公务员期刊网 精选范文 半导体光电技术范文

半导体光电技术精选(九篇)

半导体光电技术

第1篇:半导体光电技术范文

作者:李俊杰 单位:贵州大学科技学院电子信息科学与技术

第一电子科学与技术对于国家经济发展、科技进步和国防建设都具有重要的战略意义。今天,面对电子科学与技术的迅猛发展,世界上许多发达国家,像美国、德国、日本、英国、法国等,都竞相将微电子技术和光电子技术引入国家发展计划。我国对微电子技术和光电子技术的研究给予了高度重视,在多项部级战略性科技计划中,如“863计划”、“973计划”、国家攻关计划中微电子技术(集成电路技术)和光电子技术(激光技术)都有立项;1995年,原电子工业部提出了“九五”集成电路发展战略,并实施了“909工程”;国家自然科学基金委员会在1996年底立项开展“光子学与光子技术发展战略”研究;在“九五”和“十五”期间,国家自然科学基金委员会在重大、重点和杰出青年基金中对电子科学与技术方面的立项给予了足够的重视和支持。在全国电子科学与技术的科研、教学、生产和使用单位的共同努力下,我国已经形成了门类齐全、水平先进、应用广泛的微电子和光电子技术的科学研究领域,并在产业化方面形成了一定规模,取得了可喜的进步,为我国的科学技术、国民经济和国防建设做出了积极贡献,在国际上了也争得了一席之地。但是我们应该清醒地看到,在电子科学与技术领域,我国与世界上发达国家的先进水平仍有不小的差距,特别在微电子技术方面的差距更大。这既有历史、体制、技术、工艺和资金方面的原因,也有各个层次所需专业人才短缺的原因。为了我国电子科学与技术事业的可持续发展和抢占该领域中高新技术的制高点,就必须统筹教育、科研、开发、人才、资金和市场等各种资源和要素,其中人才培养是极其重要的一个环节。在新的历史条件下,开展电子科学与技术专业发展战略研究是非常必要的,这对于建立学科专业规范,培养出具有知识、能力、素质协调发展的,适合我国电子科学与技术领域不同层次发展要求的有用人才具有重要指导意义和战略意义。二、电子科学与技术专业发展简史电子科学与技术专业中微电子技术和光电子技术的前身是半导体专业和激光专业。

1947年美国贝尔实验室发明了晶体管,开创了固体电子技术时代。根据国外发展电子器件的进程,我国在1956年提出了“向科学进军”,将半导体技术列为重点发展的领域之一。同年,中科院应用物理所首先举办了半导体器件短期培训班,请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。由北京大学、复旦大学、吉林大学、厦门大学和南京大学五所大学联合开办了半导体物理专业;在工科院校,清华大学率先开办了半导体专业。1957年,中国科学院在长春建立了第一个光学精密仪器机械研究所。

1964年,中国科学院在上海建立了当时世界上第一所激光技术专业研究所──上海光学精密机械研究所。电子工业部成立了从事激光与红外研究的11所等。这些国家研究所是早期培养光电子技术高层次研究型人才的摇篮。到了1970年前后,随着对半导体器件需求量的增加,尤其是大型电子计算机对集成电路需求的推动,促进了国内半导体工业的发展以及对专业人才的需求,全国很多高校都先后增加了半导体物理与器件专业。进入20世纪80年代,由于国内半导体器件和集成电路生产还缺乏竞争力,受到进口元器件的冲击,很多半导体器件厂下马或转产,市场不景气导致了很多高校的半导体专业被迫取消,专业萎缩。进入20世纪90年代,由于微型计算机、通信、家电等信息产业的发展和普及,对集成电路芯片的需求量越来越大,此外几场局部战争让全世界接受了电子战、信息战的高科技战争的理念。微电子技术得到了前所未有的重视,半导体技术专业由此更名为微电子技术专业。为了在信息时代和高科技领域赶上国际先进水平,国家加大了对微电子技术行业的支持力度,并不断吸引外资,市场对微电子技术专业毕业生的需求不断增加,从而迎来了微电子技术专业发展的新高峰。随着20世纪60年代激光技术的飞速发展,我国在1971年,由清华大学、北京大学、天津大学、中国科技大学、哈尔滨工业大学、西北电讯工程学院、北京工业学院、华中工学院、成都电讯工程学院等院校在科学研究的基础上,成立了激光专业,后来又有多所学校相继成立了激光专业。

1985年,根据原国家教委颁布的专业目录,将激光专业和红外光谱学合并,更名为光电子技术专业。为了拓宽专业口径和与国际接轨,教育部1998年4月颁布了新的本科专业目录和引导性专业目录,将原微电子技术、光电子技术、物理电子技术、电子材料与元器件和电磁场与微波等本科专业整合为一级学科“电子科学与技术”。近年来,许多高校都纷纷建立电子科学与技术专业。各学校的办学特点不尽相同,但主要培养目标均是培养适应社会主义现代化建设需要的、德智体美等全面发展的高层次电子科学与技术人才。目前,设有电子科学与技术专业的院校有111所。21世纪被称为信息时代,电子科学与技术在信息、能源、材料、航天、生命、环境、军事和民用等科技领域将获得更广泛的应用,必然导致电子科学与产业的迅猛发展。这种产业化趋势反过来对本专业的巩固、深化、提高和发展起到积极的促进作用。因此,电子科学与专业具有良好的发展空间和态势。

第2篇:半导体光电技术范文

关键词:高效能制;LED;散热

中图分类号:TP635 文献标识码:A

在我国,以LED为核心的新能源、新光源照明产业正在加速发展,其动力主要来自两方面,一是政府政策的支持和推动逐渐增强,二是企业看重这一市场机遇加大投入。而行业内专业、高端展会的诞生,更是推波助澜地将LED照明产业推上新的发展高度。在反映整个新光源与新能源照明行业的最新发展趋势、状态及问题所在的同时,更将集中展示技术、产品及应用。近年来,LED技术进步和产业提升得到了迅猛发展,[1]LED外延、芯片、封装、驱动电路以及显示应用、照明控制等相关技术的发展非常快,产品性价比提升明显,这给LED照明从可能变为现实带来无限的希望。目前,我国LED产业与国际一流水平相比差距并不大,而且中国具有自主知识产权的单元技术已经显现,中国在LED外延材料、芯片制造、器件封装、荧光粉等方面均已显现具有自主技术产权的单元技术,部分核心技术具有原创性,为中国LED产业做大做强在一定程度上奠定了基础。

