公务员期刊网 精选范文 驱动电源设计范文

驱动电源设计精选(九篇)

驱动电源设计

第1篇:驱动电源设计范文

关键词 LED;电源驱动;节能高效

中图分类号TM91 文献标识码A 文章编号 1674-6708(2011)46-0011-01

1 LED路灯的电源驱动原理

近些年随着大功率的LED发光技术的升级,大功率的白光LED进入了照明市场,越来越多的被应用于通用照明领域。因为LED本身具有高光效、寿命长、抗浪涌能力差等特点,以此LED路灯的电源控制和驱动系统就成为了保证其功能和高效的重要基础。

为了设计出更加安全可靠的电源驱动器,必须对其工作原理进行了解。本文对LED路灯电源驱动器的基本工作原理进行简要的介绍:主要的系统设计是处采用隔离变压器、PEC控制电源开关,并保证输出为恒定的电压,完成对LED路灯的驱动。因为实际中LED的抗浪涌的能力较差,尤其是对反向电压更为敏感。所以在电源控制中应当注意对这方面的保护效果的提高。同时,LED路灯主要的工作状况是户外,因此要增加对防浪涌的措施。因为对其供电的电网容易受到雷电的干扰,从而产生感应电流而涌入电网,从而导致对LED的破坏。所以电源的驱动也应当具备抑制浪涌的功能,达到保护LED的效果。此时采用的EMI滤波电路就起到了这种防止电网谐波串入的模块,以此保护路灯的电路正常工作。

2 LED路灯的电源驱动器的设计

2.1 驱动器设计简述

针对LED路灯系统的电源控制器的设计需要考虑到其特地和基本要求才能达到目的。具体的情况如下:此系统中的每个路灯的功率在 100W以内;为了提高路灯的实用性,路灯的LED被分为若干小组,每组LED则是串联驱动,组与组之间为隔离驱动,保证单组损坏而不影响整个LED的工作;为了提高路灯的安全性,输入和输出系统需要有电气隔离;电源的公因数必须维持在较高的水平。

在设计中为了满足以上的基本需求,通常采用的是AC/DC恒压电源和多路控制的DC/DC恒定流动驱动级联的方式完成对多路的LED驱动。AC/DC部分采用的是反激形式拓扑,输出的功率可以满足LED的功率;DC/DC的部分采用国半德尔LED恒定电流芯片。其中在AC/DC部分所采用的反激式的电源所产生的损耗将影响电源的效率,其损耗主要有:一次场效应晶体管的损耗,主要是导通和开关损耗;二次侧的整流二极管造成的功率损耗;高频变压的固有的铁损、铜损、漏感损耗等,为了提高整个电源的高效率就应当对上面三种情况进行控制。

2.2控制形式和零电压设计

在提高效率的设计中,如采用ST所生产的L6562作为控制芯片,此芯片是一种较为经济的功率因数校正控制元器件。反激方式电源工作是在不连续导电的模式下进行工作的,通过前端的滤波其进行自动调整实现高功率。为了减小场效应晶体管损耗,利用与芯片相适应的器件,这样可以有效的降低在导通时出现的损耗,同时还可以利用准谐振的技术实现场效应晶体管的零电压导通,完成对开关损耗的控制。

2.3 同步整流设计

通常的反激式开关在利用中二次侧的整流二级管也会形成较大的损耗,为了实现高效率可以利用具有低导通降压的二极管来缓解高损耗的问题,但是实践中看,此种改进的效果并不明显,同时一些设计中输出的电压较高,而肖特基二极管的反向耐压性能并不理想,所以其不能满足高效率需求。

实践证明较好的方法是采用同步整流技术对功率进行调整,利用导通电阻较低的场效应晶体管代替整流二极管。同步整流方式可以分为外驱动和内驱动两种,工作原理也可分为电压型和电流型、谐振型驱动等。这些同步驱动的方式各自有其优势和不足。其中一种较为实用的是电流同步的控制驱动方案,但是因为驱动中选择了场效应晶体管门极驱动电压钳位在输出电压上,而门极穿电压通常较低,因此要采用此种方法就要降低输出电压。

所以可以采用混合型的同步整流方法,其工作的原理为在两个变压器上的两个绕组为T3、T4,其中T3设计为二次绕组主要负责能量的传递,T4则为辅助绕组。在T4上的电压随着T3电压的升高而升高,用于开启同步整流用场效应管。此时的电流互感器中的两个绕组也起到不同的作用,初级绕组是串联在主电路中,是检验流经的场效应管的电流 ,当该绕组中的电流下降到0的时候,另一个绕组则将场效应管断开。所以此种方案可以利用电压信号来控制场效应晶体管的导通,电流信号泽尔负责其关闭,不仅仅提高了效率还可以稳定的工作,控制了无开通的情况。

2.4 变压器的高效率设计

高频率变压器是隔离形式的电源中不可或缺的器件,在提升效率的方面也有着重要的作用。变压的损耗主要来自铜损、铁损、漏感损耗,此三者的损耗可以通过必要的手段进性损耗的控制,但是控制的措施不能完全达到综合高效的目标效果。因此,新型的变压器技术将高频率供电系统进行了升级。此种变压器的技术日趋成熟,主要特点是高度低,利用底部面积大的平面磁芯。此种变压器采用的绕着是螺旋印制线构成。和以往的变压器相比此种平面型的变压效果更高,工作效率也得到了提升,且体积小、漏感小、导热性好、一致性强等。虽然其距离应用还有一段时间,但是可以成为高端应用领域的替代产品。

3结论

LED路灯系统的高效率电源驱动器的设计,其首要的目的就是保证路灯的高频率工况,同时防止供电系统中的干扰侵入到路灯系统中而造成损坏。其次,利用多种复合电路和晶体管来提高供电过程中的各种线路损耗,提高供电的效率,以此达到安全、高效的目的。

参考文献

[1]魏大为.大功率LED路灯驱动电源的设计[J].电工技术,2009(5).

[2]张国隽.城市路灯照明节能方案的设计[J].广东科技,2007(S2).

第2篇:驱动电源设计范文

关键词:混合动力;开关电源;单端反激

中图分类号:TP211+.4 文献标识码:A 文章编号:1005-2550(2017)03-0030-04

Design of Power Supply for an Automotive IGBT Drive

YANG Xian-guo, ZHANG Hong-xia, PENG Jin-cheng, ZHAO Wei

( Dongfeng Motor Corporation Technical Center, Wuhan430058, China )

Abstract: This paper introduce a single-end flyback converter with multiplexed output for IGBT drive. The design process and the specific of the circuit are introduce. The test indicates that this power has outstanding reliability, stability and lower ripple. This power fully comply with the requirements of the automotive IGBT driver.

