.com,再点击go,如果能够正确显示出Web服务器上的主页,则说明Web服务器实验成功。否则需要重新检测故障,并排除故障,直到能够成功显示。

(2)验证邮件收发功能。鼠标单击PC0(或PC1)上,选择Desktop选项,单击E-Mail,进入MAILBROWER,单击Configure Mail,然后进行相应的配置。保存后返回MAIL BROWER,进行收发邮件测试,如果能成功收发邮件,则说明邮件服务器实验成功,否则需要检测并排除故障。

三、Packet Trace虚拟仿真实验与真实实验的对比分析

在Packet Trace虚拟仿真软件中,学习者可以通过图形化界面,对虚拟的设备进行连线、配置、测试、排除故障等,在逼真的环境中,体验真实实验的过程,完成实验,得到真实实验的结果。而且虚拟实验中需要用到的实验设备,只需要用鼠标拖曳出来即可,仿真软件提供不同的设备和相同设备不同型号的选择,实验非常方便灵活。而在真实的实验中,很多实训场所不可能提供这么多的设备,更难具备各种不同型号的设备,仿真软件大大地节约了设备成本。在虚拟实验中,可以不断地重新配置,尝试不同的配置方法,不会损坏设备,配置不成功,可以删除设备,重新拖曳进新设备进行配置,而在真实实验中配置不正确,操作不当,可能损坏真实设备,而且不可能把真实设备丢掉后再用新设备进行配置管理,因此,虚拟仿真实验提供了更灵活的配置方法,增强了学习者的学习兴趣。在虚拟实验中,不需要专门的实训场所,不需要实训室管理维护人员,节约了实训场所成本以及管理人员成本;虚拟实验可以在任意一台电脑上完成,突破了时间与空间的限制,可以使学习者随时随地进行实验,学习更轻松,效率更高。

但是在虚拟仿真实验中有一些与真实实验不完全相同的地方,比如设备之间的连线,只需要选择一种介质即可,甚至可以由系统智能判断选择什么介质,所以配线环节不会出现错误。而在真实实验中,学习者可能不知道具体的设备需要选择哪种传输介质,或者传输介质没有连接好、松动、串扰等都可能造成实验不成功,而这些在虚拟实验中都不会出现。另外,如Web服务器配置,在虚拟实验中没有设备Web站点,只需要将HTTP协议打开即可,而在真实的实验中Web站点的配置存在版本的不兼容、默认站点的位置不正确以及登录用户的权限设置等问题都可能引起Web服务配置不成功。

因此,虚拟实验仿真实验需要与真实实验结合起来,不能只是单纯地进行虚拟仿真实验。比如,可以让初学者先通过虚拟仿真实验,熟悉设备、设备的型号、设备的配置方法、设备的管理方法、设备的排障方法等,然后再结合真实设备进行实验,这样将使学习效果更佳。

第7篇:虚拟仿真实验技术范文

【关键词】虚拟现实 仿真实验教学 应用

实验教学工作在理工科教学活动中扮演了重要的角色,有利于巩固学生的理论知识学习成果、深化学生掌握及理解知识的能力,培养并强化学生分析及解决问题的能力。现阶段,受实验室条件的限制,在实际的理工科实验教学活动中,学生们往往借助虚拟现实技术在相关模型上开展实验研究工作。目前,虚拟现实技术在仿真实验教学中广泛应用,收到了显著的成效,极大地推动了仿真实验教学的进步。

1 虚拟现实技术的内涵及主要语言

虚拟现实技术简称VR,其是一类可以体验及创建虚拟世界的计算机仿真系统,借助计算机生成相应的模拟环境并使用户沉浸至该环境之中。虚拟现实技术是仿真技术研究与发展的一个重要方向,其是计算机图形学、仿真技术、多媒体技术、人机接口技术及网络技术的高度融合,是一门复杂程度极高、应用空间广阔的新型技术。

就目前状况而言,VBML语言是虚拟环境构建工作所使用的主要语言,其能够有效灵活地将二维图形、三维图形、视频及音频等效果调和于一起,从而创造出一个综合性极强的虚拟场景,并为虚拟场景赋予较强的实时感及空间感。用户可以在虚拟场景中随意巡行,而且能够对场景中的相关对象进行交互式的操作。