一、 LED概念及发光原理

LED(Light Emitting Diode)称为发光二极管,是新型高效固体光源,具有节能、环保和寿命长等显著优点。它的主体是一块电致发光的半导体材料,在它两端加上正向电压,电流会从LED阳极流向阴极,半导体晶体就发出从紫外到红外不同颜色的光线,电流越强,发光越强。LED发光原理不同于传统UHE、UHP灯泡,它在发光过程中不会产生大量热量,因此寿命都可以达到60000小时以上。半导体照明同样亮度下耗电仅为普通白炽灯的 1/10 ,节能灯的 1/2 ,使用寿命却可能延长 100 倍。自 2003 年以来,[2]在“国家半导体照明工程”的组织实施过程中,国内的相关企业、研发机构和大学围绕宽禁带半导体材料、大功率 LED 器件、封装、配套原材料、重大装备等方面开展研发,攻克了一系列半导体照明的关键技术,取得了显著进展。但半导体白光照明技术还远不成熟,还有一系列的科学、技术问题有待解决, 特别是在产品的质量稳定性和可靠性上,还有待提高。

由 PN 结芯片、电极和光学系统三个主要部分组成了发光二极管。晶片(发光体)的面积为 10.12mil ( 1mil=0.0254 平方毫米),国际上目前生产的大晶片 LED面积可达 40mil 。发光二极管发光过程为正向偏压下的载流子注入、[3]光能传输和复合辐射三部分。在洁净的环氧树脂物中封装了微小的半导体晶片,带负电的电子通过该晶片,移动到带正电的空穴区域,电子和空穴复合并同时消失,形成光子。光子的能量产生的多少由电子和空穴之间的能量(带隙)决定,能量(带隙)越大,光子的能量就越高。不同的材料带隙不同,光子的能量与光的颜色对应,就会发出不同颜色的光,光谱中,红色光、桔色光具有的能量最少,紫色光、蓝色光具有的能量最多。

高亮度的白光 LED将成为LED 照明光源的主流。商品化的白光 LED目前是以蓝光单晶片混合YAG 黄色荧光粉产生白光,即多是二波长。未来较被看好的是三波长白光 LED ,即以无机紫外光晶片加红、蓝、绿三颜色荧光粉混合产生白光,它会取代LED 背光源、荧光灯紧凑型节能及荧光灯泡等市场。

LED是一种半导体元器件(如图1),核心是 p型及n型半导体组成的芯片。[4]在p型半导体和n型半导体之间有一个过渡层,称为p-n结。当注入p-n结的载流子数量足够多,就可以实现把电能转换为光能的效果。一般的低功率LED产品拥有能耗低、体积小、反应时间快、有多种光颜色输出、产品寿命长和不含对环境有害的汞等优点。

图1: LED半导体元器件结构图

虽然发光管是冷光源,但LED的光效偏低,在高光效/发光效率(每瓦流明或lm/W)LED灯具应用上需要输入大量的电能来转换成光能。大电流在半导体材料上会产生传导性电阻热,加上半导体材料制作的LED不耐高温,导致过热使LED灯的光输出率及寿命大幅降低。

二、发挥高效能、环保的照明效益散热设计是一大关键

LED元件的核心设计,即是由一片LED晶粒[5]利用加诸电压使其产生发光结果,而与一般矽晶片类似,LED晶片也会因为长时间使用而产生光衰现象,[6]多数设计方案为了提升元件发光亮度,多利用增加晶体的偏压,即提升加诸于LED的电能功率,让晶片能够激发出更高的亮度,如此一来,加强LED功率也会使得晶体的光衰问题、寿命问题加速出现,甚至元件本身因强化亮度而产生的高温,也会造成产品寿命的缩短。

当单颗LED晶粒随着亮度提升,[7]单颗LED功耗瓦数也会由0.1W提高至1、3、甚至5W以上,而多数的LED光源模组实测分析,也会出现封装模组的热阻抗因增加发光效能而提升,一般会由250K/W至350K/W上下持续增加幅度。而检视测试结果会发现,LED也会有随着“功率”增加、“使用寿命”减少的现象,[8]会让原本可能具有20,000小时使用寿命的LED光源元件,因为散热影响,而降低到仅剩1,000小时的使用寿命。当元件在摄氏50度的运作温度下,均能维持最佳的20,000小时寿命,[9]但当LED元件运行于摄氏70度的环境,平均寿命则降至10,000小时,若持续在摄氏100度环境下运行,寿命会仅剩5,000小时。市场上的 LED 光源良秀不齐,许多公司宣称其半导体光源连续使用寿命为 10 万小时,但产品实际可用寿命许多不到 5000 小时,最短的不到 100 小时,[10]整个 LED 产业在市场上的信誉受对极大的影响。另一方面,半导体光源的用户无法选购到可靠的产品,缺少对 LED 产品的质量可靠性及稳定性的有效检测手段,直到客户遭受巨额损失,使用失败后退货。业界要为产业的进一步高速发展奠定基础,必须有一个相对统一的产品质量与可靠性的测试及规范标准。

国际上 CIE 等相关机构鉴于 LED 产业的迅猛发展,还未能制定一个统一的规范,多由各公司自行测试和规定,主要包括高温,常温,低温老化实验,高温高湿老化实验,冷热冲击实验,机械撞击,静电放电实验,震动实验,焊接实验,盐舞实验等若干项。国内 LED 光源用户一般也是用该室温老化实验来验证供应商的产品质量和可靠性,好的公司则有做 1000 小时室温老化实验。由于 LED 光源的使用寿命要求是 1 万至 10 万小时(约 1 年至 11 年),用户很难有时间用常温老化法求证。LED 光源的寿命高温下会大大缩短,[11]LED 光源的寿命 t 和温度呈指数关系,

t=t 0 *exp(- D E/kT)

因此高温加速老化实验是更快速严格的可靠性测试方法。 85 度下 LED 光源寿命比常温将会缩短约 20 倍。 国内许多厂家的劣质产品则在 24 至 100 小时内迅速老化, 该实验成为检验产品质量的一个快速试金石。

功率型LED会受热量影响: (1)热量集中于尺寸很小的芯片里,芯片的发光效率因结区温度升高而降低,芯片周围荧光粉的激射效率的降低,使器件的光学性能受到严重影响,且器件的稳定性和寿命也容易受热应力的非均匀分布而降低;(2)白光照明系统中多个LED 是密集排列的,高热阻会因模块间相互影响导致器件失效。从而,功率型LED的散热成为重要研究课题。