Key Words: hybrid power; switching power supply; single-end flyback converter

引言

IGBT是目前混合恿ζ车高压混合动力系统中必须采用功率开关器件。IGBT栅极驱动对电压要求极为苛引 言刻,而汽车电气环境较为复杂。所以电源需要在宽电压环境中工作,且输入与输出必须隔离开来,必须具有高可靠性和高稳定性。单端反激式开关电源具有体积小、重量轻、效率高、结构简单等优点,非常适合用于设计功率器件的驱动电电源。

开关电源控制电路分为电流控制型和电压控制型。电压控制型控制电路是一个单闭环控制系统,控制过程中电源的电感电流未参与控制,是一个独立变量,开关变换器为有条件稳定二阶系统。电流控制型控制电路是一个电流、电压双闭环控制系统,电感电流不是一个独立的变量,开关变换器为一阶无条件的稳定系统,从而可以得到更大的开环增益和完善的小信号、大信号特征。为此本文选择流控型芯片LM3478设计了一款车载IGBT驱动电源。主要技术参数:输入8-16V直流,输出:4路输出(每路28V/0.16A),工作频率100KHz,输出纹波小于1%。

1 主电设计

1.1 主电路拓扑

主电路拓扑如图1所示。主电路采用单端反激式变换电路,+12V为电池直流经电源预处理后的输出电压,作为开关电源输入电压。开关电源分四路输出提供给IGBT驱动电路。

1.2 电源预处理电路设计

电源预处理电路如图2,是外部电源与内部电路的链接部分,它承担着减轻外部电源干扰和降低内部电源对外的传导干扰。在这一部分电路设计要针对性的考虑到企业标准相关试验要求,并作出详细的计算以满足电路设计要求。以静电保护电容为例,根据企业标准要求本设计所搭载控制器,需要进行最严酷静电试验为,带电25KV[1]。图2中电容C1、C2:470nF(100V)为ESD保护电容,计算如下:

由以上可知电源接入端口BAT+可以耐受25KV静电。

其中C1、C2在电路布局时还应当相对垂直布置,避免由于单方向震动引起电容同时失效而引发控制器着火。

1.3 变压器设计

变压器是开关电源最重要的组成部分,它对电源效率和可靠性,以及输出电源的电气特性都起到至关重要的作用。在设计时需要充分考虑功率容量、工作频率、输入输出电压等级和变化范围,铁芯材料和形状,绕组绕制方式,散热条件,工作环境等综合因素[3]。

根据技术指标要求,电源输出功率Pout为:

原边峰值电流为

式中Vin(min)为电源输入最低电压8V。

Ton取最大值0.5,初级电感量为Lpri:

初级匝数Npri为:

,取6。

AL为磁芯制造厂提供的一个气隙长度参数。这个参数是在磁芯上绕上1000匝的后的电感数据。根据磁芯生产商提供的磁芯和导线参数本设计中AL=10mH/1000,式中Lpri初级电感量单位为mH。

次级匝数Nsec为:

式?max中为最大占空比(反激式开关电源50%),VD 为次级整流二极管导通压降。

2 控制电路

2.1 PWM控制电路

本设计采用TI公司汽车级芯片LM3478作为开关电源控制器。LM3478是一个多用途底边开关电源NMOS控制器,可用于BOOST,flyback,SEPIC 等多种拓扑结构开关电源[4]。

PWM控制电路如图3所示,图中引脚8是电源输入端,芯片为宽电压输入,输入范围是3-40V,本设计中连接到电源预处理的输出端典型值为13.5V。引脚7连接电源频率配置电阻,根据使用手册提供的工作频率与阻值关系,本电源的工作频率为100KHz,R6配置为200KΩ。引脚2为补偿引脚,C6、R7构成补偿回路为控制电路提供补偿。引脚6为输出端,经过一个限流电阻(R4)限流后驱动功率MOSFET(Q2),为保护MOSFET,在引脚6并联一个电阻。

2.2 电压反馈电路设计

为了使多路电源输出一致性更好,和降低负载对反馈电源的影响。本设计采用独立回路进行电压反馈设计,反馈回路变压器绕组匝数Nfb为:

反馈电路通过外部分压连接到LM3478的FB引脚与内部基准电压1.26V进行比较。因为变压器原边与输出回路和反馈回路的绕组匝比固定,所以当输出回路电压升高,反馈回路的电压也会升高。反馈回路分压电阻分压就会高于1.26V,控制器将关断外部NMOS,缩短NMOS导通时间以降低电压。

2.3 电流反馈控制电路设计

LM3478电流控制通过在电流环内串联电阻的方式,将电流信号转换为电压信号,从控制器引脚ISEN引入控制器内部,与LM3478电流控制基准电压vsense进行比较,当ISEN脚上电压高于基准电压vsense时控制器将关断开关管,起到限流和过流保护作用。

本设计的最大电流限值为原边最大电流与原边电感最大纹波电流之和。对于本设计原边最大电流为Ipk。根据LM3478使用手册,RSENSE计算如下:

DMAX式中为0.5,vsense、vsL、vsL可从LM3478 使用手册中查询相关数值和公式。

3 测试结果

本设计集成在IGBT驱动电路中,在典型电压值9V、13.5V、18V下分别测试本开关电源的轻载和满载(用大电阻模拟负载)情况下的相关参数。表1和表2为典型测试值示例,测试表明电源输出符合设计要求。

图4为输入13.5V满载时开关MOSFET栅源级波形,图中可以看出满载情况下占空比小于50%,电路工作在完全能量转换状态下,满足设计要求。D5为开关MOSFET漏源电压,从图(a)中可以看出在开关管关闭、次级线圈电流为零时原边的电压在理论上应该降为零,实际上却发生了震荡。原因是当变压器释放完所有能量,电源开关管的漏源级电压会降到输入电压值的电平上。这一转变激发了原边吸收电容与原边电感的谐振回路,从而产生了一个衰减的振荡波形,并持续到开关管下次导通。这一振荡波形会影响电路的EMI特性,需要调整吸收电路电容使振荡波的频率低于电源开关频率,得到如图(b)的波形。

4 结束语

本文设计的反激式开关电源,具有体积小、重量轻、输出电压纹波小、稳定性好等优点,本设计应用在基于英飞凌HP2 IGBT驱动电路中,所搭载控制器通过了DV、PV测试,并成功应用于东风某ISG车型中。在开关电源设计过程中会遇到很多问题,比如变压器啸叫、开关管过热等,这些问题需在测试过程中不断总结和整改,器件参数也需要在测试过程中不断调整,如文中所提到的吸收电路的调整。同时PCB布局对电源的品质和可靠性影响很大,如文中提到的防静电电容布置。所以在原理设计完成后要仔细阅读相关企业标准和芯片PCB Layout指导手册,以降低不恰当的布板对电源造成不利影响。

参考文献:

[1]EQC-1204-2007 电气和电子装置环境的基本技术规范电气特性, 2007.

[2]王志强.开关电源设计第二版[M].北京:电子工业出版社, 2005.

[3]徐德鸿.开关电源设计指南[M].北京:机械工业出版社, 2004.

第3篇:驱动电源设计范文

关键词:LED背光;DC-DC;脉宽调制;反馈

中图分类号:TN312+.8文献标识码:B

A Design of Wide Color Gamut Direct LED Backlight Driver Circuit

ZHANG Zhi-rui1, LIU Wei-dong1,2, QIAO Ming-sheng2

(1. Dept.of Electrical Engineering, Ocean University of China, Qingdao Shandong 266100, China; 2. Hisense Electric Co., Ltd., Qingdao Shandong 266071, China)

Abstract: This paper presents a wide color gamut LED backlight driver circuit, introduces the process of hardware design in detail, briefly shows the process how the FPGA control the LED driver.

