公务员期刊网 精选范文 工程热力学原理范文

工程热力学原理精选(九篇)

工程热力学原理

第1篇:工程热力学原理范文

关键词:化工热力学 教学 课程质量

中图分类号:G420 文献标识码:A 文章编号:1672-3791(2012)12(c)-0213-01

化工热力学是是化学工程一个重要的基础学科,是工程与工艺等各类化工专业的必修课程。该课程把热力学的基本原理应用于化工技术领域,结合表征实际体系特性的状态方程、活动系数模型进行各种热力学性质的计算。由于该课程相对于其他课程而言理论性强,概念多、公式多,学生往往觉得抽象不易掌握。大篇幅的公式推导也让学生望而生畏[1-2]。

如何引导学生掌握本课程的基本原理、应用及实验技能,了解学科发展动态,培养学习的严谨作风,也是本课程教学必须回答的问题。本文试从以下几个方面进行改进,以期提高化工热力学的教学质量。

1 理论联系实际,激发学生学习兴趣

对日常生活中一些常见的现象用专业的化工热力学知识给予科学的解释。这样可以使学生感受到该课程对生活实践的指导意义,从而激发学生的学习热情和兴趣,达到既掌握了化工热力学的知识又培养了学生分析问题和解决问题能力的目的。

例如:冰箱的工作原理与空调是否相同?夏天打开冰箱门是否能当空调?空调与取暖器哪个更省电?将冰箱和空调的工作原理与第六章的制冷循环相联系。为何从天然植物中提取香精、色素等有效成分常用超临界萃取技术?萃取剂为何常选CO2?在第二章PVT关系的应用当中着重介绍了超临界萃取技术以及萃取剂的选择[3-4]。在讲到相关的理论知识时,适时的把这些学生感兴趣的问题穿来,使理论知识不再那么枯燥。

比如说在讲第六章熵增原理的时候,可以做适度的延伸,将熵增原理与宇宙的变化过程联系起来。霍金[5]在《时间的方向》这一报告中,提出了热力学时间箭头、时间箭头和宇宙学时间箭头的一致性。根据热力学第二定律,事物总是向无序状态变化,称为“熵”的不断增大。因此,我们只能看见杯子打碎成碎片的过程,从来不会看见杯子的碎片复原成为杯子,相对来说,杯子是有序的状态,碎片是无序的状态。阿姆斯特丹大学理论物理学院埃里克.弗林德教授(Erik Verlinde)认为引力从本质上是一种熵力,如果一个物体在其它物体周围发生微小移动会改变周围的无序度,就会感受到引力。

通过这样一些理论的提出,让学生通过讨论,首先能培养学生勤于思考、开拓创新的精神;其次将热力学的理论与哲学、物理学等其他学科相联系,能让学生了解自然科学其实没有学科的边界,科学是相通的思想;三是介绍一些化工热力学在实际生活中的应用。例如在讲授范德华方程时,讲述了莱顿低温实验室的创始人著名低温物理学家卡末林-昂内斯如何利用范德华方程成功地把一种又一种“永久气体”(氧气、氢气、氦气等)液化,乃至作出对人类社会产生巨大影响的贡献—— 超导电性的发现。最后如何利用超导电性实现磁悬浮列车,让学生感受到化工热力学在实际生活中的重大指导意义。

2 与时俱进,借助计算机软件来辅助教学

在化工热力学教学过程中,公式多,计算复杂成为严重影响教学效果的主要因素。为了使学生在今后的工作实际当中能更好的运用化工热力学知识解决实际问题,我们在教学过程中,专门作了一个专题,介绍了目前应用较多的几种软件,包括Aspen Plus,Simulis Thermodynamics, HSC chemistry等。其中着重介绍了目前应用最广的Aspen Plus (Advanced System for P

rocess Engineering)。该软件美国AspenTech公司研制,由MIT主持、能源部资助、55个高校和公司参与开发。是基于序贯模块法的稳态过程模拟软件,并附带有庞大的数据库,包含了丰富的状态方程和活度系数模型。在各章节的计算过程中,分别对这几种软件相关的热力学计算部分进行了演示。

3 尊重传统,培养学生严谨的学习作风

化工热力学是一门严谨的课程,有人称之为完美的学科,就是因为它的理论和公式都有严密的理论基础,都是通过层层推导得到的。而本课程中最主要的内容就是热力学性质的计算。尽管有相应的软件工具可以进行辅助计算,但在教学过程中还是不能忽视学生的计算和推理能力的培养。通过日常的作业和课堂上的习题演练,让学生在做题过程中领会化工热力学的精髓,培养其严谨的学习态度和作风。

4 把握主线,纵观全局,理清脉络

化工热力学课程主要由原理、模型和应用三部分所组成。原理是基础,应用是目的,模型是应用中不可缺少的工具[7]。如果把化工热力学比作一个大树,那么原理就是它庞大的根系,模型是它的主干和枝丫,而应用这是化工热力学所开出的花朵和果实。

因此在每一章学习之前,我们都会给学生提供两副结构图。一是本门课程所研究体系的框架图。二是每章之间的关系及联系图。使学生能全面把握化工热力学的整体框架,正确理解热力学概念,灵活运用热力学原理。在学习时能做到,“提起是一串,放下是一堆”的学习方式。

参考文献

[1] 刘守军,何秀丽.《化工热力学》教学中应把握的几个问题[J].太原理工大学学报:社会科学版,2001,19(1):80-86.

[2] 王琳琳,陈小鹏,童张法.理论联系实际提高化工热力学教学质量[J].化工高等教育,2003,3.

[3] 冯新,陆小华,吉远辉,等.化工热力学中从生活中来到生产中去的实例[J].化工高等教育,2009(1).

[4] 陆小华,冯新,吉远辉,等.迎接化工热力学的第二个春天[J].化工高等教育,2008(3):19-21.

[5] 包科达.热物理学基础[M].高等教育出版社,2004.

第2篇:工程热力学原理范文

论文关键词:锅炉原理 实践训练 教学

论文摘要:为适应创新型国家发展战略,教育创新应贯穿大学课堂理论教学和课程实践训练教学。针对“锅炉原理”课程实践训练教学,重点探讨了华北水利水电学院“锅炉原理”课程实践训练的目标定位、教学内容的设计和实施方法,以期对电厂热能与动力工程专业实践能力训练方面起到一定的推动作用。

锅炉是用以生产热水或蒸汽的设备,在国民经济中具有异乎寻常的重要作用,电站锅炉是火力发电系统三大主机之一,对火电的高效、洁净和安全生产及其重要,因此,“锅炉原理”是热能与动力工程专业最核心专业课程之一。“锅炉原理”课程主要讲授锅炉的基本工作原理,包括锅炉的炉内燃烧原理及燃烧设备、锅炉的传热过程、锅内水动力、受热面外部工作过程和先进锅炉技术的发展等内容,要求学生掌握锅炉工作过程的基本理论及锅炉设备的相关知识,并培养学生分析工程问题、锅炉设计计算和锅炉试验的实践能力。

为适应创新型国家发展战略,高等教育要实现从知识型向创新型培养目标转变,具体到“锅炉原理”的课程教学中,创新应贯穿课堂理论教学和课程实践训练教学。对“锅炉原理”课程的理论教学内容设计、教学手段、教学方法等方面已有较多的探讨和实践研究,[1-4]本文从“锅炉原理”课程实践能力的培养出发,重点讨论华北水利水电学院(以下简称“我校”)“锅炉原理”课程实践训练的目标定位、教学内容的设计和实施方法。

