前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的污水处理论文主题范文,仅供参考,欢迎阅读并收藏。

1.1供试材料和堆肥方式
1.1.1污泥来源和条垛式堆肥技术于2008、2010年同季采集(均在夏季),初始城市污泥均来自北京高碑店、卢沟桥及吴家村污水处理厂的混合污泥,并进行条垛式堆肥处理,温度50~60℃,之后浓缩、脱水,大约25~30d后成为腐熟的干污泥.然后风干、碾碎,过筛,把污泥中的较大块物体等进行细化,经过筛选使之粒度达到60~80目,备用测定.以上以A型堆肥污泥表示.
1.1.2污泥来源和高速活性堆肥工艺于2012、2013年同季采集(均在春季),初始城市污泥均来自北京市昌平区南口污水处理厂的污泥,并采用一种高速活性堆肥工艺进行处理(high-raterecoveryoforganicsolidwtessystem,HiRosSystem).该工艺采用机械热化学稳定及活化法,处理工艺中的所有反应釜、储槽、传送器等均为密闭系统,在高温高压下,完全杀菌及杀寄生虫性、并可分解有毒有机化合物,有效去除重金属危害,从而将有机固体废弃物转化为无味无臭、高品质的有机肥.之后再进行风干、碾碎及过筛,把污泥中的较大块物体等进行细化,经过筛选使之粒度达到60~80目,备用测定.以上以B型堆肥污泥表示.
1.2测定方法
供试A、B型堆肥污泥的理化性质均采用常规测定方法[19];pH采用pH酸度计法(HANNA,pH211酸度计);汞(Hg)、砷()含量的测定采用原子荧光光度计测定(AFS3000,北京科创海光仪器有限公司);全磷、全钾及Cu、Zn和Cd等其他金属或元素含量的测定均采用酸溶-等离子发射光谱法测定(等离子发射光谱仪IRISIntrepidⅡXSP,美国Thermo公司).每个测定项目均设置3个重复,最后算平均值,并以干基表示.以上测定在国家林业局森林生态环境重点实验室进行.
2结果与分析
2.1堆肥污泥的营养含量如表1和表2所示,在A型(条垛式)和B型(高速活性)堆肥污泥中均含有可观的营养含量,且不同类型堆肥污泥和年份间的各项营养指标均表现出较大的差异.A、B型污泥的有机质、全氮、全磷和氮磷钾总养分(N+P2O5+K2O)与往年相较均有所增加,譬如A型污泥的氮磷钾总养分在2010年较2008年增加了15.6%,B型污泥的氮磷钾总养分在2013年较2012年增加了29.7%;而A型污泥的速效氮和全钾与往年相较则表现为减少,譬如A型污泥的速效氮含量在2010年较2008年减少了50.7%,与之相反的是B型污泥的速效氮和全钾则比往年都有所增加.由表1和表2所示,A、B型堆肥污泥不同年份的pH平均值分别为7.1和7.2,有机质的平均值分别为203338.0mg•kg-1和298531.5mg•kg-1,氮磷钾总养分(即N+P2O5+K2O)平均值分别为41111.7mg•kg-1和65901.5mg•kg-1.以上A、B型污泥各项营养指标的平均值与表3比较而言,A型堆肥污泥的有机质含量达到了《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A、B级污泥和《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)的标准要求,但未达到《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的有机质标准要求,而A型污泥的pH和氮磷钾总养分以及B型污泥的pH、有机质含量和氮磷钾总养分均符合各城镇污水处理厂污泥处置类型的标准限值要求。
2.2堆肥污泥的营养元素含量和重金属污染由表4和表5所示,A、B型堆肥污泥中不仅含有丰富的营养元素,同时也含有诸多重金属,而且不同年份间的各元素/金属总量均呈现明显的差异.2010年与2008年比较而言,A型污泥中Cu、Zn、Ca、Fe、Mg和Na的总量均表现为增加,而Mn则有所减少;2013年与2012年相较而言,B型污泥中的Cu、Zn、Ca、Na、Al、Cd、Cr、Hg、S的总量均明显增加,而Mn、、B、Pb、Fe、Ni、Mg总量则有所减少.另外,各金属/元素的总量在A、B型污泥中亦呈现较大的差异.譬如,A型污泥不同年份的Zn、Fe总量平均值较B型污泥的分别高出85.9mg•kg-1和1913.0mg•kg-1;而B型污泥不同年份的Mn、Mg总量平均值较A型污泥的分别高出819.3mg•kg-1和8827.1mg•kg-1。从不同污泥处置类型中重金属的控制限值可知(见表6),我国的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值,在各种污泥处置类型中是最为严格的.由表4和表5所示,A、B型堆肥污泥不同年份的Cu总量平均值分别为188.5mg•kg-1(范围为183.4~193.6mg•kg-1)和188.6mg•kg-1(范围为135.2~241.9mg•kg-1)以及Zn总量平均值分别为896.1mg•kg-1(范围为781.5~1010.7mg•kg-1)和810.2mg•kg-1(范围为755.0~865.4mg•kg-1),与我国城镇污水处理厂污泥处置类型的标准限值比较得知(见表6),其不仅符合《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)和《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的Cu、Zn总量的标准限值要求,而且远低于最为严格的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值(即总Cu<500mg•kg-1和总Zn<1500mg•kg-1).A型堆肥污泥中的Cd、Cr、Pb、和B的总量(仅为2010年数值)分别为2.9、82.0、105.1、17.0和42.1mg•kg-1(见表4);如表5所示,B型堆肥污泥不同年份的Cd总量平均值为2.8mg•kg-1(范围为2.6~3.0mg•kg-1)、Cr总量平均值为140.1mg•kg-1(范围为130.1~150.0mg•kg-1)、Pb总量平均值为69.2mg•kg-1(范围为67.9~70.5mg•kg-1)、总量平均值为7.9mg•kg-1(范围为5.4~10.4mg•kg-1)以及B总量平均值为80.2mg•kg-1(范围为78.7~81.6mg•kg-1).上述A、B型污泥中的重金属含量与表6中的标准限值比较得知,各金属总量均达到了我国各类型污泥处置的标准限值要求(见表6),其中包括达到最为严格的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值要求(即总Cd<3mg•kg-1、总Cr<500mg•kg-1、总Pb<300mg•kg-1、总<30mg•kg-1).但是,B型堆肥污泥的Hg、Ni总量存在超标的情形,且不同年份间存在明显的差异(见表5).具体而言,B型污泥不同年份的Hg总量平均值为12.8mg•kg-1以及2012年的Hg总量为7.1mg•kg-1,符合《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中B级污泥的标准限值要求(即总Hg<15mg•kg-1),以及《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)和《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的中性和碱性土壤(pH≥6.5)的标准限值要求(即总Hg<15mg•kg-1),但其它的标准限值要求则不符合(见表6);Hg总量在2013年为18.4mg•kg-1,对任何污泥处置类型中的限值要求均不符合.另外,B型污泥2013年的Ni总量为120.0mg•kg-1,符合《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中B级污泥的标准限值要求(即总Ni<200mg•kg-1),以及《城镇污水处理厂污泥处置-土地改良用泥质》(GB/T24600-2009)和《城镇污水处理厂污泥处置-园林绿化用泥质》(GB/T23486-2009)中的中性和碱性土壤(pH≥6.5)的标准限值要求(即总Ni<200mg•kg-1),但其它的标准限值要求均不符合(见表6);B型污泥不同年份的Ni总量平均值为246.4mg•kg-1和2012年为372.8mg•kg-1(见表5),均不符合任何污泥处置类型中的限值要求(见表6).
3讨论
城市污泥通过制肥,不仅可解决农田、园林及绿地急需的有机肥料的来源问题,同时也能寻求城市污泥的合理处置途径,并成为最有效的资源化途径之一.近年来,我国污泥资源化处置技术投产项目显著上升,其中农业对污泥制肥的吸纳量很大,且污泥制肥资源化处置技术的应用已占30%,具有较好的发展前景.已有研究表明,污泥经堆肥处理后,可使污泥中腐殖质含量增加,而腐殖质因含有多种多样的官能团从而吸附重金属,或者改变重金属的化学形态,促使污泥中重金属稳定化,即大多数重金属以稳定残渣态或以残渣态和有机结合态兼具的形式存在,从而降低生物毒性和土壤的污染风险.特别是堆肥污泥相较其它处理方式(譬如厌氧消化和颗粒污泥)而言,堆肥过程更有利于降低Mn、Ni及Zn等的有效性.由此说明,堆肥处理是降低污泥在农田、土地改良及园林绿化中重金属污染风险的重要途径.北京不同城镇污水处理厂堆肥污泥(即A、B型),不仅含有较为丰富的有机质和植物所需的氮、磷等多种营养元素及微量元素,而且污泥的一些营养成分/元素诸如有机质、全氮、全磷和氮磷钾总养分等含量与往年相比均有所增加.据马学文等[26]对全国范围111个城市共193个污水处理厂污泥营养含量的调查可知,有机质、氮、磷、钾的平均含量分别为41.15%、3.02%、1.57%、0.69%,除了北京地区A、B型堆肥污泥的磷含量平均值与全国平均水平基本相当外,其有机质、氮和钾含量均低于全国平均水平,但A、B型污泥的有机质、氮、磷含量比往年均有所增加则与全国的略增走向是一致的.在B型堆肥污泥中,Cu含量比往年有所增加,而Pb含量则比往年有所减少.这与我国城市污泥中Cu、Pb含量在短期的趋势一致[26].但是,从长期而言,我国城市污水处理厂污泥中Cu含量则是下降趋势[27].除Hg、Ni有超标现象外,A、B型污泥的其他重金属含量均低于我国最为严格的《城镇污水处理厂污泥处置-农用泥质》(CJ/T309-2009)中A级污泥的标准限值,这与姚金玲等对我国东北、华北、华东和西北地区116家污水处理厂污泥的研究结果一致.另据张丽丽等[27]对我国城市污泥中重金属分布特征及变化规律的研究结果表明,近10年,污泥中Ni、Cd、Hg含量的超标倍数最高.这与本研究B型堆肥污泥中存在Hg、Ni超标现象相吻合.此外,来自北京不同污水处理厂的A、B型堆肥污泥,其营养和重金属/元素含量存在着明显的差异.即污泥的不同来源可能是主要原因;亦可能受其它因素诸如污水处理规模、处理工艺和运行条件以及污泥堆肥工艺的影响[11].另有研究表明,污泥成分有时会因工艺过程和分析技术而产生显著的差异.而今后,北京地区A、B型堆肥污泥的资源化应用中,一方面,可能面临着潜在的Hg、Ni环境污染情况,需要优先关注;另一方面,则需要进一步探索污泥堆肥过程中重金属钝化的调控措施,从而最大限度地降低重金属的危害,譬如可利用铁氧化菌对一些重金属进行生物浸矿,可能是污泥制肥的一种可行策略,以及在堆肥过程中加入石灰等物质亦能降低重金属的有效性.另外,除了污泥资源化应用中的重金属污染外,还有一些因素诸如粪大肠菌群菌、多环芳烃(PAHs)等影响着污泥处置类型的选择,而本研究未涉及这些方面,因此还需进一步研究和分析北京堆肥污泥中其他污染物的含量,从而进行合理、有效的污泥处置.
