公务员期刊网 论文中心 正文

土木工程结构损伤诊断探析

土木工程结构损伤诊断探析

摘要:随着社会经济的不断发展,土木工程的发展逐渐得到人们的广泛关注,其中,土木工程结构损伤诊断更是得到相关学者的高度重视。简要分析了结构损伤识别诊断在土木工程结构中扮演不可或缺的角色,以及国内外损伤识别与诊断方法现状,并深入研究了用于土木工程结构的各种损伤识别与诊断方法,最后提出了土木工程结构损伤识别与诊断方法及其相应的发展方向。旨在有效的帮助开展土木工程相关工作,更好地为人们服务。

关键词:土木工程结构;损伤识别;损伤诊断

由于近些年来,相关的国内外学者借助于模型试验、理论分析以及数值模拟等方法,进而针对土木工程结构的相关性能进行了细致的分析与探讨,也取得了有价值的科研成果以及一定程度的研究进展。除此之外,针对土木工程自身的结构特性,进而准确的评价受到损伤结构的可靠性以及损伤特性,由此一来,能够很好的对土木工程结构的损伤情况与修缮情况做出正确的判断,与此同时,这些问题也是现阶段土木工程结构即将面临的重要课题。当前,针对土木工程结构损伤诊断方面的诸多亟待解决的难题,本文提出了几种有效的解决办法,与此同时,这几种解决方法的应用越来越广泛。总之,针对受损土木工程结构做出正确的诊断以及识别,是解决此类问题的重点。与此同时,针对可能出现的损伤特性进行深入研究以及分析,并将其受损结构进行安全度评估,已经逐渐成为土木工程结构探讨的一个全新的领域。

1国内外损伤识别与诊断方法现状

现阶段,土木工程结构损伤识别在机械领域的应用极为广泛。人们很早就开始针对齿轮以及连杆等一系列零件组成的大型机械进行结构的故障诊断。直到上世纪中叶,结构无损检测技术得到不断的发展。上世纪末开始,人工智能、信息技术以及计算机技术等学科的知识,逐渐被应用在结构损伤检测与诊断领域。随着一系列的技术不断的创新与应用,使得土木工程结构损伤诊断分析变的简便与准确。目前,针对土木工程结构来说,在建筑物建成初期的出现损伤频率相对不高,且其危害程度远不如机械工程,与此同时,能够在一定程度上允许带损伤工作,因此,相比之下,土木工程的结构损伤检测技术不够成熟,很大一部分技术处于结构可靠性评估阶段。众所周知,上世纪初期是土木工程结构损伤检测探索阶段,其工作重点是针对结构缺陷的修理方法以及分析的探讨。到了上世纪中期就是结构损伤检测诊断的发展阶段,其工作重点是针对相应的结构检测方法的探讨,与此同时,出现了物理检测、无损检测以及有损检测等检测方法。上世纪后期以来,土木工程结构的损伤检测诊断技术趋于成熟,并相应的制定了标准与规范,与此同时,强调了综合评价,以至于土木工程结构的损伤识别与诊断工作,逐渐朝着智能化的方向发展。众所周知,现阶段我国的土木工程结构损伤识别与诊断仍处于起步阶段,发展时间较短,只是随着抗风研究以及结构抗震的不断发展,才不断基于安全鉴定以及可靠性评估进行土木工程结构损伤检测诊断领域的分析。现阶段,经过国内外许多相关学者逐渐借助于可行的方法,继而针对土木工程结构损伤进行诊断以及识别。众所周知,最近几十年以来,国内外已经逐渐在结构损伤识别与诊断技术领域开展了严密的分析。像Kunihiko等借助于有限元计算模型产生的样本训练BP神经网络模型,从而明确的识别已知相应的条件下结构的损伤程度以及状态;Mannan等深入研究了用实测结构频响函数来诊断损伤。Yu等借助于动力反应研究的相关方法,并进一步借助于摄动理论的特征值来检测结构的损伤。Chen等借助于人工免疫模式识别结构损伤,并针对损伤的厉害程度进行相应的分类。Xie将SVM用于复合结构的损伤识别中,分析结果显示支持向量机方法具有较高的识别精度。Leonardo等借助于变分方法评估大型空间结构的损伤。Curadelli等借助于对结构进行损伤识别,对结构阻尼的测试。

2结构损伤识别与诊断方法

通常情况下,结构损伤识别与诊断工作大致分为以下几个阶段:预测结构的剩余使用寿命;确定结构损伤的程度;确定结构损伤的位置;确定结构是否存在损伤。一般的,借助于结构损伤识别与诊断方法运用数据处理技术以及测试技术进行整体检测。其在很大程度上是基于结构的损伤以及整体失稳的发生都会导致结构动力性能的变化,并借助于固有频率降低以及诊断结构刚度减小等,从而进一步准确的判断结构损伤的实际状况。