一、“锅炉原理”课程实践训练教学的定位

“锅炉原理”课程实践训练教学的定位必须符合我校热能与动力工程专业定位,应全面贯彻党的教育方针,遵循大学教育教学规律,秉承我校办学理念,实施“基础、实践、创新”三位一体的培养模式,在教育教学中,坚持夯实基础、强化实践、注重创新的思想,培养吃得苦、下得去和用得上的专业技术人才。应以“宽基础、强能力、高素质”为培养人才的宗旨,注重学生的动手能力、创新意识与能力的培养,加强实践性教学环节,优化教学方法与教学手段。专业实践能力培养始终围绕“强化实践教学、提高学生素质、培养创新意识、重在实际应用”的教学指导思想,从人才培养目标、实验教学体系、实验教学内容和方法、实验教学队伍、实验环境条件和实验室管理体制等方面进行了全方位的改革与建设,探索实现基础性验证实验、测定试验、创新性科研训练实验和拓宽知识面的演示实验的“四级实验”教学体系,实现教育创新。“锅炉原理”课程实践训练教学应实施从理论到实际、从传统到创新、从课堂到工程项目的工程化实践教学思想,围绕动脑想方案、动手做试验、动嘴讲成果、动笔写报告等“四动”能力,达到加深理论知识的掌握和应用,在实践训练中切实培养学生处理工程问题,进行锅炉设计计算和锅炉试验的实践能力。

二、“锅炉原理”课程实践训练教学内容的设计

“锅炉原理”课程实践训练教学内容尚无可参考材料,根据我校热能与动力工程专业人才培养和“锅炉原理”课程大纲的要求,基于我校的专业师资、实验室和实习资源以及用人单位和历届毕业生的建议,科学制定“锅炉原理”课程实践训练教学内容。

1.“锅炉原理”课程实践训练教学内容设计原则

对我校“锅炉原理”课程实践训练教学内容进行设计时,实行“工程化”设计思路,并遵循四个原则,即实践训练内容以“锅炉原理”为中心、内容进程科学有序化、内容设计层次化和实施方式多元化。

(1)以“锅炉原理”为中心,多课程之间紧密联系化。鉴于“锅炉原理”是热能与动力工程专业的最重要专业课,处于前期的专业基础课程以及后续课程之间的中心地位,因此在设计“锅炉原理”课程实践训练教学内容之前,先对我校“流体力学”、“工程热力学”、“传热学”和“燃烧学”等基础课以及后续专业选修课程比如“大型锅炉运行”、“单元机组集控运行”和“循环流化床燃烧技术”等课程的教学大纲、实验大纲、知识点讲授情况以及实践实验训练情况进行详细调查、分析和总结,做到了然于胸,确保“锅炉原理”课程实践训练教学内容设计与前期专业基础课程及后续专业选修课程的紧密联系,力求通过该课程实践训练,既可以巩固和加深学生对前期专业基础课的理解,加强对所学基础知识的实践应用,将所学的热工学知识、燃烧学知识在电站锅炉中加以应用,达到学生对锅炉原理中炉内燃烧、锅内传热及水动力和烟风阻力知识融会贯通、举一反三,为灵活应用打下坚实基础,又能激发学生学习后续专业选修课程的欲望和热情,培养学生学习后续课程的好奇心、主动性和积极性。

(2)实践训练课程内容进程科学有序化。“锅炉原理”课程本身知识点之间的顺序决定了课程实践训练教学内容的设计次序,要由浅入深、层层推进、由易到难,脉络清晰。因此,训练内容应严格按照锅炉原理本身的发展进行设计。内容主要包括客观认识实践、原理性演示验证实践和工程实践训练三大内容。

客观认识实践主要是对锅炉实物、锅炉机组整体模型、锅炉重要设备的直观认识,如在开设“锅炉原理”课程前进行电厂认识实习,对锅炉的实物直观认识,在“锅炉原理”课程第一节绪论课和锅炉组成课讲解后进行模型实验,通过模型参加实验、拆装模型和动画模型模拟巩固加深锅炉机组系统及组成知识。

原理性演示验证实践。笔者通过几年的“锅炉原理”教学发现,锅炉的水循环内容是该课程的难点之一,学生往往难以理解和掌握,通过课程原理性演示和实践可以帮助学生理解和掌握水循环等难点。该部分主要是对自然循环原理、直流锅炉原理等的演示验证实践内容。

工程实践试验主要是对锅炉的三大计算能力的训练实践,包括锅炉辅助计算、热力计算、水动力计算、烟风阻力计算和强度计算的实践训练、锅炉热平衡的实验和锅炉机组运行仿真实验训练。

(3)实践训练课程内容设计层次化。内容设计要贯穿层次化的思路,内容的难易程度要进行层次化设计,对训练中的每一个内容根据其在课程中的总体地位和重要程度按照“了解、理解、掌握”等不同层次进行分级定位;同时,根据学生个体水平的差异,对同一内容也要进行层次化设计,在满足分级定位要求和大部分学生学习基础上,对那些学有余力的学生进行进一步的拓宽设计。比如锅炉的计算,对于普通的学生则只要会进行锅炉的辅助计算、各受热面热力计算和简单的水循环计算即可,而对于部分学有余力的学生,则可更进一步进行较复杂的水动力计算、强度计算和烟风阻力计算,并完成一些计算程序的编制。 转贴于  (4)实施方式多元化。课程实践训练教学是实践性课程,因教学学时、实验室资源等多方面的因素,决定教学实施的方式必须多元化,即课堂、实验室和企业生产三位一体,课堂演示、实验室参观验证实践和电厂实践构成全方位多层次的实践训练。传统与现代先进技术结合,实践训练中采用比如计算机程序模拟、动画设计模拟实践、锅炉事故仿真模拟等先进技术手段实施实践训练。

2.“锅炉原理”课程实践训练教学具体内容设计

我校“锅炉原理”课程计划学时64学时,其中实验6学时。其前期基础课程包括“流体力学”、“工程热力学”、“传热学和燃烧学”,还开设了后续课程“锅炉运行”和“单元机组集控运行”。“锅炉原理”课程内容多、难点多、实践性强,“锅炉原理”课程通常设置有锅炉原理课程设计,我校“锅炉原理”课程设计时间为1.5周。实际上,仅靠课程设计和6学时的实践训练难以达到学生牢固掌握锅炉原理理论知识、灵活运用所学解决实际问题的目标。“锅炉原理”课程实践训练教学包括锅炉原理6学时实验课、1.5周课程设计、16学时单元机组集控运行实验,但主要利用学生的课余时间进行。教学过程贯穿第5至第8学期,延续2年时间,实践训练教学包括13个内容,90小时。具体内容和建议学时如下。

电站锅炉机组实物模型和虚拟模型实践,2学时。标准煤样工业分析验证性实验,4学时。混合煤工业分析测试实验,4学时。煤的发热量测定实验,2学时。自然循环锅炉工作原理实验,1学时。多管水循环验证实验,1学时。直流锅炉工作原理实验,1学时。锅炉综合测试项目设计实验,13学时。锅炉原理课程设计训练,32学时。锅炉水循环计算训练,10学时。锅炉烟风阻力计算训练,6学时。锅炉启停仿真训练,8学时。锅炉运行仿真训练,8学时。

三、“锅炉原理”课程实践训练教学实践

我校“锅炉原理”课程实践训练教学课题在2008提出,在2006、2007和2008年级开始实施,实践证明,通过“锅炉原理”课程实践训练教学,激发了学生学习专业知识的热情,巩固和加深了锅炉原理知识的理解,提高了学生的专业素质,培养了学生动脑想方案、动手做试验、动嘴讲成果、动笔写报告等“四动”能力。我们对2006和2007年级的学生进行锅炉实践能力的调查分析发现,无论是研究生复试(锅炉及锅炉相关知识的笔试和面试),还是就业面试(热工学和锅炉等口试)过程中,学生对锅炉相关考题从容自如,安之若素。当然,在教学内容设计方面还需进一步改进,实施的方式还需更科学合理。

参考文献

[1] 于广锁,林伟宁,梁钦锋.锅炉原理课程教学的探索与研究[J].化工高等教育,2007,(3):29-31.

[2] 赵雪峰.“电厂锅炉原理及设备”课程教学研究探讨[J].中国电力教育,2010,(22):97-98.