2 虚拟倒立摆三维场景的构造

VRML是重要的虚拟现实建模语言,人们利用VBML语言能够快捷、有效地建立虚拟三维场景。作为虚拟空间的文本性描述,VBML文件可以由任意一个记事本生成,而“.wrl”是VBML文件的扩展名。经验表明,在建模工作中运用VBML较为困难,需要经历大量的必要程序,不仅无法实现所见即所得,还要编写大量的程序代码,工作量极大。

MATLAB中自带了一个三维物体构造软件包,软件包的名称为V-Realm Builder,该软件包的功能十分强大,其能够提供一个优质的集成开发环境,支持VBML的浏览器能够看到该软件包所生成的虚拟世界及三维物体。V-Realm Builder既能够简化三维物体的创造工作,同时还可以提供极为强大的三维物体编辑功能。使用者能够直接对界面中的每一个域及节点进行开展编辑工作,而且相应的场景立刻得到显示与修改。使用者能够轻松、便捷地进行节点修改、编辑与增加操作,绝大部分编辑功借助鼠标即可完成。V-Realm Builder的VBML的构造能力极其强大,基于此,可以在仿真实验教学中构建虚拟的三维倒立式摆模型。

3 虚拟现实技术在仿真实验教学中的应用

3.1 分布式开发

在仿真实验教学中应用相应的虚拟现实技术而得到分布式虚拟环境系统,该系统不仅可以最大化地满足分布式仿真对共享虚拟环境的各类要求,同时还能够适应复杂虚拟实验环境对计算工作的需要。互联网技术是分布式虚拟现实系统的重要核心,随着互联网技术的不断进步,分布式虚拟现实系统的先进性与完善性逐渐增强,该系统能够促使不同的实验者在不同区域,同一时间内进入分布式虚拟环境中,为异地实验者提供了共同学习理论知识、分享实验经验的机会。

3.2 虚拟现实实验教学中的集成技术

软件系统集成是虚拟现实技术集成的前提条件及重要基础,而系统的集成被视作虚拟现实系统集成的关键表现。由虚拟现实技术建立的实验系统中软件的高度集成能够确保系统集成的灵活性,这种灵活性往往表现在不同层面之上,能够促进仿真实验教学的进步。虚拟现实实验环境中囊括了大量易被系统感知的信息,也含纳了三维立体模型,因此,虚拟实验系统的集成技术能够在缩减实验成本的基础上提升实验教学的质量。数据识别、实验对象的同步、实验模型的标识及数据形态转换技术是虚拟现实系统集成技术的主要组成成分。

3.3 生成实时三维图形

F阶段,虚拟现实技术中的三维立体图形生成技术已较为成熟,对实验效果的同步技术是三维图形生成技术的核心技术之一。通常情况下,若要实现实时生成实验效果的目标,则需要保证三维立体图形的刷新速率不低于16帧每秒。在一定的范围内,三维立体图形刷新速率越快越好,一般认为最佳的三维立体图形刷新速率应不低30帧每秒。虚拟现实技术在仿真实验教学的应用过程中,应当在不降低三维立体图形的质量及数量的基础上适当地提升图形的刷新速率。

3.4 动态环境建模

在应用虚拟现实技术的过程中应当做好动态建模工作。应用动态建模技术的主要目的是构建与仿真实验教学相对应的环境模拟模型,借助来源于现实实验环境中的建模数据,紧密结合实际仿真实验教学的具体需要来建立合适的模型。在三维数据信息采集过程中,需要用到计算机辅助设计技术等技术。在实际的动态环境建模工作中,应当考虑到相关实验设备及实验流程的复杂程度,遴选最合适的建模软件来开展实物三维造型的构造工作。

4 结语

得益于科学技术的高速发展,虚拟现实技术逐渐成熟并在诸多行业中成功应用。新的发展形势下做好虚拟现实技术在仿真实验教学中的应用工作具有重要的现实意义,有利于缩减实验成本、提升实验质量。在实际的虚拟环境构建过程中要注意相关技术要点、遴选最恰当、先进的建模软件开展建模工作,广大教师要不断地提升自身的综合素质,善于总结借鉴优秀的建模经验,从而最大程度地强化虚拟现实技术在仿真实验教学中的应用质量。

参考文献

[1]王宣淋.在建筑领域中虚拟现实技术的应用分析[J].电脑迷,2016(07).