2.1局部检测技术

通常情况下,局部检测技术主要包括射线法、声发射法、目测法、回弹法、脉冲回波法以及发射光谱法等。一般的,上述的这些技术能够用来准确的检查相应部件的裂缝位置。与此同时,在整个结构检测的过程中,通常借助于以下几种技术,并结合使用来共同识别结构的损伤状态。总之,其检测方法通常情况下有以下几种:射线检测技术,即利用射线对结构损伤情况进行相应的检测,从而识别结构缺陷的位置以及形状,进而可以准确的判断出结构损伤的实际情况;超声波检测技术,借助于脉冲波自身通过不同种类的介质能够产生反射的特性,与此同时,参照波在不同的介质材料中,相应的衰减程度不尽相同,由此能够针对材料中的不同种类的缺陷进行识别;声发射法,即用发射器将发射的弹性波信号转换为电信号,并把电信号经过处理之后得到相应的特征参数,由此一来,能够在一定程度上推测结构材料缺陷的位置。

2.2整体检测技术

2.2.1动力特性识别法

众所周知,大纲结构发生损伤之后,其刚度以及质量等参数会在一定程度上发生改变,进而极大的影响其自身的动力特性发生相应的变化。与此同时,动力自身特性的改变能够在一定程度上当作结构损伤发生的标志,并以此标志识别结构的损伤,并准确的诊断结构的损伤程度。

2.2.2模型修正与系统识别技术

现阶段,系统识别法以及模型修正法是借助于模型构造优化约束条件以及动力测试方法,并且在一定程度上修正结构的阻尼、刚度以及质量等特性,以至于其测试获得的结构响应基本等于最大响应,并逐渐将修正后的基线模型矩阵以及模型矩阵进行比较,以此完成针对结构损伤的识别与诊断。与此同时,该方法在处理子结构模型以及划分结构单元上具有诸多优点,但因为测试参数不敏感、测量噪声强与模型误差大等因素,也使的该方法在结构损伤诊断过程中受到了一定的约束。除此之外,现阶段模态试验测得的模态信息还不够成熟和完备,因此,在很大程度上引起了特征方程求解中的不是很稳定。

2.2.3神经网络技术

目前,人工神经网络技术主要是借助于模拟人体神经机理,进而进行分析与研究客观事物的方法。人工神经网络技术兼具自我学习功能以及计算机并行计算能力,与此同时,该技术还具有强大的容错性,并且善于扩散、综合以及联想,借助于神经网络算法的墨水识别能够很好的解决模式损失以及高噪声等问题,使其已经成为了一项土木工程结构损伤识别与诊断的有效工具。人工神经网络技术的原理是借助于研究结构在各种不同状态下的相应反应,从而相应的提取出结构的特征值,进而以神经网络输入向量当作结构损伤敏感的参数,再相应的输出结构的不同损伤状态,并逐渐有序的建立起输出损伤状态以及输入参数之间的特征关系,与此同时,训练后的神经网络有着模式分类能力,能够在一定程度上反映出结构损伤的模式。除此之外,人工神经网络技术的自身特性决定其具备强非线性的映射能力,从而极大的适合于非线性模式分类以及识别,人工神经网络技术和模型修正法相比,前者的适用范围更加广泛。

2.2.4遗传算法技术

上世纪中期,提出了遗传算法技术,该方法在一定程度上是参照达尔文进化论中优胜劣汰,适者生存的原则,从而找寻其中的最优者,与此同时,能够用此方法进一步得到满足要求的最优解。通常情况下,遗传算法不需要借助于连续性的信息,一般的,只需要计算各目标解,并借助于共同搜索多个线索的方式,从而对目标解进行优化,总之,遗传方法适用性强,且操作简单。因此,能够在信息量相对较少的情况下,从而借助于遗传算法来判定结构损伤程度以及位置,就算是结构的模态信息偶尔丢失了,借助于遗传算法也会发挥其损伤诊断以及识别能力,进而不会对结果产生影响。

结束语

总之,土木工程结构损伤诊断分析已经得到人们的广泛关注,也取得了一定研究成果。但我们应该清楚的认识到,现阶段我国针对土木工程结构损伤诊断问题仍处于起步阶段,其发展进程任重道远,需要我们不断的学习与创新。通常情况下,针对整个在使用过程中各种复杂工程结构的损伤识别与诊断,必须进一步分析与研究诸多问题。现阶段,针对工程结构的损伤识别与诊断的发展方向主要有以下几个方面:必须借助于非线性的损伤检测技术,仔细分析工程结构的非线性的程度,并借助于不同强弱程度的非线性进行研究与探讨;与此同时,选择的特征量一定要敏感而且可以准确测量,进而发展更为适用以及可靠的损伤判别指标,从而有助于结构损伤判定;因为遗传算法技术以及神经网络技术在数据处理以及非线性识别等方面的优势,所以,可以预见的是这两种技术在结构的损伤识别和诊断方面具有相对较好的应用前景;因为相应的损伤识别与诊断在工程结构上的实际应用不多,有必要对识别与检测方法进行验证,对不同的工程结构进行各种损伤试验,以至于使得这些方法得到广泛应用。基于对土木工程结构损伤诊断的几种技术分析与研究,使得土木工程正向着有条不紊的方向发展。与此同时,我国的相关学者应该加大相关的分析与研究的力度,相关政府部门也要给予相应的资金资助,一些开设土木工程课程的高校也要加大重视程度,共同为土木工程结构损伤诊断提供便利条件以及以后的发展打下坚实的基础。本文通过深入探讨土木工程结构损伤诊断,旨在让人们直观的认识到土木工程结构损伤诊断的本质,以至于加快发展土木工程结构损伤断的力度,更好地为人们生活的健康和舒适服务。

作者:黄朝阳 单位:西京学院