第3篇:工程热力学原理范文

关键词:传热学;教学改革;课程建设;创新能力

中图分类号:G642.0 文献标识码:A 文章编号:1007-0079(2014)33-0071-02

面对社会对人才培养的需求,2012年普通高等学校本科专业目录将建筑环境与设备工程专业、建筑智能设施(部分)、建筑节能技术与工程三个专业合并,调整为建筑环境与能源应用工程专业[1]。建筑环境与能源应用工程专业是工学土木类4个本科专业之一,与土木工程、建筑学、环境科学与工程、能源与动力工程等专业交叉,专业范围扩展为建筑环境控制、城市燃气应用、建筑节能、建筑设施智能技术等领域。

在“重基础、宽口径”的形势下,夯实基础、凝练特色、优化课程体系成为专业教学改革的核心问题之一。辽宁工业大学建筑环境与能源应用工程专业作为辽宁省普通高校本科重点支持专业,经过多年的发展,形成了“夯实专业基础、强化工程实践、注重创新、培养专业素质高和实践能力强的应用型工程技术人才”的专业特色。笔者所在的传热学课程教学团队在课程内容体系、教学方法改革等方面不断探索、实践。本文以辽宁工业大学建筑环境与能源应用工程专业为例,从传热学的课程定位出发对课程内容优化、案例分析的运用、新成果的吸纳、师资力量建设以及教学方法改革措施等进行探讨。

一、课程描述

1.在培养方案中的定位

传热学是建筑环境与能源工程专业的一门主干专业基础课[2],它建立在专业基础课工程热力学、流体力学之上,主要讲述建筑环境与能源应用工程专业所涵盖的暖通空调、供热工程、制冷技术、锅炉房工艺与设备等工程技术中共同的热量传递规律的科学。学生通过传热学课程的学习,可获得热量传递的基本理论、基本知识和基本技能以及传热计算的基本方法,培养学生的思维能力、分析和解决实际工程问题的能力,为学习后续课程打下必要的基础,并通过设计、实验、实习等实践教学的配合,掌握热工设备设计、提高能效等基本理论和方法,形成初步的工程实践能力。

2.与其他课程的关系

如果把本科生专业知识体系构建过程比作是教学生如何建造房子的过程[3],那么基础课和专业基础课是教会学生如何打造房子基础的过程,专业课就是教会学生如何在基础上建造各种房子的过程。传热学作为一门核心的专业基础课,其本质是一门科学,内容相对稳定,每一个进步都会带来技术上质的变化。剖析传热学课程与其他课程之间的关系,探讨教学与学生认知过程的契合,是提高教学质量的基础。

(1)与流体力学和工程热力学课程的关系。流体力学和工程热力学是传热学的先修课程。学生通过课程的学习掌握热现象中物质能量平衡的关系及流体流动过程的力学性质和边界特点。通过基本概念、基本理论和实际应用,为学生进入建筑环境与能源应用工程专业课学习打下坚实的基础知识。同时,积极引导学生对物理概念、物理现象本质的理解,培养学生科学的思维方法。

(2)与暖通空调、热质交换原理与设备、供热工程、制冷技术、锅炉房工艺与设备等专业课的关系。这五门课程的共性问题包括热量传递过程、换热设备的类型及适用范围、换热器的设计计算与校核计算、换热过程的强化与削弱等,上述理论知识均涵盖在传热学的教学内容中。在传热学教学过程中,应概述其基本理论在其他专业课中的应用,并结合相关专业工程实例掌握传热学的基本理论,帮助学生正确理解传热学在专业课学习中的重要性。

(3)与认识实习和生产实习的关系。传热学课堂教学安排在认识实习实践环节与生产实习实践环节之间。认识实习环节帮助学生认识各类换热器的形式和功能,生产实习环节安排冷热源系统中换热器运行调试的相关内容,帮助学生巩固课程所学的理论知识,并将理论与实践相结合。

(4)与课程设计和毕业设计的关系。传热学为课程设计和毕业设计实践环节提供围护结构传热计算及各类换热器(如散热器、地埋管换热器、空气处理机组、一次网/二次网换热器、蒸发器、冷凝器、余热回收装置等)设计计算的基本理论和基本方法。通过实际工程案例的引入,使学生体会相关理论和方法的应用过程,帮助学生初步形成分析、计算与解决工程问题的能力。

二、课程建设

在专业课程体系建设中,如果每门课都片面强调自身科学的、系统的、完整的、严密的体系,势必引起专业培养方案学时的不适当膨胀。因此,将整个专业知识结构设计成为一个科学的、系统的、完整的、严密的体系,所涉及的课程服从整个体系的需要,可以使每门课程在专业知识结构中起到恰如其分的作用。在上述思想的指导下,围绕传热学课程建设提出了如下措施:

1.突出建筑环境与能源应用工程专业中传热学共性的提炼

在绪论部分引导学生认识传热学的任务、基本要求及在专业学习中的重要性。通过对传热学功能与作用的阐述,帮助学生在专业知识体系中恰当定位。传热学作为具有百年历史的经典学科,内容极其丰富,也早已自成体系,核心理论包括传热的三大基本理论模块――导热、对流和辐射,外延理论模块包括凝结、沸腾和质交换。课程理论性和逻辑性强,符合学生学习活动的心理逻辑。根据上述特点,以能量守恒定律为主线,串联起导热、对流和辐射三个理论模块,适当涉及到凝结、沸腾和质交换等相关外延理论模块。按照热量传递机理、传热过程计算方法、增强或削弱传热措施等方面归纳三类基本传热方式的共同性与区别,以及在建筑环境与能源应用工程领域的典型应用。

2.提高案例分析在课程内容中的比重

传热学理论分析较多,公式复杂且难以理解,因此在理论教学中通过典型案例来揭示抽象理论更容易被学生接受。可以通过授课中案例导入、小结中典型案例分析应用以及布置大作业等不同的方式开展,使学生深入理解基本概念、原理,并学习如何利用课程理论与方法解决实际工程问题。

3.适时吸纳本学科的创新成果

随着传热学学科的不断发展,许多新成果不断被应用于建筑环境与能源应用工程领域,这些新的知识也逐渐被引入到传热学教学中。例如微尺度传热学、生物传热学,以及螺旋折流板、双斜内肋管、微肋管等新型换热设备。对于本科学生而言,对这些新概念、新现象、新设备的认识和理解有时是比较困难的,但与专业应用关联起来可以有效拓展学生的视野,助力创新性人才培养。

4.加强教师知识和能力

通过学习和研讨,让相关教师具备坚实的传热学、工程热力学、流体力学理论基础;具有专业全局观念,了解专业人才培养模式与规格要求,清楚专业课程体系及各门课程、各实践环节在人才培养方面的作用,掌握所承担的课程与其他课程或教学环节的衔接关系;具有丰富的工程实践经验,理解工程实践对人才能力的需求;了解学科前沿和发展动态,具有工程新技术研发能力。

三、课程教学方法改革

以突出学生主体性和专业学习的实用性为原则,在传热学授课过程中综合运用了启发式教学、案例教学等方法,旨在激发学生学习兴趣、提高教学效果。

1.启发式教学

改变传统专业基础课面面俱到的灌输式教学方法,转向适合学生认知过程的启发式教学方法。从基本概念到原理运用再到技术分析,层层递进,由教师引导学生一起去思考、分析和讨论问题,让学生在主动思考中掌握新知识,同时锻炼运用知识的能力。下面以传热学中“导热微分方程”一讲为例进行分析。

该讲包含大量的偏微分方程,内容抽象,教师在讲授时将重点放在分析导热微分方程及其各项的物理意义、推导的理论基础、如何简化与应用等方面。结合本专业典型的墙体导热过程,提出工程应用问题,即“如何计算在温差作用下由分子热运动产生的热量传递”;引出解决方法,即“物理模型―数学模型―求解”求解数学物理问题的一般方法和应用“能量守恒定律与傅里叶导热定律”的基本原理;阐述导热微分方程推导过程,剖析各项物理意义,例如“为热扩散项,表征的是单位时间内从x方向导入与导出微元体的净热量”;导热微分方程的应用,设定不同的墙体导热工程情景与学生讨论方程的简化条件,例如“导热系数是定值、无内热源、稳态”等等,启发学生建立导热微分方程的简化形式与高等数学中Poisson方程、Fourier方程、Laplace方程等的联系。