[2]林凤屏,陈必链,张彦定.虚拟现实技术在医学教学中的应用探析[J].实验室科学,2016(06).

[3]孙超.浅谈虚拟现实技术在智慧城市领域的应用[J].中国公共安全,2017(01).

作者简介

董艳雯(1970-),女,河南省郑州市人。硕士学位。现为郑州市技师学院讲师。主要研究方向为电子、教育。

第8篇:虚拟仿真实验技术范文

1工程机械虚拟仿真实验教学平台的总体架构

本文设计的基于互联网和计算机虚拟仿真技术的实验教学平台,将理论分析与实验教学融合于一身,能够从理论和实践的双重视角分析工程机械运动的原理,利用虚拟仿真实验平台实现工程机械理论与实践的统一,为工程机械专业教学活动提供了一个动态化、智能化、交互性的教学与实验环境[8-9]。该虚拟仿真实验教学平台能够通过视频、图像等方式将机械设备的工作过程进行动态化展现,产生更加直观和生动的教学效果,使学生更容易掌握工程机械运动的原理。

依托于互联网和大数据的计算机仿真平台的突出特点是智能化,可以提供更多种类的教学模式和实验模式;在交互性的表现方面具有强大的AI性能[10-11],易于教师与学生的互动和交流,学生在选择性学习方面有了更大的自主性。由于虚拟仿真实验教学平台的教学资源由网络和大数据平台提供,一方面可以保证所提供的工程机械模型的科学性、时效性和多样化,能够应对不同方向的教育教学任务;另一方面也提高了教学资源网络的共享性和开放性,节约了教育教学成本。

本文设计的基于网络与计算机虚拟仿真技术的工程机械实验教学平台,是在工程机械设计与机械运动原理的基础上,结合计算机仿真技术和多媒体技术,以更为直观和透彻的方式展现工程机械设备的工作原理。它改变传统实验教学平台中过于抽象和单一的表现方式,具有更好的交互性和实验教学效果。计算机虚拟仿真实验教学平台作为一种新型教育教学系统和媒介,为工程机械实验教学提供了一个高效、稳定和经济的教学方式。该虚拟仿真实验教学平台的最大特点是以虚拟3D的方式呈现,可以在虚拟与现实之间进行转换,是多媒体VR技术在教学中应用价值的体现[12]。学生和教师都可以以用户的身份登录该平台,基于输入/输出设备向虚拟实验平台传达指令并获取相关的结果,反馈的结果包括视频输出、图形输出和文字输出等不同的形式。平台还能够依据登录者的要求提供更加完整的实验数据、实验图形及工程机械各种参数变化曲线拟合等。

工程机械虚拟仿真实验教学平台总体框架主要由平台信息导入模块、实验教学虚拟交互系统和平台信息导出界面等3部分构成。工程机械虚拟仿真指令从输入界面导入,用户的指令需要转换为虚拟的计算机语言并进入虚拟仿真实验教学系统。虚拟交互系统是虚拟仿真实验教学平台的核心模块,按照用户的指令提供平台控制功能、场景虚拟功能、场景选择功能及各种指令操控功能。平台信息导出模块将实验教学虚拟交互系统模块计算和处理过的数据信息、仿真模型以图像或视频的模式显示出来,从理论和实践两个视角展现工程机械运动的过程和基本原理。

