公务员期刊网 精选范文 牛顿第二定律的应用范文

牛顿第二定律的应用精选(九篇)

牛顿第二定律的应用

第1篇:牛顿第二定律的应用范文

【关键词】牛顿定律,高考,重视

一、高考动向

牛顿运动定律是经典力学的核心内容,也是高考考查的重点和热点.涉及牛顿运动定律的考题信息给予方式灵活,解题信息除了以文字叙述和示意图的形式给予外,近年高考及模拟题中还以图表、图象、照片等多种形式给予.解题信息的多种方式给予,可综合考查学生的理解能力、分析能力、推理能力、综合运用知识的能力等。牛顿运动定律是力学中重中之重的部分,对比近年来的高考考查内容,有几个特点:

(一)进一步加强对牛顿运动定律尤其是牛顿第二定律的理解和应用。如平抛运动的应用、直线运动、曲线运动(特别是圆周运动)的特点。超重、失重、牛顿定律在天体问题中的应用,弹力的求解等。其命题方式是从基本的概念定义入手去引领题目内容,出发点也是人们相对熟悉的问题。其解题的关键是明确是明确题目是想呈现什么样的知识点,才能恰当的构建物理情景,再结合牛顿运动定律给予解决。

(二)旧题、常规题推出新意。这类题的整体框架落脚点相应比较低,主要是起点有新意。审题时必须通过题目的表述找出常规知识点,作为突破口,化难为易,同时也必须注意近几年这类题前面的描述相应的少了,这有利于找准核心的知识点。

(三)牛顿运动定律与天体运动的结合仍是热点。因为它符合科技发展的认识需要,万有引力定律的涉及并用于讨论天体运动的知识点是高考的重点内容,近几年高考中出现率达100%,山东高考一般是一道选择题,全国卷可能是一道选择题,也可能是一道中等难度的计算题。总体来说,牛顿定律是力学的基础理论,应用非常广泛,涉及本章的试题综合性比较强,涉及的知识点比较多,考核的能力也比较全面,应当引起足够的重视。

二、教学困惑

1687年,牛顿在他的《自然哲学的数学原理》(以下简称《原理》)一书中,提出了三条运动定律,它们构成了动力学的基础。因此,牛顿运动定律在高中物理教学中具有重要地位和作用。但是,在高中物理教学中讲授牛顿运动定律,尤其是讲授牛顿第二定律时,并没有按照牛顿第二定律确立的历史过程和线索进行讲授,而是在首先给出力和质量的单位及它们的量度方法后,通过学生对加速度与力,加速度与质量关系的实验探究得出了牛顿第二定律。对此,有一种意见认为,这样的教学结构有违史实,尤其是掩盖了正是在牛顿第二定律建立的过程中,才确立了力和质量如何量度的科学内涵,是不可取的。于是,建议按照第二定律确立过程的历史发展线索,重新设计牛顿运动定律的教学结构和线索。这就出现了两个问题。第一,现行的牛顿第二定律的教学结构和线索是否真的是不可取的;第二,如何设计一种新的教学结构和线索,既符合牛顿第二定律确立的历史过程,特别是这一过程中前辈科学家的思维方式,以便取其精髓,有所教益,又能与学生的已有基础和认知水平相衔接。我认为,对牛顿运动定律的确立过程进行必要的历史追向,是可取的,但是如何进行教学才能达到最大的效益。

三、教材分析

(一)牛顿第一定律。牛顿第一定律是牛顿定律的基石,正是因为它破除了长达近两千年的亚里士多德的错误,改变了人类的自然观和世界观,才导致牛顿第二定律得出。与此同时,它本身还包含着力、惯性、和参考系这些极富成果的科学概念,成为物理学理论的支柱和基石。另外,伽利略的研究过程蕴涵了重要的科学方法,教学中要引导学生领会牛顿第一定律的含义,充分说明伽利略“理想实验”的实验基础和推理过程,展示了伽利略斜面理想实验的猜想依据、推断结果这一思维过程,通过教学让学生明确运动和力的关系,提升对力、惯性、质量等基本概念的理解。惯性是学生学习运动和力的基础,因其抽象难懂而成为难点。新课标中本节内容对学生有以下基本要求:1、了解亚里士多德对力和运动关系的论述及存在的错误。2.认识伽利略研究运动和力关系的思想方法,了解理想实验的作用。3.知道速度是描述物体运动状态的物理量。4.理解牛顿第一定律的内容,能够运用牛顿第一定律解释有关现象。5.知道惯性是物体的固有属性,知道质量是物体惯性大小的量度。6.运用惯性概念,解释有关实际问题。在发展要求中:1.了解运动学和动力学研究角度的差异。2.会识别惯性系与非惯性系。

(二)牛顿第二定律。对于实验的探究根据斜面小车,打点计时器实验来探究即可。对于牛顿第二定律的由来通过控制变量法来探究出来,关于实验的基本思路,由于初中阶段的学习,学生应该很清楚,但让学生结合自身的生活经验和一些常识,对加速度与力、加速度与力、加速度与质量间的定量关系进行合理的猜想还是必要的,因为这与实验数据的处理直接相关。因为正比、反比关系用图像进行数据处理比较直观,而且有利于减少误差的影响和进行误差分析,所以实验用图像方法处理数据。但a-m间的双曲线关系却不是能准确、直观看出的,这时用1/m的数据作为横坐标,就能够使问题变得简单。这一处理方法将会对学生的思维和心理产生深刻的影响。从而探究出三者之间的关系。

第2篇:牛顿第二定律的应用范文

2、牛顿第二定律:物体在受到合外力的作用会产生加速度,加速度的方向和合外力的方向相同,加速度的大小正比于合外力的大小与物体的惯性质量成反比。

3、牛顿第三定律:两个物体之间的作用力和反作用力,在同一条直线上,大小相等,方向相反。

4、牛顿运动定律包括牛顿第一运动定律、牛顿第二运动定律和牛顿第三运动定律三条定律,由艾萨克·牛顿在1687年于《自然哲学的数学原理》一书中总结提出。 其中,第一定律说明了力的含义:力是改变物体运动状态的原因;第二定律指出了力的作用效果:力使物体获得加速度;第三定律揭示出力的本质:力是物体间的相互作用。

第3篇:牛顿第二定律的应用范文

关键词:高中物理;牛顿第二定律;概念;实验方法

一、牛顿第二定律概述

牛顿第二定律是我们学习物理力学知识的重要定律。掌握该定律能够为我们今后学习物理力学知识奠定坚实的基础。该定律的公式为:F=ma,F为表明物体的合外力,m为物体质量;a为物体的加速度。物体加速度同物体所受的合外力F成正比,跟物体的质量成反比,加速度的方向跟合外力的方向相同,并且力和加速度同时产生、同时变化、同时消逝。牛顿第二定律是对物理学中力和运动关系的概括,是物理学科领域中最为经典的物理学定律。我们在惯性定律中学习的物体运动并不是在外力作用下运动,而是在惯性作用下发生运动。我们没有学习惯性定律前会认为,这同我们的生活经验是相违背的。通过学习牛顿第二定律后,我们了解到,物体在没有惯性作用下是不会运动的,只有对物体施加力,物体才能以一定的速度运动。

1.相互作用力

物体在外力作用下其运动状态会发生改变。根据我们对生活中事物的观察,发现汽车在行驶过程中速度的快慢同驾驶员踩油门和踩制动踏板有直接关系。这就是物理学中讲的物体在受到较大牵引力影响下运动速度会变快,物体在运动过程中受到较大摩擦力运动速度减缓。即汽车在传动装置作用下产生牵引力,加之汽车轮胎滚动摩擦力影响,汽车运动方向和合力方向保持一致,使得汽车加速运动。

2.重力场运动

牛顿第二定律除了阐明相互作用力同运动的关系外,还涉及力学重力场中力的应用。例如,石子在斜上抛的过程中,一般初始的力不容易察觉,但随着加速度的增大运动速度会很快。需要提出的问题是,初始力作用下石子运动速度变慢和初始力大小有着直接关系(不计石子运动过程中的空气摩擦力)。所以,我们可以判定,重力是唯一对石子产生的作用力。在重力作用下,石子运动轨迹发生着明显的改变。从运动合成和分解原理分析石子运动,可将石子运动作用力分为垂直方向作用力和水平方向作用力。水平方向石子运动不受其他外力影响,所以,石子运动的速度不会发生明显变化。而垂直方向石子受到重力影响,石子运动过程中则呈现出正方向先减小,反方向迅速加速现象。