4结论
1.1油田污水处理工艺流程
采油污水处理通常采用物化法,大量的污水通过主污水管道进入污水处理厂的总污水储油罐,通过仪表检测来水的总量以便后续处理,从总储油罐送出的污水进入其他储油罐,根据其成分进行多步骤的物理和化学处理,处理完的污水合格后再通过外输管道送出,使污水再次得到利用。结合油田污水处理厂的实际情况,利用组态王工控软件所绘制的污水监控系统现场工艺流程如图1所示。图中清楚地标出了污水处理厂的各处理设备的摆放、名称、数量、管道的连接,各种参数如液位、流量、压力、加入的药剂量、处理后污水的pH值等显示一目了然。
1.2监控系统结构设计
污水处理监控系统由监测中心、现场监控工作站、现场过程测控系统等构成。监测中心通过网络与现场监控站连接,将整个厂区各现场监控站的重要参数和数据进行汇总、存档及综合分析,实现任务优化组合调配。现场监控工作站主要是给用户提供一个可视化的污水处理操作管理平台,提供了污水处理的工艺流程图、罐区示意图、泵状态、参数总貌、实时曲线、历史曲线、控制台、控制监测、监测报警、自动报表、网络数据服务、零点矫正等图形和操作功能。现场测控系统主要由ADAM-5000工控模块和安全栅组成,实现对现场的数据采集、模拟转换、模拟输出、上传数据及接收现场监控站的生产指令等,完成对油田污水处理过程的自动测量与控制。该结构是整个监控系统的核心部分,其中工控模块ADAM-5000系列担当了重要角色,系统通过模块对现场的数据进行采集、转换、输出,实现计算机自动控制。
1.3系统的功能与特点
1)系统可以直接通过现场监控站各功能窗口了解到各子系统的工作状态,可根据污水性质的变化实时地调整相应的工艺参数,不仅方便了技术人员操作,同时也进一步提高了污水处理的质量。
2)在设计自动监控系统时,对一切可能出现的问题笔者在系统中设置了应对措施预案,自动处理相关问题,提高了系统的可靠性。
3)加强了抗干扰能力设计,部分采用了冗余设计,提高了系统的稳定性。
4)自动监控系统对于要控制的现场参数,无需工作人员现场考察,其现场的仪表状态及加药系统的工作状态在控制室里一目了然。
5)监控系统具有多数据自动记录、显示功能,对历史数据作了浓缩处理,可通过现场监控站各功能窗口直接查询、显示或打印任何时刻的监测结果。
6)通过现代化的网络实现了系统数据共享,并可通过网络把动态数据实时传送到上级主管部门的监控系统,便于职能部门实时了解现场情况,做出正确决策。
2污水处理监控系统功能设计
污水处理监控系统软件系统采用组态王工控软件开发,根据需要绘制了工程流程图、罐区示意、泵状态、参数总貌、实时曲线、历史曲线、控制台、控制监测、零点矫正、报警、报表、参数设置等画面。画面是用户用来与计算机进行人机交互、监视控制系统状况、进行生产操作、输入控制命令的人机界面,通过该画面,能够让操作人员形象、直观、正确地掌握整个系统的运行状况,及时方便发出自己的操作命令。通过这些运行画面为用户提供了数据采集与处理、画面设计、动画显示、报表输出、报警处理、流程控制等功能,对整个污水处理工作状况实现了全方位实时监控。泵工作状态画面各参数反映了各加药泵的工作状态,如各泵污水流量、工作频率、控制量等。通过对加药撬块各泵变频器工作频率的自动控制,实现了药剂加药量的自动控制,大幅提高了污水处理质量。控制操作台画面既有重要参数显示窗口,也有各种不同的功能按钮菜单,实现了监控系统登录、配置用户、时间设置、参数修正、打印报表、手/自动切换控制、关闭/打开窗口、系统退出、关闭计算机等功能。
3污水处理控制方法研究
随着设备和工艺的不断完善,用于污水处理控制方法也在不断更新。目前油田的污水处理方法基本上有三种:通过监测污水的pH值;通过检测接收罐和缓冲罐的液位;通过检测提升泵污水流量。经过实验比较,笔者采用综合控制策略。由于污水流量的变化对污水处理药剂量的添加产生很大的影响,因而先对接收罐的液位和提升泵的污水流量进行联锁控制,尽量使污水流量保持稳定。去除水中杂质的药剂和净化污水药剂的控制采用开环控制,以接收罐的液位高度和提升泵的污水流量为依据,采用专家控制算法控制加药泵的变频器频率改变加药量,其中的各参数由操作人员根据规程和经验精心调试即可设定,控制过程中可根据实际情况作在线微调,经过实践完全可以达到要求。由于污水pH值对污水水质影响较大,必须使其在允许范围内,才能保证处理的污水达标,因而pH值控制采用闭环自动控制,精确控制加药泵的药剂量,以期达到较好的效果。
3.1pH值控制策略
该项目主要是针对油田开采污水处理,由于油田污水所含杂质成分较为复杂,且化学成分较多,因而污水处理过程较为复杂。整个处理系统属于典型的非线性滞后系统,该系统的精确对象数学模型难以获得。PID控制器是过程控制系统中最常用、最成熟、应用最广泛的调节器,由于对象的非线性、滞后性,运用PID控制效果不理想。模糊控制器不依赖过程控制的精确数学模型,采用人工智能的方式,吸收人工控制的操作经验,依据一些推理规则,将日常生活中的自然语言能够直接转化为计算机所能接受的算法语言决定控制决策;调整控制器中各参数,可大幅提高非线性滞后系统控制精度和可靠性。综合比较以上三种控制策略,确定该污水处理自动控制系统pH值加药部分采用模糊控制策略。
3.2模糊控制器的实现
根据现场污水处理过程中pH值的调试经验和系统运行数据分析,得出的控制规则所列。选取控制量变化的原则:在开始阶段误差较大时,控制作用以快速减小误差为主,操作幅度较大;当误差适中时,控制作用以抑制超调为主;当误差很小时,输出与给定值接近,控制作用以维持系统的稳定性为主,操作较弱。
4结束语
我国农村生活污水治理还处于初期阶段,农村污水治理工作仍然十分艰巨。全国各地开展了不少的农村污水治理工程的建设,但所建设的污水处理设施的出水水质标准不一,吨水建设投资费用差距很大。上世纪末,我国在农村配置了许多形式各异的无动力或微动力的低能耗型一体化污水处理装置。一体化污水处理装置存在占地面积小、自动化程度较高、管理方便、工期较短等优点,但目前该技术也存在许多问题。一方面,生物处理效率较低,尤其表现为氮磷去除率很低,氮磷污染是导致水体富营养化的主要原因。另一方面,目前实施的分散污水处理只是初步实现了分散污水的收集、处理和排放,远未达到再利用的目的,即达到将污水就地处理和就地回用,实现污水资源化的目的。因此,农村污水处理技术应满足以下要求。
①基建投资少,运行费用低。目前城市污水处理工艺已相对成熟,但其污水处理设施基建费用和运行费用高,不适合在农村地区推广。污水处理的运行费用一般包括:电费、药剂费用、人员费、定期修理费用等,较高的运行费用最终将导致“建得起,转不起”的尴尬局面。因此,基建投资少是保证污水处理设施在农村地区推广的前提,运行费用低则是保证污水处理设施持续正常运行的重要条件。
②工艺多样化。我国南北地域气候差异大,且居住方式和生活习惯有很大不同,因此污水处理工艺应呈现多样化,以适应建设地区的气候和水质、水量等条件的变化。
③运行操作简单、效果稳定。农村污水处理设施的日常运行,大都需要由村民自主管理来完成。而村民的技术知识水平和管理操作水平相对较低,且缺少专业技术人员,因此农村地区的污水处理设施应该采用运行管理简单且成熟稳定的污水处理工艺。
2污水处理措施
2.1污水处理模式
农村生活污水处理大体上有3种模式:
①接入市政管网模式,适用于靠近城镇或靠近城镇污水管网的农村,将生活污水集中收集后输送到城镇的污水处理厂进行处理,有这种条件的村庄,应优先考虑这种模式;
②集中联片处理模式,若接入城镇污水厂管网条件不可行,单村或者集中联片的几个村庄集中收集污水后,规划建设污水处理设施;
③单独分散处理模式,因居住分散、地形复杂、污水难以集中收集,宜以组团为单元,分区收集污水,每个区域污水单独处理。所以,污水处理模式应采取“衔接地方规划、合理利用资源、听取群众意见、科学规划设计”的原则来确定。
2.2污水处理工艺
目前,国内外污水处理技术从工艺原理上基本可分为自然处理系统和生化处理系统两类。自然处理系统主要是利用土壤过滤、植物吸收和微生物分解的原理进行污水处理的系统,或称为生态处理系统。常用的有:人工湿地处理系统(水平流、垂直流)、地下土壤渗滤净化系统、塘处理系统等。生化处理系统又分为好氧生化处理和厌氧生化处理。好氧生化处理主要是通过动力给污水充氧,培养好氧微生物菌种,利用好氧微生物的分解,消耗吸收污水中的有机质、氮及磷等。常用的有活性污泥法、A/O法、生物转盘法、SBR法等。厌氧生化处理主要是利用厌氧微生物的代谢过程,在无需氧气的情况下把有机污染物转化为无机物。常用的有厌氧接触法、厌氧滤池、UASB升流式厌氧污泥床等。针对农村地区特点,常用污水处理技术有以下几种。