Keywords: LED backlight; DC-DC; PWM; feedback

引言

LED背光源液晶电视以其特有的高性能获得越来越多地关注,目前市场上的LED背光源液晶电视大多以白光LED为主,对比CCFL背光电视,白光LED背光电视无论在色域、对比度还是安全、绿色环保方面都有其无法比拟的优势[1]。直下式背光模组的LED安装在背光模组底面,其出光可以高效率地耦合到液晶面板,在大尺寸LCD应用中能保证均匀的亮度分布。而以红、绿、蓝三色LED按一定比例构成白光时,虽然能够大幅改进液晶电视的颜色与亮度性能,但由于过高的价格和难以克服的色衰不一致问题,一直未得到长足的发展[2]。本文讨论以独特双色管芯白光LED光源作为液晶电视背光源,其采用三合一封装,由一个红色管芯和两个红色互补色管芯组成,实验证明其色域能达到NTSC(national television system committee)标准90%以上,但价格却远远低于RGB LED,且性能更加稳定。

相比普通白光LED背光源,本文讨论的大尺寸宽色域直下式LED背光源两倍于相同数量的白光LED通路数量,需要更多的驱动芯片以适应其需要,因此16通路的驱动芯片在性价比方面有很大优势。文中以16通路驱动芯片配合双路升、降压DC-DC控制芯片来实现双管芯LED背光控制,结构简单且控制方便。

1整体设计

整个背光驱动系统由DC-DC电路、LED驱动电路、反馈电路组成。FPGA对驱动芯片进行前端控制,设计中DC-DC为LED阵列提供稳定的电压,驱动芯片使LED阵列保持恒流,以达到LED灯串亮度的高度一致,并保证在整体电流不变的情况下,利用FPGA对输入图像信号进行亮度提取,产生对应占空比的PWM方波控制LED点亮或者熄灭,对LED进行亮度控制[3]。驱动电路的反馈电路能使输出电压根据每串灯电压的数值进行自适应调节,使其输出电压保持在最佳值,并保证驱动芯片的高效率。整体框图如图1所示。

2硬件结构设计

2.1电源驱动模块系统设计

本系统电源提供24V电压,由于双色管芯白光LED需要两个不同的电压驱动,因此DC-DC控制器的选择尤为重要,考虑到DC-DC控制器的简易性,选择双路DC-DC以实现升、降压输出,简化了电源模块(DC-DC)的设计,将24V电源转换成各个模块所需电源。由于双色管芯白光LED灯不同颜色芯片的前向压降和驱动电流不同,因此需要不同的驱动芯片进行驱动。

由于LED的光特性通常都描述为电流的函数,而不是电压的函数,而且Vf的微小变化会引起较大的If变化,从而引起亮度的较大变化。所以,采用恒压源驱动不能保证LED亮度的一致性,而且影响LED的可靠性、寿命和光衰,因此本设计中LED灯串采用恒流驱动。

驱动芯片整体电路主要分为电流调节电路和数字逻辑控制电路两部分,加上其它辅助电路实现完整的电路功能。电流调节电路主要用于通过外部调节电阻实现对输出电流大小的控制和调节,在保证LED灯可靠性与安全性的前提下,达到液晶电视背光模组的亮度需要。数字逻辑控制电路部分主要用于外部数据的接收、锁存以及使能控制功能,结合时间延迟电路,芯片内部集成8位PWM寄存器,实现对LED阵列256级亮度控制。

2.2DC-DC电路控制芯片的选择与特性

本方案设计的液晶电视背光模组,每个灯串有9颗LED串联组成,双色管芯白光LED灯由于各自的前向压降不同,经测试在各自不同的驱动电流下,每串分别需要18.7V、29.8V电压。双路输出DC-DC控制器原理图如图2所示。

整个系统输入电压为24V,综合考虑,选用ROHM9011转换芯片,该DC-DC控制器采用电感式开关结构,运用电流/电压双路反馈控制、PWM调制以及同步整流控制,电流模式PWM控制采用双闭环控制,提高了系统的瞬态响应速度,增强了系统的稳定性。同步整流技术采用功率NMOS管替代肖特基整流二极管,消除了二极管死区电压的功耗影响,可以提高芯片的工作效率[4],优化芯片的性能,满载效率达到90%以上。而且单颗芯片可以实现双路输出,以满足不同颜色芯片对电压的需求,简化了PCB布局,具有很高的集成度。表1为同步整流和之前非同步整流两种方式的效率比较,由数据可知,同步整流极大提高了系统的效率,对系统的功耗降低和系统的稳定有着积极意义。

2.3DC-DC控制器工作过程

2.3.1降压电路VR

当Q1导通时,在电感L3中感应出左“+”右“-”的感应电动势,续流二极管VD5关闭。LED的供电电压通过电感L3后,经过LED灯串,经驱动芯片内部MOSFET后接地,形成回路。当Q1关闭时,由于电感电流不能突变,在电感L3中感应出左“-”右“+”的感应电动势;Q2导通,电流经电感L3,Q2内部寄存二极管,LED灯串形成回路。输出电压由Q1的导通时间决定,二极管VD5的作用主要为防止芯片误操作,即当Q1关闭后Q2没有导通,从而引起Q2毁坏。

2.3.2升压电路VB

当Q3导通时,电流通过L2经Q3到地,电源对电感进行充电,在电感线圈未饱和之前电流线性增加,电能以磁能形式存储在电感线圈L2中。由于开关管导通,二极管承受反向电压,此时电容C2向LED灯串放电。当晶体管Q3关断时,由于线圈L2中的磁场将改变线圈L2两端的电压极性以保持电流不变,这样线圈L2磁能转化成的电压与电源串联,同时向电容C2、负载供电。L2电流是连续的,但流经二极管VD2的电流是脉动的,且由于C2的存在,LED灯串上仍具有稳定连续的负载电流。

本设计采用电流控制模式,它是一种固定时钟开启、峰值电流关断的控制方法,电流控制模式把变换器分成电流、电压两条控制环路。输出电压Vout经过反馈电路分压电阻R14、R15分压后送入误差放大器的反相输入端,而放大器的同相输入端为精密温度补偿基准电压VREF,两者之差被放大后与电感电流的采样信号相比较,决定是否关断开关管。DC-DC反馈电路是保证在输入电压发生变化或者负载变化的情况下使电路输出电压保持稳定。

2.4驱动芯片特性

本方案中驱动芯片选用MSL3162,共有16通道,内部每个通道亮度寄存器的长度是8位,每个通道可以通过PWM方式根据内部亮度寄存器的值进行256级亮度控制。另外,驱动电流的最大值可通过片外电阻设定,在4.5~5.5V的输入电压范围内,可实现对LED的恒流驱动,每通道最大驱动能力为100mA,可根据需要自由调节。电路拥有典型值为3%的各通道间的电流匹配精度,整个驱动电路相当于恒流源,可消除因温度和工艺引起的正向电压变化所导致的电流变化。MSL3162相比以往常用的8通道LED恒流驱动器,具有更强的多通道驱动能力、更优的输出电流调节精度以及更高的电流匹配精度,同时还拥有较小的芯片面积,有利于大尺寸直下式LED背光电视驱动设计。1MHz I2C接口用于数据传输和错误侦测,在串行总线上可最多带16个驱动芯片,其物理地址可通过AD1、AD0引脚进行硬件配置。实际应用原理图如图3所示。