用这样一种启发式教学方法,使学生不仅理解了教材中理论性极强的推导过程,还能够使学生清楚为什么导热微分方程会有非稳态项、扩散项、源项以及什么时候可以省略,同时引导学生利用高等数学中的相关知识求解简单的导热微分方程。这样,教学过程不只是简单地教材重现,而是教材的导读与深化。教材是从抽象的概念和原理入门,再落实到实际应用;而教学要从实际问题出发,引出解决问题的方法,逐步掌握正确的概念和原理,进而形成普适性的抽象理念,二者的思路方向是相反的。

2.案例教学

传热学是一门与工程实践紧密联系的科学,有许多从生产实际中抽象简化出来的案例。案例教学可以从两个角度进行,一方面以案例为切入点,引出相关的概念、原理、技术等,可使教学内容更容易被学生接受,例如在“非稳态导热”一讲中可选择高温铁锭退火的案例;另一方面以根据实际案例分析讲解例题,展示给学生如何利用概念、原理、技术等解决实际问题,做到“授人以渔”。例如在“多层平壁导热”一讲中可选择外墙外保温系统传热系数计算及优化为案例。通过案例教学帮助学生举一反三、触类旁通,在有限的学时内达到较好的教学效果。

3.实践教学

实践教学是知识传授、创新能力培养的重要载体[4],也是传热学教学的重要组成部分。传热学中的实践教学主要体现在专业实验、课程设计、毕业设计三个环节。通过缜密的设计,建立三者之间的有机联系,减少部分验证实验和重复内容,适当增加创新性能力培养的相关内容,使学生尽快将专业知识应用与转化。安排必修实验教学8学时,其中基本型实验4学时、综合型实验4学时,开设选修创新型实验4个。供热工程、制冷技术、暖通空调、锅炉房工艺及设备等课程设计及毕业设计中涵盖了维护结构传热计算、各类换热器选型计算等。此外,鼓励学生参与专业教师的科研课题。通过产学研用的过程帮助学生完成感知、注意、记忆、理解、实践、创新的学习过程。

4.考核机制

课程的考核机制与课程理念是一致的,我们要考查的是学生对基本原理、概念和方法的掌握程度,而不是考查学生的计算能力。单一的闭卷考试模式已不适用,通过弹性的、多样的考核方式才能全面考查学生对概念的理解程度和分析问题的能力。笔者将传热学考核分为闭卷考试(60%)、实践环节(20%)、大作业(10%)和研究性学习(10%)四个部分。闭卷考试主要用于考查学生对课程的基本概念、基本理论和基本规律等基础知识的掌握程度,题目主要包括选择题、名词解释、简答题、计算题等,特别注意避免大段背书、背公式的情况。实践环节主要用于考查学生的动手能力、数据处理能力、团队协作能力等,通过专业实验操作及实验报告质量确定。大作业是案例教学的一部分,通过设计作业内容不仅训练学生对知识的运用熟练程度,还要训练学生的独立思考能力。研究性学习包括选修创新型实验、参与科研课题等形式,将其纳入到考核内容中来,可以调动学生学习积极性和主观能动性,为创新能力的培养提供平台。

5.双语教学

双语教学外语教学与学科内容相结合的体现,顺应高等教育国际化的需求。主讲教师国际化的教育背景为双语教学提供了条件。根据课程的内容、难易程度等因素,笔者选择了“绪论”、“太阳辐射”两讲开展了双语教学。学生对该教学方式比较认可,认为有利于理解专业术语、有利于国际交流和继续深造、学习有挑战性、课堂气氛活跃等,希望增加双语学习的机会。

四、结语

传热学是建筑环境与能源工程专业专业基础课的一枚基石,是学生解决工程实际问题的知识源泉。随着学科的不断发展、专业方向的不断调整,社会对专业人才需求的不断变化,类似传热学这样的专业基础课程的教学改革势在必行。只有在课程建设与教学方法改革的实践中不断摸索、研究和总结,才能使教学体系更科学、结构更合理,不断提高学生的基础知识储备水平,增强学生解决专业实践问题的能力,进而满足社会对人才培养质量的要求。

参考文献:

[1]高等学校建筑环境与设备工程学科专业指导委员会.高等学校建筑环境与能源应用工程本科指导性专业规范[M].北京:中国建筑工业出版社,2013:1-2.

[2]付祥钊,康侍民,卢军,等.培养建筑环境与设备工程通识型人才的探索[J].高等建筑教育,2008,17(6):30-34.

第4篇:工程热力学原理范文

1核心课程体系的构建

1.1核心课程体系构建的原则

钦州学院开设化学工程与工艺专业有良好的机遇,同时也有多方面的挑战。要办好钦州学院化学工程与工艺专业,贯彻学院打造五大品牌专业的精神,需要从紧密联系北部湾区域经济建设方面着眼,努力办出具有石化特色的化学工程与工艺专业,重点建立一套紧密结合石化下游产业链、注重过程开发和工程实践能力培养的核心课程体系。在核心课程设置方面,确立夯实专业基础、强化工程意识、注重实验技能、拓宽专业口径,注重石化特色的原则。 所谓化工过程,主要包含分离过程和反应过程两种过程。与这两种过程紧密相关的一系列化工类课程共同构成了化工类课程的核心。按照“门数适宜,重点突出,相互支撑,形成一体”的要求,选择化工热力学、分离工程、传递原理、反应工程和化工工艺学等五门理论课以及与这五门理论课相关的化工专业实验课作为核心课程,建设具有石化特色化学工程与工艺专业的核心课程体系,全力打造化学工程与工艺这一品牌专业。在这五门理论课程中,分离工程和反应工程分别研究各类分离过程和反应过程,它们构成了化工过程课程最核心的部分。化工热力学是化工过程研究、开发和设计的理论基础,是化学工程的重要分支之一,与化学反应工程、分离工程关系密切。化工热力学的核心价值在于研究过程进行的方向和限度,为分离过程和反应过程提供相平衡、反应平衡数据,并对化工过程进行热力学分析[1]。反应工程是与工程实际紧密联系的课程之一,它广泛地将化工热力学、化学动力学、流体力学、传热、传质以及生产工艺、环境保护、经济学等反面的理论知识和经验综合于工业反应器的结构和操作参数的设计和优化中[2]。

分离工程是化工专业基础课程,讲述的是如何将混合物进行分离与提纯的学科。作为专门研究分离方法的分离工程课程对学生工程素养的培养有很重要的作用。该课程阐明了化工分离过程的本质规律,重点研究分离方法的工业化途径,设备设计放大效应,最优分离路线的工业化,及最优操作条件。在选择具体分离方法时,不仅要考虑技术上的可行性、经济上的合理性,而且要考虑能耗、环保、设备放大和开发成本等诸多问题[3]。传递原理旨在研究化工动量、热量及质量(俗称三传)的传递现象,用一种统一的观点来处理三种传递现象,并研究动量、热量和质量传递之间的类似性,是研究分离机理、分离效率和宏观反应动力学的基础理论,同时也是反应器放大研究的基础理论之一。与化工热力学不同,传递原理是一门探讨传递速率的课程,它对过程开发、过程设计、生产操作、优化控制及过程机理研究都有重要的使用意义[4]。化工工艺学重在工艺过程的分析,即在特定条件下,进行分离过程、反应过程的比较选择、整合优化。化工工艺学是大学基础化学、化工热力学、化工动力学、反应工程、分离工程等专业基础可和专业课的综合运用。化工热力学和传递原理旨在加强专业基础,化工专业实验、反应工程和分离工程重在强化工程意识,化工工艺学拓展了专业适应面,可以突出石化特色。