1)人工湿地处理技术。有条件的村庄,可充分利用现有的农田灌排渠道与附近的荒地、废塘、洼地和沼泽地等,建设人工湿地处理系统。该系统一般由人工基质和生长在其上的沼生植物(芦苇、香蒲等)组成,是一种独特的“土壤一植物一微生物”生态系统,利用各种植物、动物、微生物和土壤的共同作用,逐级过滤和吸收污水中的污染物,达到净化污水的目的。湿地处理系统工艺设备简单、管理方便、能耗低、工程基建低、运行费用低,能耐受冲击负荷,净化出水水质良好、稳定。缺点是占地面积大,需要解决土壤和水中的充分供氧及受气温和植物生长季节的影响等问题。人工湿地可与稳定塘等其他工艺联合运用,例如重庆大学的蔡明凯等人采用厌氧生物滤池-人工湿地-生态塘工艺处理养殖废水,经过各单元的处理,CODcr去除率约为80.30%,SS去除率约为94.69%,NH3-N去除率约为73.39%,TP的去除率约为86.78%,出水浓度能够达到《城镇污水处理厂污染物排放标准》一级B标准。
2)地下土壤渗滤净化系统。适合于农户居住的土地较分散,且村庄周边往往有闲置荒地。地下土壤渗滤净化系统是一种基于自然生态原理,予以工程化、实用化而创造出的一种小规模污水净化工艺技术,是将污水有控制地投配到经过一定构造、距地面约50cm深和具有良好扩散性能的土层中,投配污水缓慢通过布水管周围的碎石和砂层,在土壤毛管作用下向附近土层中扩散。表层土壤中有大量微生物,作物根区处于好氧状态,污水中的污染物质被过滤、吸附、降解。由于负荷低,停留时间长,水质净化效果好。地下土壤渗滤净化系统建设容易、维护管理简单、基建投资少、运行费用低;把整个处理装置放在地下,不损害景观,不产生臭气。缺点是占地面积大,易滋生蚊蝇,冬季运行效果差。清华大学在2000年国家科技部重大专项中,首先在农村地区推广应用地下土壤渗滤系统,并取得了良好效果:对生活污水中的有机物和氮、磷等均具有较高的去除率,CODcr、BOD5、NH3-N和TP的去除率分别达到80%、90%、90%和98%。
3)好氧生物处理系统。好氧生物处理系统是现阶段污水处理中最常用的一种处理技术。好氧生物处理工艺众多,各有优缺点。选择时要根据实际情况仔细论证和比选,注重经济适用。生物处理法就是通过风机等设备给污水输氧,培养生物菌种和微生物。通过菌种和微生物把污水中的大部分有机物分解为无污染的CO2、水等物质,少部分合成为细胞物质,促使微生物增长,并以剩余污泥的形式排出,使污水得以净化排放。如SBR法,集曝气、沉淀、排水功能于一体,不断地转换,省去了传统的污泥回流设备,大大降低了建设费用;A2O法具有脱氮、除磷功能,还有如生物转盘处理工艺、膜生物反应器处理工艺等。生物处理法和自然处理系统比较,占地面积小,抗气候等外界影响的能力强,处理稳定、效率高,但基建投资、运行成本要高于自然处理系统。
4)厌氧生物处理系统。厌氧生物处理技术是在厌氧条件下,兼性厌氧和厌氧微生物群体将有机物转化为CH4和CO2的过程,又称为厌氧消化。污水厌氧生物处理工艺按微生物的凝聚形态可分为厌氧活性污泥法和厌氧生物膜法。厌氧消化无需搅拌和供氧,动力消耗少;能产生大量含甲烷的沼气,可用于发电和家庭燃气;可高浓度进水,保持高污泥浓度。厌氧处理工艺在我国有很长的历史,我国农民在古代早已开始应用厌氧发酵技术沤制粪肥,进行粪便无害化处理,而且至今仍在应用。我国是世界上利用厌氧消化技术制取和利用沼气最早的国家之一。现在,厌氧沼气池处理污水技术在我国中东部地区应用较广。厌氧沼气池将污水处理与沼气的利用有机结合,实现了污水的资源化,是最能体现环境效益和社会效益结合的农村生活污水处理方式。农村地区可根据实际情况,采取沼气池与其他污水处理工艺组合使用的模式来处理生活污水。江苏省常州地区采用了“污水沼气净化处理+人工湿地”的污水处理方法,它在原来水压式沼气池的基础上加以改进和提高,采取适当的过滤、沉淀和人工湿地的方法,目前这种污水处理模式在当地成效较显著。经过各单位处理后,氨氮去除率达93%,总磷去除率达86%,出水水质能达到《污水综合排放标准》一级B排放标准;其建设成本每户约2500元,年维护费12.5元/人,非常经济。为此建议将厌氧沼气池作为农村生活污水初级处理措施与其他污水处理工艺组合使用,同时要重视对沼气池出料口出沼液的收集和处理。
2.3污水收集系统
污水收集系统基本上由污水收集管网和调节构筑物构成。污水管道的选择根据技术经济比较,建议DN<400mm的污水管道采用UPVC(硬聚氯乙烯)双壁波纹管,500mm≤DN≤600mm的采用PE(聚乙烯)双壁波纹管,DN≥800mm采用钢筋混凝土排水管。下面主要对调节构筑物中化粪池与调节池进行说明。
1)化粪池。化粪池是污水收集系统中的重要单元,应避免化粪池渗漏引起的二次污染。农村改厕工作已成为农村卫生工作的重点,大部分农户建有冲水式卫生厕所,污水经过厕所进入化粪池,然后进入村庄污水管网。但多数化粪池结构过于简单,多采用12砖墙,沙浆抹面,从表面看做到了防渗,但由于化粪池埋深浅,经过1a冻融后,化粪池多数会出现渗漏,给污水收集带来困难。所以,村民家中化粪池应根据实际加以维修和改造,避免渗漏,确保污水能进入污水管网。
2)调节池。水量变化大是农村污水的特点之一,白天几个时段集中排水,夜间基本没有排水。若污水收集系统中不设调节池,水量、水质将都难以有效调节。水量大时,一方面由于污水没有出路,只能直排,另一方面污水处理系统必须根据水质变化情况,不断调整运行参数,增加了管理难度。所以在污水收集系统中必须设调节池,并且调节池容积应足够大,水力停留时间达到6~8h为宜。
2.4污泥处置
在污水处理过程中会产生污泥,污泥中含有大量的有毒物质,如寄生虫卵、病源微生物、细菌、合成有机物及重金属离子等。污泥处理就是要使污泥减量、稳定、无害化及综合利用。由于农村污水处理站规模一般较小,产生的剩余污泥也相对较少,单独对污泥进行脱水或压榨处理既不经济也不合理,只能妥善储存,累积到一定量后拖走处理。建议农村污水处理站对污泥处理采用“村收集,镇运输,县处理”的模式,各村将剩余污泥贮存于污泥池,所属乡镇有关部门统一安排环卫吸粪车运走,送至区县集中处理。建议设计一个较大的污泥储存池,能储存污水处理站半年左右的剩余污泥量。
3结语
1.1样品采集
污水样品分别采集于北京市GBD污水处理厂(Anaerobic/Aerobic(A/O)工艺,简称G-AO)、QH污水处理厂(Anoxic-Anaerobic-Aerobic(A2/O)工艺,简称Q-A2O)、JXQ污水处理厂(OxidationDitch工艺,简称J-OD)和WJC污水处理厂(SequencingBatchReactor(SBR)工艺,简称W-SBR)。以上四个污水处理厂工艺概况如表1。采样时间自2010年7月至2011年5月,考虑到夏末秋初是流行病的高发季节,故在2010年7、8、9月各采样一次,而在秋(2010.11)、冬(2011.2)、春季(2011.5)各采样一次。每次所取水样充分混合后保存于样品冷藏箱,并在两小时内带回实验室。
1.2试验方法
1.2.1样品预处理及细菌DNA提取:进水样品和初沉池出水样各100mL,各工艺中段样品10mL,剩余污泥样品5mL,二沉池出水500mL,且各采样点进行等体积平行取样。水样处理采取抽滤的方式,将样品通过0.22μm的滤膜,微生物被截留在滤膜上,将滤膜剪碎,放入DNA提取试剂盒配套的管子中。按照FASTprep系列试剂盒(MP,美国)的说明书进行逐步提取(Nazarianetal.,2008)。且每个平行样品提取时均做一重复,提取后将每个平行样品的两份DNA溶液进行混合,以减少单一水样采集和DNA提取时造成的误差。最后采用Nanodrop微量分光光度计(Thermo,美国)进行DNA的含量测定,并对所提取基因组DNA分装备份保存于-20℃,以用作后续PCR及定量PCR分子生物学分析中的DNA样品。
1.2.2PCR引物特异性及反应体系:所用引物如表2所示,其中对于大肠杆菌检测引物的选用主要参照Bej,Tsai等人(Tsaietal.,1993;Bejetal.,1991)和Maheuxa等人(Maheuxetal.,2009),研究证实uidA基因具有更好的特异性和灵敏性;沙门氏菌检测引物的选用主要参照Andreas等人(Hadjinicolaouetal.,2009)和Rahn等人(Rahnetal.,1992)基于invA基因设计引物;而军团菌特异性引物的选用,则主要依据Miyamoto(Miyamotoetal.,1997)和Sheehan等人(Sheehanetal.,2005;WullingsandvanderKooij,2006;Carvalhoetal.,2007)的研究应用。PCR反应体系(50μL)为:5μLPCR缓冲液;4μL0.25mmol/LdNTPs;1μL10μmol/L正向引物;1μL10μmol/L反向引物;0.25μL20mg/LBSA;0.25μL1.25UTaqDNA聚合酶;2μL水样DNA(约10ng);灭菌去离子水36.5μL。反应条件为:95℃预变性5min,95℃变性1min,退火温度(参见表2)下退火1min,72℃延伸1.5min,整个过程进行35个循环,最后72℃下延伸10min。