二、牛顿第二定律实验

通过实验能够帮助我们加深对牛顿第二定律的理解,使我们从牛顿第二定律的感性认知升华为理性认知。即掌握该定律的本质和内涵。

1.实验装置

如上图所示,在长木板的一端我们固定一个定滑轮,使用绳子将A、B两块质量不同材质相同的滑块相互连接搭在定滑轮上,绳子的另外一端同打点定时器的纸带连接。

2.实验过程中需注意的细节性问题

实验时,我们缓慢抬起长木板待滑块A到达如上图所示位置时将其固定。我们知道这是平衡摩擦力作用,但有的学生可能对设计成这样的实验装置不够明白,为什么要将滑块A固定在这个位置,如果将长木板抬起一定的角度,滑块A会下滑吗?是滑块A下滑速度快还是滑块B下滑速度快。打点计时器的纸带上又会出现什么样的打点轨迹等。这都需要学生在实验过程中亲自动手做实验,结合自己所学的物理知识,解释物理实验中遇到的种种问题。

3.实验分析

实验结束后,我们加深学生对定律的概念的理解,可采取在坐标纸上画图的方式来达到这一目的。牛顿第二定律关系图中a-F是过原点的,不过,在实际操作中有些学生虽然能够准确计算出想要的数据,但并不能很好地完成实验。有些学生在坐标上画图时经常会出现图像末端在原点处发生弯曲,造成图像不经过原点,这需要引起我们的注意。要学会分析摩擦力平衡状态下倾角过大或过小所对应的数据图像是什么样的,导致图像末端弯曲的主要原因是什么。

总之,我们在学习牛顿第二定律过程中,不管是理论知识学习还是实验都要坚持实事求是的科学态度,遇到问题要充分发挥自己的思维,思考问题,分析问题,处理问题,加强与其他学生的交流和沟通,共同探讨牛顿第二定律,切实掌握该定律的真正内涵。物理是一门综合性比较强的学科,知识内容比较抽象,学生不容易理解,但通过实验的方式,可以帮助我们直观地去感知和认知物理知识。本文笔者结合自己对牛顿第二定律的学习经验,探讨了牛顿第二定律的概念,并通过实验方式来进一步揭示该定律的本质内涵,以期能够为学生学习牛顿第二定律和加深对其理解提供帮助。

第4篇:牛顿第二定律的应用范文

从全局观点分析力学部分教材,揭示物理学的基本规律,有目的地提高学生的思维品质,增强学生的物理思维能力,对此应从以下三个方面认真分析教材.

1.力学教材的基本知识结构

牛顿运动定律是经典力学的基础,也是经典物理的基础之一.动能定理和动量定理及其守恒定律为经典力学的栋梁.现行教材的体系是先讲静力学,后讲运动学,最后讲动力学.把牛顿三定律按三、一、二的顺序安排,第三定律放在静力学中讲授.这种安排符合由易到难、循序渐进的原则.即学习静力学时,有牛顿第三定律作准备知识,学习牛顿第二定律时,有力的合成与分解作先行.通过静力学的教学,要求学生正确理解力的概念.

物体受力分析是力学中的关键,几乎所有的力学问题都要涉及物体的受力分析,所以静力学教学是最重要的基础.

2.物理思维方式

思维是人脑对客观事物进行加工的过程,是人脑的功能,通过表象、概念判断和推理以及其它过程来反映客观现象的能动过程.物理思维就是运用思维的一般规律于物理学习、研究中所体现的具体的一种思维方式.

在教材分析中掌握物理思维结构,就是要掌握怎样运用思维的基本形式(概念、推理、论证等)和思维的基本方法(比较、分类、鉴别、分析、综合、归纳、证明、反驳等)以便能更好地、有目的地培养学生的思维能力.

第一章“力”要重点讲清三种力产生的条件及力的大小和方向,为物体受力分析做好准备.力的三要素,在初中已经讲过,对质点来说不会发生关于力的作用点的问题,而对刚体来说,力的作用效果除了跟力的大小和方向有关外,还跟力的作用点的位置有关.教材中虽然没有明确提出刚体概念,但所说的物体都是指刚体.力的作用点可以沿力的作用线移到刚体内任一点而不改变力的作用效果.因此,与其说力的作用点是一个要素,还不如说力的作用线是一个要素.物体的平衡,用了“平衡”和“固定转动轴的物体”等理想模型方法;“力的分解和合成”用了分析、综合、等效的方法.

第二章“物体的运动”用了理想模型(过程模型)的方法.高中教材以初中教材为基础,先提出质点这个理想化模型,在研究物体在一直线上的运动以后,立即研究物体在一个平面内运动的有关概念、规律和描述方法.运动学是力学的重要组成部分,是学习其它各章的必备知识.对平面运动的速度的合成与分解运用了分析、综合、等效的方法.

第三章“牛顿运动定律”用了经验归纳方法论.虽然第一定律不能用实验直接证明,但由第一定律推导出的一切结论都与实验结果相符合,这就间接地证明了牛顿第一定律的正确性.当今的实验已能近似地验证这个定律,例如用气垫导轨实验,运动物体——滑块在水平方向可以近似地认为不受力,因而它近似地做水平匀速直线运动.随着科学技术的日益发展,牛顿第一定律有可能得到更加严密的证明.牛顿第二定律是通过实验归纳得出的.在功和能,机械能守恒定律,动量、动量守恒这几章中,主要是用了推理的方法.如教材中机械能守恒定律是借助于运动学和动力学的知识推导出来的.但应当明确一点,这是一条实验规律,是实践经验的总结,是客观规律的反映.这此规律能够相互推导,这说明它们之间存在着内在联系.动量定理出自于牛顿第二定律,又异于牛顿第二定律.牛顿第二定律是一个瞬时的关系,而动量定理则说明状态过程,它可以按过程始末状态处理物体的动量变化,而不必涉及过程的细节.如果只考虑两个物体的孤立体系,把牛顿第三定律与牛顿第二定律结合起来,就得到作用前后的总动量不变.我们可以用实验进行检验,牛顿也正是用这个方法验证牛顿第三定律的.

“振动与波”一章研究的主要方法是从一般到特殊的推理过程,运用了动力学和运动学的基本规律,导出满足机械能和机械振动规律的新结论.

3.数学是表达物理学规律最精确的语言

在教学过程中,只有将教材的教学方法、结构搞清楚,才能达到运用数学方法解决物理问题的目的.在“力”这一章中,重点解决什么是矢量和矢量的运算方法问题.对物理矢量必须透彻理解,掌握其数学运算法则——矢量的平行四边形法则.引导学生对“代数和”与“矢量和”进行对比,体会矢量的质的差别,从而自觉地运用矢量运算法则.在“物体的运动”这一章中,先提出质点这个理想化模型,并研究质点动力学中的几个基本概念、位移、速度、加速度等.从数学角度分析这些量之间的函数关系(包括文字叙述、数学公式、函数图象等),再进行运动的合成与分解的矢量运算.

在“牛顿运动定律”这一章中,牛顿运动定律起着承上启下的作用,即能进一步加深对静力学、运动学知识的理解,又能为顺利学习机械能和动量铺平道路.牛顿第二定律的数学表达式,只有以地球和相对地球静止或做匀速直线运动的物体为参照系才是适用的.教材由分析物体只受一个力产生加速度与力的关系,过渡到分析物体受几个力产生加速度,以及加速度与力的关系,从而概括出能适合各种情况的牛顿第二定律的数学表达式ΣF=ma.在公式中,力与加速度都是矢量,故此式是一个矢量式.牛顿第二定律概括了力的独立性原理(或力的叠加原理),即几个力同时作用在一个物体上所产生的加速度,应等于每个力单独作用时所产生的加速度的叠加——矢量和.在解题中,运用了正交分解法等基础知识.

机械能和动量这两章是在运动学和动力学的基础上,讨论力的空间和时间积累效应,从而引出功和能、冲量和动量等概念.功和能将矢量运算变成了代数运算.教材从力对物体做功引出动能和动量定理,研究了重力、弹力做功的特点,引出势能的概念,得出在只有重力、弹力做功时,机械能守恒.最后,从一般的功能原理阐明功的本质是能量变化的量度作为本章的总结.能的转换和守恒揭示了物理学各部分的内在联系.在讨论动量定理时,应强调牛顿第二定律的关系式是一个瞬时关系,而动量定理则说明状态过程,应用它研究某一过程而不是研究某一瞬时,只有在t0时,才是相等的.实验是讲述动量守恒定律的基础,教材这样处理是考虑到动量守恒定律的产生不是从牛顿运动定律推导得出的,而是一个独立的物理规律.而动量守恒定律的适用范围远远超出牛顿力学的适用范围.对动量守恒定律的数学表达式没有具体给出,目的是避免学生只是死记公式,注重培养学生学会运用物理规律对具体问题进行具体分析的能力.在应用动量守恒定律时,应选用惯性系,物体的动量mv、速度v的大小和方向也与参照系的选取有关.应特别注意计算同一系统中各部分的动量不能用不同的参照系.机械振动和机械波是较复杂的机械运动,它需要力学、圆周运动、运动图象等知识作基础.简谐运动是最简单、最基本的振动,是讲清波的关键.建立振动和波的联系与区别,是突破机械波教学难点的关键.