三、LED模组设计的热阻抗现况

除了关键元件LED易受温度影响外,模组化概念开发也多[12]半被采取在光源设计中,甚至为了取代传统光源,让电子电路和发光元件只能在非常小的空间内整合,因为LED为DC直流驱动元件,多数灯具的连接电源为AC交流电源为主,目前的主流做法为了简化LED光源的施作复杂度,是直接将电源整流、LED发光元件和变压模组进行整合,可面临的问题是,可用的电路空间相对小很多,较佳的散热效果在装置内对流空间相对变小的情况下,自然也无法得到实现,模组的散热处理只能透过主动式强制散热的相关对策。

若由热阻抗模组观察所制作而成的热流模型,进行LED[13]晶粒预测接合点的温度,接合点意指半导体的pn接合处,定义热阻抗R为温度差异与对应之功率消散比值,而热阻抗的形成因素相当多,但透过热流模型的检视方式,可以更清楚确认,热的散逸处理方面,是因为哪些关键问题而降低其效率,散热改善工程可从元件、组装方式、结构、基板材质进行。并可以从几个关键处来检视一般LED固态光源的热流模型。

图2:高照明效果的天花板灯,其LED需高功率驱动发光,因此整合的电源模块、散热模块成本也会较高

例如,LED发光元件可以拆解为LED晶粒、封装的塑料、晶粒与接脚的打线,扩及LED光源模组再观察,即会有LED元件、Metal Core PCB (MCPCB)电路板、接合的金属接脚、最后为散热的铝挤型散热片等构成,而热流模型可以观察有几个串联的热流阻抗,例如结合点、电路板与环境、乘载晶粒的金属片等,再检视串联阻抗的热回路,试图去发现散热效率低下的问题症结点。再深入观察模型发现,从晶粒的接合点到整个外部环境的散热过程,其实是由几个散热途径去加总而成,例如,晶粒与乘载金属片的材料特性、LED元件的表面接触或是介于散热用之铝挤型散热鳍片黏胶、电路板材料热阻特性和封装LED晶粒材料的光学树脂接触,乃至降温装置与空气间的组合等,构成整个热流的散热过程。

四、LED固态光源的散热改善方式

LED固态光源的运作温度如何有效散逸,会影响整个光源应用的照明效能、装置寿命、能源利用效能等重要关键,而改善散热的方式可自晶片层级的技术、电路板层级的技术、封装LED晶粒的技术去改善。

由于传统的晶片制法,在晶片层级的散热处理方面,多以蓝宝石作为基板进行设计,而蓝宝石基板的热传导系数接近20W/mK,其实很难将LED[14]磊晶产生的热快速散出,在针对LED晶片级的散热强化处理,尤其是针对高亮度、高功率的LED元件方面,目前主流的作法,是有效利用覆晶将磊晶的热传导出来,即使用覆晶(Flip-Chip)的形式。

另外的方式,因LED元件上下两端都设有金属电极,可采行“垂直”电极的方式去制作LED元件,此可在散热的问题上得到更大的助益。 例如, GaN基板为导电材质,采用GaN基板作为材料,基板下方可直接做电极进行连接,即可得到快速散逸磊晶温度的效益,但这种作法会比传统蓝宝石基板作法的成本贵上许多,因为材料成本较高,元件的制作成本亦会增加。

对封装层级的散热强化作法, LED制作过程,整个LED可利用光学等级的环氧树脂来包住,增大LED元件机械强度,保护元件内的相关线路,但环氧树脂的作法虽可提升元件强度,却同时限制了元件的温度操作范围,因为高温下使用光学级的环氧树脂,会因强光或高温,让环氧树脂的材质本身和光学特性劣化。

图3:亮度强化的灯具,局部高温问题也会加剧,必须搭配更强力的主动散热技术因应。

芯片层面减少管芯热阻是LED 器件的热量处理方法外,对封装而言,降低封装后器件的热阻应设计合理热沉、采用高热导率的封装材料、采用多芯片封装、优化驱动电源等,使器件性能提高。非成像光学是针对LED 封装的光学研究。半导体照明光源应用的重要研究内容就是利用非成像光学设计,满足特定要求的LED 光学系统。

目前封装改善方式,传统的炮弹式封装技术仅在多数中低功率的LED元件中才使用,对于高功率、高亮度的LED元件,多改用Lumileds Luxeon系列封装法,将散热路径集中于下方的金属,内部的封装改用光学特性和耐高温、耐强光表现较优异的矽树脂去进行封装,此封装法可获得较佳的机械强度表现,同时其内部对高温、高强度蓝光LED、紫外线照射有更强大的耐受能力。

以下是封装光学设计实例在投射照明系统中的应用。投射照明系统的光源要有准直、高效的远场分布。若通过LED 光源与附加准直透镜相结合实现准直光场分布,即采用二次光学元件,不但系统体积增加,且LED和二次元件间会存有空气隙,出现额外的反射损耗。LED 芯片封装时的树脂透镜需重新设计,确保LED 在封装的同时实现准直:准直透镜的二维、三维模型首先采用编程方式计算,其光场分布利用蒙特卡罗方法计算,设计模型利用计算结果修正,相应的准直透镜待符合要求后制作。比较采用传统二次元件系统的光场分布及利用直接准直LED 光源的光场分布,该准直透镜的亮度半高全角的理论值为9.8°,实测值为12.8°,其出光效率为90%。准直LED 光源阵列的应用效果已实现。强调说明,此封装结构能简单组合构成大面积阵列,具有很强的可扩展性,满足不同的应用需求。

LED 的封装问题,除光学封装设计、热学处理外,值得探讨与研究的相关技术还有高热导率低损耗封装树脂材料、稳定有效驱动电源模块、新型高转换效率荧光粉材料等。因传统光源和LED 光源形貌上差别很大,如何在外观上为市场接受,也成为封装需解决的技术问题。

电路板层级的散热改善,热传导性能中上表现的一般会采取[15]金属基FR4(PCB) )制作,如Integrated Metal Substrate(IMS) 、MCPCB处理,进阶高效能热传导能力的会采取陶瓷基板(Ceramic)去制作。

FR4(PCB) 优势为低成本,可导热效能相对较差,多用于低功率的LED装载方面。 金属基PCB(IMS、MCPCB)因操作温度高,例如MCPCB结构由铜箔层、铝基板、绝缘(介电)层构成,一般铜箔层(电路)为1.0~4.0盎司、铝基板(金属核心)层厚度在1mm~3.2mm、绝缘(介电)层为7.5um~150um左右厚度,可用在摄氏140度环境下,为中高价位的制作成本。 陶瓷基板(Ceramic)的成本和单价更高,因为陶瓷可让乘载的晶片更为匹配,其热膨胀系数表现佳,但无法用在大面积的电路,对于LED光源应用面,多数仅用于承载LED元件的区块电路使用,来提升热传导效率。

除前述常见乘载的电路板外,其实还有相对多款具较佳热传导技术的基板技术,例如陶瓷基板(氧化铝)、软式印刷电路板、铝镁合金、金属基复合材料基板、直接钢接合基板(DBC)等技术,但部分技术仍有制程、成本或装载方面的考量,必须视最终成品的实际热流模型限制与改善幅度是否值得更换载板而定。

参考文献:

[1] 许晓华. 交流直接驱动LED光源技术的特点与发展趋势[J] . 新疆农垦科技, 2010(7).