通过1%(w/v)的琼脂糖凝胶电泳检测PCR产物。标准样品的建立:利用FermentasDNA纯化试剂盒(MBIFermentas,加拿大)对上述PCR产物进行纯化。连接到pGEM-TEasy载体上(Promega,荷兰),利用化学方法转化到DH5-α感受态细胞中(Takara,日本),在37℃,170rpm条件下培养1h。接着将转化混合液涂布于含有氨卡青霉素(50μg/ml)、X-Gal和IPTG的培养皿中,在37℃下培养15h。通过蓝白斑筛选阳性克隆体,采用M13F(5’-GTAAAACGACGGCCAG-3’)和M13R(5’-CAGGAAACAGCTATGAC-3’)对阳性克隆体中的目标基因片段进行特异性扩增。通过琼脂糖凝胶电泳检测M13PCR产物,采用ABI3730基因测序仪进行测序分析(Attardetal.,2010)。将测序结果提交到NCBI,进行BLAST比对。将插入正确的菌液,利用TIANGEN质粒提取试剂盒(TIANGEN,中国),取3ml菌液进行质粒提取,由nano-drop仪器测定该质粒浓度,其质量浓度为ng/μl,即质粒DNA在单位微升溶液中的质量,并可由公式(1)换算成单位(copies/μl),从而以该质粒作为定量PCR的标准品。定量PCR反应:以上述已知质粒浓度的标准品为标准模板,进行10倍梯度稀释,。以水样中各细菌DNA为待测模板,采用与普通PCR相同的引物(表2)。采用实时荧光定量PCR,药品采用TaqSYBRGREEN1(Takara,日本),其反应总体系为25μl:12.5μl的SYBRGreen1染料(2X);0.5μl100umol/L正向引物;0.5μl100umol/L反向引物;0.5μl的ROX染料(50X);0.5μl的BSA;2μl水样DNA(约10ng);灭菌去离子水8.5μl。将定量PCR混合液放入8连管(ABI美国)中,用超净管盖封闭,将反应管放入定量PCR仪(ABI7300,美国)中进行分析。其中标准样品和待测样品均为同一批次内进行平行测定3次,并计算3次CT值间的变异系数,以验证结果的精确度。最终结合SDSsystemsoftware软件分析,得到动力学曲线及标准曲线,进而计算出单位毫升待测水样溶液中相应细菌基因的拷贝数,为绝对定量。单位为copies/(ml水样),记作copies/ml。对三种菌的标准曲线进行线性回归分析得到标准曲线方程分别为:(1)大肠杆菌标准曲线方程:CT=-3.3511X0+40.073,R²=0.9958;(2)沙门氏菌标准曲线方程:CT=-3.1902X0+35.142,R²=0.9902;(2)军团菌标准曲线方程:CT=-3.1674X0+38.22,R²=0.9958。其中,X0为标准模板浓度的对数。三种菌的标准曲线相关系数R²均大于0.990,且对同批次3个平行样品间Ct值的变异系数分析发现,大肠杆菌、沙门氏菌和军团菌的变异系数均较小,分别小于等于1.541%、2.326%和2.115%。说明所建立的标准曲线具有较高的精确度和可信度。
2结果与分析(ResultsandAnalysis)
2.1不同污水处理厂及四季中大肠杆菌调查分析利用定量PCR技术,连续对Q-A2/O、J-OD、W-SBR和G-A/O四个污水处理厂中大肠杆菌浓度变化进行为期一年的调查,结果如图1所示。整体而言,四个季节中大肠杆菌在四个污水处理厂各水处理阶段都可检出。从大肠杆菌进水浓度的季节性分布来看,其中以夏季进水中大肠杆菌浓度为最高,在107-108copies/ml,明显高于其他三个季节一个数量级左右,这也与Molleda(Molledaetal.,2008)和Thurston(Thurstonetal.,2001)等人针对大肠杆菌的季节变化研究结果基本一致;大肠杆菌在冬季进水中的浓度普遍偏低,在106copies/ml左右。从四个污水处理厂大肠杆菌出水浓度来看,也表现出明显的季节性差异,尤以夏季出水浓度最高,为105copies/ml左右,春秋次之,而基本以冬季为最低,主要在103-104copies/ml之间。尽管各污水处理厂中大肠杆菌出水浓度依旧较高,但相比于进水浓度107-108copies/ml,已大致减少了三个数量级以上,可见四个污水处理厂对大肠杆菌的去除均表现出了良好的效果,其中以G-A/O去除效果最好,四季平均去除效率达99.88%;其次为W-SBR和J-OD,二者四季平均去除效率分别为99.73%和98.45%,尽管Q-A2/O相较于其他三者,其处理效果有一定波动,四季中去除效率最低也可达90%,而四季平均去除率为96.45%,可见其去除效果已属良好。但从各厂污泥样品中浓度来看,主要集中在105copies/ml左右,最高甚至达106copies/ml以上,相较于其它污水处理工艺段程度均有所回升,且高于出水浓度近一个数量级。此外,大肠杆菌在Q-A2/O的沉砂池、J-OD的沉砂池以及G-A/O的初沉池中的分布浓度相较于以上三个工艺进水中大肠杆菌的浓度而言,并未表现出显著性的降低。
2.2不同污水处理厂及四季中军团菌调查分析军团菌在Q-A2/O、J-OD、G-A/O和W-SBR四个污水处理厂及四季中的含量变化如图2所示。军团菌在四个污水处理厂中的含量变化相较于大肠杆菌的分布变化来说,二者差异显著。尽管军团菌在各污水处理阶段均可检出,但就进水季节性变化来说,四个污水处理厂的四季进水浓度基本接近,在104-105copies/ml,并未显示出明显的季节性变化。从各污水处理厂对军团菌处理效果来看,军团菌数量减少并不明显,出水浓度仍基本维持在104copies/ml左右,与进水几乎持平,甚至部分水厂出现二沉池出水浓度反而升高的现象。此外,从军团菌在各污水处理厂工艺段中的分布情况来看,也有差异。其中,在污水进入Q-A2/O、W-SBR与G-A/O的曝气阶段及回流污泥和剩余污泥阶段后,军团菌浓度出现了不同程度的升高,其中以W-SBR升高幅度最为明显,其曝气后污泥中军团菌浓度相比于进水浓度升高约2个数量级,在106copies/ml以上;出水中浓度下降亦不明显;而军团菌在J-OD中的浓度变化表现出了与前三者明显的差异,其氧化沟及回流污泥中军团菌数量相比于进水,锐减数量超2个数量级,浓度不到102copies/ml的一半,而军团菌在出水中却表现出了激增,排放浓度超过103甚至达到104copies/ml。就工艺类型对军团菌去除效果来看,以G-A/O去除效果最好,四季平均去除效率达93.48%;其次为J-OD,可达90%,而Q-A2/O只表现出了一定的去除效果,四季平均去除率为41.63%,且主要在秋冬两季有去除效果,而W-SBR工艺出水中浓度反而高于进水浓度。
2.3不同污水处理厂及四季中沙门氏菌调查分析如图3所示,为沙门氏菌在四个污水处理厂及四季的分布变化调查结果。沙门氏菌在四个污水处理厂中四季的分布变化与大肠杆菌、军团菌也大不相同,其进水浓度较低,基本在102-103copies/ml,而在J-OD和G-A/O的春季进水中均未检出,除了在冬季进、出水中保持了相对较高含量外,并未表现出明显的季节性变化规律;就去除效果来看,经各污水处理厂处理后,出水中沙门氏菌浓度有一定的削减,但并不明显,其中以G-A2/O和Q-A/O去除效果相对较好,J-OD、W-SBR较弱;相对其它季节而言,冬季进水中沙门氏菌的浓度相对较高,四个污水处理系统对其去除效果并不理想,出水中浓度降低并不显著,可见冬季较低的温度对沙门氏菌影响不大。另一方面,从沙门氏菌在各处理工艺沿程分布情况来看,除其在Q-A2/O、J-OD的沉砂池及G-A/O的初沉池中均可检出外,在此四个工艺处理的其他阶段均未检出,尤其在剩余污泥样品中也未有沙门氏菌检出,这与魏梦楠(魏梦楠,2010)针对污水再生水检测研究结果基本一致。
3讨论(Discussion)