物理教学即要发展学生的智力,又要培养学生的能力,而后者较前者更为重要.从物理学本身来看,它研究的各种现象和规律是互相联系的.例如功和能的概念及能的转换和守恒定律,又渗透在各个分科中.教学职能即要从人类知识的总汇中挑选最精华的,运用最科学的方法传授给学生,又要使他们具有独立获取知识和驾驭知识的能力.要重视知识的传授,离开知识的掌握,能力的发展就成为无源之水,无本之木.

1.系统化结构化的教学

在中学物理教学中,贯穿力学的两条主线——动能定理和动量定理、机械能转换和守恒定律及动量守恒定律.这两个定理、两个定律来源于牛顿运动定律,与牛顿三定律一起构成质点动力学的基本规律,是力学部分的重点知识.围绕这两条主线,要深入分析牛顿运动定律,为这两个定理打好基础.动量定理、动能定理是在牛顿定律基础上派生出来的定理或推论,它们提供的表达式与牛顿运动定律等价,可代替牛顿二定律的矢量表达式中的某分量式,而不是什么新的表达式.但是动量守恒定律是自然界最普遍的规律之一,能量守恒和转换定律也是反映自然现象的最重要的规律之一.它们的作用远远超出了机械运动的范围.

2.培养学生的独立实验能力和自学能力

要培养思想活跃,有创新精神和创造能力的人材,必须加强学生的实验能力和自学能力.物理实验是将自然界中各种物理现象在一定条件下,按照一定的物理规律创造一定的条件使它重现.做物理实验,必须满足于一定的条件才能获得预想的结果,如设计实验步骤、选择测量仪器、正确观察现象、完整的读取数据、严格的计算,是做好实验不可缺少的过程.让学生按照上述过程有目的的科学训练,自觉地掌握科学实验的规律,激发学生的学习积极性就能增强学生灵活运用物理知识解决实际问题的能力.

第5篇:牛顿第二定律的应用范文

【关键词】效果力 惯性力 守恒定律

【中图分类号】G633.7 【文献标识码】A 【文章编号】2095-3089(2013)05-0178-02

一、论点:

在牛顿运动定律应用过程中,把力的作用效果ma视为是惯性力,则力是守恒的。

适用范围:与牛顿运动定律适用范围相同,宏观、低速。

二、问题的产生:

1.在牛顿运动第二定律的应用中发现:

例如1:物体A和物体B并排在光滑的水平面上,当物体A受到水平力F的作用时,问物体A对物体B的作用力为多少?

分析:有的学生凭着物体可以传递力的感觉,错误地认为物体A把受到的力F大小不变的传递给物体B。正确的方法是利用整体法求出加速度,再利用隔离法求的物体A对物体B的作用力。

用新的观点认为,水平作用力F产生了两个效果力maA 和 maB,水平作用力F减去对物体A的作用效果maA,剩下才是对物体B的作用maB。

效果力的引入直接的益处是对由牛顿第二定律得出的数学抽象表达式,给出易于中学生理解的物理含义。在分析处理力的作用问题中,使得问题简化,易于接受理解。

2.高中物理力学中的三大定律对应二个守恒定律,如果把物体所受到的合外力的作用效果ma视为是惯性力,则力是守恒的,三大定律分别各自对应一个守恒定律。使得高中物理力学知识结构非常对称、完美。

动能定理――机械能守恒

动量定理――动量守恒

牛顿定律――力的守恒

“力的守恒定律”与“机械能守恒定律”在理论上和实际应用中存在的价值是相当的。在理论上,它们只是特定条件下的应用,但是利用“守恒定律”规避复杂过程,是非常有效的处理问题的手段。

从物理量的定义、到物理守恒规律、以及在守恒规律的应用过程中,都是在千变万化的物理现象中,追寻不变的量、守恒的量。

高中物理教学主要目标之一就是提高学生处理物理问题的能力。能力来自学生对物理规律的深刻理解和灵活的应用。牛顿运动三个定律每个定律所要阐述的物理内容到底是什么?三个牛顿定律之间又存在什么内在的联系?

三、研究论证:

1.对“力的作用效果ma”的理解

如果我们确认了某一参考系为惯性系,则相对于此参考系做匀速直线运动的任何其它参考系也是惯性系。与此相反,凡是相对于已知惯性系做加速运动的参考系必然是非惯性系。在非惯性系中,物体受到惯性力ma,这个惯性力是确定非惯性系的参照系的惯性系物体的作用。在惯性系中,ma来自于加速的物体受到周围物体的引力的变化,是宇宙中该物体周围物体共同作用的结果。

1880年,奥地利物理学家马赫(Mach,1838年――1916年)在他的《力学史》中,对牛顿的水桶实验做了分析。马赫认为,当一物体相对于宇宙中其它物体作加速运动时,就会产生惯性力,他把惯性归因于宇宙之间的相互作用。

1921年6月13日爱因斯坦在伦敦皇家学会作的报告中强调指出:“广义相对论的进展所根据的,还有另一个因素,正如恩斯特・马赫所坚持指出的――物体的惯性不是追溯到这些物体对于绝对空间的相对运动,而是追溯到它们对于其余全部有重物体的相对运动。” 广义相对论证实了马赫的预言。

由此可见,只要把物体相对牛顿的绝对空间的绝对运动,按照马赫的思想转换为相对运动,则“当一物体相对于宇宙中其它物体作加速运动时,就会产生惯性力。”这个惯性力的大小就是ma, 惯性力的方向与加速度的方向相同。

2.力的作用效果ma能否看成某一种力?――惯性力

首先到底什么是力?在中学课本中,力是物体之间的相互作用。牛顿在《原理》中写到:“力是使物体改变其静止或匀速直线运动状态”的一种作用。在大学课本中,力的动力学定义:力的度量一般是由它对一选定物体所产生的加速度,对于指定的单位力对同一物体所产生的加速度的比值定义的。

基本物理概念的建立总是同相应的物理定律分不开的,力的定义就是利用牛顿第二定律所阐述的一个实验事实:同一物体分别受到两个力作用所生的加速度的比值是一个标量常数且与该物体的选择无关。设用不同的外力F1和F2作用于同一物体m上所产生的加速度分别是a1和a2,则:■=■

如果选定F1为单位力,那么力F2=■F1

力是物体之间的相互作用,不同性质力产生的原因不同,所以人们不可能针对不同性质的力,从力产生的过程给出一个准确统一的定义。牛顿通过研究力的作用效果发现对同一物体,力与加速度成正比,则人们可以借助加速度度量力。

只从受力物体看,ma是力的作用效果。在相对时空中,ma就是物体加速运动时受到的惯性力。

3.物理定律的对称性与守恒定律

关于物理定律的对称性有一条很重要的定律――对应于每一种对称性都有一条守恒定律。

假设一对粒子A和B,它们的相互作用势能为U0。现将A沿任意方向移动到A’,这位移造成势能的改变U=-FBA・Δs(抵抗B给A的力所作的功);若A不动,将B沿反方向运动相等的距离到B’,则势能的改变量为U’=-FAB・(-s)(抵抗A给B的力所作的功)。上述两种情况终态的区别仅在于由两粒子组成的系统整体在空间有个平移,它们的相对位置是一样的:■ =■。空间均匀性,或者说,空间平移不变性意味着,两粒子之间的相互作用势能只与它们的相对位置有关,与它们整体在空间的平移无关,从而两种情况终态的势能相等,

即:U+U=U+U'

即:U=U'

即:-FBA・s=-FAB・(-s)