本文LED驱动芯片电流通过一个连接在ILED管脚的外部电阻来调节。RSET管脚被内部调节到350mV,使得流出该管脚的电流IILED=0.35V/RILED,LED电流控制电路将流入LED管脚的电流ISTR调节为ISTR=6000×IILED=6000×0.35V/RILED,因此RILED= 2100/ISTR。本设计中,红色管芯需要20mA电流,红色互补色管芯需要40mA电流,由上述公式可知电阻R11、R4分别选择105kΩ和52.5kΩ。再通过输出电流反馈环路来调节PWM占空比,从而使负载LED的电流ISTR在稳态时等于设定值,从而实现了对输出电流的控制,以驱动不同管芯的LED负载。

2.5驱动芯片与DC-DC反馈连接方式

本文驱动芯片采用级联方式,第一颗驱动芯片的FBIN接地,其FBO与后一颗驱动芯片的FBIN相连,最后一颗驱动芯片的FBO与DC-DC控制器的分压电阻相连,输出将反馈引入外部DC-DC控制器,以此来控制输出电压,以减少加在驱动芯片的电压,提高了系统效率。具体的MSL3162级联方式和FBO与DC-DC分压电阻之间的连接方式如图4所示。

FBO信号非常敏感,因此在闲置不用的情况下,要接地而且要尽可能靠近GND,当FBIN/FBO信号穿过电路板时,应缩短走线长度,如有大电流信号应尽可能避开反馈信号或将反馈信号包地线,以屏蔽噪声信号。FBO输出反馈电流到外部DC-DC,但一旦MSL3162关断,FBO不仅不能为电源提供驱动电流,反而使DC-DC负载和输出电压增加,为防止这种情况发生,在本设计中将FBO与DC-DC控制器分压电阻之间接入肖特基二极管。

2.6各种控制信号

FPGA通过SCL、SDA、GSC、PHI接口控制驱动IC,从而控制LED阵列。SDA为串行数据输入/输出,SCL为时钟输入,GSC为FPGA输入到驱动芯片的基准频率,PHI为调光频率,该驱动芯片采用I2C协议与前端的FPGA进行通信。具体工作过程为:系统上电后,首先对MSL3162进行初始化,驱动芯片的E2PROM数据根据初始设定值自动写入相应的寄存器,包括输入/输出端口定义、时钟初始化以及定时器和中断的初始化设置,然后由FPGA将提取的亮度信号数据通过I2C接口送至MSL3162的内部寄存器。其中占空比数值分别写入寄存器PWM0至PWMF,PWM0至PWMF为8位寄存器,芯片内置计数器,当来一个GSC上升沿即计数一次,每次计数结束后即与寄存器PWM0至PWMF内部数据相比较,若计数器数据小于寄存器数据则保持低电平,计数器继续计数,直至计数器数据等于寄存器数据,则输出高电平,使LED灯串关断,此周期数据输出完毕后,PHI的电平上升,使整个驱动芯片复位,进入下一周期数据读取。FPGA通过写入寄存器的数值控制LED开启的脉宽,来实现对每串灯的亮度控制。

3结论

本文设计了一种宽色域、直下式LED背光源驱动电路,针对所选取的背光源特性,解决了驱动部分的电路设计,并在所开发的背光系统上实现了PWM调光。实验证明,该系统单通道电流精确可控,光学效果非常优异,极大提高了液晶电视的色域。在此基础上,如何在保证LED灯的可靠性、散热性与光均匀性的前提下,降低LED背光模组的厚度,并进一步完善LED动态背光控制算法成为下一步工作的重点,以使直下式LED背光液晶电视能在颜色表现力与超薄设计方面均有突出表现。

参考文献

[1] Martynov Y, Konijn Huub, Pfeffer Nicolo, et al. High-efficiency slim LED backlight system with mixing light guide[J]. SID Symposium Digest, 2003, 43(1): 1259-126.

[2] 王大巍,王刚,李俊峰,刘敬伟. 薄膜晶体管液晶显示器件的制造、测试与技术发展[M]. 北京:机械工业出版社.

[3] Seyno Sluyterman. 动态扫描背光使LCD电视呈现活力[J]. 现代显示,2006,63:18-21.

第4篇:驱动电源设计范文

关键词:LED背光源;Boost拓扑;MCU控制;保护电路;恒流电路;2D\3D调光电路。

中图分类号:TN312+.8 文献标识码:B

引 言

LED作为液晶电视的背光源在中大尺寸3D电视上的应用越来越广泛,图像在液晶面板上的显示是有顺序的,在3D显示中背光与液晶图像的同步会呈现出更好的显示效果。

本文基于Boost及MCU控制,设计一种具有扫描3D功能的侧导光LED背光源驱动电路,实现了一路Boost为LED提供驱动电压和MCU控制多路LED通断的架构,不但降低了系统成本, 而且不依赖专业芯片,不同路数的LED可以用同一个拓扑驱动,通用性强。

1 系统的构成

扫描式3D电视背光源驱动电路系统的结构如图1所示。电源板提供一个直流电源进入Boost电路做LED的驱动;MCU为整个系统的控制中心,负责信号的处理;反馈保护采样电路采样LED的低压端电压并将信号反馈给MCU;恒流及调光模块接收MCU的控制信号直接作用于LED的低压端。图1中LED的串数及每串的颗数都可调整,只要调整Boost电路的参数及选择相应IO口数目的MCU即可。下面介绍一下系统各模块工作原理及系统实现过程。

1.1 Boost电路的设计

Boost电路详图如图2所示。Boost做LED灯条恒流时的电压自适应,用简单的Boost芯片搭建即可。其中对输出做一个精度不高的反馈,后续LED灯条正端的电压细调通过MCU检测灯条负端来做反馈,电压的调整则通过Boost芯片Driver的调节占空比来实现的。本Boost芯片的CS脚具有过流保护功能。

1.2 MCU控制器

本设计针对8路LED控制,MCU选择28引脚闪存单片机:单片机时钟频率16MHz、A/D口11个、I/O口25个、定时器2个。整个系统的控制流程如图3所示:MCU实时抓取前段3D控制控制信号,当3D控制信号为高时,进入3D状态,通过检测场同步的上升沿和下降沿来触发背光第一串灯条的打开,灯条的打开时间及灯条之间打开的时间间隔用两个定时器作为中断触发条件,这样就可以用扫描的方式分时打开背光,完成背光与图像的同步;当主板的3D信号为低时,进入2D模式,根据PWM信号对背光进行同步调节。在2D或3D模式下MCU对灯条低压端进行实时监测,如果触发保护,则电路被关闭。

1.3 恒流及2D/3D调光电路

LED恒流电路如图5所示。检测电阻R7上的电压,获取2D与3D两种状态下的电流采样参考电平:R3上的电压较高时为3D状态,较低时为2D状态。运放的输入端具有虚短的特点,R2上的电平随即被设定,即R2所允许流过的电流被限定,从而LED的电流设定。当LED电流增大时,R2上的电压变大,反相输入端的电平高于同相输入端的电平,运放输出低电平,三极管V1的基极电平降低,V1的CE电流减小,从而减小了LED的电流。当LED电流减小时,R2上的电压变小,反相输入端的电平低于同相输入端的电平,运放输出高电平,三极管V1的基极电平升高,CE电流增大,从而增大LED的电流。如此循环,在动态过程中实现LED电流的恒定。在此过程中无需芯片的控制,电路自动反馈调整电流,实现电流恒定。