我国最新颁布的城镇污水处理厂污染物排放标准(GBl8918-2002)中仅对粪大肠杆菌(其中大肠杆菌属于粪大肠菌群中的一种)数量做出明确规定,但未涉及其它高致病菌的限定。因此,对于污水处理系统中其它高致病菌的分布开展调查研究显得十分必要。从本研究针对北京市Q-A2/O、J-OD、G-A/O和W-SBR四个污水处理厂为期一年的调查结果来看,大肠杆菌在四种系统中的浓度变化表现出明显的季节性规律,其在夏季的进水和出水中浓度为最高;沙门氏菌仅在冬季进、出水中保持了相对较高含量;而军团菌并未表现出明显的季节性规律。就大肠杆菌、军团菌和沙门氏菌在污水处理系统中含量差异而言,军团菌在四种系统进水中浓度在104-105copies/ml之间,较大肠杆菌进水浓度低约2个数量级,而其在出水中的浓度却与大肠杆菌出水中浓度较为相近,主要集中在104copies/ml左右;沙门氏菌在四种系统进水中浓度低于103copies/ml,不及进水中大肠杆菌浓度的1/1000,且沙门氏菌主要在冬季进、出水中有所检出,而在水处理的主要工艺段并未被检出。可见,所调查的北京市四个污水处理厂污水中的病原菌主要还是以大肠杆菌为主,军团菌次之,沙门氏菌为最少。此外,研究结果也从侧面反映出大肠杆菌、军团菌和沙门氏菌在四种系统中的分布并未表现出直接的相关性,这与早期Rahman(Rahmanetal.,1996)在有关大肠杆菌、沙门氏菌及其他病原菌的水域传染病相关性研究的结果一致。从季节变化对病原菌去除效果的影响来看,四种系统在冬季对三种病原菌的去除率均较低;而在夏季,除军团菌外,四种系统对于大肠杆菌和沙门氏菌的去除率最好,可见季节性变化对于病原菌的去除效果具有一定的影响,这一结果与印度污染控制委员会07年所的水质报道(Bhawan,2008)结果基本一致。然而,在夏季,虽然去除率高,但排放的病原菌浓度依然保持较高水平,尤其军团菌在夏季的排放浓度较其他季节高出很多,这也进一步印证了为什么往往在夏季水媒型传染病暴发风险较高。在冬季,沙门氏菌在四种系统中含量相对较高,这与Stampi等(Stampietal.,2000)研究发现沙门氏菌在温度较低和湿度较高的10月—3月期间含量更高的结果基本一致,其原因是沙门氏菌在温度较低和湿度较高的冬季表现出更强的活性,从而更容易在与其他菌群竞争中获优势;在夏季,温度较高,有利于其它细菌繁殖生长,含量较低的沙门氏菌在与其它菌群竞争中处于劣势,较难存活。此外,PlachaI(Plachaetal.,2001)也研究发现相比于温度较高的夏季,沙门氏菌在温度更低的冬季活性更高,而且发现在夏季和冬季相同pH变化幅度下,夏季pH的波动更容易导致沙门氏菌的死亡。本研究发现大肠杆菌和军团菌在剩余污泥样品中的分布较出水中更高,这与Gaspard等(GaspardPetal.,1997)对法国89个污水处理厂污泥中病原物分布调查发现的结果一致。以上结果也与多数研究(Deportesetal.,1995;Sahlströmetal.,2003;Lewisetal.,2002)一致,证实了微生物易于被活性污泥絮体吸附而沉积,因此更多研究者更倾向将活性污泥看作微生物生长繁殖的温床。此外,军团菌在除G-A/O外的其他三种系统活性污泥中浓度均高于进水中浓度,可见军团菌对活性污泥工艺有更好的适应性。然而,沙门氏菌在剩余污泥样品中均未检出,而部分出水中出现沙门氏菌浓度上升的现象。究其原因,可能一方面是由于在污水处理中,沙门氏菌主要分布在水相,很少进入活性污泥絮体之中;或者又从污泥絮体中分离出来,如Hendricks(Hendrick,1971)研究发现,近90%沙门氏菌可从人工湿地的基质和沉积物中分离出来,重新进入水体,进而在部分出水中出现浓度升高现象。另一方面,在活性污泥中,占优势的多是本土微生物,而沙门氏菌来源于肠道,数量本就不多,进入曝气池后,沙门氏菌在与其他数量巨大的细菌竞争中往往处于劣势,进而走向死亡;再者,由于原生动物的捕食作用(Curdsetal.,1982;Pillaietal.,1942),使得沙门氏菌数量更低。此外,四种工艺对大肠杆菌、军团菌和沙门氏菌三种菌的去除效果也各不同。相较于其他三个工艺,G-A/O工艺对大肠杆菌和军团菌的处理效果较好。其对大肠杆菌和军团菌的四季平均去除效率最高,分别达99.88%和93.48%。然而,即便四个污水处理厂对大肠杆菌去除效率可达90%以上,大肠杆菌在出水中浓度依然较高,维持在104左右,甚至高达105copies/ml,可见二沉池出水中较高浓度的大肠杆菌对生态安全具有不可忽视的潜在危险。在Q-A2/O、W-SBR与G-A/O污水处理过程中,存在军团菌浓度升高的现象,尤其在W-SBR处理工艺中,军团菌浓度远高于进水浓度。据有关军团菌生长条件的研究(邵祝军,2005)发现,大量的污泥浓度、原生虫类和有机物含量均有助于军团菌的生长。而W-SBR其污水来源100%为生活污水,且系统中污泥浓度较高,有机物含量丰富,军团菌本身就具有很强的环境适应性,遇到人工创造的良好环境条件(曝气、有机质等)时,军团菌即得到大量繁殖和增生,从而表现出浓度反升的现象。而在J-OD氧化沟处理过程中,污泥中的军团菌数量较少,其原因可能是由于氧化沟污水处理工艺属延时曝气工艺,污泥龄较长,污泥稳定化程度高,其不利的环境条件和微生物竞争压力,导致军团菌活性降低,致使数量减少;然而在出水中军团菌浓度又出现升高,可能一方面因为军团菌具有较强生命力,另一方面,Kuchta等研究(Kuchtaetal.,1985)发现,军团菌由于没有相应的噬菌体,且与许多细菌和原虫存在共生关系,尤其是阿米巴等原生动物不仅可源源不断的为军团菌提供所需的营养,而且阿米巴可分泌出厚的囊壁包裹军团菌,从而可依附于生物膜或寄宿于原虫这些屏障之中。因而,军团菌可相应的减轻延时曝气工艺对其所造成的不利影响,待军团菌遇见合适的繁殖条件时,将再度“苏醒”并大量增殖,即病原菌的重新生长现象(Erdaletal.,2003;Iranpouretal.,2002)。正是因为军团菌对水处理工艺乃至消毒工艺所表现出的超强耐受性,若处理不当,军团菌可通过出水再次污染地表水,并形成气溶胶扩散到环境中,进而对公共健康和生态环境造成潜在威胁(Baertschetal.,2007)。另外,需要注意的是,由于细菌死亡后DNA仍可存留一定时间,利用DNA进行定量PCR定量的方法也可能会高估病原菌含量。综上所述,大肠杆菌和军团菌在污水处理厂的剩余污泥和出水中仍具有较大的生态和健康风险,应加强二沉池出水或中水回用的消毒强度;如果条件允许,应该适当布点增设病原菌的常规检测。尤其是军团菌在夏季出水中含量过高,宜在夏季加强对军团菌的监测预防。此外,沙门氏菌在冬季出水中浓度也相对较高,也应该引起足够重视。同时,更应加快对病原菌低成本、高效防治技术的研发,以减少病原菌的环境排放风险。
4结论(Conclusion)
1.1首先是管理体制中存在的问题。
这些问题都是比较严重的问题,因为一个系统的体质是这个项目的根本。目前,某城镇的污水处理厂主要由A公司运营,按照城镇的具体情况和需求进行污水处理和收费,名义上是由城镇水务局监督管理,但是这一过程形同虚设,监管工作做得非常不到位。另外,整个体系中的人素质过低,都是只能遵循传统工艺和流程工作,这就导致污水处理系统不能与时俱进,不能够在发展中完善自己,企业和城镇监管部门应该从本质人员入手,从根本解决这一问题。
1.2污水处理资金投入不够全面。
某城镇的污水处理收费方式是按照水量来收费,它的前期建设主要是靠政府部门进行融资来建设,初期运营较为容易,但是后期的发展明显的资金不足,收取的污水处理费只能够维持污水处理厂的日常运行,如果进行产业升级或者流程优化的话就会出现资金不足的问题。而目前征收的污水处理费满足支付BOT污水处理服务费、管网泵站日常运行管理和管网工程贷款还本付息等方面后,剩余的资金满足不了进一步污水处理系统建设的资金需求。
1.3部分污水处理厂由于设备落后,处理的水质不能达到国家排放标准。
有的地区发展较好,污水处理设备较为先进,但是却存在负荷率过低的问题,比如说有的污水处理厂的负荷率只在百分之30左右。这是低于BOT服务合同约定的保底水量。造成这些问题的主要原因有:①已规划建设的管网其服务区域尚未开发,造成污水管道无水可收;②与污水主干管、干管配套的支管建设需要进一步完善,污水管道只是经过排水户,但多数未有主动接驳;③在污水管网建设过程中遗留的问题和在使用期间出现的缺陷,如泵站永久用电,部分主干管坍塌、渗漏等,影响到污水的收集与传输。
1.4再一个就是在各个部门普遍存在的问题,那就是监管力度不足。
因为长期以来在各个部门流传的风气就是上有政策下有对策,这导致监管环节严重缩水,上行下效。由于巨额利益的吸引,而且又有监管部门的疏忽,导致污水排放严重失误,各种违法违规的事情接连发生。
2城镇污水处理系统建设运行管理的措施
为了优化污水处理系统的流程,弥补其中的不足,进一步提高处理的效率和治污水平,根据某城镇的具体情况进行合适地调整。严格整顿监管部门,确保监管流程的严格执行。可采用区域化的管理体制,以某地区作为一个整体区域,按照产业化发展、企业化经营、社会化服务的方向,组建区域化污水专职建设、管理和运营的污水处理公司,由污水处理公司来统一承担区内财政投资或本企业融资自筹的污水处理厂、管网的建设运营管理,并按照现代企业制度的改革方向,对污水处理行业实行产业化经营。以污水处理公司的整体化、区域化、产业化的管理体制、可以在城镇污水处理系统工程建设中发挥重大的作用。
2.1积极向上级部门申请污水处理厂的建设资金,拓宽污水处理的资金筹措渠道,也可建立股份制,来进行快速的融资。
2.2筛选出高质量的人才,推动污水处理系统的改革优化
进一步完善污水处理流程,提高污水处理效率和质量,这样才能进一步融资,才能让污水处理厂走出这个急于发展却又缺少资金的困境。严格整顿监管部门的不良风气,让上级到下级形成良好的重效率,重实效的风气,这样才能让整个污水处理事业步入一个良性循环,越发展越先进,越发展设备越先进。具体上要厂网分开管理,这样才能让管理工作简捷效率。污水处理厂可以把污水处理工作化整为零,任务具体分配到人,这样才能提高工作效率,才能提高员工的责任心。还要让有经验的人对整个污水处理厂进行大局上的规划,并按照统一规划,开展污水工程的建设,保障污水处理厂的进水水质水量能达到设计负荷,实现污水治理工程的效果。