因为s是任意的,固有:FBA=-FAB

即任意二粒子的相互作用力大小相等,方向相反。

对于二粒子体系:FBA+FAB=0,如果没有外力的作用,系统的合外力为零。

再由牛顿运动第二定律可知:mBaB+mAaA=0,矢量和为零。

也就是系统内任意两个粒子间的作用不会改变系统的ma。

即当系统的合外力确定后,系统的ma是确定的。这是从空间的平移不变性推出的结论。

4.对牛顿运动定律的理解

牛顿第一定律也称为惯性定律,提出了重要物理概念“惯性”。物体为什么具有惯性?1913年,爱因斯坦在“广义相对论纲要和引力论”一文中,把马赫的思想表述为:“惯性的原因是所考察的质点同所有其余质点的相互作用。”由此还得出一个推论:“物体的惯性随其周围物质的增加而增加。” 可见,惯性并不是物体本身具有的与外界无关的某种属性,也是质点间的相互作用结果。这也符合自然界物质存在的自然哲理。

牛顿第二定律的实质物理内容:

实质一:同一个力分别对两个物体作用所产生的加速度的比值是一个标量常数且与该力的选择无关。

■=■=常数

该常数与该力的选择无关,是因为物体的惯性由物体本身因素决定。质量越大,惯性越大,同样外力的作用下,产生的加速度小。常数的大小反映的是质量与加速度的定量关系,使牛顿可以利用加速度的比值度量物体的质量 。

实质二:同一物体分别受到两个力作用所产生的加速度的比值是一个标量常数且与该物体的选择无关。

■=■=常数

该常数与物体的选择无关,是因为对物体的作用力与受力物体无因果关系,而力是迫使物体改变其速度的一种作用,所以对惯性相同的物体,力越大,产生的加速度也就越大,常数的大小反映的是力与加速度的定量关系,使牛顿可以利用加速度的比值度量力。使力这一物理概念成为可以度量的物理量。

牛顿第三定律阐明:“在牛顿定律适用的范围内,物体间的相互作用,大小相等,方向相反。”物体之间相互作用时为什么存在这样的规律,主要原因是宇宙中存在着空间的平移不变性,对应着力的守恒规律,表述为牛顿第三定律。

牛顿定律及其世界体系的建立,是人类认识客观世界过程中的一次飞跃。牛顿采用因果性的解释在物理学的发展中是重要的一步。他在《原理》一书的前言中写道:“我奉献这一作品,作为哲学的数学原理,因为哲学的全部责任似乎在于――从运动的现象去研究自然界的力,然后从这些力去说明其它自然现象。”牛顿的科学观对以后的物理学发展产生深刻的影响,1827年,安培在《电动力学理论》一书中,阐述了他处理电磁现象的方法:从观察事实出发,撇开力的性质的假说,推导出这些力的表达式,确定一般规律,最后他明确指出:这就是牛顿所走过的道路……。

牛顿本身都不去追朔力的性质,只是引入“力”这一概念去说明其它自然现象。“力”只是人们用来处理问题的方式和手段。况且把ma看成惯性力只是在牛顿定律应用过程中一种新的方式。它直接带来的意义就是高中物理力学知识结构的对称性和简洁性, 高中学生获得简洁清晰的处理力学问题的思路和工具。力的守恒定律存在的价值可以类比机械能守恒定律的存在价值,对一定条件下的物理问题的处理带来简单、清晰的处理效果。提高处理问题的效率。

参考文献:

[1]尚义和《大学物理导论》

第6篇:牛顿第二定律的应用范文

关键词:  惯性;存在;时间;空间 

  

   惯性是经典力学中的一个基本概念,同时它又是人们日常生活中的一个基础性观念,并且惯性问题也是经常被物理学界讨论的一个话题(1)。可是,尽管经典力学经过了漫长的发展时期,大部分的物理教师在此问题上还存在着很多的混乱性(2),本文试从几个方面对惯性进行了讨论,望引起大家的共识。 

一、惯性的意义 

   大家知道,惯性是物体保持静止状态或匀速直线运动状态的性质(3)。一个物体,只要不受外力作用,原来静止的就会一直静止下去,而原来运动的则会一直作匀速直线运动。这里的问题在于:惯性是否是物体的性质?依据牛顿第一运动定律,任何物体均具有惯性。因而,看来惯性不是被研究物体的性质,因为这一性质是一切物体所具有的,也就是说它与物体的个别特征无关。因而,惯性只能是存在的一个特征,是被研究对象周围的环境在此对象上的表现。换一句话说,它是存在于物体周围的一种条件,一种约束。 

    二十世纪初,德国数学家诺特尔(4)证明了:空间平移对称性导致动量守恒、空间转动对称性导致角动量守恒、而时间均匀性导致能量守恒。事实上,物体的惯性是时间均匀性与空间对称性的必然结果。因而它与个别的特殊研究对象无关。惯性不是个别存在物的性质,个别存在物只是惯性的显现者,惯性的本质与个别存在物的特性无关。从而我们就不能用反映个别存在物性质的量(例如质量)来测度惯性。因为惯性作为存在的一种显现,并无大小可言,它只是存在之状态的表达。 

二、惯性与物体运动状态变化的难易程度无关 

    通常认为质量是物体惯性大小的量度是据于这样的理由:质量大的物体在相同的力作用下其运动状态不容易改变。这是由牛顿第二定律所得到的基本结论。而事实上物体运动状态是否变化,物体运动状态的变化是难还是容易是与惯性无关的。惯性所揭示出的物体之性质不在于其使(或抗拒)物体运动状态的改变或代表改变的难易程度的能力,而在于它的保持某种特定状态(静止或匀速直线运动)的本领:在最相似的物之间,错觉说着最巧妙的谎;最小的罅隙是最难度(5)。因而惯性与物体的质量无关。倘若惯性与物体的质量有关的话,则我们也可以说力与惯性也有关系。因为对于相同质量的物体而言,力越小其运动状态就越难改变。因而,也即力越小物体的惯性越大。事实上,在惯性概念发展的最初时期,牛顿就将惯性与力进行等价的思考,当然现在大家知道牛顿的把惯性等同于力的思想是错的了。如果要说质量与惯性确有联系的话,作者以为也只能从这样的一个视角来看:惯性是由其表现物体周围存在着的与时空有关的天体质量分布情况决定着的性质。这是因为,根据广义相对论,空间的性质是由天体质量的分布所决定的。至于时间,自从奥古斯丁(6)提出“什么是时间?”以来,人们还没有认清它的真面目,也因而从更深的层次上而言,人们只认识到什么是惯性而还没有搞清惯性是什么。 

    惯性不是一种由个别物体自身所具备的原因(诚然,所有物体均会表现出惯性),它不是我们的一种吃力的、需要支撑的、痛苦感的反映,事实上,它是存在之美感的绽开。因而“惯性是物体对任何改变其运动状态的外来作用的阻抗的性质”(7)这样一种说法就是不当的。因为这一注释还是从对牛顿第二定律的基本分析而来的,在这一注释中已经隐藏了牛顿第二定律及对惯性与物体质量等价的认同感。其实,惯性是一种令人十分安全的、舒适的、和谐的存在之性质,它使物体的存在行为非常简单,而人们也往往由于常见到这种存在的简单性而忽视了它的深层含义。静止的永远静止,运动的永远作匀速直线运动,惯性就是将存在如此单调而重复地显现在人们眼前。凡是背离了这两种物体的存在情况而用惯性去解释其存在原因的,作者以为均属一种不当的诡辩行为。可是这种诡辩行为不仅麻木了人的脑神经而且充斥着各种各样的教科书(8),我们来看一些下面的例子。 

    例1.惯性也有不利的一面,高速行驶的车辆因惯性而不能及时制动常造成交通事故。所以,在城市的市区,对机动车的车速都有一定的限制,以利于行车安全。(9) 

在这里,不能及时制动是由于惯性还是由于制动力不够大?略作思考,读者就可判断出是由于后者。将惯性看成一种破坏力是十分荒唐的。而发生交通事故的真正原因是,由于车辆质量较大,而相应的制动力在如此质量的物体上所产生的加速度很小,不能使车辆很快地减速,从而在短时间内停下来。倘若对于质量较大的车辆来说制动力也允许更大,那么作者认为还是可以在一定的时间内制动车辆的。 

并且,这个例子中的“高速行驶的车辆”及“对机动车的车速都有一定的限制”的字句很容易使学生认为惯性和物体的运动速度有关。这对于初学者来说是一个很大的误导。 

例2.把斧柄的一端在水泥地面上撞击几下,斧头就牢牢地套在斧柄上了,这是什么缘故呢?(10) 