2D/3D调光电路如图4、5所示,VREF为MCU 供电电压VDD。在2D时,2D/3D IN信号为低电平,MCU芯片做出判断产生高阻态或低电平两种状态。当PWMIN为高时,MCU的PWM1 3D脚输出高阻态,此时VREF经过串联电阻R4、R6、R7到地,在R7上产生分压压降,LED恒流模块中的运放同相输入端获取R7上的电压作为LED恒流的参考电平,LED恒流模块打开LED;当PWMIN为低时,PWM1 3D脚输出低电平相当于接地,此时VREF经过串联电阻R4与MCU PWM1 3D脚内的N MOS管到地,此时电阻R7上无压降,LED恒流模块中的运放同相输入端在R7上获取不到电压,LED恒流模块关闭LED,从而实现2D下的调光控制。

在3D时,2D-3D IN信号为高电平,MCU做出判断采用高电平与低电平两种状态输出。依据外部PWMIN信号的状态,当PWMIN为高时,MCU的PWM1 3D脚输出VDD高电平,此时电阻R4串接在两个VDD电平之间,不产生电流,无压降,则VDD经过串联电阻R6、R7到地,由于没有电阻R4的分压,将在R7上产生一个较高的压降,LED恒流模块中的运放同相输入端获取R7上较高的电压作为LED恒流的3D参考电平,LED恒流模块打开LED;当PWMIN为低时,PWM1 3D脚输出低电平相当于接地,此时VREF经过串联电阻R4与MCU的PWM1 3D脚内的N MOS管到地,此时电阻R7上无压降,LED自恒流模块中的运放同相输入端在R3上获取不到电压,恒流模块关闭LED,从而完成3D下的调光控制。

1.4 反馈保护的实现

灯条保护电路是通过检测图5电路R10与R11之间的压差来实现的。当灯条正端或负端对地短路或开路时,此处的分压值为零,MCU通过IO口检测出此处的电压不正常,给出一个错误信号把电源关掉;当灯条正负短路在一起时,此处的电压过高,MCU同样能检测出错误信号关掉电源。MCU用作反馈电路也是对R10、R11间的电压进行检测,然后对各路检测结果进行比较得出最小的一路,让这个最小的与设定值进行比较,如果小于设定值则说明Boost电路输出的电路电压过低,那么就调低图4中MCU FBOUT脚的占空比(MCU是个数字脚),这样通过图4 C1的缓冲作用得出一个电压比较小的值,从而Boost提高输出电压;如果检测到的最小值大于自己设定的值,那么调高MCU占空比,实现实时反馈。

2 实验结果

实验样机2D模式下的工作参数:LED电流130mA,调光频率200Hz,占空比85%,由图6可见,电流恒流特征良好。

3D显示模式下背光电流波形如图7所示,实现了电流倍增(390mA)。小占空比大电流的情况下,能实现亮度基本不变的条件下在60Hz场同步下实现SG 3D的扫描。

3 结 论

本文设计了一种新型SG 3D侧导光LED背光源驱动电路,实现了2D显示模式下PWM调光及3D显示模式下扫描方式调光。该系统采用Boost和MCU调光相结合的方式,由于MCU直接对LED进行调光,省掉了专用调光芯片,且由于MCU具有可编程的特点,可以用来作保护电路及反馈电路,简化了原来的电路,后续维护上只需对程序升级就可实现,不需要重新布PCB。该设计对PIC微控制器在液晶电视LED背光驱动上的应用具有指导性意义。

本文设计了一种新型SG 3D侧导光LED背光源驱动电路,实现了2D显示模式下PWM调光及3D显示模式下扫描方式调光。该系统采用Boost和MCU调光相结合的方式,由于MCU直接对LED进行调光,省掉了专用调光芯片,且由于MCU具有可编程的特点,可以用来作保护电路及反馈电路,简化了原来的电路,后续维护上只需对程序升级就可实现,不需要重新布PCB。该设计对PIC微控制器在液晶电视LED背光驱动上的应用具有指导性意义。

参考文献

[1] Abraham I. Pressman 著,王志强等 译. 开关电源设计Switching Power Supply Design[M]. 北京:电子工业出版社,2005.

[2] Jasio Di 著,姜宁康,朱安定 译. PIC微控制器技术及应用[M]. 北京:电子工业出版社,2009.

[3] 童诗白,华成英. 模拟电子技术基础[M]. 北京:高等教育出版社,2001.

第5篇:驱动电源设计范文

【关键词】永磁同步电机;驱动;负载试验;ACPL-38JT;IGBT

1.引言

Avago公司的ACPL-38JT是汽车IGBT用栅极驱动光耦器,输出电流2.5A,集成了去饱和(VCE)检测和故障状态反馈,满足汽车电子AEC-Q100 Grade 1标准要求,可驱动IC=150A,VCE=1200V的IGBT,最大开关速度500ns,VCM=1,500V时15kV/μs共模抑制(CMR)能力,IGBT“软关断”,5-30工作电压,工作温度-40℃到+125℃。ACPL-38JT光电耦合器的带滞后欠压锁定(UVLO)保护功能可通过强制降低输出来保护IGBT免受门电压不足的干扰。集成的IGBT门极驱动器专为增加电机驱动的性能和可靠性并且不影响离散设计的成本、尺寸和复杂性而设计。该设备配有小尺寸16引脚(SO-16)表面贴装,符合UL 1577,IEC/EN/DIN EN 60747-5-2和CSA工业安全标准。

ACPL-38JT主要用于绝缘IGBT/MOSFET逆变器栅极驱动,汽车用DC/DC转换器,AC和无刷DC马达驱动以及UPS。

因此,本文针对ACPL-38JT栅极驱动光耦器进行深入研究,设计了应用于英飞凌型号为FS300R12KE3的IGBT驱动电路,并经过了实验验证。

2.逆变器原理框图

图1为基于ACPL-38JT的车用永磁同步电机PMSM驱动系统控制框图。由逆变电路和主控电路组成,逆变电路为电压源逆变器,由膜电容(该膜电容内部集成有吸收电容)、IGBT及其驱动电路组成,由于膜电容集成有吸收电容,因此可以抑制电流纹波和换流过程中产生的母线电压尖峰,IGBT采用英飞凌型号为FS300R12KE3模块,该模块为六合一模块,如图2所示,IGBT的驱动芯片采用ACPL-38JT。主电路由DSP、CPLD、PWM输出驱动电路、选编解码电路、电流电压采样电路、故障保护电路、CAN接口电路组成等组成。

3.基于ACPL-38JT的驱动电路设计

3.1 驱动电路电源设计

ACPL-38JT驱动芯片的引脚定义如图3所示。为保证IGBT的可靠开通和可靠关断,ACPL-38JT的VCC2-VEE之间的电压设计为24V,通过模块电源来实现,IGBT的门驱动电压G-E设计为18V,VEE2-E设计为-6V,其实现通过18V的稳压二极管来实现,电路园路图分别如图4和图5所示。