[2] 袁旭. LED光源在铁路客车应用中的探索和研究[J]. 低碳陕西学术研讨, 2010(10).

[3] 蒋国忠. 半导体照明用LED芯片、器件和光源技术攻关[J]. 半导体照明工程 , 2009(1).

[4] 丁传锋. 基于LED技术的灯具造型研究[J]. 湖北工业大学学报 , 2010(5).

[5] 张武斌. 局域网与网络安全技术[J]. 电脑知识与技术 , 2008(9).

[6] 李立勤. 热处理实现高效能LED技术[N]. 华强LED网, 2010-1-17.

[7] 狄文辉. 网络安全技术的研究[J]. 农机化研究 , 2004 (11).

[8] 刘玉山. 网络安全技术简析[J]. 网络与多媒体, 2003(15).

[9] 郑立文. 试论网络安全技术[J]. 宁德师专学报, 2001(11).

[10] 冯旭强. 机电一体化技术的研究及其应用[J]. 机械工程与自动化, 2009(2).

[11] 姒柏昌. 机电一体化技术的发展历程和趋势[J]. 社科论坛, 2007(3).

[12] 袁俊机. 电一体化技术在工业领域的应用与发展前景[J]. 应用技术, 2008(5).

[13] 董金森. 论机电一体化技术[J]. 有色金属加工, 2009(2).

第3篇:半导体光电技术范文

关键词:光电信息;功能材料;研究进展

中图分类号:TB34

新材料研制和国家科学技术与生产力发展密切相关,同时也是国家经济发展根本保障之一。在世界范围内,新材料研制是国家计划中的重点研究内容。本世纪正处于光电子时代,而光电信息功能材料不但有电子材料稳定性特点,还有光子材料先进性特点,广泛应用于电子时代,发展前景极好。

1 概述光电信息功能材料

信息科学发展进程中,材料研究作为技术发展先导,是发现与完善现代化科学规律重要基础。人们从量子论发展中得到原子中电子物理运动规律,特别是最外层的电子运动规律,最先研究的功能材料是金属,例如:不锈钢、有色金属、黑色金属和特殊钢材等,并且电子层次微观物理逐渐应用量子论。

其次,半导体材料开发和利用,电力材料的技术科学发展地位有所提高,研究功能材料是科学发现的前提保障,同时也是技术开发的物质基础,在整个科学技术领域中都有所体现。并且由于新兴起来的光纤技术,将激光技术和光纤技术结合使用,为发展信息技术奠定坚实基础。正是由于光存储和光集成技术,光电信息功能材料研究范围越来越广,走入到微观物理层次,覆盖包括无机和有机、金属和非金属、静态和非静态科学技术,将计算机应用在信息高智能存储,传输与处理方面,使得信息技术发展迅速。

2 光电信息功能材料研究重点

2.1 半导体光电材料

半导体介于绝缘体和导体之间的一种材料,半导体光电材料可将电能转化为光,将光转化为电,也可处理和扩大光电信号。21世纪上半叶至今,半导体量子和异质结构材料仍然把光电信息功能材料作为研发主要内容。

2.1.1 硅微电子材料。微电子技术基础是集成电路为主要核心的半导体器件,是一种高新电子技术。半导体光伏太阳能电池和集成电路主原材料,是新能源与信息基础。随着半导体产业和光伏产业迅速发展,我国硅材料规模迅速壮大和发展。并且,硅微电子信息功能材料与现代化信息时代相联系,其具有质量轻、可靠性高和体积小等特点。半导体硅微光电信息功能材料,可提高硅集成电路使用性能成品率,但是从成本角度分析,解决硅片直径的增大问题形成了一系列缺陷密度与均匀性变差。并且,从半导体器件特征性尺寸角度;硅集成角度来看,硅材料是未来研制方向。在锗化硅材料生长应变硅材料技术基础上,其可提高器件驱动的电流和晶体管速度,其广泛应用性可能会替代65nm以下的互补性金属氧化物的半导体电路主流技术。在硅材料技术应用的同时,人们也在研制双栅-多栅器件、高K栅介质、铜互连技术和应变沟道技术。目前,硅微电子技术难以满足庞大市场需求和信息量,需要在全新原理材料、电路技术和器件技术深入研究,例如:纳米电子技术、光计算机技术和量子信息技术。

2.1.2 量子级联的激光器材料。在通信和移动通信领域,广泛使用超晶格和量子阱材料,量子阱材料集分子束外延和量子工程为一体,打破了半导体使用限制性,真正体现出了国家纳米级量子器件的核心技术。并且其发展到现在,QCL在远红光外源、红外对抗、遥控化学和自由空间内通信等较为突出。QCL高新技术研究面也更加广阔,其中,可调谐中红外激光器在国外步入工业化阶段。

2.1.3 光子带隙功能材料。光子带隙材料常称为光子晶体,其具有介电函数、周期性变化调制材料的光子状态运行模式。根据周期性的空间排列规则和特点,光子晶体分为一维、二维与三维形式。重点分析二维光子晶体,半导体薄片堆层其可以进一步制出硅基二维光子晶体和高品质因数光子微腔含单量子点砷化镓基二维光子晶体微腔,有较广阔的应用空间。例如:借助于圈内反射可限制光电在晶体内的反应,也就是光子晶体反应,以便控制光色散;其次,光子晶体可制作出计算机芯片,计算机的运行和运算速度均有所提高。对于三维光子晶体,特别是可见光的三维光子晶体和近红外波受到一定条件限制,因此,制备工艺较难。

2.2 纳米光电功能材料

所谓纳米材料,其是粒子尺寸介于1-100纳米材料。纳米光电功能材料是将光能转化成化学能或电能一种纳米行材料,其发展前景广阔,性能好,被广泛应用于光存储、光通信、光电探测器和全光网络等方面。