通常标准答案是这样的:开始斧头和斧柄同时向下运动,当斧柄遇到障碍物时突然停止,而斧头由于惯性保持原来的运动状态,这样斧头就牢牢地套在斧柄上了。 

事实上,斧头在斧柄上套牢是由于斧头克服了阻力相对于斧柄运动了一段位移,而惯性不是克服某种阻力使斧头运动的原因。在此问题中的一个效果是斧头相对于斧柄产生了某种(克服一定力的)运动,因而我们必须以斧柄为参照系来考察此种运动的实质。当以斧柄为参照时,实际上斧柄在撞击的过程中是一个非惯性系,它相对于惯性系有一个向上的加速度。因而斧头在此参照系中必受到一个向下的“惯性力”,正是此力与斧头的重力克服了斧头与斧柄之间的弹力与摩擦阻力使斧头相对于斧柄前进了一段位移,从而使斧头在斧柄上套牢。如果一定要以地面为参照系来看斧头在斧柄上套牢的问题,那么可以这样认为:虽然斧头在斧柄上向下套牢的过程中没有受到除重力以外的向下的另外力,但相对于地面而言斧头具有一定的动能和重力势能,正是这个能量克服了阻力作功从而转化为内能。所以从效果上看,一是斧头相对于斧柄向下移动了一段位移,二是斧头与斧柄的接触面上在发热。 

如果仅从动力学的角度来看,斧头在斧柄上套得牢不牢是由其受到的作用力大小与作用时间(或所通过的位移)所共同决定的,也就是说它和斧头相对于斧柄的动能或动量变化有关。斧柄在“水泥地面”上“撞击”这两个条件只是使斧柄产生了相对于水泥地面的较大的动量变化率,从而也使斧头具有了相对于斧柄的惯性力。但是,虽然这个惯性力构成了斧头套牢在斧柄上的直接原因,可严格地说,斧头在斧柄上套得牢不牢的原因还和斧头的重力及斧柄的弹性和斧头与斧柄的摩擦力大小均有关系。并且斧头在斧柄上套得牢不牢和作用时间也大有关系,因而,撞击“几下”也是一个非常重要的条件。 

例3.小车上竖直放置一个木块,让木块随小车沿着桌面向右运动,当小车被档板制动时,车上的木块向右倾倒。这是怎么回事呢?(11) 

教科书上的答案是这样的:小车突然停止的时候,由于木块和小车之间的摩擦,木块的底部也随着停止,可是木块的上部由于惯性要保持原来的运动状态,所以木块向右倾倒。

事实上,本例中小车上木块的倾倒是由于力矩作用的缘故。若以地面为参照物,小车对木块的摩擦力对木块的重心而言有一个顺时针旋转的力矩,从而木块向右倾倒。若以小车为参照物,小车被档板制动时已是一个非惯性系,作用在木块(重心)上的“惯性力”对木块的底端也产生一个使木块作顺时针旋转的力矩。 

需要指出的是,在上述例2和例3中,斧头在斧柄上套牢和木块在小车上倾倒已是一个涉及物体在非惯性系中的动力学的问题。其中例2是非惯性系中的质点动力学问题,而例3则是非惯性系中的刚体动力学问题。可是,在非惯性系中,我们通常意义上所论述的牛顿第一定律已不成立,从而也失去了此两例的代表意义。也就是说,这两个例子不仅是不准确的解释而且是不适当的例子。在涉及惯性的问题上我们必须分别那些是属于惯性现象,而那些则不属于惯性现象——即为动力学现象。牛顿的例子,毫无疑问是正确的(12),但我们许多的物理学工作者却将惯性对事物的解释范围作了相当随意而并不恰当的扩展或扭曲。其实在讲述惯性时,用不着举更新鲜的特别例子,倒是需指出惯性使我们对事物常态的存在方式太熟视无睹了。这里问题的关键在于,惯性不是使物体改变运动状态(使火车制动、使斧头套牢在斧柄上、使小木块倾倒)的原因。严格地说,这些原因和物体的惯性无关,只和力有关,而至于火车制动得及时不及时,斧头套在斧柄上牢不牢,小木块倾倒得快不快,则不仅与力有关,还和物体的质量、形体、初速度有关。但即使如此地与质量和初速有关却也与惯性无关。 

惯性,这个我们通常认为是由物体内在因素决定的性质,其实是物体存在方式的一种条件性:“试取汽车为参考系统来研究‘当汽车急剧刹车的时候,车中乘客有向前倾倒的倾向’这个问题,在汽车急剧刹车前,相对于汽车而言,乘客是静止的,在汽车急剧刹车时,乘客突然向前倾,这就是说,以汽车为参考系统,乘客由静止而突然向前倾,并不保持其静止状态,并不表现出惯性”(13)。这个条件就是:物体要表现出惯性,它必须处于惯性参考系中。而“事物的存在顽强地延续维持不变,无论运动是快是慢抑或停止。”(14)也只在惯性系中才成立。在研究物体的运动学与动力学问题时,惯性系总有着特殊的地位。可是,这个特殊地位的存在并不单单是人类抽象理性的功劳,并不是人类贪懒和间集化的一个报应,惯性系的存在有其形而上的基础:自然之美的呈现及人对自然之美呈现体认的同一性。如果没有了存在的时间均匀性与空间对称性,我们选取的相对于地面作匀速直线运动的参考系对研究动力学问题而言也就将成为一个畸形的怪胎。惯性系不仅在计算上向人类提供了联系物体的相互作用与相对运动的便利方式,其更根本的是它使人与存在的关系成为审美性的。惯性定律给我们的启示是:存在是美的。而惯性系则是自然对人的一个馈赠。也因而,我们应当从审美的视角来看待惯性,而不应当将它看成一个恶魔或一件便宜货。 

所有的老师都要求学生不要把惯性与惯性定律混为一谈,可是当我们的老师用动力学的观点来看待惯性——也就是说,把惯性与牛顿第二定律混为一谈的时候,对学生的这一期望是合适的吗?其实这是一个误区:当教完一些物理学的基本概念与规律以后,就要求学生用它们解释自然现象。事实上,物理学中有些基本概念与规律不是要求我们去解释自然现象,它没有这个功能,它只是告诉我们要去感受些什么,它提供给我们的不是一种推理的方式,而是一个判断的原则 :它促成我们的判断更接近于自然之美的呈现。 

三、惯性定律与牛顿第二定律的关系 

当物体所受的合外力为零时,从牛顿第二定律可知物体处于静止状态或作匀速直线运动。可是,仅依据这一点却不能认为牛顿第一定律是牛顿第二定律的一个特例。因为这两个定律的论述对象其实是不一样的。牛顿第二定律的研究对象是一个物体,而牛顿第一定律论述的是整个存在的性质。惯性——这个任何物体均具有的性质其实不是我们的个别研究对象所具有的性质,因为这个“任何物体”,包括了天地间的万物,而万物的总称(15)即是宇宙:“四方上下曰宇,古往今来曰宙”.也即任何个别的物体都不可能无条件地具有惯性:惯性是存在的特性,是存在着的时空的特性,是宇宙的特性。 

  其次,牛顿第二定律是关于个别物体因果性的规律,而牛顿第一定律却与个别物体的因果性无关,它是存在之状态的表述,它的表述是与具体的特定的时间无关的、瞬时性的。正是这种非时间性(16)构成了牛顿力学的本质特征。也正是牛顿第一定律所成立的时间均匀性与空间对称性构成了惯性系的特殊地位,从而使我们可以在牛顿第二定律的意义上来研究物体的动力学关系。因为毫无疑问,物体的运动性质和规律与采用怎样的空间和时间来度量有着密切的关系(17)。由此可见,不仅牛顿第一定律不是牛顿第二定律和特例,恰恰相反,现行的动力学规律正是牛顿第一定律所揭示的存在之性在具体的个体事物上的展现。惯性定律比牛顿第二定律具有更强的基础性。也就是说,正是惯性现象,构成了牛顿动力学所以成立的操作平台。由于物体在不受外力作用下保持其速度不变,因而物体运动速度的变化才跟物体的受力相关。 

最后,牛顿把惯性定律放在三个运动定律的首位也是与其对自然的信仰因素有关的。因为在文艺复兴之前的绝大部分思想家继承了亚里士多德关于物体运动内在决定论的观点。但在牛顿看来,基本的物质粒子完全是惰性的,没有任何自发的运动,而电、磁、光这些‘非物质’的力量则成为神在自然中的行动的载体(18)。也就是说,惯性定律内隐含着牛顿否定亚里士多德运动观的内在目的论从而建立新力学的形而上基础。 