3.2 滞后欠压锁定电路和输入互锁电路设计

如图6所示,为保证驱动电路的可靠性,在电路中设计有滞后欠压锁定电路,当电源电压低于一定值是输出滞后欠压信号,根据该信号对IGBT进行保护。为保证输入PWM波出现上下管子直通,设计了输入互锁电路,Q44最主要起互锁作用,当两路PWM信号(同一桥臂)都为高电平时,Q44导通,把输入电平拉低,使输出端也为低电平。图6中的互锁信号lock1和lock2分别与另外一个38JT另一桥臂lock2和lock1相连。

3.3 U相下桥臂的驱动电路

根据前面的分析设计了基于ACPL-38JT的六合一的IGBT驱动电路,图7中给出了U相下桥臂的电路原理图,为提高电路的驱动能力,采用推挽电路来实现,输出电压VOUT经过两个快速三极管推挽输出,使驱动电流增大,能够快速驱动1200v、300A的IGBT。同时IGBT的导通和关断电阻可以根据需要进行选择,开通电阻可在5欧和2.5欧之间选择,关断电阻可在5欧、2.5欧和1.6欧之间选择。

4.实验结果

在完成驱动电流的基本测试后,将驱动电路装到IGBT上,带上电机负载进行试验,试验结果如后所述。

4.1 驱动电压波形中开通过程米勒平台考察试验

为了考察母线电压对米勒平台的影响规律,在母线电压分别为100V和400V时静态测试(未转动电机)开通过程的驱动电压波形,分别如图8和图9所示。母线电压升高后,驱动电压开通过程米勒平台开始出现变形。但是从上图对比可以看出,该电压“凹陷”过程并未影响开通时间,而只是在原有应为平台的区段出现变形。

4.2 稳态时母线电压幅值对驱动电压的影响

不同电压下稳态时的A相上管驱动电压Uge如表1所示。因此,稳态情况下,母线电压幅值对驱动电压Uge影响很小。

4.3 稳态时电流大小对驱动电压的影响

在400V母线电压下,测试不同电流下的A相上管和C相下管驱动电压,结果如表2所示。因此,稳态情况下,电流大小对驱动电压Uge影响也很小。并且不同管子的的驱动电压有较大差异。

4.4 电机电流波形

测试的母线电压为300V时,转速为700rpm,当相电流升至360Arms时电流波形如图10所示,图中1通道为驱动电压波形,2通道为电机电路波形,检测电流的过程中,对电流卡钳的量程进行了设计,所以示波器上显示单位为毫伏。

5.结论

本文对ACPL-38JT驱动芯片进行分析,通过对电源电路、滞后欠压锁定电路和输入互锁电路、驱动推挽电路和驱动电阻等电路的设计,最终完成针对英飞凌型号为FS300R12KE3的IGBT驱动电路的设计。经过带电机负载试验,本文所设计的ACPL-38JT驱动电路满足驱动电机负载的需求。

参考文献

[1]/public/art/artinfo/id/80008531.

[2]申翔.IGBT集成驱动模块的研究[J].电源技术应用,2006(9):49-53.

[3]丁浩华,陈辉明.带过流和短路保护的IGBT驱动电路研究[J].电力电子技术,1997(1):30-32.

[4]李宏.电力电子设备器件及集成电路应用指南(第一分册).电力半导体器件及其驱动集成电路[M].北京机械工业出版社,2001.

第6篇:驱动电源设计范文

【关键词】电解电容;驱动电路;有源纹波补偿;保护电路

1.前言

LED(发光二极管)为新一代的绿色照明光源,具有节能、环保、高亮度、长寿命等诸多优点。它不仅是照明光源的新宠,也与人们的生活戚戚相关。因此,研制长寿命的驱动电源,构建高效率、低成本、高功率因数和是LED灯发光品质和整体性能的关键,也是LED照明技术发展的需要。据不完全统计现有的白炽灯泡寿命比LED灯少约40倍。因为发光二级管不仅是直流电流驱动器件,也是光电转换器,有将光电转换的功能。它的作用主要是通过流动电流,将电能转变为光能,所以其优势是比一般的光源的节能效率和工作寿命都要高。但是,在LED驱动电源的整流电路和滤波电路中一般需要使用大容量的电解电容。电解电容器的寿命一般为l05℃/2000h,就是说当电容周围温度升高到105℃时其寿命只有84天,即使工作在温度为85℃的环境中,使用寿命也仅为332天,所以电解电容是阻碍LED驱动电路寿命的主要原因。为了提高驱动电源的寿命,有必要去掉电解电容,为此文中提出一种无电解电容的高亮度LED驱动电源。

2.LED驱动电路的工作原理

3.LED驱动电路的具体设计

3.1 输入电路的设计

3.1.1 EMI滤波器的设计

3.4 有源纹波补偿电路的设计

3.4.1 有源纹波补偿理论

因为现有的LC滤波电路无法完全滤除纹波,而且电容量小的电容滤波效果更差,所以传统的开关电源输出波纹大,若流过LED的电流纹波过大将不仅影响了LED的光效,而且影响LED的光衰,特别是电解电容由于它的使用寿命短,从而严重的缩短了开关电源和LED的使用寿命。因此,从研究小电容量入手、以输出纹波小、能量变换效率高为内容,以使用的安全性和长期性为目的,构建新型驱动电源,是十分重要的和必要的,是当前急需解决的问题,具有一定的科学性和可靠性。

文献[4]在总结主辅补偿电路的基础上,采用线性电源对电感纹波电流进行补偿的方法,其电路结构如图8所示。通过检测电阻R1的电压来检测电感纹波电流,放大器输出与电感纹波电流反向的补偿电流通过电阻R5将电感纹波电流补偿。该电路通过用电阻匹配来解决纹波电流补偿问题,容易实现;并且省去电解电容,使得电源的使用寿命能够延长。

3.4.2 有源纹波补偿电路的设计与仿真

如图9所示,有源纹波补偿电路由三极管,运算放大器A1,A2,和电感电流检测电阻组成。其原理是通过检测电感两端的电流,通过运算放大器A1和A2比较后控制三极管的开关实现电流的补偿。

4.结束语

目前LED驱动电路中,影响驱动电路整体寿命的主要因素是储能电容,所以本设计采用线性电源抑制输出波纹,达到减小储能电容的电容量的目的,因此可以在不增加输出波纹的情况下采用寿命长的薄膜电容取代电解电容,从而提高LED驱动电路的整体寿命。从仿真结果来看,采用以有源纹波补偿后,电路运行稳定,各项指标满足要求,这说明此方法能够有效的提高了驱动电路的使用寿命。

参考文献

[1]王蓓蓓.无电解电容的高亮度LED驱动电源研究[D].江苏:南京航空航天大学,2009.

[2]马年骏.恒流式LED电源的优化设计与应用[J].能源研究与管理,2011(4):66-69.

[3]孙文婷,羊彦.无电解电容LED驱动电路[J].电子设计工程,2012(14):8-10.

[4]Fu C M-S,Lu D D-C,Sathiakumar S.A novel method to reduce the operating temperature of high power light-emitting diodes[C].Australasian Universities Power Engineering Conference 2008(AUPEC'08).Sydney,NSW.Dec 14-17,2008:1-6.