2虚拟仿真实验教学平台的基础硬件设计

工程机械虚拟仿真实验教学平台由硬件系统和软件系统两个部分构成,其中硬件部分是实现虚拟仿真系统基础功能的前提和保证,也是软件功能得以实施的实物载体。

用于工程机械虚拟仿真的实验教学平台核心硬件模块包括虚拟上位机、信号控制模块、信号驱动模块、仿真运动平台、信号感应模块和LED显示模块。当用户开始操作平台时,信号模块会将用户的要求和信息以控制信号的模式导入驱动模块,同时虚拟上位机系统参与协同控制,共同控制虚拟仿真平台的工作与运行。虚拟仿真实验教学平台除了具有必要的电机结构、联轴器结构、台体结构、电控装置及运动结构之外,还通过编码器、光栅尺、传感器等与上位机系统连接,以虚拟现实技术为依托,实现工程机械实验教学平台系统的更新与变革。工程机械虚拟平台系统依靠编码器、传感器等读取用户的指令信息,再利用信息控制模块及平台的电控装置,传导信号、输出指令和导出实验教学用的相关数据和虚拟模型。

3实现流程与关键技术

工程机械虚拟仿真实验教学平台的系统软件程序设计,与系统整体框架设计及硬件模块设计相匹配,平台的各软件模块都围绕着工程机械设计的基本理论展开。平台软件的实现流程包括系统用户时域信号的分析和系统频域特征的分析,最终通过对用户需求的分析和平台虚拟程序的运转,输出各类工程机械工作原理视频或图片,以达到提高教育、教学效果的最终目的。

平台启动后,用户按照自己的教学需求和平台使用规则载入原始数据,并开始进行数据转换,提取符合工程机械标准的性能指标值及相关数字信号的空间坐标值。系统的软件模块和软件实现流程能够以程序的方式写入平台系统,也可以按照用户的需求及工程机械的基本原理进行修正,以呈现出不同的信号频域特征和工程机械模型。

虚拟仿真实验教学平台信号的响应速度是衡量平台软件系统功能性的主要指标之一。平台系统在数据信号和系统本身固有特性共同作用下,可以将用户的实验目的及实验要求转化为最终的工程机械虚拟仿真实验结果,并在显示模块中显示出来。初始阶段由用户数据转换过来的信号为阶跃信号,阶跃信号可以直接调动系统平台的资源,但受到虚拟仿真实验教学平台硬件兼容性的限制。当信号无法调动系统平台资源时,就需要将阶跃信号转变为脉冲信号。平台的响应信号实质上由系统内部软件程序的微分方程及其全部的解构成,在系统平台开始进行仿真实验的过程中,基于对仿真信号的传递、识别和处理,能够得到实际的工程机械仿真模拟输出,但在绘制信号的仿真输出曲线时会出现一定程度的系统误差(t),影响微分方程正确解的总体数量,因而需要对信号传输误差进行有效控制。系统信号输出误差的控制可以通过调整系统硬件参数设定或更新软件程序的方法实现。虚拟仿真实验教学平台的频率响应效率是影响平台信号谐波输入及系统稳态响应的一个重要因素,输出曲线的正弦波相位变化及幅值的变化,是显示虚拟仿真平台基础性能的重要指标之一。当进行虚拟仿真实验时,可以通过修改信号频率的模式,得到若干组数据信号输出值,使虚拟仿真实验教学平台的误差最小化,得到结果最为真实、准确。

在工程机械虚拟仿真实验教学平台的实际应用中,本文采用的UGNX虚拟技术,能够导入各种3D模型制作软件,具有更加良好的适配性和兼容性。在虚拟仿真实验教学中,软件程序的设计主要基于UGNX虚拟技术来实现,包括3D建模、3D渲染和仿真教学模型的优化。利用UGNX虚拟技术进行工程机械仿真实验教学,基于UGNX技术优化虚拟仿真实验教学平台的系统属性和软件实现流程,并按照用户的需求模拟真实的工程机械设备进行场景的选择与设定,添加各种属性和行为。

虚拟仿真软件程序在UGNX内创建并内嵌于虚拟仿真实验教学平台之中,实现工程机械的3D建模。创建仿真程序需要对原始的数据信号进行标准化处理及虚拟场景的交互,导入机械设备模型的三维数据,其中工程机械设备的格式是以系统插件的形式完成的,在数据信号格式的转换中,基于网络和校园内部浏览器向平台输出相关的实验教学数据,确定虚拟仿真实验教学的实施路径,并将最终的虚拟仿真结果以视频或图像的形式更为直观地展现出来。