四、惯性与具体物体的质量无关 

从上面的讨论可以看出:“质量是物体惯性大小的量度”这个论题,在几个角度去看都是错误的。第一,质量不是物体惯性大小的量度。个别研究对象的质量与其所揭示的惯性毫无关联。因为这两者从数量上来看是一对无穷大的关系,从内容上来看是个体与存在的关系,在它们之间,人类的理性不可能找到逻辑上的因果链。第二,“物体(的)惯性”这样的说法缺乏依据,因为惯性不是物体的性质。物体只是作为惯性的表现者而存在的。第三,“惯性(的)大小”这样的说法也缺乏依据,因为惯性没有大小,惯性只是存在的一种表达方式,一种特定状态的显现。第四,既然惯性并无大小,我们也不可去进行量度,事实上,任何一本教科书上也没有指出惯性与质量的函数关系,因为这一函数关系并不存在,它只是人们的一个虚假的逻辑推测,谁也不能证明质量与惯性成正比或不成正比 ,更不能得出它们之间的比例系数,因为这些关系均是虚假的。因而,物理学界流传的物体的惯性等于它的质量(19)只是人们一个随心所欲的错误言说。 

由于物体质量与惯性无关,所以,将牛顿第二定律中的质量称为惯性质量就是不当的,质量的确对物体运动状态的改变有一种象力一样的阻抗作用,质量在改变物体运动的状态上而言似乎有一种“消解”、“抗拒”力的性质。因而作者认为可将现行的“惯性质量”改称为物体的“抗性质量”。正如牛顿所说:“物体只有当有其他力作用于它,或者要改变它的状态时,才会产生这种力。这种力的作用既可以看做是抵抗力,也可以看做是推斥力。(20)”因为质量与物体运动状态的变化快慢有关,它事实上具有动力学特征,当一个物体的质量大时,它对运动状态改变的阻抗能力就越大。 

从逻辑上而言,我们只有将惯性从物质的内在因素中解除出来,才能完全地克服牛顿时代的机械论自然观与牛顿第一运动定律之间存在着的深刻矛盾。也就是说,这样才能使牛顿第一定律恰如其分地建立在由文艺复兴所形成的机械论而不是亚里士多德的目的论的形而上学基础之上。 

五、惯性定律的表述方式 

    牛顿第一定律是动力学定律的基础,但它本身并不表征物体的某种动力学性质,它是关于人类体认自然之美、自然之和谐的陈述。据于上面的论述,对牛顿第一定律的陈述方式作以下的要求是并不过分的:反映时间的均匀性,空间的对称性,及自然之美对人的呈现。可是,现行的许多教科书中对牛顿第一定律的陈述是很不一致的。当然,这种不一致性用老眼光来看是无伤大雅的,但以今天的眼光来看,这种差异性就成为值得商讨的了。 

例如:一个物体,如果没有受到其他物体的作用,它就保持自己的静止状态或匀速直线运动状态(21)。这样的陈述可能离惯性定律的本义较远,因为这一陈述的方式是在动力学的维度上来进行的,陈述的对象是“一个物体”。这和牛顿第二定律的研究对象是一致的,这样方式的陈述毫无疑问地可以把惯性定律认为是牛顿第二定律的一个特例,因为“如果没有”这几个字就表达了陈述事件的某种特殊性。 

另外一种常见的陈述方式是:一切物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。(22)这样一种表述比前一种完整多了,它几乎就是牛顿的原义,但这里的“一切物体”应当换成“任何物体”(23)。因为在此论述中的“任何物体”实际上是对一切物体的否定,而“有外力”应当换成“其它物体的作用”,因为惯性定律是不涉及力的,操作意义上的力这个动力学的基本概念与惯性无关。 

    作者试着这样来陈述惯性定律:存在着的宇宙有这样一种性质,它使任何物体在没有受到其它物体作用的时候总保持静止状态或匀速直线运动状态。或许,这样的一种陈述方式是较明晰的陈述方式,它强调了惯性与惯性的表现者(个别研究对象)的严格区分,这个陈述的主语是性质,这样的陈述才可称为关于“惯性”的定律。而我们也应当将惯性定义为:使物体保持静止或匀速直线运动状态的性质。 

六、人们误解惯性的来源 

人们在惯性问题上所犯的错误认识,既来源于历史上人们对于和惯性概念相联结的力与物体运动关系的一贯表达方式,又来源于牛顿的表述与对于牛顿力学理解上的偏差。“事实上,牛顿似乎注定要被人误解”。(24) 

在牛顿所陈述的第一定律中:(25)“每个物体都保持其静止、或匀速直线运动的状态,除非有外力作用于它迫使它改变那个状态(Every body persists it's state of rest or of uniform motion in a straight line until it is 

compelled by some force to change that state.)”。牛顿对“除非有外力作用于它迫使它”作出了对应的理解,即认为保持其静止或匀速直线运动状态的物体是由内部原因的,这个内部原因即称为惯性:“vis insita,或物质固有的力,是一种起抵抗作用的力,它存在于每一个物体当中,大小与该物体相当,并使之保持其现有的状态,或是静止,或是匀速直线运动”。(26)在牛顿时代,作出这样的判断是无可厚非的:“一个物体,由于其物质的惰性(现称惯性——译者注),要改变它的静止或运动状态就极其不易。因此这种固有的力可以用一个最确切的名称‘惯性’或‘惰性力’来称它。”(27)因为在牛顿时代是无法判定惯性的本质的。从牛顿的这一段话我们大致可以判断出,他几乎是在第二定律的意义上来领会惯性的,因而他才认为(惯性)大小与该? 锾逑嗟薄U饣蛐砭褪橇鞔?两竦墓咝缘拇笮〉扔谖锾逯柿康脑?濉?墒牵?6俚恼庖欢卧桃夥岣坏乃枷肴词抢丛从谖鞣焦糯?苎??餍械墓赜谑挛锉旧淼膬仍诰龆ㄐ缘墓鄣悖骸罢?鑫锾宓墓阊有浴⒓嵊残浴⒉豢扇胄浴⒛芏?院凸咝裕?丛从谄涓鞲霾糠值墓阊有浴⒓嵊残浴⒉豢扇胄浴⒛芏?院凸咝裕灰虼耍?颐强梢韵陆崧鬯担?磺形锾宓淖钚∥⒘R簿哂泄阊有浴⒓嵊残浴⒉豢扇胄浴⒛芏?裕?⑶腋秤衅涔逃械墓咝裕?馐钦?稣苎У幕?。?8)”。 

第7篇:牛顿第二定律的应用范文

论文关键词:解题思路,物理规律,物理概念

解物理题一般来说是根据题目叙述的物理情景和已知条件,运用某个物理规律或几个规律去求出待求量的答案。因此解题思路应该从物理规律中去寻找。从物理规律本身的分析中引出解题思路,是形成解题思路的基本方法。物理规律通常用一个数学公式表述,这个数学公式表述了有关物理量之间的数值关系,称之为某某定律、定理。从定律、定理中找解题思路,就要求分析定律中涉及的每一个物理量的意义和各物理量之间的相互关系。这不但有利于加深对物理概念、物理规律的理解,也有利于抽象思维能力的提高。

现举例说明上述观点。

牛顿第二定律是质点动力学的核心规律,动量定律、动能定理均可从牛顿第二定律导出。所以牛顿第二定律及其导出规律在解质点动力学问题中占有极其重要的地位。当各量都取国际单位制时,牛顿第二定律的数学表达式为F合=ma,公式中F合这一项涉及具体的性质力的规律,如万有引力定律,库仑定律等,涉及力的合成分解,以及矢量运算遵循的平行四边形法则。a这一项涉及匀变速直线运动和匀速圆周运动等运动学方面的有关规律。所以全面掌握牛顿第二定律就掌握了力学中涉及的大多数规律和法则。

牛顿第二定律反映的是物体在力的作用下如何运动的问题,所以应用牛顿第二定律时,首先必须明确研究对象,即确定研究主体,并将其从周围环境中隔离出来(所谓隔离体法)。隔离体法在处理连结体问题时,在大多数情境中是必不可少的,如果取连结体的整体,则仍然是一个确定研究主体的问题。研究主题确定了,公式中的m这一项就定了;第二步即对研究主体进行受力分析,是F合这一项的要求,只有对物体进行正确的受力分析,才能确定其所受的合力;第三步,分析研究主体运动状态的变化,从而由运动学规律确定a;第四步,建立牛顿定律的方程,随后就是解方程和讨论结果了。

综上所述,应用牛顿第二定律解题的四个步骤,不是人为的强加于学生的模式,而是应用牛顿第二定律公式F合=ma本身的需要,这就是由物理规律本身去找解题思路的道理。

再举一个电学的例子。、

欧姆定律I=是电学中一个最基本的公式,使用中要注意式中各量的值确属同一电路或电阻,也就是确属同一研究对象,即U是研究对象两端的电压,R是研究对象的阻值,I是流过研究对象的电流,防止张冠李戴。