尺度位于宏观物体和原子簇交接区域,纳米材料有小尺寸效应、表面效应、宏观量子隧道效应和量子尺寸效应,产生点穴、光学、化学、热血和磁学特征等,其中,表面效应属于纳米光电材料重要特征之一,粒子性能决定性因素是表面原子,当表面原子数量增加到一定范围内,原子数量越多,缺陷程度就会越大,纳米光电材料活性就越高。正是由于量子尺寸影响电学性质,纳米材料才会比一般性的光电材料光催化活性高。

2.3 光折变功能材料

光折变功能材料光照条件下会吸收光子,使电荷发生转移,形成一定的空间电场,进而借助于电光效应改变折射率。这种光电材料需要低功率就可以在室温下进行光学信息处理和运算,因此有很好的发展前景。人们对光折变材料进行高密度数据的存储、空间光调制、光放大、光学图像处理和干涉测量等研究,并随着对光折变效应深入了解和发现新型材料,使得光折变材料应用范围更加广泛。

3 光电信息功能材料制备方法

光电信息功能材料根据性能与尺寸的不同要求,因此包括有很多制备方法。常见的制备方法有:高温固相反应、溅射法、Sol-gel、PCVD、CVD等。

3.1 微波反应烧结

我国通过微波辐射法合成物质有硅酸盐、氧化物、硫化物、磷酸盐、钨酸盐和硼酸盐等荧光体,利用各种物质选择光激励,从而实现了温室光谱烧孔。

3.2高温固相反应

高温固相反应是使用最广泛的制备新型固体功能材料方式,我国上海硅酸盐研究所使用提拉法技术生产出闪烁BGO晶体,欧洲核子研究所用晶体制造出正负电子撞机电磁量能器,出口总量高达千万美元,经济效益很好。

3.3 溅射法

溅射镀膜法通过直流或者是高频电场让惰性气体形成电离反应,此过程产生辉光放电离子体,其正离子与电子对靶材进行高速轰击,溅射出靶材分子和原子,从而将这两种物质沉积在基材上,形成薄膜。

3.4 CVD(热分解化学气相沉积技术)

CVD主工艺过程是借助于过载气输送反应物到反应器中,并在一定反应条件下,发生一定的化学反应,形成颗粒大小的纳米。随着反应基质粒子和纳米颗粒共同沉积到基片上,形成一层薄膜。薄膜形式有:反应气体和气体扩散吸附于生长、扩散和挥发沉底表面,这种方法可制备出氟化物、氧化物和碳化物等纳米复合型薄膜。

4 结束语

光电信息功能材料开发与研究需要通过量子物理支撑,目前其限定于光子、电子、电波和光波为主要信息载体,对研究量子物理,分析光电信息功能材料有重要作用。

参考文献:

[1]王藜蓓,陈芬,周亚训.集中光电信息功能材料的研究进展[J].新材料产业,2011(05).

[2]周舟,陈渊,黄轶.光电信息功能材料与量子物理研究[J].科技创新与应用,2013(07).

第4篇:半导体光电技术范文

南昌大学副校长,教授,博士生导师,教育部发光材料与器件工程研究中心主任,教育部半导体照明技术创新团队负责人。领导的课题组承担并完成了863计划等国家课题10多项,创造性发展了一条新的半导体LED技术路线---硅衬底LED技术路线,创建晶能光电(江西)有限公司,出任公司总裁。

人们期望LED照明具有高电光转换效率、高可靠性能和低成本,只有这三个条件同时具备时半导体照明才能真正走向千家万户,造福人类。

目前为止,用于半导体照明的LED芯片按外延衬底划分有三条技术路线,即蓝宝石衬底LED技术路线、碳化硅衬底LED技术路线、硅衬底LED技术路线。这三条技术路线都处在大力研发和生产之中,前二条技术路线相对领先,第三条技术路线与前两条技术路线相比,水平差距在不断缩小,目前尚不清楚哪条技术路线将是终极半导体照明技术路线。但有一共同特点,性能最好的功率型LED器件,均走到“剥离衬底将外延膜转移到新的基板”制备垂直结构LED芯片技术路线上来。其主要原因是,这种剥离转移垂直结构LED工艺路线,为制备高反射率的反射镜和高出光效率的表面粗化技术提供了便利,同时因p-n结距散热性能良好的新衬底(基板)很近,非常有利于器件散热,从而有利于提高器件的使用寿命,也有利于加大器件工作电流密度。在这三条技术路线中,硅衬底技术路线只需要用简单的湿法化学腐蚀就可去掉衬底,属无损伤剥离,非常适合剥离转移,有利于降低生产成本。

在国家863计划、电子发展基金等课题的资助下,南昌大学创造性发展了一条新的半导体照明技术路线――硅衬底LED技术路线,改变了日美等国垄断LED照明核心技术的局面。该团队发明了一种特殊过渡层和特定的硅表面加工技术,克服了外延层和衬底之间巨大的晶格失配和热失配,在第一代半导体硅材料上,成功地制备了高质量的量子阱结构的第三代半导体GaN材料,研制成功硅衬底蓝光、绿光和白光LED,该发光效率、可靠性与器件寿命等各项技术指标在同类研究中处于国际领先地位,并在国际上率先实现了这一新技术产品的批量生产,功率型硅衬底白光LED光效达到90-100lm/W,并成功地运用在路灯、球泡灯、射灯和手电筒等场合。

第5篇:半导体光电技术范文

1995年5月22一26日,在美国马里兰州巴尔的摩召开的第15届“激光与光电子学(CLEO)”和第5届“量子电子学与激光科学(QELS)”会议,是世界规模最大的激光一光电子一量子电子学领域的重要的国际会议。本会议一个特别新的内容是激光在生物学与医学上的应用。同时,还举办了一个庞大的技术展览会,展览了许多与生物医学有关的新产品。会上千余篇,内容主要侧重固态与半导体激光器、非线性光学、超短脉冲激光光源、激光在医学生物学中的应用等。这些论文反映了近年来激光科学技术的进展,现分述如下。