在工程机械虚拟仿真实验教学中,为了提高三维展示的直观性,工程机械内部零件都具有一定的透明度,并可以利用UGNX技术将不同的零件辅以不同的颜色,在实验教学中有助于使用者更为细致地观察工程机械的运行原理,认识各个内部零件之间及与设备整体的逻辑关系。与传统的工程机械类实验平台相比,本文设计的仿真实验平台,在仿真的直观性、准确性、交互性及实验课堂教学效果方面都具有较大的优势。特别是在平台系统交互性能方面,利用UGNX技术平衡虚拟仿真平台总体的架构与节点安排,使工程机械设备结构的各种特性都能够全面地展示出来,显著提高教育教学的交互性与智能性。

4实证结果与分析

4.1虚拟平台的功能性验证

首先验证虚拟仿真实验平台的功能性。采用问卷调查的方式对使用了平台的师生进行问卷调查,对于文中提出平台设计的满意度问卷调查统计情况问卷调查结果显示,各专业教师和学生对于虚拟仿真平台的满意度均在95%以上,说明文中提出的虚拟仿真平台相对于传统平台具有良好的功能性和实用性,能够获得更好的实验教学效果。

4.2虚拟仿真平台的性能验证

教学实验平台的信号响应值是衡量系统平台性能的重要指标,信号响应值越小则证明实验平台的信号响应越快速、性能越强。本文以车辆工程专业教学中的底盘设计为例,分析传统实验教学平台和虚拟仿真实验平台的信号传输响应值分布情况。该基于互联网和大数据的工程机械虚拟仿真实验教学平台的信号响应值被控制在±1.0之内,最高值和最低值分别为0.65和–0.65。从实验结果可知:本文设计的虚拟仿真实验教学平台在系统响应时间上更有优势,尤其是在复杂三维建模中可以提高仿真教学的效率和效果。

第9篇:虚拟仿真实验技术范文

关键词:计算机仿真;虚拟样机;试验;基于仿真的采办;装备采办

引言

从20世纪90年代开始,美国国防部为了更好、更快、更省地采购和部署满足21世纪军事需求的武器系统,进行了一系列卓有成效的防务采办改革,提出了基于仿真的采办(Simulation Based Acquisition,SBA)的概念。基于仿真的采办的核心思想是通过采用建模与仿真技术,以并行、迭代、柔性的思想指导武器系统的开发与采办,实现武器系统全生命周期各阶段的协同工作,是对传统采办在过程、支持环境和采办文化上的变革与创新。经过多年的实践与发展,基于仿真的采办得到美国军方和工业界的充分肯定,他们认为,基于仿真的采办可为切实缩短武器装备的研制周期、减少资源消耗、降低采办风险、提高装备质量。

虚拟样机(Virtual Prototype,VP)是基于仿真的采办中的一个重要概念,是建模与仿真技术在其中的一个最重要的应用形式。它利用虚拟样机代替物理样机对产品进行创新设计、测试、评估和人员训练,成为缩短产品开发周期,降低成本,改进产品设计质量,提高面向客户与市场需求能力的重要手段。

随着高新技术成果大量地应用于武器装备,武器装备变得越来越复杂。传统的串行采办过程,论证方、用户方、研制方和评估方分离的采办制度将很难适应未来武器装备的发展需求。因此,可以借鉴美军基于仿真的采办的成功经验,以并行、迭代、柔性的思想指导武器装备的开发与采办,用虚拟样机代替物理样机参与武器装备的预研、方案论证、工程研制、定型试验等过程阶段的试验与评估,并将试验与评估的结果直接反馈于武器装备的设计与研制,通过并行、迭代、柔性的方式不断地改进和完善武器装备的设计,更好地适应与满足未来不断变化的军事作战需求,降低武器装备的开发风险和开发成本,缩短研制周期,提高产品质量。

1虚拟样机技术

根据美国国防部建模与仿真办公室(DefenseModeling and Simulation office,DMSO)的定义,武器装备的虚拟样机是指在需求分析、方案论证、系统设计、演示验证等阶段使用的、代替武器装备实物样机的数字模拟产品。虚拟样机将建模与仿真技术扩展到新产品研制开发的全过程。它以计算机支持的协同工作为技术基础,通过支持协同工作、CAD、CAM、建模与仿真、产品分析、计算可视化、虚拟现实的计算机工具,将各个集成化产品小组(IntegratedProduct Team,IPT)的设计与分析人员联系在一起,共同完成新产品的概念探讨、运作分析、初步设计、详细设计、可制造性分析、性能评估、生产计划和生产管理等工作。