2.3寻求合理的污水处理安排方案。
从城乡统筹出发,根据城乡规划和土地利用总体规划以及地区环境容量和污染防治要求,组织编制区城镇污水处理系统详细规划,做到规划先行,分步实施,同时根据各镇的实际情况,统筹城乡污水处理基础设施布局,实现区域内污水处理等设施共建共享。加强各地各部门的经验交流工作,这样才能互相对比出不足或者缺点,才能完善自己,还能看出对方的优点,来强化自己。
2.4强化污水排放的监控工作,加强对偷排污水的惩罚力度。
加强对进入城镇污水收集系统的主要排放口特别是重点工业排污口的监测,禁止超标污水进入收集管网,以保证污水收集系统和城镇污水处理厂安全、正常运行。建立完善的污水处理流程和网络,完善质量检测标准,切实落实检测任务。加大对超标排污、偷排偷放等违法行为的处罚力度,保证污水进管网的水质符合国家《污水排入城市下水道水质标准》和《污水综合排放标准》。
3结束语
随着城市污水处理技术的发展,我国水环境得到了很大改善,与此同时,污水处理工艺流程也面临着一些新问题。经过统计,我国近1/2的污水处理厂因为运行经费、处理成本过高,没有达到满负荷运行的要求,造成了资源浪费。所以,应当在确保污水处理质量的前提下,运用成熟的技术降低污水处理中的能源消耗,促进污水处理行业的可持续发展。活性污泥工艺是污水生化处理的有效方法,将污水和活性污泥一同放入曝气池,让污水中的有机物、氧气与微生物充分反应,以达到净化水质的目的。在这一污水处理方法中,为了将溶解氧控制在一定目标范围内,确保出水水质达标,就必须输入鼓风送氧量。但是,传统的污水处理工艺为了确保充分曝气,经常输入过量的鼓风送氧量,进而造成了能源的浪费。因此,必须重视污水处理工程中的鼓风节能技术研究,合理运用先进的计算机技术和控制技术,并结合现代管理平台软件,优化处理鼓风曝气过程的曝气量,以达到节能降耗的目的。
2鼓风机的应用
2.1鼓风机选型
在污水处理厂的日常污水处理过程中,鼓风机组的耗电量比较大,是污水处理厂中能耗最大的一个环节。为了进一步降低鼓风机组的电能消耗,必须要做好鼓风机选型工作。目前,在城镇污水处理厂中,较为常用的鼓风机为罗茨鼓风机和离心鼓风机。
2.1.1罗茨鼓风机
这类鼓风机的排气压力是按照需要或系统阻力确定的,较为突出的特点是在设计压力范围内,管网阻力变化时,流量变化比较小。罗茨鼓风机采用的是整体式结构,电机与风机全都安装在机架上,两者之间用皮带传动。风机进出口位置处通常都会安装消声器,以此达到降低风机运转噪声的目的。该风机的叶轮与机体之间不直接接触,结构相对比较简单,便于维护。
2.1.2离心鼓风机
这类鼓风机是借助高速旋转的叶轮对气体加速,从而使动能直接转换为势能,压力升高的过程主要发生在叶轮和扩压的过程中。离心鼓风机属于恒压型风机的范畴,它的突出特点是运行平衡、供气连续、效率高、结构简单、使用寿命长和噪声小。
2.1.32种机型的比较
比较了2种鼓风机后发现,进气温度对2种风机的性能影响不是很大,可以忽略不计。当压力≤4MPa时,罗茨鼓风机的效率远远高于离心鼓风机;当流量<15m3/min时,罗茨鼓风机的轴功率仅为离心鼓风机的50%,首次使用的费用也为离心鼓风机的50%.由此可见,在城镇污水处理厂中,可将罗茨鼓风机作为首选。
2.2鼓风机节能措施
2.2.1控制溶解氧DO值
可在好氧段的中段位置设置1个在线溶解氧仪表,按照现场生产工艺调试进水水质,设置1个合理的溶解氧值,使DO能够实时跟踪设定值,并借助在线空气流量计计算出实际需气量。这种控制方式最突出的优点是实时跟踪性能好,适用于进场水质变化波动较小的工艺处理时段。
2.2.2设置DO值
按照进水流量的变化情况动态设置DO值。利用MATLAB算法能够获得一组较为合理的阶段性DO预测值,然后再按照第一种模式控制。这种控制方式的优点是它能够适应进厂水质波动范围较大,并且水质变化较为明显的工艺处理时段,节能效果显著。
2.2.3控制曝气量
精确控制曝气量,稳定生物池溶解氧DO值,减少溶解氧的波动,使生物池微生物群落始终处于高效的处理环境中,节约5%~15%的曝气量。同时,还可以降低DO的平均设定值,在保证出水达标的前提下,减少10%的鼓风能耗,或者在提高出水水质指标的前提下,增加COD的消减量,大幅降低鼓风机组启停频率,减少设备损耗,节约设备的维护成本。
3风量调节
在污水处理工艺中,曝气池的需气量一般都是按照污泥浓度和水量等情况不断变化的,同时,外界温度变化也会改变气量。为了达到更好的处理效果,需要不断调整鼓风机的供气量,以适应各种新的工况,这个过程即风量调节。通常情况下,鼓风机风量调节有以下3种方式:
①出口节流调节。这是一种人为加大管网阻力的方法,利用该方法,能够大幅降低装置的效率,从而达到节能的目的。
②进气节流调节。这是一种通过改变进气阀门的开度来改变风机性能曲线的调节方法,其特点是简单易行,调节后风机能够在更大的流量范围内工作。
③变频调节。这是一种最节能的调节方法,但是,它的造价也相对较高,适用于大型污水处理厂。
4空气过滤
为了进一步提高污水处理过程中氧的利用率,大部分污水处理厂的曝气池都使用了微孔曝气器。这种曝气器的布气孔径一般在120~200μm,所以,在进气的过程中,必须充分考虑过滤的问题,否则会造成堵塞微孔的情况发生,从而影响污水的处理效率。目前,静电除尘器和过滤式除尘器在污水处理厂中的应用比较广泛。静电除尘器内置高压电场,对于粒径在1~2μm的尘粒,其除尘效率可达98%~99%.但是,由于这种设备的一次性投资较大,所以,不适合小型的污水处理厂使用;过滤式除尘器主要是利用滤料将尘粒和空气分离,进而达到过滤的目的,其除尘效率相对较高,并且投资省、运行稳定,比较适合小型污水处理厂使用。
5结束语
前处理格栅已更换机架型,间隙变成0.5mm,提高污水拦截液位,大大减少了冲击负荷,提高了拦截能力,控制效果显著。
2调节池现状
污水站整体结构为地埋式上下两层,调节池在污水站下层,池底距离地面垂直深度超过9m,且只有1个设备吊装孔。由于调节池池底没有坡度和集水坑,并且无机械搅拌或水力搅拌设施,容易造成大量泥沙的沉积。长期运行后不仅降低了调节池的调节容量,而且容易造成调节池污水提升泵堵塞。另外由于调节池池底深且通风调节差,对调节池的清淤工作会带来很大难度,增加费用和一定的安全风险。调节池污水提升泵安装深度太深,每次检修维护很不方便,而且自藕装置过长,中间绕度大,水泵自藕安装过程中很容易滑出,水泵吊装自藕难度很大。另外调节池污水提升泵老化现象严重,同等条件下污水提升量较以前下降较多,电机工作运转电流也较新泵增大许多,存在一定安全风险。调节池中无曝气系统,因为医院污水中含有大量的氨氮,污水最终出水中的氨氮会大量消耗消毒剂中的有效氯,反应产生一氯胺、二氯胺,大大降低消毒剂的消毒效率,增加了消毒剂的投加成本。同时造成pH值严重偏低,出水pH值频繁超标。
3pH值不达标与药剂投加量大原因分析
之前调节池内无任何水质、水量调节设施(无曝气管网系统),门诊、病房等综合排水首先经过化粪池、再次进入调节池(水力停留时间约为5.2h)。由于化粪池、调节池内部环境均为厌氧或缺氧状态,在水解细菌、酸化发酵菌、产乙酸菌作用下,有机物经过水解酸化、产乙酸两个阶段,将产生下列现象:(1)含氯有机物中的氨氮经水解酸化反应后被转化为离子态氨氮,氨氮与消毒液中氯气产生化学反应,增加了消毒药剂的投加量,同时造成总余氯超标。二氧化氯发生器产生的混合消毒药剂为强酸性,过量的投加不仅增加了药剂量,浪费反应原料,增加成本开支,还将增加废水的酸碱度[2],造成出水pH值低于排放要求(pH≥6.5),目前出水pH值约为6.2左右。为达到排放要求,将投加额外的碱来提升废水的pH值;每处理1吨污水增加费用0.25元,目前药剂大致消耗量如下(处理水量:1400-1500m3/d):即350元~375元。盐酸消耗量:300kg/d,氯酸消耗量:100kg/d,纯碱消耗量:200kg/d。(2)污水中蛋白质、脂肪等有机物质经水解酸化后,引起pH值下降(原水的pH值为7.80,调节池末端出水pH值为7.38)。(3)复杂的大分子不溶性有机物水解为简单的小分子水溶性有机物,污水中总悬浮物的沉降性能改变,影响后续处理的混凝剂投加量及固液分离效率。
4调节池技术改造措施
在地下车库新建污水处理机房,用以控制调节池提升泵及风机,调节池提升泵采用干式离心泵,不仅杜绝了腐蚀问题,而且方便检修,容易维护。设置单独吸水井,及时排出池底沉积的泥砂,保证调节池的调节容量。调节池内设置膜式微孔曝气管网、填料,设备间新增3台鼓风曝气机,对调节池内进行连续曝气,此方法不仅可以对调节池内沉淀的泥砂进行搅拌,确保泥砂由调节池提升泵排出,而且充分的曝气、反硝化可以降低污水中的氨氮50%、COD50%左右,使得后续消毒剂投加量降低,pH值变化微小,将大大降低碱的投加量。使pH值达到排放要求(pH≥6.5)。