2核心课程体系的优化

为了保障以上核心课程体系的顺利实施,建议结合钦州学院化学工程与工艺现有的教学计划,从下面几个方面作出适当的调整。

2.1加强数理基础教学力度,适度拓展

新世纪的工程人才必须有熟练应用数学、科学与工程等知识的能力,有进行设计、实验分析与数据处理的能力。在两年的教学实践中,学生普遍反映数理基础不够扎实,一些数学问题不知所云,比如热力学计算中要应用迭代法求解状态方程、精馏过程计算、反映工程中的偏微分方程求解等等,问题大都源于数学基础较薄弱。因此建议加开线性代数、运筹学、概率论与数理统计、数值计算、C程序语言、数学物理方法,流体力学等数理和计算机基础课程。多所兄弟院校也早就开设了这些基础课程。线性代数和运筹学的开设可以解决反应器设计过程的优化问题;概率论与数理统计是实验数据处理和理解反应工程中一些基本概念的基础;数值计算和C程序语言两门课程是工科学生重要的基础课程,加开这两门课程也是落实我校化学工程与工艺专业培养计划中对学生计算机水平的要求,对学生的就业能力的提高有好处;数学物理方法和流体力学是传递工程等课程的基础,加开这两门课程可以大大的提高学生工程数学能力,为就业和进一步深造打下更坚实的数理基础。考虑到Matlab在科学和工程计算领域的突出作用,建议开设Matlab在化工中的应用的相关课程[5]。化工热力学和化工原理是反应工程的基础,故将化工热力学和从第四、五学期调整至第三、四学期;化工原理和反应工程两门课程共同构成了化学工程最核心的部分课程,将化工原理从第四、五学期调整至第二、三学期,反应工程从第三学期调整至第五学期,也是考虑到化工原理是反应工程的基础。同时,将计算机模拟与仿真删去,将其中的知识分散到加开的MATLAB在化工中的应用和数值计算这两门课程中。从上表2中还可以看出,加开的课程中,突出了数理课程的基础,同时,适度的拓展经济和计算机相关的课程,也增加化工制图和电工学等实践性较强的课程,这对培养学生的工程实践能力是必不可少的。

2.2整合化工专业实验

为了整合学院教学资源,最大限度地利用现有的一切教学设备,建议从各门化学工程与工艺核心课程的专业实验中选出一些经典的、与石化行业紧密相关的进行重新编排,单独设置一门大学化工基础实验课程,分成三个学期展开教学。另外,考虑到传统的化工专业实验教材以单一验证实验为主,无法满足新世纪综合素质人才培养的要求,可将化工实验按由浅入深的原则划分成验证型实验、设计型实验和综合型实验三个层次。尽量精简验证型实验,增加设计型实验和综合型实验。可以从教师的一些科研项目中选出一部分让学生参与,将这些项目设计成设计型或综合型实验,这样,通过学生的亲身体验科研过程,培养了正确的科研习惯,为学生的就业和进一步的深造打下好的基础。

第5篇:工程热力学原理范文

什么是热能与动力工程?

我们可以从字面上对本专业名字进行一下拆解,其实就是热能、动力、工程。首先是工程,因此本专业就是一个工科专业,如果你希望获得诺贝尔物理奖、化学奖这些理科方面的成就的话,你就不要再把你的眼光停留在这个专业上了。其次就是热能与动力,因此只要工程中涉及到热(或冷)、能量、能源、动力等这些问题时,这个专业几乎都能解决。因此它的就业面非常的广,大到热电厂、核电厂,飞机、船舶、汽车的发动机设计,小到电子设备冷却等,厉害到航天飞行器的热管理、热回收,一般到家用空调、冰箱的设计。我们这专业无处不在。

那你也许有疑问,就业面这么广,是不是学习很累?其实也未必。目前,拥有这个专业的高校有很多,比如清华大学、西安交通大学、上海交通大学、中国科学技术大学、华中科技大学、浙江大学等一些顶尖大学,一般的有比如南京航空航天大学等这些“211工程”大学,普通的比如南京工程学院等。不同的高校,学的侧重点也会有所不同。比如东南大学侧重的是电力领域,北京航空航天大学侧重的就是航空航天领域,江苏大学侧重的是流体机械领域,还有一些大学侧重的可能是制冷、空调这些领域。但是无论你大学里学的侧重哪个领域,就业时也可以再次选择。比如在大学你学的是侧重制冷领域的,以后就业时你也可以去电力领域,因为本科学到的专业的基础都是一样的。

都要学点什么?

这个问题很好回答,因为我的八年时间就是在不停上课、自习、实验、写论文中度过的。刚进大学,学校的一些权威教授就会给你讲述一下什么是热能动力工程,其实和我上面说的也差不多。当然你可以通过他们了解到一些细节,不过那时的你估计还并不能完全理解。

在大一一年、大二上半年这段时间内估计接触不到我们专业的很多东西,这一年半,主要就学习外语、高等数学、线性代数、大学物理等一些公共基础课,这时候还是高中向大学的过渡阶段,学习也需要认真、需要做题,但不会像高中那么累。这时候的基础需要打牢,但不要和高中一样,尽做难题,应该以掌握基础知识为主要任务。因为这些内容的学习主要是服务后期的专业课学习的,因为我们专业是工科,不需要像理科一样。同时,课余时间可以去参加参加活动,培养一项兴趣爱好,这会使你终身受益。

在公共基础课程学习中,还会学习一些机械、弱电方面的基础知识,比如机械制图、电工电子学等。为什么学习这些课程呢?因为在我们的专业课中经常会出现机械和电子这些领域的一些专业知识。因此作为未来的热能工程师,不仅要有扎实的能源方面的基础知识,还得学会看机械图和知道一些自动化的原理。所以学习还是比较苦的。不过也不要太担心,因为其他专业只要掌握一些原理知识就行了。

无论你在哪个高校学习,无论你将来侧重哪个领域的工作,专业基础课是必须要学好的。虽然不同的高校在公共基础课和专业课的设置上会有些不同,但流体力学、工程热力学、传热学这三门大课是大家一致认同的专业基础课。工程热力学这么课相对来说简单,因为在大学物理课上都有所介绍,学起来也不是太累,而且得高分的概率很大。流体力学和传热学是两门新课,学起来也会有点压力,且流体力学又是传热学的基础,因此这两门课都需要认真对待。同时这两门课又对你的就业、考研和将来的科研帮助极大。在专业基础课学完后,就可以学专业课了,比如主要有涡轮机原理、锅炉原理、电厂设备、热力系统等。这些课程的名字虽然比较拗口,但实际上学起来并不太难,因为专业课主要破解的就是一些原理问题。涡轮机是一种原动机,主要通过叶片的转动将气体的热能转换成机械能,从而带动发电机或作为飞机的动力。涡轮机原理这课一直被认为是所有专业课中比较难的一门,因为课程里面几乎涵盖了所有的专业基础课。但由于涡轮应用范围广,相应的就业机会大,获得的报酬多,因此受到大部分热能工程师的青睐,因此如果你以后致力于涡轮机方面的工作,基础课的学习绝对不可以偷懒。

工科除了理论知识的学习,还有不少的实习需要去完成。去大中型电厂实习,是大三、大四时的主要任务。说是去实习,其实也就是去参观一下而已,从而了解电厂的流程。很多人认为女生去学工科很累,其实也未必。学工科的女生比较少,因此受关注也会多一点,谈恋爱的机会也会大很多。而且女生比较刻苦,获得保送研究生的机会也大。现在的工科已经不是大家想象的那样了,满脸油污、力大如牛这些词已经不合适了。在电厂,大部分时间你只要按个按钮就行了,因此这些工作同样适合女生。因此热能与动力工程这个专业适合所有人群。

到了研究生阶段,还会有高等工程热力学、高等流体力学、高等传热学、燃烧学、计算热物理等课程,研究手段主要有理论研究、实验研究和计算机模拟,利用这三种研究手段去解决一些工程中的问题,是热能与动力工程专业研究生的主要任务。

就业、再升学情景如何?