1半导体激光

十分引人注目的是半导体激光器件研究方面的成果。其中有关新材料及其处理过程,器件工作物理机制,器件的设计思想,器件工作向短波段的延拓等,都有很大的发展。光子带隙、半导体量子电子学的理论和实验研究逐步使量子阱异质结激光器迈向实用阶段,并导致光学和光电子学用的量子阱器件以及超短脉冲半导体激光器和高速光探测器件的迅速发展。这对推动高速通讯的发展是十分重要的。垂直腔面发射激光器(VCSEL)的功率转换效率已经高于50%,阑值电流200拼A,工作体积7只7(拜m)2;半导体纳米结构材料已经可以制作出微腔激光器。一个10nm的腔体可产生1000nm波长的窄频带辐射。可见区,特别是蓝绿波段半导体激光器研制令人鼓舞,一旦进入实用阶段,势必剧烈改变小功率可见区激光器销售市场的状况,并将大大扩展激光在科技和生活领域的使用范围。长波可见段630nm,650nm和670nm的红色激光二极管(LD)制作成本较前两年已大大下降。目前可以预感到:在激光显示、激光准直、激光印刷、激光医学生物学应用等方面,半导体红光激光二极管将会迅速占领氦氖激光器的原有市场,取而代之。与此有关的蓝色发光二极管(LED)已开始以远较红、黄、绿色发光二极管高昂的价格投放市场(随着技术改进,将很快降低成本),形成了大型彩色显示屏幕蓬勃发展态势。在半导体激光领域,近年备受关注且影响着该领域进一步发展的课题是半导体纳米结构和微腔以及在这类器件中的相干现象的研究。

2固体激光

迅速发展的另一领域是固体激光器。近两年,明显看到:纤维激光和波导固体激光,可调谐固态激光,特别是用半导体激光二极管阵列泵浦的“全固态化”固体激光器的实用化,将可以达到许多目的:相对廉价、稳定性好、寿命长、波长可调谐范围宽、脉冲宽度窄,还可以具有优良的空间分布光束质量等。因此,具有广泛的应用价值。它已开始取代优质、高功率的气体激光器,用于微束打印和数据存储。尤其值得一提的是:“全固态化”的钦宝石激光器,在连续操作时.波长可调谐范围甚宽(从600~1100nm),功率很易达到瓦级水平。在锁模脉冲运转时,可以产生自锁模,脉宽达数十飞钞,平均功率已达瓦级。如此一来,再配合非线性频率变换办法,可以把激光波段扩展到很大的范围。再加这类激光器的装里有牢靠、调节简便的优点,可以做成车载、机载系统。显然,在不远的将来,有可能由它淘汰染料激光。

3非线性光学

非线性光学领域的论文最为吸引人的是一些新的无机或有机光学材料的诞生和应用。目前从紫外到中红外的实用的光学参童振荡器已商品化。此外,与高速信息公路有关的孤子激光产生和传翰问题,其成果已陆续投人实际使用。

4超短超快激光

会议中研讨的一个特殊领域是超短脉冲激光的产生与测量及其在电子学、医学、成象和超快过程控制方面的应用。钦宝石的锁模飞秒激光装置以及光纤激光器的锁模是与当前研究超短光脉冲发生技术的热点。其中有关的机理与技术已趋成熟,将会很快开辟通信、化学、生物学的应用。

5激光生物医学应用

这次会议的一个新颖论题是:激光在生物医学领域的应用。看来,由于激光技术装置的稳定、成熟、易于操作、价格下降以及其特有的难予取代的优点,将很快渗入生物学研究。以及极其审慎的临床医学应用领域。其中成效特别显著的一个方面是激光诱发荧光技术应用于细胞动力学的数字显微成象和生物学过程监测。高速时间分辨荧光光谱技术已开始成功地用于临床医学诊治。

第6篇:半导体光电技术范文

关键词 半导体 材料 量子线 量子点 材料 光子晶体

1半导体材料的战略地位

    上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了 电子 工业 革命;上世纪70年代初石英光导纤维材料和gaas激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息 时代 。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米 科学 技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地 影响 着世界的 政治 、 经济 格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

    2.1硅材料

    从提高硅集成电路成品率,降低成本看,增大直拉硅(cz-si)单晶的直径和减小微缺陷的密度仍是今后cz-si发展的总趋势。目前直径为8英寸(200mm)的si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(ic‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ulsi生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅ic‘s的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,soi材料,包括智能剥离(smart cut)和simox材料等也发展很快。目前,直径8英寸的硅外延片和soi材料已研制成功,更大尺寸的片材也在开发中。

理论 分析 指出30nm左右将是硅mos集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制 问题 ,更重要的是将受硅、sio2自身性质的限制。尽管人们正在积极寻找高k介电绝缘材料(如用si3n4等来替代sio2),低k介电互连材料,用cu代替al引线以及采用系统集成芯片技术等来提高ulsi的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子 计算 和dna生物计算等之外,还把目光放在以gaas、inp为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容gesi合金材料等,这也是目前半导体材料研发的重点。

2.2 gaas和inp单晶材料

    gaas和inp与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界gaas单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(vgf)和水平(hb) 方法 生长的2-3英寸的导电gaas衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的si-gaas发展很快。美国莫托罗拉公司正在筹建6英寸的si-gaas集成电路生产线。inp具有比gaas更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的inp单晶的关键技术尚未完全突破,价格居高不下。

gaas和inp单晶的发展趋势是:

    (1)。增大晶体直径,目前4英寸的si-gaas已用于生产,预计本世纪初的头几年直径为6英寸的si-gaas也将投入工业应用。

    (2)。提高材料的电学和光学微区均匀性。

    (3)。降低单晶的缺陷密度,特别是位错。

    (4)。gaas和inp单晶的vgf生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

    半导体超薄层微结构材料是基于先进生长技术(mbe,mocvd)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)ⅲ-v族超晶格、量子阱材料。

    gaaias/gaas,gainas/gaas,aigainp/gaas;galnas/inp,alinas/inp,ingaasp/inp等gaas、inp基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(hemt),赝配高电子迁移率晶体管(p-hemt)器件最好水平已达fmax=600ghz,输出功率58mw,功率增益6.4db;双异质结双极晶体管(hbt)的最高频率fmax也已高达500ghz,hemt逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(dfb)激光器和电吸收(ea)调制器单片集成inp基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nm ingaas带间量子级联激光器,输出功率达5w以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器 研究 ,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服pn结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年ingaas/inaias/inp量子级联激光器(qcls)发明以来,bell实验室等的科学家,在过去的7年多的时间里,qcls在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的qcls的工作温度高达312k,连续输出功率3mw.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120k 5μm和250k 8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,ⅲ-v族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的mbe和m0cvd设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的mocvd中心,法国的picogiga mbe基地,美国的qed公司,motorola公司,日本的富士通,ntt,索尼等都有这种外延材料出售。生产型mbe和mocvd设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

    硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米si/sio2),硅基sigec体系的si1-ycy/si1-xgex低维结构,ge/si量子点和量子点超晶格材料,si/sic量子点材料,gan/bp/si以及gan/si材料。最近,在gan/si上成功地研制出led发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,gesi/si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。si/gesi modfet和mosfet的最高截止频率已达200ghz,hbt最高振荡频率为160ghz,噪音在10ghz下为0.9db,其性能可与gaas器件相媲美。