利用虚拟样机代替物理样机,可缩短开发周期,降低开发和测试成本,改进设计质量。利用虚拟样机,可使产品的设计者、使用者和评估者在产品研制的早期,在虚拟环境中,直观形象地对虚拟样机进行优化设计、性能测试、制造和使用仿真,对启迪设计创新、减少设计错误有着重要意义。

1.1虚拟样机技术的特点

1.1.1虚拟样机在产品的全生命周期中是不断进化的

李伯虎院士等学者认为,利用虚拟样机技术开发虚拟样机的过程,实质上是一种产品全生命周期基于模型的不断提炼与完善的过程。不仅如此,作者还认为,在产品的全生命周期内,随着论证方、研制方、使用方和评估方对产品认识的不断加深,虚拟样机的开发是一个不断进化、不断完善的过程。虚拟样机经过不断地迭代,逐步完善,逐渐逼近最终的实际物理样机,最后研制方根据最终的虚拟样机生产制造出满足设计目标的物理样机。

在进行系统论证时,由于对产品的认识还不深入,论证方仅仅能够勾勒出产品的大概轮廓,提出产品的主要战技指标要求,对于虚拟样机的许多细节,暂时还无法进行确定。当进行系统设计时,随着对产品设计的全面展开,虚拟样机的细节逐步丰满,产品的组成、工作流程、内外部接口等内容不断丰富,虚拟样机得到了初步地进化与完善。在后续的虚拟制造、虚拟试验、虚拟使用等环节,制造方、试验方和使用方会发现产品在论证与设计中的许多问题与缺陷,不断地提出产品的改进意见。这些都反馈到产品的论证方与设计方,对虚拟样机的设计进行修改完善,实现虚拟样机的不断进化,最后形成最终的虚拟样机产品,如图1所示。

1.1.2虚拟样机成为论证方、用户方、研制方和评估方之间直观的交流语言

以往,产品的论证方、用户方、研制方和评估方之间的交流主要通过各种文书实现,包括研制任务书、设计方案、设计图样、试验报告和使用说明书等文件。一方面,这些文件数量庞大,读完并理解需要耗费较长时间;另一方面,这些文书不直观,各方对文书的理解存在偏差,很难使各方对产品形成统一完整的认识。这些不利于各方之间的交流沟通,也直接影响到武器装备的作战使用。

利用虚拟样机,就很容易使各方对产品的认识具体化,形象化。论证方向研制方说明研制目标和要求时,可以将其论证的虚拟样机运行于仿真作战环境中,直观形象地展现武器装备的作战环境、作战目标、作战过程、使用要求、战技指标等,使双方沟通更通畅,更容易达到一致的认识;当用户培训操作手时,就可以直接利用虚拟样机,这样不仅能够比较容易地发现武器装备的设计问题和缺陷,而且武器装备的技术特点、使用特点也会直观立现,也使得部队能够在战时更好地运用武器装备,使用武器装备。

1.1.3虚拟样机利于增量式开发的实现

增量式开发是指,已经识别了武器装备的预期能力,对于其终能力的需求是明确的。最终能力需求是可以通过多次增量开发得到满足,但武器装备的每次增量开发取决于当前的技术成熟度。这是为了平衡技术成熟度和研发风险、费用以及用户能力需求紧迫性之间的关系。这样就允许核心作战能力可以快速投入战场来满足作战需求。这种策略可以随着技术的逐步成熟,将作战能力以连续增量的方式投入战场。增量式开发可以加快技术进步到战斗生成之间的转化,缩短武器装备的采办周期,形成“研制一批、生成一批、装备一批”的武器装备持续发展局面,使得关键技术进步可以快速形成战斗力。

虚拟样机的并行、迭代、柔性的开发过程与增量式的开发过程非常吻合,使增量式开发的过程较容易实现。另一方面,虚拟样机的模型复用技术也可以与增量式开发相结合,在增量式的开发过程中大量地使用模型复用技术,进一步加快开发过程,缩短开发周期,快速技术进步向战斗力的转换。