5二氧化氯发生器设备更新
原有的二氧化氯发生器已跟不上节能需求,运行的反应釜有效氯气转换率只能达到50%左右,如更换采用整体钛合金整体电加热反应釜,使得主反应二氧化氯产量提升,副反应氯气量减少,从而提升二氧化氯转化率90%以上,减少盐酸、氯酸钠1/3投加量,即每天减少盐酸100kg、氯酸钠33kg,费用在300元左右,使得酸性降低pH值升高,同时又能减少碱的投加。
6二氧化氯的稀释水水源改进
二氧化氯发生器运行需用自来水稀释输送至接触池。每天需25~35吨左右,为了节约水资源减少费用开支,采用处理后的污水稀释输送,通过在出水池末端加装耐腐蚀潜水泵,替代自来水稀释输送,不仅可以增加污水与消毒剂的混合强度,还能提升水质,节约水费开支为110元左右。
7结论
(1)在污水处理过程中要求整个系统必须安全、可靠运行,在工艺设备、仪表、电气自控系统、计算机和网络系统、电视监控系统的选型和系统设计、软件设计等方面,系统的可靠性是设计考虑的第一原则,作为控制系统核心设备的PLC,选用德国西门子公司的S7-300系列产品及其相应的开发软件。
(2)污水处理处理厂的自控系统采用PC+PLC分级分布式控制形式,以集中监测为主,分散控制为辅,在中控室运行监控计算机上可对全厂的各工序进行实时监控,生产的工艺过程自动控制采用就地单独控制的原则进行,并在污水处理过程关键工序配置西门子MP270B触摸面板(人机界面HMI)作为现场工程师操作站。
(3)为保证污水处理厂的安全运行,自控系统设立三级控制层:就地手动控制、现场控制和远程监控。就地手动控制是指通过设备本地控制箱手动控制设备的开启或关闭;现场控制是指由现场各分控站PLC执行自己的控制程序,完成控制功能;远程监控是指由中控室通过工业以太网高速冗余光纤环网对全厂的生产过程进行控制、监测和记录,对工艺现场设备对象实现状态迁移管理。三级控制层的关系如下:中控室上位机可通过各现场的PLC子站直接控制有关设备和主要设备,如果中控室或网络发生故障,不会影响各PLC分站的控制功能,如果PLC网络中某个PLC子站发生故障,操作员可通过就地控制箱对设备进行控制。
(4)设备发生异常、故障或报警时,系统可自动切除相关故障设备或切换到现场手动操作方式,同时记录事故内容,并对相关参数进行事故追忆。
(5)上位计算机综合应用程序开发选用德国西门子公司的WINCC5.1组态软件,以监控工艺运行的图形界面、控制网络运行参数和指令的通信、运行和归档数据库开发为重点。
(6)一体化生物反应器控制系统的设计根据生产工艺的具体要求,监控一体化生物反应器各个工艺设备的运行,实现处理过程的时间及空间控制,形成好氧、厌氧或缺氧条件,以完成具体工艺处理目标。
(7)为了对生产现场和重要设备实施远程监视,在鼓风机房、一体化生物反应器、污泥脱水机房、厂区环境等重要部位安装摄像机,构成远程电视监视系统,在中控室可全厂重要设备进行全天24小时监视。
2城市污水处理自控系统的总体结构
本工程项目二期工程中控室和各工段的地理位置分布示意图如图1所示。中控室的建筑物使用一期工程己建设好的设施,与一期工程的中央监控设备共用一个监控大厅。
工业以太网是基于IEEE802.3(Interment)的强大的区域和单元网络。作为西门子T.I.A(全集成自动化构架)重要组成部分,SIMATICNET基于经过现场应用验证的技术,用于严酷的工业环境,包括有高强度电磁千扰的区域。
3SIMATICNET工业以太网络组件
典型的工业以太网络环境,有以下三类网络器件:
(1)网络部件。
包括:连接部件、FC快速连接插座、ELS(工业以太网电气交换机)、ESM(工业以太网电气交换机)、SM(工业以太网光纤交换柳、MCTPll(工业以太网光纤电气转换模块)。
(2)通信介质:普通双绞线,工业屏蔽双绞线和光纤。
SIMATICPLC控制器上的工业以太网通讯外理器。用于将SIMATICPLC连接到工业以太网。
(3)PG/PC上的工业以太网通讯外理器,用于将PG/PC连接到工业以太网。
利用工业以太网,SIMATICNET提供了一个无缝集成到全业务功能(管控一体化及综合信息处理)的途径。
4工艺过程控制PLC控制站组成
(1)组成。
S7-300系列产品是模块化中小型PLC系统,能满足中等性能要求的应用。大范围的各种功能模块可以非常好地满足和适应自动控制任务,由于简单实用的分散式结构和多界面网络能力,使得应用十分灵活,方便用户和简易的无风扇设计,当控制任务增加时,可自由扩展,由于大范围的集成功能使得它功能非常强劲。
如果用户的自控系统任务需要多于8个信号模块或通讯处理器模块时,则可以扩展s7-300机架((CPU314以上):(1)在4个机架上最多可安装32个模块:最多3个扩展机架(ER)可以接到中央机架(CR)上,每个机架(CR/ER)可以插入8个模块。(2)通过接口模块连接:a.每个机架上(CR/ER)都有它自己的接口模块。它总是插在CPU旁边的槽内,负责与其他扩展机架自动地进行通讯;b.通过IM365扩展,可扩展1个机架,最长1米,电源也是由此扩展提供。C.通过IM360/361扩展,可扩展3个机架,中央机架(cR)扩展机架但扩展机架之间的距离最大为10米。(3)独立安装海个机架可以距离其他机架很远进行安装,两个机架间(主机架与扩展机架,扩展机架与扩展机架)的距离最长为10米。(4)灵活布置:机架(CR/ER)可以根据最佳布局需要,水平或垂直安装。
(2)诊断。
通过诊断可以确定模板所获取的信号(如数字量模板)或模拟量处理(例如模拟量模板)是否正确。在诊断评估中,可参数化的诊断信息与不可参数化的诊断信息有区别。①可参数化的诊断信息:通过相应的参数始能诊断信息的发送;②不可参数化的诊断信息:不管是否参数化均可发送诊断信息。
如果发送诊断信息(如无编码器电源),则模板执行一个诊断中断。此时CPU中断执行用户程序,或中断执行低优先级的中断,来处理相应的诊断中断功能块(OB82)。
5PLC运行程序设计
PLC自动工序工艺运行程序有四大主要功能模块,即:时钟模块、运行参数更新、综合故障判定和自动工序模块。
(1)变量设计。
我们的变量设计尽量遵循节省的原则。
建立时间计数变量Tcount
32个工序采用统一的时间计数,每个工序分配一个运行时间变量Tn(n=1,2,……32)。PLC自动工序工艺运行程序根据运行时间变量来确定每个工序步骤运行的时间。
为27台(套)工艺设备的每一台(套)分配一个32位的运行状态标志,分别对应于32个工序步骤。PLC自动工序工艺运行程序根据每一台(套)工艺设备的运行状态标志和设备运行互锁(故障和手动控制)确定该设备是否运行。
为27台(套)工艺设备的每一台(套)建立一个故障状态标志位(综合故障)和控制状态标志位(手动/自动)。
建立工艺运行参数二维表,包含32个工序的运行时间参数和27台(套)工艺设备的运行状态标志参数。
建立工艺运行参数变更标志位,如果工艺运行参数发生改变并经过运行监控上位计算机上授权确认,程序将根据工艺运行参数二维表刷新32个工序的运行时间变量和27台(套)工艺设备运行状态标志。
建立工艺运行当前状态变量,包括当前工序步骤,当前工序运行剩余时间。
(2)自动工序程序设计。
时钟模块用一个计时器,对时间的增长自动计数,其值存放在变量Tcount中,供自动工序模块使用。
如果工艺运行参数发生改变并经过运行监控上位计算机上授权确认,工艺运行参数变更标志位设置为1,程序将根据工艺运行参数二维表刷新32个工序的运行时间变量和27台(套)工艺设备运行状态标志,并将工艺运行参数变更标志位复位为0。
综合故障判定模块综合工艺设备的各种故障(比如泄露、短路、断路等)和报警(比如过热、过力矩等),确定设备是否可以正常投入工艺运行,设置故障状态标志位为0/1。
自动工序模块实时更新工艺运行当前状态,包括当前工序步骤,当前工序运行剩余时间。当前工序运行剩余时间为0,就切换到下一个工序步骤,重新设置当前工序步骤和运行剩余时间,并根据设备故障状态标志位(0/1)、控制状态标志位(自动/手动)和运行状态标志(1/0),启动或停止相应的工艺设备。
6结果
LIER-POOLK法城市生活污水处理5000吨/日中试装置全部建成并投入运行以来,具体出水效果(各项指标去除率)为:BODS85-98%,CODCr85-95%.,SS80-90%,TN50-70%,TP80-97%,完全达到了GB8978-1996《污水综合排放标准》中的一级标准;经济指标为:单位投资1000元/吨水、占地面积0.40平方脚吨水、直接运行费用0.25元/吨水、职工人数8人/万吨水。自工程正式投产运行以来的情况表明,自控系统运行可靠,自动化程度高,控制软件设计先进,完全满足工艺运行和日常管理的要求。
参考文献
[1]周明.现场总线控制[M].北京:中国电力出版社,2005.