我们举一个实例:如图,已知E=2V,r=0.5Ω,R1=2Ω,R2=3Ω,求A、B之间和A、C之间的电压。

分析:对整个闭合电路,由闭合电路欧姆定律,得:

I= (1)

隔离A、B之间的外电路,由部分电路欧姆定律,有

UAB=IRAB=I[] (2)

隔离R3,有

I3= (3)

对节点A,有 I=I1+I3 (4)

隔离R1,有 UAC=I1R1 (5)

由(1)--(5)式,代入数据,得出

UAB=1.5V

UAC=0.5V

由此可以看出,在电路问题中,所谓整体,是指具有共同的干路电流的整个电路;所谓隔离,是指对电路的某一部分或某一元件进行研究,联系各部分电路或元件的是连接处的电压和电流,它们之间的关系由串并联的电流、电压的基本关系确定;欧姆定律既适用于电路整体,也适用于某一部分电路,即电学问题也存在研究对象问题。在研究对象确定好以后,再对确定对象进行有关的物理量分析,从而代入恰当的物理方程进行计算和讨论。

可见,解题思路是在分析物理规律中找出的,解题步骤是应用物理规律的客观需要。严格按照由物理规律本身得出的解题步骤,即用有序思路去解决每一个具体的物理问题,正是为了训练正确的思维方式,提高分析问题的能力,这无疑有助于克服解物理问题时无从下手的困难,有助于克服解题时思维混乱的无序状态。

因此,为了有效地提高学生的思维素质和多方面的能力,应当从最基本之处着手,也就是让学生实实在在地准确地理解和掌握物理概念和物理规律的内涵、意义、相互关系、适用条件以及应用中应注意的问题等,并引导学生去思考、讨论、分析、比较、归纳、总结所学的物理知识,从而逐渐领会和掌握物理学的思想、观点和方法。果能如此,学生就不会被动地在茫茫题海中苦苦追求,而能看清物理知识的经纬,有目的主动巡游。其实这种从规律中引出方法的观点,不但对解决问题、应试有用,对未来大学的学习,甚至在大学以后的工作、生活中也有普遍的意义。

第8篇:牛顿第二定律的应用范文

【关键词】牛顿——梁氏定律;梁氏变换;牛顿——梁氏力学;梁氏相对论

In classical mechanics and the thoughts of space and time theory and the theory of gravity

Liang Chi-feng

【Abstract】Ly (the author) thinking of classical mechanics found that its basic laws (right) is the Newton's laws of liang's thinking of space-time theory found that the basic equation is kissing the transformation, the thinking about the theory of the gravity found the relativity of gravitational field strength and the relativity of gravity object.

【Key words】Newton's laws of liang; Kissing the transformation; Newton liang's mechanics; Propositions relativity

1. 对经典力学的思考

经典力学是实验科学,其概念、方程、定理、定律、原理等等都直接来源于实验(实验可重复,实验结果可观测)。牛顿力学引入不可观测(找不到)的惯性系和不可测量(不可作实验检验)的惯性力是错的,不是实验科学的概念。经典力学理论之公理只有一条,即牛顿——梁氏定律。经典力学之基本方程(即数学基础)是牛顿——梁氏定律数学表达式,经典力学之基本定理是动量定理、动量矩定理和动能定理(这些定理的数学表达式均由基本方程导出),这样的经典力学称为普适经典力学或牛顿——梁氏力学。普适经典力学适用于任何一个参照系,地面参照系S上的经典力学称为S上的普适经典力学(其基本方程是牛顿——梁氏定律在S上的表达式F=ma ,此式被迄今物理学误认为是牛顿第二定律表达式〔1〕),相对于S匀速平动的参照系Sv上的经典力学称为Sv上的普适经典力学(其基本方程是牛顿——梁氏定律在Sv上的表达式Fv=mav,相对于S变速运动的参照系S`上的经典力学称为S`上的经典力学(其基本方程是牛顿——梁氏定律在S`上的表达式 F`=ma`),天宫一号实验室S*上的经典力学称为S*上的普适经典力学(其基本方程是牛顿——梁氏定律在S*上的表达式 ΣFi=ma*)。若将F=ma , F=mav , F`=ma`和ΣFi=ma*统一表为F合=ma 合(即质点所受合力等于质点质量乘以质点加速度),则牛顿——梁氏定律表达式就是F合=ma 合 。因此,迄今物理学将S上的经典力学称为牛顿力学成为历史性错误。牛顿力学基本定律只有一条牛顿第二定律,因其基本方程 F=ma 与牛顿第一、三定律无关,故牛顿第一、三定律不是牛顿力学之公理。公理愈少的理论体系愈好。值得指出,经典力学的应用其实就是牛顿——梁氏定律的应用, F=ma 的应用被误认为是牛顿定律应用,天空一号上的质量测量实验被误为是牛顿定律实验。还值得指出, Fv=mav证明伽利略相对性原理不成立(随之狭义相对性原理不成立);因为实验方程 包含 ,所以 反映的物理定律不能称为梁氏定律而只能称为牛顿——梁氏定律,随之经典力学不能称为梁氏力学只能称为牛顿——梁氏力学(又称普适经典力学,其中普适之意不言自明)。到此可见,牛顿——梁氏力学才是名符其实的实验的经典力学。

2. 对时空理论的思考

以时间空间变换式(简称时空变换〔2〕)为基本方程(即数学基础)的理论称为时间空间理论,简称时空理论。洛伦兹变换是两坐标系(参照系)相对匀速平动的时空变换,因此狭义相对论是匀速平动情况的时空理论(简称为匀速平动时空理论或匀速平动相对论)。两坐标系的普遍的相对运动是变速运动,于是梁氏发现了变速运动情况的时空变换——梁氏变换〔2〕,以梁氏变换为基本方程的时空理论称为变速运动情况的时空理论,简称为梁氏时空理论或变速运动相对论或梁氏相对论。洛伦兹变换和梁氏变换(以及超光速梁氏变换)均可由光速不变性原理推导出来,说明时空理论基本原理(公理)仅一条光速不变性原理。由时空变换导出钟慢关系式、尺缩关系式、质速关系式、质能关系式、能量动量关系式等等有无实际意义(称为物理意义)均由光速不变性原理有无物理意义来决定。因为物理学是实验科学,物理学理论(例如牛顿力学)之公理(例如牛顿第二定律)必须是可作实验检验的公理(不符合公理可以不证明之说),可见牛顿第二定律是实验定律(误认为牛顿第二定律是理想定律而不是实验定律成为历史性错误)。无法证明光速不变性原理(找不到实验证明,也找不到数学证明),因此时空理论肯定没有物理意义,其数学意义是有的,数学理论之公理不用证明,例如欧氏几何、非欧几何只有数学意义而无物理意义。到此可见,时空理论(相对论)不是物理理论而本质是数学理论。值得一提,广义相对性原理不是物理学原理(无实验依据),等效原理同样不是物理学原理(爱因斯坦用理想实验证明等效原理成立,其实是用“理想实验”概念偷换物理学的“实验”概念,爱因斯坦无道理将惯性力说成引力随之将广义相对论说成引力论);另外,广义相对论构不成逻辑体系,不但不成物理学理论,而且不成数学理论。到此可见,爱因斯坦的地位比牛顿(世界最伟大的自然科学家)低一个层次是合理的,将爱因斯坦说成“人类宇宙中有头等光辉的一颗巨星”不成立(评价过高)。另外,值得一提,怀疑一种理论,首先应思考其公理,再到基本方程(凭空想出来的方程——例如爱因斯坦重力场方程,根本没有意义),再到其他(例如概念,爱因斯坦用理想实验或称思想实验证明的同时性的相对性完全没有实际意义即物理意义)……。还值得一提,梁氏将梁氏相对论称为普适相对论意在强调变速运动的普遍性,将普适相对论称为爱氏——梁氏相对论意在借爱因斯坦这位假神促使人们相信梁氏变换,其实狭义相对论就是爱氏相对论,普适相对论就是梁氏相对论。