1.2虚拟样机技术的应用

目前虚拟样机技术已经显示出其强大的生命力,广泛的应用于航空、航天、车辆、机械等领域。波音777就是一个采用虚拟样机技术的典范,它首次采用虚拟样机技术实现了包含300万个零件的波音777飞机全过程无图纸设计。在11个月的时间里,设计小组利用虚拟样机完成了751个飞行小时的机翼测试,730个地面小时的飞行性能测试,1088个飞行小时的推进器性能测试,770个飞行小时的飞行稳定性测试,830个地面小时的飞行开发,1280个飞行小时用于ETOP,913个地面小时用于系统验证,共8384个测试小时,他们耗费了最短的时间进行了历史上最长时间的测试,减少了94%的费用和93%的设计更改。

随着仿真技术的发展,虚拟样机技术与武器系统的结合也越来越紧密。例如美国麦道公司采用虚拟样机技术研究F/A-18战斗机的发动机装配问题,可以在30分钟内确定发动机是否能够完全适应飞机及维修设备的需要;美国研制第4代战斗机F22的过程中,虚拟样机试验与评估以及风洞试验的经费比是6:4;美国“响尾蛇”空空导弹的三个型号,由于采用了虚拟样机技术,靶试的实弹数由129发减少到35发;在“爱国者”、“罗兰特”和“尾刺”地空导弹的研制过程中,节省研制经费10%~40%,缩短研制周期30%~40%,这三个地空导弹的靶试情况如表1所示。

李伯虎院士等人是在国内较早开展虚拟样机研究的技术团队之一。他们基于国家863/CIMS航天并行工程项目,开展了复杂系统的虚拟样机技术研究、应用与初步实践,并开发了具有自主知识产权的虚拟样机支撑平台,并将虚拟样机技术成功地应用于航天飞行器的设计与制造。

另外,虚拟样机技术在国内已成功地应用于导弹、火炮、轻武器等武器系统的设计与制造领域,也成功应用于机器人、数控机床、拖拉机等装备的设计与制造领域,甚至也应用于过山车和乒乓球发球机等娱乐设备的设计与制造领域。

2虚拟样机试验

2.1虚拟样机试验可以使传统的串行采办过程并行化

由图2可知,传统的采办过程是一种串行的采办过程,装备试验与评价活动并未贯穿装备的整个采办寿命周期,主要处于工程研制阶段之后,生产部署之前。传统的装备试验与评价活动基本上是以单件装备型号产品为试验对象,试验目的基本上是为了检验装备型号产品的各个单项性能指标是否达到了初始设计要求。利用虚拟样机试验就可以将传统的串行采办过程转变为如图3所示的并行的采办过程。

2.2虚拟样机可以弥补试验时物理样机数量上的不足

一般来说,装备在进行定型试验之前,生产的数量都极少,不能满足今后体系效能试验的数量要求。由于经费、生产能力等方面的原因,研制方又不可能生产出符合体系效能试验数量要求的装备。因此,在体系效能试验之前,对虚拟样机进行验模与评估,确保虚拟样机能够代替物理样机参加试验;试验时,利用虚拟样机代替部分物理样机,构建体系效能试验环境,驱动试验运行;试验后,对虚拟样机和物理样机的表现进行综合分析,评估装备的体系对抗效能。

2.3可以将LVC仿真资源进行综合集成构建逼真的虚拟样机试验环境

仿真资源通常可分为真实(Live)、虚拟(Virtual)和构造(Constructive)3种。真实仿真资源是指在部分虚拟的环境中由真实的人操作真实的装备;虚拟仿真资源是指在虚拟环境中由真实的人操作虚拟的装备;构造仿真资源是指在虚拟环境中由虚拟的人操作虚拟的装备。在装备的论证、研制、试验和使用过程中,产生了大量的IVC仿真资源,这些资源面向不同的仿真应用,满足了不同的仿真需求。在进行虚拟样机试验时应很好地继承LVC仿真资源,面向实战,进行综合集成,构建逼真的虚拟样机仿真试验环境。