[2]孙慧修.排水工程[M].北京:中国建筑工业出版社,2004.
[3]碑常初.可编程序控制器的编程方法与工程应用[M].重庆:重庆大学出版社,2001.
关键词:城市污水处理厂;进水水质;出水水质;工艺技术;污泥处理与处置
随着经济的发展,我们生活的环境变得越来越差,特别是水体的污染到了触目惊心的地步。虽然我国在城市污水处理厂建设方面取得一定成效,已建成百余座污水处理厂,但在控制水污染方面,形势不容乐观,预计今后还有大量的城市污水处理厂待建设。在建设城市污水处理厂过程中,设计工作是龙头,在设计时常常碰到一些热点问题,引起各方争论。本文对这些问题作了剖析。
一、污水处理厂的厂址选择
污水处理厂位置的选择,应符合城市总体规划和排水工程总体规划的要求,并根据下列因素综合确定:厂址必须位于集中给水水源下游,并应设在城市工业区、居住区的下游,为保证卫生要求,厂址应与城市工业区、居住区保持约300m以上距离,厂址宜设在城市夏季最小频率风向的上风侧,及主导风向的下风侧结合污水管道系统布置及纳污水域位置;污水处理厂选址宜设在城市低处,便于污水自流,沿途尽量不设或少设提升泵站,有良好的交通、运输和水电条件;有良好的工程地质条件;厂区地形不受水淹,有良好的防洪、排涝条件尽量少拆迁、少占农田,同时因厂区规划有扩建的可能,应预留远期发展用地。
在拟建新的污水处理厂时,一般需由建设单位提出2—3个污水处理厂备选地址,由设计部门从中比较选择。这就要求设计人员不要盲目迁就建设单位的意见,应亲自考察当地实际情况,在全面分析的基础上提出合适的厂址。
二、处理工艺选择
污水处理工艺选择是依据进水水质、水量状况,再依据受纳水体环境容量或者国家规定排放标准,确定应该去除污染物的项目与数量,从而选择合适的污水处理工艺。在选择污水处理工艺过程中经常讨论的问题有如下几方面:
(一)进水水质预测
城市污水处理工艺选择的水质因素进水水质水量特性和出水水质标准的确定是城市污水处理工艺选择的关键环节,也是我国当前城市污水处理工程设计中存在的薄弱环节。城市污水管网的完善,对城市污水处理厂设计规模和设计水质的确定至关重要,目前我国大多数城市管网建设还不配套,因此造成城市污水处理规模和水质难以合理确定,投入运行后实际值与设计值往往相差较大,效能难以充分发挥。
因此,污水处理技术政策中要求,应切合实际地确定污水进水水质,优化工艺设计参数。必须对污水的现状水质特性、污染物构成进行详细调查或测定,作出合理的分析预测。对于城市污水处理工艺方案及其设计参数的确定,进行必要的水质水量特性分析测定和动态工艺试验研究。
(二)处理出水水质标准
处理厂出水水质是按照尾水排入水域类别,再依照国家污水综合排放标准,以满足各项指标要求。采用二级处理工艺,处理出水恐怕难以达到氨氮与磷酸盐标准,需要采用脱氮除磷工艺流程,特别是一级标准中磷酸盐指标0.5mg/L,有相当难度。有人提出,处理厂尾水排入非蓄水性河流或非封闭性水域,是否还要控制如此低的磷酸盐含量。采用生物脱氮除磷工艺,或者化学除磷工艺,需要增加基建投资与经常运行费用,同时还要求具有较高的运行管理水平。
(三)污水消毒
为了保护人类的生命健康,保护好水环境,世界许多国家和地区都要求对城市污水在排放前进行消毒处理。室外排水设计规范中,城市污水处理厂出水要加氯消毒,而且对生物处理后投氯量规定为5mg/L-10mg/L,并设停留时间为30rain混合接触池。有人提出,国家污水综合排放标准对城市二级处理厂出水水质未确定大肠菌群数及余氯值,所以处理厂出水要不要加氯是值得研究的课题。紫外线污水消毒技术如今已被广泛应用于各类城市污水的消毒处理中,包括低质污水,常规二级生化处理后的污水、合流管道溢流废水和再生水的消毒。目前世界上最大的使用紫外线消毒技术的再生水处理厂是加州santaRosa污水处理厂,处理规模25万m3/d,该系统为明渠式中压灯消毒系统。
三、主流处理工艺
(一)关于活性污泥法
当前流行的污水处理工艺有:AB法、SBR法、普通曝气法等,这几种工艺都是从活性污泥法派生出来的,且各有其特点。
1、AB法(Adsorption—Biooxidation)
该法由德国Bohuke教授首先开发。该工艺对曝气池按高、低负荷分二级供氧,A级负荷高,曝气时间短,产生污泥量大,污泥负荷2.5kgBOD/(kgMLSS.d)以上,池容积负荷6kgBOD/(m3.d)以上;B级负荷低,污泥龄较长。A级与B级间设中间沉淀池。二级池子F/M(污染物量与微生物量之比)不同,形成不同的微生物群体。AB法尽管有节能的优点,但不适合低浓度水质,A级和B级亦可分期建设。
2、SBR法(SequencingBatchReactor)
SBR法早在20世纪初已开发,由于人工管理繁琐未予推广。此法集进水、曝气、沉淀、出水在一座池子中完成,常由四个或三个池子构成一组,轮流运转,一池一池地间歇运行,故称序批式活性污泥法。现在又开发出一些连续进水连续出水的改良性SBR工艺,如ICEAS法、CASS法、IDEA法等。这种一体化工艺的特点是工艺简单,由于只有一个反应池,不需二沉池、回流污泥及设备,一般情况下不设调节池,多数情况下可省去初沉池,故节省占地和投资,耐冲击负荷且运行方式灵活,可以从时间上安排曝气、缺氧和厌氧的不同状态,实现除磷脱氮的目的。
3、普通曝气法
本工艺出现最早,至今仍有较强的生命力。普曝法处理效果好,经验多,可适应大的污水量,对于大厂可集中建污泥消化池,所产生沼气可作能源利用。传统普曝法的不足之处是只能作为常规二级处理,不具备脱氮除磷功能。近几年在工程实践中,通过降低普通曝气池容积负荷,可以达到脱氮的目的,在普曝池前设置厌氧区,可以除磷,亦可用化学法除磷。采用普通曝气法去除BOD5,工程上称为普通曝气法的变法,亦可统称为普通曝气法。
四、污泥的处理
污水处理厂在水处理过程中会截流与排出一定量的栅渣、沉砂和污泥。对城市污水厂而言,其数量大约为进水量的0.5%-1.5%。目前部分设计单位在污水处理厂设计中对污泥处置重视程度不够,大部分中小型污水厂产生的污泥,经浓缩、机械脱水后直接外运,这些污泥实际上均未达到稳定要求,是否会带来环境的二次污染是值得注意的。因此设计部门应加强对污泥处置的设计与研究,目前常用的污泥稳定方法有污泥中温消化、污泥好氧消化、污泥投加石灰、污泥焚烧等方法污泥综合利用的试验研究已有各种报道,例如利用污泥制砖、制陶瓷等用作建筑材料,甚至从污泥中提炼维生素B12等等,但大部分是实验室试验,与实际应用还有相当距离。城市污泥的最终出路,还是用作绿化或农田肥料,改良土壤,这似乎是较现实的综合利用方案,但目前尚缺少组织推广应用的机构,在政策上也缺少支持。事实上城市污水厂污泥作为“绿色植物”的天然有机肥料是具有广阔前途的。一个城市若有多座污水处理厂,可把各处理厂污泥集中起来,建一座具有相当规模的污泥处理厂,包括处理下水道清通过程中产生的污泥、化粪池污泥等等,当污泥处理厂达到一定规模后,可减少单位投资,降低日常费用,也便于污泥综合利用。
五、要注重借鉴外国的先进经验
我们现在的发展走的是西方发达国家走过的先发展后治理的老路,西方现在在污水处理厂的建设方面积累了不少经验和教训;现在已经有外国的设计公司进军中国污水处理市场了,我们在面对竞争的同时也要抓住这个很好的学习和借鉴机会。