尽管gaas/si和inp/si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的gaas外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

    基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如gaalas/gaas,in(ga)as/gaas,ingaas/inalas/gaas,ingaas/inp,in(ga)as/inalas/inp,ingaasp/inalas/inp以及gesi/si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所mbe小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的mbe小组等研制成功的in(ga)as/gaas高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4w.特别应当指出的是我国上述的mbe小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1w时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单 电子 晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本ntt就研制成功沟道长度为30nm纳米单电子晶体管,并在150k观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年yauo等人采用0.25微米工艺技术实现了128mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的 应用 方面迈出的关键一步。 目前 ,基于量子点的自适应 网络 计算 机,单光子源和应用于量子计算的量子比特的构建等方面的 研究 也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料 科学 重点实验室的mbe小组,在继利用mbe技术和sk生长模式,成功地制备了高空间有序的inas/inai(ga)as/inp的量子线和量子线超晶格结构的基础上,对inas/inalas量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如zno、sno2、in2o3和ga2o3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的lars samuelson教授领导的小组,分别在sio2/si和inas/inp半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的 方法 很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前 发展 的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

    宽带隙半导体材主要指的是金刚石,iii族氮化物,碳化硅,立方氮化硼以及氧化物(zno等)及固溶体等,特别是sic、gan和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,iii族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(led)和紫、蓝、绿光激光器(ld)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年gan材料的p型掺杂突破,gan基材料成为蓝绿光发光材料的研究热点。目前,gan基蓝绿光发光二极管己商品化,gan基ld也有商品出售,最大输出功率为0.5w.在微电子器件研制方面,gan基fet的最高工作频率(fmax)已达140ghz,ft=67 ghz,跨导为260ms/mm;hemt器件也相继问世,发展很快。此外,256×256 gan基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本sumitomo电子 工业 有限公司2000年宣称,他们采用热力学方法已研制成功2英寸gan单晶材料,这将有力的推动蓝光激光器和gan基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带inasn,ingaasn,ganp和ganasp材料的研制也受到了重视,这是因为它们在长波长光通信用高t0光源和太阳能电池等方面显示了重要应用前景。

以cree公司为代表的体sic单晶的研制已取得突破性进展,2英寸的4h和6h sic单晶与外延片,以及3英寸的4h sic单晶己有商品出售;以sic为gan基材料衬低的蓝绿光led业已上市,并参于与以蓝宝石为衬低的gan基发光器件的竟争。其他sic相关高温器件的研制也取得了长足的进步。目前存在的主要 问题 是材料中的缺陷密度高,且价格昂贵。

ii-vi族兰绿光材料研制在徘徊了近30年后,于1990年美国3m公司成功地解决了ii-vi族的p型掺杂难点而得到迅速发展。1991年3m公司利用mbe技术率先宣布了电注入(zn,cd)se/znse兰光激光器在77k(495nm)脉冲输出功率100mw的消息,开始了ii-vi族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前znse基ii-vi族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之gan基材料的迅速发展和应用,使ii-vi族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如gan/蓝宝石(sapphire),sic/si和gan/si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地 影响 着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除sic单晶衬低材料,gan基蓝光led材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如gan衬底,zno单晶簿膜制备,p型掺杂和欧姆电极接触,单晶金刚石薄膜生长与n型掺杂,ii-vi族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

    光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(fib)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如ag/mno多层膜,再用fib注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒fe2o3,发光纳米颗粒cds和介电纳米颗粒tio2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

    随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥rivest,shamir和adlman(rsa)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置, 理论 上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mk的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29si)的硅单晶;减小sio2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

    鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供 参考 。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

    至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2 gaas及其有关化合物半导体单晶材料发展建议

    gaas、inp等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取 企业 介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的si-gaas和3-5吨/年掺杂gaas、inp单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸gaas生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

    (1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强mbe和mocvd两个基地的建设,引进必要的适合批量生产的工业型mbe和mocvd设备并着重致力于gaalas/gaas,ingaalp/ingap, gan基蓝绿光材料,ingaas/inp和ingaasp/inp等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸gaas生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸mbe和mocvd微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如sic,gan基微电子材料和单晶金刚石薄膜以及zno等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的 经济 和国防实力。

第7篇:半导体光电技术范文

关键词半导体材料量子线量子点材料光子晶体

1半导体材料的战略地位

上世纪中叶,单晶硅和半导体晶体管的发明及其硅集成电路的研制成功,导致了电子工业革命;上世纪70年代初石英光导纤维材料和GaAs激光器的发明,促进了光纤通信技术迅速发展并逐步形成了高新技术产业,使人类进入了信息时代。超晶格概念的提出及其半导体超晶格、量子阱材料的研制成功,彻底改变了光电器件的设计思想,使半导体器件的设计与制造从“杂质工程”发展到“能带工程”。纳米科学技术的发展和应用,将使人类能从原子、分子或纳米尺度水平上控制、操纵和制造功能强大的新型器件与电路,必将深刻地影响着世界的政治、经济格局和军事对抗的形式,彻底改变人们的生活方式。

2几种主要半导体材料的发展现状与趋势

2.1硅材料

从提高硅集成电路成品率,降低成本看,增大直拉硅(CZ-Si)单晶的直径和减小微缺陷的密度仍是今后CZ-Si发展的总趋势。目前直径为8英寸(200mm)的Si单晶已实现大规模工业生产,基于直径为12英寸(300mm)硅片的集成电路(IC‘s)技术正处在由实验室向工业生产转变中。目前300mm,0.18μm工艺的硅ULSI生产线已经投入生产,300mm,0.13μm工艺生产线也将在2003年完成评估。18英寸重达414公斤的硅单晶和18英寸的硅园片已在实验室研制成功,直径27英寸硅单晶研制也正在积极筹划中。

从进一步提高硅IC‘S的速度和集成度看,研制适合于硅深亚微米乃至纳米工艺所需的大直径硅外延片会成为硅材料发展的主流。另外,SOI材料,包括智能剥离(Smartcut)和SIMOX材料等也发展很快。目前,直径8英寸的硅外延片和SOI材料已研制成功,更大尺寸的片材也在开发中。