第7篇:驱动电源设计范文

【关键词】 可见光通信 LED驱动电路 恒压源

在设计可见光通信光源要求的驱动电路时,不但要根据LED功率大小、驱动性能和经济性等要求选择合适的驱动方式,还应满足可见光通信设备的应用要求。因此,合理的驱动电路设计可以有效改善输出光功率和传输距离,从而提高系统性能。

本文比较了常见的两种适用于可见光通信设备应用要求的驱动电路,最终提出了一种切实可行的双重用途恒压LED驱动电路,并对其进行验证。

一、双重用途LED驱动电路

目前直流驱动是LED最常见的驱动方式。根据LED的直流驱动特性和可见光通信系统对LED驱动电路的要求,可将直流型LED驱动电路分为恒压驱动和恒流驱动。因为可见光通信系统不但要求LED驱动电路满足一般的照明要求,还应具备通信的功能,所以我们称之为双重用途LED驱动电路。

双重用途LED驱动电路的通信功能主要通过将LED光源的迅速关断和打开同步于数据的传送,从而实现通信信号的传输。本节我们将重点讨论这两种集照明与通信一体的双重用途LED驱动电路。

1.1 恒流双重LED驱动

LED的恒流驱动是指其电流保持恒定的驱动方式,当外界干扰使得驱动电流增大或减小时,都可以在恒流电路的调节作用下使驱动电流回到预设值。通过电流负反馈调节实现驱动电流i0为恒定值,其通信功能的实现主要是通过将调制信号加载到MOS管S2上,控制其高速导通和关断,使LED光源产生亮灭或亮暗变化,完成电信号转化为光学信号,实现基于LED光源的可见光通信。

1.2 恒压双重LED驱动

恒压驱动时,LED两端的电压要求保持基本恒定,由于存在纹波,LED电流会随着电压的波动而波动。图2为恒压双重LED驱动电路示意图,通过电压负反馈调节使LED获得一个稳定的驱动电压V0,将调制信号加载到开关S2上即MOS管的基极,实现MOS管随着调制信号通断,从而实现LED光源的调制,达到通信的效果。

目前恒压驱动技术比较成熟,引入电压负反馈后可以保证电压波动在一定范围以内,使得恒压驱动的LED能够满足照明的需求。恒压驱动能够更好地与可见光通信设备的应用相结合,并以其低成本,易实现的优势成为可见光通信LED驱动技术研究的重要内容。

二、恒压双重LED驱动的可见光通信

根据可见光通信的应用要求,本文给出了一种切实可行的恒压双重LED驱动电路。如图3所示,调制信号首先通过高速光耦合器控制高速MOS驱动器,实现S2的快速关断和打开,与调制信号同步,完成可见光通信的信号发射。其中高速光耦合器能够更好地隔离噪声源,R1能够控制LED光源的调制深度。

三、实验结果

通信速率和通信距离是可见光通信设备的两个重要指标,本文主要针对这两个指标进行研究。首先打开恒压双重用途驱动的LED光源,使用信号发生器的方波输出作为调制信号,利用滤光片来改善光电探测器信号接收能力,用示波器观察不同频率和不同距离情况下光电探测器所接收到的信号波形。实验共测了2组数据:第一组是在通信距离为1米时,不同频率下,观察二级放大接收信号的波形,如图5~图7所示,其中激励信号(图中最上波形)、LED光源电流信号(图中中间波形)、二级放大接收信号的波形图(图中最下波形)。

第二组是确定双重用途恒压源LED驱动能正常工作后,选择通信频率为2MHz,分别进行通信距离为1米、2米和3米的实验,用示波器观测波形,如图8~图10所示,其中激励信号显示为图中靠上波形,二级放大接收信号显示为图中靠下波形。本次实验表明,该恒压源双重LED驱动电路最大调制频率为3MHz,最远通信距离为3米,超过这两个数值,误码率急剧升高,不满足通信要求。

四、结论

本文针对LED驱动特性和可见光通信应用的要求,比较分析恒流双重LED驱动电路和恒压双重LED驱动电路,提出一种切实可行的恒压双重LED驱动电路,并设计出以两片OPA657为核心的接收电路和对其进行试验验证,实验结果表明,该恒压双重LED驱动电路满足照明和可见光通信应用要求。更远距离和更高频率的可见光通信LED驱动电路是下一步工作的重点。

参 考 文 献

[1] 迟楠.LED 可见光通信技术[M]. 北京:清华大学出版社, 2013.

第8篇:驱动电源设计范文

【关键词】DSP;伺服驱动器;TMS320F28335

引言

伺服驱动系统是机电一体化技术的重要组成部分,随着现代工业的快速发展,交流伺服系统逐渐成为工业伺服系统的主流,在数控机床、工业控制等自动化装备中得到广泛的应用。本文介绍了一种基于TMS320F28335的伺服驱动器设计方案。TMS320F28335是TI公司设计的一款数字信号处理器,其主要面向工业控制领域,特别适用于电机控制、运动控制等应用。

1.伺服驱动器结构及原理

伺服驱动器主要由DSP(TMS320F28335)、主电路、驱动模块、检测模块、通信模块和人机接口模块等部分组成,如图1所示。

图1 伺服驱动器原理框图

伺服驱动器通过光电编码器和电流传感器将电机的转速,方向和电流信号送给DSP处理器,将给定的信号与采集的信号进行比较,经过PID控制算法后输出SPWM波形,使电机达到所设定值。

2.硬件系统设计

2.1 DSP控制器

TMS320F28335芯片主频150MHz,具有32位浮点运算能力,6个DMA通道,支持ADC,McBSP,ePWM,XINTF 和SARAM,片内有256K×16大小的FLASH程序存储器和34K×16大小的SARAM,具有18路的PWM输出,采用1.8V内核电压,3.3V接口电压供电。

2.2 主电路及驱动电路

2.2.1 电源模块

TMS320F28335工作电源为3.3V和1.9V/1.8V。所以采用了TI公司的TPS767D318芯片给DSP供电。该芯片是TI公司专为DSP供电所设计,输入电压为5V,能同时产生3.3V和1.8V两种电压,而且该芯片自带电源监控和复位功能。

2.2.2 功率驱动电路

功率驱动电路采用IR2132芯片和IGBT来搭建驱动电路。IR2132是一种高电压、高速度的功率MOSFET和IGBT驱动器。IR2132具有过流保护功能,如果外部反馈电流超出设定值,IR2132就会启动电流保护电流,关闭输出通道,从而对系统起到保护作用。IR2132输入信号与TTL及CMOS电平兼容,当采用IR2132芯片搭建电路时,只需提供一个供电电源即可驱动6个IGBT器件。

2.3 检测模块

检测模块是系统的反馈回路,包括电流检测、位置及速度检测。

2.3.1 电流检测

电机三相中某一相的电流等于其它两相电流之差或者之和。因此,只要知道其中两相的电流便可以计算出第三相电流,故电流检测只需要检测电机其中两相的电流即可。本系统采用LEM电流传感器,LA58-P来检测电流。LA58-P输出电流信号,通过精密电阻将其转变为电压信号,输入到DSP的DAC模块对应的引脚。