3. 对重力理论的思考

众所周知,地球附近的物体的重力就是地球的吸引力或其一个分力,万有引力定律是重力理论的唯一基本定律。我们将哥白尼日心说推广为宇宙旋转说:地球绕太阳转,太阳系绕银河系中心转,银河系中心绕银河系集团中心转,……。于是,我们可以说明地球附近的物体其重力虽然是宇宙所有其他物体对它的吸引力之合力,但是太阳对它的吸引力恰好提供它跟随地球公转所需向心力、银河系中心对它的吸引力恰好提供它跟随银河系中心绕银河系集团中心公转所需向心力,……,因此它的重力只能由地球吸引力产生。同理,月球上物体的重力只能由月球吸引力产生。根据万有引力定律和力的分解,很容易得到地球附近各种参照系上的重力场场强方程,这些方程表明上述参照系S、Sv和S`上的重力场场强(即重力加速度),分别为 g、gv和g'且gv≠ g'≠g (此不等式反映了重力加速度的相对性)。重力加速度的相对性导致物体重力的相对性:质量为m的同一物体,对S、Sv、和 S`而言有不同的重力,分别为 mg、mgv 和mg'。迄今物理学没有认识到重力加速度的相对性和物体重力的相对性,误认为同一物体不管在S上还是在Sv上还是在S`上的重力都一样。这一错误导致引入惯性力这种鬼力,于是有所谓质点相对运动动力学基本方程,于是误导爱因斯坦将数学当成物理学。

4. 梁氏相对论的应用

经典力学的应用,归根结底是牛顿——梁氏定律的应用(本文文献〔1〕有几个应用之举例,天空一号上的抛体运动是运动学)。梁氏相对论的应用,归根结底是梁氏变换的应用。应用梁氏变换可解释双生子佯谬、转动参照系上钟慢、 μ子实验、1971年原子钟环球飞行实验、光谱线红移和本文文献〔1〕中设想王亚平带原子钟环球飞行实验,都证明动钟变慢;应用梁氏变换可解释迈——莫实验、水星近日点运动、火车进入隧道的争论、转动参照系上尺长,转盘圆周率大于π ,都证明静尺缩短。文献〔2〕应用梁氏变换给出了双生子佯谬、 μ子实验、1971年原子钟环球飞行实验、水星近日点运动、光谱线红移、迈——莫实验、火车进入隧道的争论、光线弯曲和平面弯曲的数学解释,显示了梁氏相对论是比狭义相对论更普遍和更好的相对论。

5. 结论

(1)牛顿——梁氏定律是经典力学唯一基本定律,它导致了牛顿力学的修正,随之要改写经典物理学史。

(2)梁氏变换是最普遍的时空变换,它导致了爱因斯坦相对论的修正,随之要改写近代物理学史。

6. 后语

梁氏希望世界物理学家以本文及本文文献〔1〕〔2〕来思考牛顿——梁氏定律和梁氏变换,公开发表评论,欢迎推倒它从而制止来自中国大陆(广西桂平市)的物理学大地震。

参考文献

[1] 梁尺峰,从天宫一号实验想到转动参照系上的实验,《中国教育与教学研究》杂志,2013年第10期,72-73。

第9篇:牛顿第二定律的应用范文

牛顿第二定律是动力学的核心规律,动力学又是经典力学的基础,也是进一步学习热学、电学等其他部分知识所必须掌握的内容。所以,牛顿第二定律是本章的中心内容,更是本章的教学重点。为了使学生对牛顿第二定律的认识自然、和谐,本节之前的“运动状态的改变”就是起到了承上启下的作用。承上,使学生对第一定律的认识得到强化;启下,即是通过实例的分析使学生定性地了解了牛顿第二定律的内容。本节教材是在前一节的基础上借助电脑通过实验分析,再进行归纳后总结出定量描述加速度、力和质量三者关系的牛顿第二定律。由实验归纳总结出物理规律是我们认识客观规律的重要方法。由于本实验涉及到三个变量:a、m、F,因此我们用控制变量的方法来进行研究:先确定物体的质量,研究加速度与力的关系;再确定力,研究加速度和质量的关系。在以后学习气体的状态变化规律,平行板电容器的电容,金属导体的电阻等内容中都用到了这一方法。控制变量法也是我们研究自然、社会问题的常用方法。通过教学,使学生学习分析实验数据,得出实验结论的两种常用方法—列表法和图像法,了解图像法处理数据的优点:直观、减少误差(取平均值的概念),及图像的变换,从a-m图(曲线)变到a-1/m图(直线),在验证玻一马定律中也用了这种方法。根据以上分析,我们知道本节课的教学目的不全是为了让学生知道实验结论及定律的内容和意义,重点在于要让学生知道结论是如何得出的;在得出结论时用了什么样的科学方法和手段;在实验过程中如何控制实验条件和物理变量,如何用数学公式表达物理规律。让学生沿着科学家发现物理定律的历史足迹体会科学家的思维方法。

通过本节课的学习,要让学生记住牛顿第二定律的表达式;理解各物理量及公式的物理意义;了解以实验为基础,经过测量、论证、归纳总结出结论并用数学公式来表达物理规律的研究方法,使学生体会到物理规律的简单美。

本节课的重点是成功地进行了演示实验和用电脑对数据进行分析。这是本节课的核心,是本节课成败的关键。

【教法和学法】

本节课采用以电脑辅助演示实验为主的,知识教学与科学方法教育相结合的“同步调控”模式。

按系统论的整体原理,整体功能要大于各要素功能之和。物理的知识、方法、能力、科学态度等都是教学的要素,如果把这些要素有机地联系起来,达到共同促进的作用,则物理教学的效果会更好,更有利于提高学生的素质。“同步调控”模式中,没有单纯地就方法讲方法,而是将知识的学习,方法的掌握,能力的培养,实事求是的科学态度的养成有机地结合起来,就是基于系统的整体原理考虑的。

再则,按教学论中教为主导,学为主体的原则,教师的任务是制订目标,组织教学活动,控制教学活动的进程,并随机应变,排除障碍,并承认和尊重学生的主体地位。“同步调控”的模式既注意了教的作用,将教师置于“调控”的地位。同时,更注意了学生的主体作用,有意识地设置教学活动的环境,让学生参与实验的设计,边演示、边提问,让学生边观察、边思考,再从实验数据总结出结论,最大限度地调动学生积极参与教学活动。在教材难点处适当放慢节奏,给学生充分的时间进行思考和讨论,如从a-m图像,猜想a与m成反比,然后画出a-1/m图,得出正确的结论。让学生在教学活动中学习知识,掌握科学方法,培养探索精神和创造力及实事求是的科学态度,以达到规定的教学目标和最佳效果。

【教学程序】

1问题引入新课

光滑水平面上的物体受水平拉力作用而做加速运动,引导学生分析物体的质量,加速度,拉力三者之间的定性关系,鼓励学生进行猜测,它们成正比、成反比、不成比例等。然后指明本节课我们大家一起来探索得出三者之间的定量关系,从而导出课题一牛顿第二定律。这样导入的用意是提高学生学习的兴趣和参予探索的积极性。

2设计实验方案

在引入课题后,启发学生思考:我们如何来研究F、m、a三者之间的关系?引导学生得出用实验法先确定m,研究a与F的关系;再确定F,研究a与m的关系,最后得出三者的定量关系。由于教材(必修第一册,人教版)中牛顿第二定律实验不足(夹子很难同时夹住两细线;由于线的弹力,小车要反冲后才能停下,实验误差大),我设计了用电脑辅助来探索a与F、m关系的实验,如附图。遮光片宽度L,通过光电门时间分别和,两只光电门间距为s。当滑块通过光电门时,光电门产生一个脉冲,通过计时器中的三极管放大后,从计算机LPT口输入,调用计算机定时中断来计算时间,然后利用公式

计算出加速度的值,结果显示在表格中,同时在坐标图上标上点,实验结束后,程序提供一个画直线模块,可用光标来控制直线的斜率。

3进行实验探索

请两位同学上台操作,其他同学边观察、边思考,教师控制电脑。先保持物体质量为200克不变,测出拉力分别为0.05牛、0.10牛、0.15牛和0.20牛时的加速度,填入表中和a-F图上,显示投影在大屏幕上,引导学生得出a∝F的结论。然后再保持拉力为0.10牛顿不变,测出物体的质量分别为200克、282克、332克和382克时的加速度,填入表中和a-m图上。在a一m图上可看到随m的增大a逐渐减少,但它们的关系不明确。引导学生大胆猜测a与m成反比,再画出a-1/m图,得到结论a∝1/m。

4分析归纳结论

引导学生分析实验结果,得出F=kma,在国际单位制中,定义1牛=l千克•,就可以得出牛顿第二定律F=ma。然后进行合理的外推,当物体受几个力作用而做加速运动时,F应为合力。由于力和加速度都是矢量,引导学生通过实例得到加速度的方向与合外力的方向一致。

5应用巩固练习

通过三道典型的问答和计算题,巩固学生对牛顿第二定律中各物理量的意义和加速度方向与合外力方向一致的理解,为进一步用牛顿第二定律解决实际问题打下基础。

6总结