之前已经提及我们这个专业就业面是非常广的,虽然有时我们也感慨我们是一群“丝”,但我还没听说有失业的,就连四年在网吧度过的哥们都可以找到工作。本科一般都会把我们专业命名为热能与动力工程,虽然也分方向,比如电厂方向、制冷方向等,但就业不受很大影响。到了研究生,我们这个专业的大名就叫做动力工程及工程热物理专业,底下又分为工程热物理、热能工程、制冷、动力机械、流体机械、车辆工程等一些小方向,又根据不同的导师会有不同的研究方向。但无论怎么细化,专业基础课还是一样的。因此工作时改方向也比较容易。

第6篇:工程热力学原理范文

关键词: 化工计算 VisualBasic 软件开发

化工计算通常是很复杂的,化工专业的多门课程,如化工热力学、分离工程、化工原理实验等,都牵涉到大量的化工计算。这些课程是学生在学习过程中非常畏惧的,同时,复杂的计算是老师在讲授过程中的一大难题。复杂的化工计算过程,通常都是通过计算机程序实现的,在这方面,还没有一个能够很好地满足广大师生教学需要的软件,这就给教学带来比较大的困难。

对于高校教学来说,需要程序实现两个功能:一是计算功能,二是教学功能,即学生在使用软件的计算过程中,软件可以提供适当的提示、注释、指导,达到计算和教学的双重目的。目前,针对化工计算的成熟软件,如Aspen Plus等,主要针对的是化工行业的工作者和有一定基础的研究人员,其功能以计算为主,使用者并不能通过软件了解各类计算的详细原理和方法,不能对化工专业的学生或是初学者起到作用。而且,此类软件使用费非常昂贵,一年的使用费就需上万元,超出很多高校、科研机构的承受范围。因此,自主开发一套简单实用、适合于本科教学的化工计算软件具有非常重要的意义。一旦软件开发成功,则既能强化教学效果,又能节省资金。

笔者自主开发了一套适用于化工热力学和化工原理实验本科教学的化工计算软件,基本完成了该学科本科阶段中的各类复杂计算,同时,用程序处理化工计算过程,可以让学生的精力从繁复的计算过程中解放,更多地关注计算原理和实验内容本身,从而对教学起到积极的辅助作用,达到良好的教学效果。

1.软件的主要内容

本程序以Visual Basic为工具开发的具有可视化界面的化工计算程序。该程序可直接在windows操作平台使用,界面友好,操作简单,运行可靠稳定。内容包括《化工热力学》课程中大部分较为复杂的计算程序,以及一些重要的化工原理实验的数据处理程序。此外,本程序的帮助部分还提供了软件使用的视频说明,可解答学生在使用中的问题,帮助学生更深刻地理解课程内容。

2.程序的结构及主要功能

本程序用VB语言编写,运行操作系统环境是windowsXP/windows7/windows8操作系统。通过主界面进入科目选择(化工热力学或化工原理实验),并选择要计算的内容,输入相应数据或参数,即可获得计算结果,并根据用户需要,提供计算的流程图、详细步骤和原理提示性文字等,达到人机互动的效果。程序结构如图1所示:

图1 软件流程图

程序的主界面分为标题栏、菜单栏、工具栏、工作区和状态栏。其中,菜单栏里的各项的内容包括:系统、科目选择、设置字体、显示、工具、帮助等选项,具体功能如下:

2.1化工热力学计算模块

化工热力学计算模块主要包括:真实气体及混合物状态方程(EOS)的计算、真实气体逸度及逸度系数的计算、真实液体混合物活度系数的计算和气液平衡体系泡露点的计算四个部分,每部分有几个不同的分支,在科目选择界面选择相应选项进入计算界面。

考虑到化工热力学所涉及的计算问题较复杂,计算工作量大,且待解变量之间的关系往往不能用显函数形式表达,需要用迭代计算,因此学生在实际学习过程中往往会迷失在局部的计算中,难以把握整个计算的流程。作为一款教学软件,本软件在设计时有以下特色。

2.1.1加入了“查看流程图”的按钮。此按钮的目的是让使用者(学生)在计算过程中随时查看整个计算的思路,了解计算过程中每个参数的意义。

2.1.2可供选择的计算模式。对于部分需要迭代运算的过程,程序提供了“自动迭代”和“手动迭代”两种模式。对于化工专业的从业人员、老师和对原理比较熟悉的学生,可以选择“自动迭代”,程序会尽可能地减少中间的停顿次数(需要进一步输入参数除外),直接给出最后的计算结果,这种模式适合以应用、研究为目的的计算。如果是初学者,如刚接触化工热力学课程的化工专业学生,则可以选择“手动迭代”。此时程序会在必要时暂停并弹窗,对已完成的计算进行简单的解释,并对下一步的计算给出必要的提示,让使用者参与到计算的步骤中,加深对相关知识点的理解。

2.1.3具体计算步骤的显示。程序中大多数的复杂计算都是在后成的,最后呈现在使用者面前的仅仅是一个最后结果。程序在计算结束后提供了“是否查看计算(迭代)过程”的选项,点击“是”后可以查看具体的数据处理过程,如迭代次数和每一步迭代的结果等。

以本模块下的“RK方程”计算程序为例:

进入此界面时,用户可选择迭代方式,并在对应的文本框里输入方程的参数,点击“计算”按钮。如果选择的是“自动迭代”,则程序将自动进行迭代计算,并在计算结束后弹窗询问是否查看迭代过程,用户可根据自身需要选择是否查看。自动迭代的数据可以保存至txt文本,方便用户查看。

若选择手动迭代,点击“计算”按钮后,会弹出提示窗口,用户按照提示进行下一步操作,每次点击“计算”按钮后,都会出现提示窗口,引导使用者逐步完成整个计算过程。用户熟练使用后,可选择不再显示该提示窗口。

此外,在程序运行的任何时候,随时都可点击“计算流程图”,查看计算的基本步骤,方便使用者深入理解方程的原理。

2.2化工原理实验计算模块

化工原理计算模块包括:传热实验、干燥速率曲线测定、恒压过滤常数测定、离心泵特性曲线测定、流体流动阻力的测定、CO2吸收实验、转盘塔萃取实验等七个实验。

在化工原理实验模块中,主界面为数据输入、输出窗口,并附有装置图,提供实验管路模型的直观展示。使用者点击上方菜单栏的“设置实验参数”,或者直接在工具栏点击“设置”按钮,设置好实验参数后,在数据输入窗口中输入实验数据,点击计算,即可自动输出实验结果。化工原理实验相对而言计算本身并不是很复杂,其更重视的是对实验原理的理解。因此,本软件区别于其他数据处理软件的特色在于计算完成后的“显示数据处理过程”。以传热实验为例:

在本实验的处理程序中,可以解决以下问题:

2.2.1计算出冷、热流体在相应温度下的比热容。

2.2.2在实验条件流量下,计算出单位时间冷流体吸收的热量、热流体传递的热量。

2.2.3计算出流体的对数平均传热动力。

2.2.4计算出传热系数K。

2.2.5查看数据处理的详细步骤。

2.3其他功能

2.3.1字体:主要用于设置化工原理实验数据处理结果的字体相关属性,方便查看。

2.3.2显示原始数据:在显示实验数据处理结果(过程)后,显示原始数据。

2.3.3调用程序:用于化工热力学方程之间的调用,求出必要的参数。

2.3.4数据处理结果(过程)的保存:将化工热力学方程参数、计算结果、迭代过程保存于txt文件。

2.3.5操作提示:软件在必要的地方弹出窗口,提示用户下一步操作。

2.3.6视频帮助:在“帮助”菜单选项下,有“视频演示”功能菜单,供用户查看相关演示视频,了解软件操作。

此外,由于本程序面向的主要用户是化工热力学、化工原理的初学者,因此在输入数据时,由于原理不熟、概念不清而导致的非法输入有很多。为了保证程序的正常运行,程序会检查输入所有数据的有效性,避免程序非正常退出,并适当给出提示,帮助使用者理解计算(实验)原理。

3.软件实际使用效果的反馈和展望

本软件经徐州工程学院化学化工学院2011级化学工程与工艺专业的学生试用,效果良好,学生对化工计算的畏惧之心大减,提高了学习化工专业的兴趣。同时,学生在使用过程中也提出了一些建议,其中一部分已经在最新版本的程序中得以落实。

在后续更新中,将增加作图功能,软件可自动根据实验数据处理结果,画出相应的曲线图,并实现坐标范围值的自由选择和图形的放大缩小,进一步完善软件的功能,提高软件的实用性。

参考文献:

[1]具有可视化界面的化工计算软件开发[J].国外建材科技,2004(25):131-133.