2.3.2 位置及方向检测

伺服电机采用增量式光电编码器。光电编码器输出的三路差分信号经过滤波、差分信号接收器26LS32芯片处理及光电隔离后,输出EQEPA、EQEPB、EQEPZ三个信号,这三个信号分别输入DSP的QEP模块的对应引脚。QEP模块因其本身就能进行4倍频,故不需要其他外部电路就可以对脉冲的前后沿进行计数,并可根据A、B两路脉冲的次序判别电机转向。当A相比B相超前90°时,电机正转,反之则电机反转。而Z相是一个基准参照信号,用于校准脉冲计数。

2.3.3 速度检测

速度检测的实现基于位置检测。检测方法是对一定时间内的编码器反馈脉冲进行计数,运用合适的数学计算公式,通过软件编程得到电机转速。

2.4 通讯模块

本系统采用两种方式与上位机进行通信,分别是RS232串口通讯和EtherCAT实时以太网通讯。

2.5 人机接口模块

人机交互界面主要使用STC89LE51单片机设计,该单片机工作电压为3.3V,可以和DSP直接进行串口通信,同时通过数码管显示。

3.软件设计

软件系统的设计对应于系统的硬件电路设计,按照控制系统的工作原理,将各功能进行模块化处理。系统主程序主要包括对时钟的配置、各功能模块函数的初始化以及定时器中断子程序等。主程序流程图如图2所示。

图2 主程序流程图

4.结论

基于TMS320F28335丰富的片上资源和接口资源,本文设计的伺服电机驱动器可实现对电机电流、位置及速度的控制,实现通过PID方法输出SPWM波形来控制交流伺服电机。

参考文献

[1]白玉成.交流伺服系统控制策略及现场总线接口技术[D].华中科技大学,2009.

[2]宋宝,唐小琦.全数字交流伺服驱动器设计与研究[J].机械与电子,2004(1):39-42.

[3]白向东.IR2132驱动器及其在三相逆变器中的应用[J].现代电子技术,2010,13:51-53.

[4]李木国,李响,刘达.基于DSP的电机伺服系统中的模糊PID控制[J].测控技术,2011,06:64-66+71.

第9篇:驱动电源设计范文

关键词:K60 蓝牙遥控 电机驱动

中图分类号:TP242 文献标识码:B 文章编号:1003-9082 (2017) 04-0216-03

一、引言

APP监控机器人在家庭、工厂、医护等需监视的场合发挥着重要的作用,它可以有效避免一些意外事故的发生。互联网、手机APP安卓系统的开发,使得人们通过手机就可以轻松控制机器人的移动。无线遥控实现方法包括蓝牙、红外、射频等几种,其中蓝牙技术具有一定优势,目前被广泛应用在信息家电方面,各种家电共用遥控,并在可组网与公众互联网中连接,共享有用信息。蓝牙技术实现无线遥控具有很高的市场价值及广阔的应用前景。本设计通过结合ARM开发板,利用无线通信及K60蓝牙处理、硬件测试,达到机器人实时监控、运动的目的。

二、系统硬件设计

1.总体方案设计

本系统以K60单片机为核心控制器,通过接在K60主板上的蓝牙从机接受来自ARM开发板的指令,传给K60让其做出相应处理,通过PWM调制频率,使电机驱动模块工作。利用H桥电机驱动电路,控制两个电机差速,从而改变轮子的转向,达到控制小车运动的目的。通过超声波避障模块使小车安全行驶。整个蓝牙小车模块通过一个模块电源供电,根据不同模块的工作需求,电源模块提供了3.3V、5V的电源。系统硬件框图设计见图1。

2.系统主要硬件模块介绍

机器人小车硬件模块主要有K60单片机、机器人小车底盘、蓝牙串口模块、电机驱动模块、机器人小车电源模块、7.2V镍镉电池。

2.1 K60单片机

K60芯片电源类引脚,BGA封装22个,LQFP封装27个,其中BGA封装的芯片有五个引脚未使用。芯片使用多组电源引脚分别为内部电压调节器、I/O引脚驱动、A/D转换等电路供电,内部电压调节器为内核和振荡器。为了电源稳定,MCU内部包含多组电源电路,同时给出多处电源引出脚,便于外接滤波电容。K60最小系统芯片上同时具有蓝牙接收模块,这样在设计主板上就节省了引出蓝牙从机的插槽。

设计K60单片机的整个主板硬件控制电路,其中包括K60最小核心板及电机驱动PWM的接口,K60硬件主板引脚功能说明见表1。K60最小系统的引脚及主板设计的原理图见图2。

2.2 机器人底盘及电机

为了方便机器人运动转向,本设计选择了两个电机分别控制两个车轮,一个万向轮在底盘前面,这样利用电机的差速驱动左右电机不同转速,就可以实现小车的转向,图3所示是小车的3轮底盘。由于驱动机器人需要很大的转矩,所以选择扭矩大,负载能力强的大功率直流电机。

2.3蓝牙串口模块

在K60最小系统板上有通用的蓝牙接口模块,通过外接蓝牙从机模块,就可以实现蓝牙从机接收外部信号,传送给K60单片机做出相应处理。本设计采用LQ-BTM蓝牙从机,在与K60连接时要注意正确的通讯,BTM的RXD要与K60的TXD连接,K60的RXD要与BTM的TXD连接。蓝牙从机接上K60后,LED灯常亮,表示蓝牙连接状态,闪烁表示没有蓝牙连接。通过手机APP界面的蓝牙端发送指令,从机接收信号指令传到K60,就可以进行运动处理,蓝牙接口正确通讯连接见图4。

2.4电机驱动模块

机器人小车采用两个直流电机进行差速运动,电机驱动模块是典型的H桥电路,工作原理见图5。

它是由四个三级管和四个二极管组成的控制电路,由于它的形状酷似字母H,所以电路得名“H桥驱动电路”。要使电机运转,必须使对角线上的一对三极管导通。假设当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极,该流向的电流将驱动电机往某一方向转动;当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动,实现电机的正反转。

根据H桥驱动电路,合理设计机器人小车电机驱动模块,采用IRF3205共8个MOS管组成两个电机的驱动电路,更好的实现电流、电压的可逆,使小车更加稳定运动。双电机驱动模块接口原理图见图6,电机驱动电路见图7。

2.5电源模块

电机驱动模块需要5V电源,利用LM1117-5稳压芯片将来自外部7.2V的镍镉电池稳压成5V。同理利用L6932芯片,采用多电容滤波,使稳压后的3.3V电源更加稳定。图8所示是5V和3.3V稳压电路原理图。

三、软件设计实现

1.系统流程图

本设计的系统流程图见图9,包含主程序流程图及串口中断服务函数。实现蓝牙接收手机端发送过来的指令送给单片机进行处理,控制机器人小车运动,并实现自动避障功能,使机器人小车稳定运动。利用IAR软件编程,烧写程序进入K60单片机。整个设计涉及到蓝牙模块的设置,电机驱动输出频率的控制,以及串口中断服务函数设计。

2.电机驱动PWM控制

在K60单片机中,利用FTM产生PWM来控制电机输出占空比,从而使电机能够进行差速,进而达到转向的目的。程序中利用FTM_PWM_Duty()函担来控制FTM产生PWM调制波进而产生不同占空比。电机驱动程序如下:

void Moto_Forward//前进