[2]马沛生,李永红.化工热力学(第二版)[M].化工工业出版社,2010.

[3]赫文秀,王亚雄.化工原理实验[M].化学工业出版社,2010.

[4]石连栓,张涛,李立宗.VB程序设计实训[M].清华大学出版社,2005.

第7篇:工程热力学原理范文

1原始数据

1)原材料状态,见表1。2)原材料牌号:略。3)零件的原生产工艺流程:下料机械加工磷化低温去应力冷缩、扩孔去应力正火调质机械加工镀铬性能试验装配(零件示意图见图1)。4)零件产生裂纹部位的金相组织,见图2。5)零件的几种典型裂纹(零件经最终热处理)。a.零件号11177机加工后,在喇叭口与准A(见图1)过渡的地方出现一条长34mm的裂纹,贯通壁厚(1#,试样保存号)。b.零件号11275机加工后,在准B(见图1)的外表面出现一条长40mm的裂纹(2#,试样保存号)。c.零件号11148镀铬后,经性能试验,用光学检查,在喇叭口与准A(见图1)过渡的地方出现了3条内膛裂纹,长度分别为3mm、2.5mm、2mm的断续细小裂纹(3#,试样保存号)。d.零件号11074镀铬后,经性能试验,发现内膛弊病。后退铬,经光学检查,在准A(见图1)内膛出现长度150mm的断续细小裂纹(4#,试样保存号)。

2裂纹试验、分析

1)该批次零件裂纹都是产生在冷缩、扩口工序之后,调质工序之前。2)炉号5B451原材料为热轧状态供货。冷缩、扩口前的低温去应力热处理工艺,由于温度低,未起到软化作用。3)分析裂纹产生原因:冷缩、扩口应力;管材存在允许的表面缺陷。详见表2。

3热处理工艺试验、金相分析及力学性能测试

3.1创新热处理工艺试验为了杜绝零件裂纹的产生,零件新的生产工艺流程如下:下料机械加工磷化完全退火冷缩、扩口正火调质机械加工镀铬性能试验装配(即在冷缩、扩口工序前增加了一道完全退火的热处理工艺)。

3.2金相分析及力学性能测试对新、旧工艺流程生产的零件在冷缩、扩口工序前进行金相分析,见图3及表3。从金相照片对比可以看出,通过采用创新的热处理工艺后,零件金相组织中的网状渗碳体(碳化物)完全消失了,即其金相组织为F+P。这对冷缩、扩口工序来说,是一个非常优秀的金相组织。另外,从力学性能测试对比,也可以明显看出增加一道完全退火热处理工艺的作用。该创新热处理工艺应用于批量生产,零件冷缩、扩口后再没有出现裂纹现象。

4结论

第8篇:工程热力学原理范文

关键词:Aspen;化工热力学教学;p-V-T关系;状态方程

中图分类号:G642.4 文献标志码:A 文章编号:1674-9324(2016)21-0214-03

一、引言

化工热力学是化学工程的基础学科,是化学工程与工艺专业的必修课程,在化学工程的教学过程中占有极其重要的地位。

学习化工热力学课程的目的是为了解决实际问题,物性数据的计算是本课程的重要内容,因为过程工程的研究、设计、操作与优化中都离不开物性数据。例如,为蒸馏、萃取、结晶等分离过程提供基础数据;从容易测量的性质推算难测量的性质;从温和条件的物性数据推算航天发射、深潜高压等苛刻条件下所需的物性数据等等。

化工热力学的研究对象更接近实际过程,实际过程所涉及的系统如此复杂,温度、压力范围如此宽广,化学工程师们不能再依靠简单的理想气体或理想溶液模型来计算物性了,而是需要适用范围更广、准确性更好、复杂性更高的模型,如PR等状态方程,借助商业化的化工流程模拟软件Aspen来促进化工热力学教学是一个很好的选择,对促进学生掌握概念,强化基础,提高应用能力具有重要作用。同时对后续的化工设计、化工计算等课程的教学十分有益。化工热力学教学中引入Aspen具有如下优点:

1.Aspen软件中物性计算原理与本课程热力学性质的计算原理是一致的,用该软件辅助热力学教学,能提高教学效率,简化计算过程,激发学生的学习兴趣。另一方面,也能使学生掌握Aspen软件物性计算原理的内核,了解更多的基础数据来源,提高应用能力,真正掌握“核心技术”,不至于再像从前那样,只知计算结果,不知计算原理,不明所用的模型,不能分析结果。

2.国内许多高校的后续课程,如化工设计、化工计算等教学中也开始采用Aspen辅助教学,化工热力学作为这些课程的基础,采用Aspen进行热力学性质计算,无疑会使得后续课程的基础更加扎实。

用Aspen软件指导化工热力学的教学过程,在发达国家也受到高度重视,如Sandler等也出版了相关的教学指导材料[1]。但国内的化工热力学教学与国外教学有相当的差异性,如,国内的教学课时数较少,教材内容更紧凑,因此,引入化学物性计算软件来提高教学效率更加重要。

在之前的文章中已经就Aspen软件辅助[2,3]化工热力学教学进行简单探索,但存在和课本知识与课堂教学不能较好匹配的问题,因此我们将基于Aspen软件,结合化工热力学课程教学,演示完成化工热力学性质计算过程,包括典型的流体性质,如p-V-T性质、焓、熵、热容、逸度、相平衡、稳定流动及循环过程的模拟计算等,能较全面地辅助化工热力学为教学过程,是展示化学热力学在相关过程中的应用,提升教学效果的一种尝试。

本文用PR方程完成流体p-V-T性质计算。

二、流体p-V-T性质计算的原理

状态方程是物质p-V-T关系的解析式。以经典的立方型状态方程PR方程[4]为例,该方程描述为

其中,ai与bi是混合物中纯组分I的模型参数,kij是二元相互作用参数[5],其数值一般从混合物的实验数据拟合得到,也可以通过从混合物的第二virial系数的数据来决定。

计算由Aspen自带的数据库就能提供相关的临界参数等物性数据,以完成物性的推算。

三、流体的p-V-T性质计算

本文采用《化工热力学》[6]中的两个实例,对Aspen计算过程进行简要说明。

实例一选自《化工热力学》例题2-3,用PR方程计算异丁烷在380K的饱和气、液相摩尔体积。利用Aspen计算过程如下:

1.启动Aspen Plus User Interface,选择Run type为Property analysis。

2.在Components>Specifications>Selection下设定组分为异丁烷。

3.在Property>Specifications>Global>Base method下选择状态方程为PENG-ROB。

4.在Property>Prop-Sets下新建一个物性集“PS-1”,在Property>Prop-Sets>PS-1>Properties下设定物性参数V,在Property>Prop-Sets>PS-1>Qualifiers设定Phase为Liquid和Vapor。

5.在Property>Analysis下新建一个物性分析“PT-1”,Select Type选择GENERIC。

6.在Property>Analysis>PT-1>System下选择Point(s) without flash,输入异丁烷的摩尔流量为1kmol/hr。

7.在Property>Analysis>PT-1>Variable下输入温度为380K,在Adjusted variables下选择Variable为Pressure,随后点击Range/List,输入压力值为22.5bar。

8.在Property>Analysis>PT-1>Tabulate下选择第5步建立的物性集PS-1。

9.点击NEXT,计算完毕,在Results查看结果。

将实例一的计算结果与教材结果对比,整理后如下表所示:

由此可见,Aspen计算结果与实验值相差较小,在误差允许范围内。因此可认为计算结果可靠。

实例二选自《化工热力学》例2-4,用PR方程计算由R12(CCl2F2)和R22(CHClF2)等物质的量的混合气体在400K和1MPa,2MPa,3MPa,4MPa,5MPa时的摩尔体积。并假定二元交互参数kij为0。

该例在Aspen中的操作上与实例一基本一致,具体过程如图1所示:

将实例二的计算结果与教材结果对比,整理后如下表所示:

由此可见,Aspen计算结果与教材值相差较小,在误差允许范围内。因此可认为计算结果可靠。

四、讨论

在用Aspen计算上述两个实例时,需要注意以下几点:

1.在进行计算前,应先了解温度、压力等基本单位。在Setup>Specifications>Global下,可以设定输入以及输出的单位,在本例中,选用了SI-CABR单位集,默认温度单位为℃,压力单位为bar。

2.在实例二的计算中,题目中已假定两物质的二元交互参数kij为0,因此在选好状态方程后,可以在Property>Parameters>Binary Interaction>PRKBV-1中,查看各组分的二元交互参数,在Aspen中,PR方程中的kij由三个参数进行描述,即,可以看到在Aspen中R12与R22的这三个参数的默认值均为0,符合计算要求。而在实际生产中,可通过利用实验数据得到回归值,在相关位置进行修改后,使得计算值更贴近实际值。

3.实际过程测定混合物性质需要花费大量人力、物力和时间,但用Aspen软件和化工热力学原理,推算混合物的性质具有准确、高效的特点。

五、结论

利用Aspen软件进行流体p-V-T性质计算,操作步骤简单易行,计算结果比较准确。可以使学生对求体积根、混合法则的应用等方面有更深的理解,有利于教学过程。同时,进一步掌握了Aspen软件的内核,还可以实现利用Aspen完成物性数据的计算,将化工过程的基础计算、流程模拟统一起来,利用一个专业软件解决多个课程的问题,增加将来在工作中应用物性推算解决实际问题的能力。

参考文献:

[1]Sandler S I. Using Aspen Plus in Thermodynamics Instruction:A Step-by-Step Guide [M].New Jersey:John Wiley & Sons,Inc,2015.

[2]陈新志,赵倩,钱超.基于Aspen-Plus的化工热力学教学(Ⅰ)均相性质计算[J].化工高等教育,2011,(05):75-79.

[3]陈新志,赵倩,钱超.基于Aspen-Plus的化工热力学教学(Ⅱ)纯物质饱和性质计算[J].化工高等教育,2011,28(06):58-60.

[4]Peng D Y,Robinson D B. A New Two-Constant Equation of State[J]. Industrial & Engineering Chemistry Fundamentals,1976,15(1):59-64.

第9篇:工程热力学原理范文

关键词: 工程热力学 教学方法 模块化教学 案例教学

1.引言

工程热力学是一门重要的技术基础课,是数学、物理和专业课的桥梁。它不仅为学生以后学习有关专业课打好基础,而且是今后能源,特别是热能在各领域被深入研究、开发、创新的基础[1]。课程理论性强、内容抽象、公式繁多、实际应用复杂,并且与高等数学、物理等学科联系紧密,而学时被大量缩减,使得其成为学生公认的“难啃的硬骨头”。由Y.A.Cengel编著的热力学教材明确指出“用简单而准确的方式与明天的工程师开展直接的对话,鼓励他们的创新思维及培养他们对所学习内容的深刻理解[2]”。为了达到这样的目标,结合课程的性质、目标,广大教师一直在努力探索与研究。本文是笔者多年教学中的一些体会总结,供专家、学者批评、指正。

2.模块化教学

工程热力学课程教学中遵循“以应用为目的,以必需够用为度”的原则,注重基础知识、基本定律、基本技能的学习,提炼实用性教学模块,模块与模块之间既相互区别,又有机联系在一起。学生对于整个课程的脉络、主线非常清楚,并且清楚自己在每一阶段的学习任务与目标。

2.1基础理论模块

2.1.1基本概念:开口系、闭口系、绝热系、孤立系;平衡态与准平衡态;准静态过程、可逆过程与不可逆过程;可逆过程的功量、热量;卡诺循环、概括性卡诺循环;体积功、技术功、推动功、流动功、有用功、轴功、耗功;热力学能、焓、熵、熵流、熵产;比定压热容、比定容热容;增压比、压缩比、预胀比等等。在教学中,教师应深入浅出,用浅显而又确切的语言、生活实例,帮助学生理解这些基本概念的定义,包括外延、内涵,及其物理意义。

2.1.2基本定律:热力学第一定律和热力学第二定律。

基本定律是工程热力学课程的理论基础、精髓,贯穿课程始终。教学中须使学生深刻理解热力学第一定律的实质,“量”守恒;热力学第二定律实质,能量不但有“量”的多少,而且有“质”的高低。用能的原则应该是不同品质的能量匹配使用,避免高品质能无谓地转化为低品质能。自古以来,永动机一直有人推崇,要使学生意识到任何试图制造热效率y≥100%的机器都是徒劳的,都是违反热力学第一定律和热力学第二定律的。

2.1.3转换内外条件:工质的热力性质与热力过程。

研究热力过程的目的在于揭示过程中工质状态参数的变化规律,以及能量转化情况,进而找出影响转化的主要原因,找到节能途径。

2.2工程应用模块

重点介绍压气机、动力循环,而制冷循环则作简要介绍。对这一部分内容的学习,应着重采用讨论等方法,引导学生运用所学基础知识进行分析\计算,从而加深对课程内容系统地理解、掌握,提高其热力分析、热力计算的能力。

3.理论联系实际,案例教学

热力学是学生公认的“难啃的硬骨头”,期末考试及格率不甚理想。但是确切地说,工程热力学却是基于我们日常生活、实验观测基础之上的一门学科,并不是很难的课题。讲课中,理论联系实际,利用案例教学,既使学生感到工程热力学并非遥不可及,取得良好的教学效果,又能培养学生理论联系实际的习惯。讲授可逆过程概念时,以物理学中的单摆在真空中、空气中为例或以在气缸的活塞上移走砝码、沙子为例,阐述可逆过程的特点、实质;区分准静态过程与可逆过程、不可逆过程;进一步说明没有耗散效应的准静态过程才是可逆过程;不可逆过程并不意味着不能向相反方向进行。讲授热力学第二定律时,以航海为例,若轮船没有燃料时,试图从大海吸热,使之转化为功,实质就是从单一热源吸热使之完全转化为功,即第二类永动机,这也是不可能实现的。

4.巧妙合理地运用p-v图、T-s图

p-v图、T-s图是进行热力分析、热力计算的重要工具,应贯穿工程热力学课程始终。合理运用p-v图、T-s图教学,能准确或定性地描述基本概念、理论及工程现象;巧妙地分析、比较热力过程、热力循环;提高学生运用工程图形语言巧妙、形象、直观地分析问题、解决问题的能力。以单级活塞式压气机为例,应用p-v图、T-s图,做耗功分析及热力性能分析,进而找到省功及节能途径,既避免了数学上复杂的运算,又提高了学生灵活运用图形分析工程现象的能力。

5.基本理论及定律的内涵渗透

“在课程的讲授中,教师非常注重从基本理论及定律的内涵渗透,原理、定律的本质内涵出发,解决各类实际问题[3]”。这是美国同行极其重视的教学方法,实践证明是行之有效的。以理想气体热力过程膨胀功的求解为例,具体公式有十多个,学生学起来,既难记又容易混淆。若从膨胀功定义式、热力学第一定律、理想气体状态方程这些基本定律、基本公式出发,结合过程特点,就可解决所有问题,并且避免学生遇到问题仅会生搬硬套,遇到复杂问题就无从下手的弊端。

6.结语

工程热力学课程博大精深,每上一次课就有一次新的体会与收获,教师应与时俱进,做到“常教常新、常教常精”。这样使明天的工程师对物理问题及其规律有一个清楚的认识与掌握,从而解决更为复杂的问题。

参考文献:

[1]童钧耕.工程热力学课程教学改革的几点看法[J].中国电力教育,2002(4).