理论分析指出30nm左右将是硅MOS集成电路线宽的“极限”尺寸。这不仅是指量子尺寸效应对现有器件特性影响所带来的物理限制和光刻技术的限制问题,更重要的是将受硅、SiO2自身性质的限制。尽管人们正在积极寻找高K介电绝缘材料(如用Si3N4等来替代SiO2),低K介电互连材料,用Cu代替Al引线以及采用系统集成芯片技术等来提高ULSI的集成度、运算速度和功能,但硅将最终难以满足人类不断的对更大信息量需求。为此,人们除寻求基于全新原理的量子计算和DNA生物计算等之外,还把目光放在以GaAs、InP为基的化合物半导体材料,特别是二维超晶格、量子阱,一维量子线与零维量子点材料和可与硅平面工艺兼容GeSi合金材料等,这也是目前半导体材料研发的重点。

2.2GaAs和InP单晶材料

GaAs和InP与硅不同,它们都是直接带隙材料,具有电子饱和漂移速度高,耐高温,抗辐照等特点;在超高速、超高频、低功耗、低噪音器件和电路,特别在光电子器件和光电集成方面占有独特的优势。

目前,世界GaAs单晶的总年产量已超过200吨,其中以低位错密度的垂直梯度凝固法(VGF)和水平(HB)方法生长的2-3英寸的导电GaAs衬底材料为主;近年来,为满足高速移动通信的迫切需求,大直径(4,6和8英寸)的SI-GaAs发展很快。美国莫托罗拉公司正在筹建6英寸的SI-GaAs集成电路生产线。InP具有比GaAs更优越的高频性能,发展的速度更快,但研制直径3英寸以上大直径的InP单晶的关键技术尚未完全突破,价格居高不下。

GaAs和InP单晶的发展趋势是:

(1)。增大晶体直径,目前4英寸的SI-GaAs已用于生产,预计本世纪初的头几年直径为6英寸的SI-GaAs也将投入工业应用。

(2)。提高材料的电学和光学微区均匀性。

(3)。降低单晶的缺陷密度,特别是位错。

(4)。GaAs和InP单晶的VGF生长技术发展很快,很有可能成为主流技术。

2.3半导体超晶格、量子阱材料

半导体超薄层微结构材料是基于先进生长技术(MBE,MOCVD)的新一代人工构造材料。它以全新的概念改变着光电子和微电子器件的设计思想,出现了“电学和光学特性可剪裁”为特征的新范畴,是新一代固态量子器件的基础材料。

(1)Ⅲ-V族超晶格、量子阱材料。

GaAIAs/GaAs,GaInAs/GaAs,AIGaInP/GaAs;GalnAs/InP,AlInAs/InP,InGaAsP/InP等GaAs、InP基晶格匹配和应变补偿材料体系已发展得相当成熟,已成功地用来制造超高速,超高频微电子器件和单片集成电路。高电子迁移率晶体管(HEMT),赝配高电子迁移率晶体管(P-HEMT)器件最好水平已达fmax=600GHz,输出功率58mW,功率增益6.4db;双异质结双极晶体管(HBT)的最高频率fmax也已高达500GHz,HEMT逻辑电路研制也发展很快。基于上述材料体系的光通信用1.3μm和1.5μm的量子阱激光器和探测器,红、黄、橙光发光二极管和红光激光器以及大功率半导体量子阱激光器已商品化;表面光发射器件和光双稳器件等也已达到或接近达到实用化水平。目前,研制高质量的1.5μm分布反馈(DFB)激光器和电吸收(EA)调制器单片集成InP基多量子阱材料和超高速驱动电路所需的低维结构材料是解决光纤通信瓶颈问题的关键,在实验室西门子公司已完成了80×40Gbps传输40km的实验。另外,用于制造准连续兆瓦级大功率激光阵列的高质量量子阱材料也受到人们的重视。

虽然常规量子阱结构端面发射激光器是目前光电子领域占统治地位的有源器件,但由于其有源区极薄(~0.01μm)端面光电灾变损伤,大电流电热烧毁和光束质量差一直是此类激光器的性能改善和功率提高的难题。采用多有源区量子级联耦合是解决此难题的有效途径之一。我国早在1999年,就研制成功980nmInGaAs带间量子级联激光器,输出功率达5W以上;2000年初,法国汤姆逊公司又报道了单个激光器准连续输出功率超过10瓦好结果。最近,我国的科研工作者又提出并开展了多有源区纵向光耦合垂直腔面发射激光器研究,这是一种具有高增益、极低阈值、高功率和高光束质量的新型激光器,在未来光通信、光互联与光电信息处理方面有着良好的应用前景。

为克服PN结半导体激光器的能隙对激光器波长范围的限制,1994年美国贝尔实验室发明了基于量子阱内子带跃迁和阱间共振隧穿的量子级联激光器,突破了半导体能隙对波长的限制。自从1994年InGaAs/InAIAs/InP量子级联激光器(QCLs)发明以来,Bell实验室等的科学家,在过去的7年多的时间里,QCLs在向大功率、高温和单膜工作等研究方面取得了显着的进展。2001年瑞士Neuchatel大学的科学家采用双声子共振和三量子阱有源区结构使波长为9.1μm的QCLs的工作温度高达312K,连续输出功率3mW.量子级联激光器的工作波长已覆盖近红外到远红外波段(3-87μm),并在光通信、超高分辨光谱、超高灵敏气体传感器、高速调制器和无线光学连接等方面显示出重要的应用前景。中科院上海微系统和信息技术研究所于1999年研制成功120K5μm和250K8μm的量子级联激光器;中科院半导体研究所于2000年又研制成功3.7μm室温准连续应变补偿量子级联激光器,使我国成为能研制这类高质量激光器材料为数不多的几个国家之一。

目前,Ⅲ-V族超晶格、量子阱材料作为超薄层微结构材料发展的主流方向,正从直径3英寸向4英寸过渡;生产型的MBE和M0CVD设备已研制成功并投入使用,每台年生产能力可高达3.75×104片4英寸或1.5×104片6英寸。英国卡迪夫的MOCVD中心,法国的PicogigaMBE基地,美国的QED公司,Motorola公司,日本的富士通,NTT,索尼等都有这种外延材料出售。生产型MBE和MOCVD设备的成熟与应用,必然促进衬底材料设备和材料评价技术的发展。

(2)硅基应变异质结构材料。

硅基光、电器件集成一直是人们所追求的目标。但由于硅是间接带隙,如何提高硅基材料发光效率就成为一个亟待解决的问题。虽经多年研究,但进展缓慢。人们目前正致力于探索硅基纳米材料(纳米Si/SiO2),硅基SiGeC体系的Si1-yCy/Si1-xGex低维结构,Ge/Si量子点和量子点超晶格材料,Si/SiC量子点材料,GaN/BP/Si以及GaN/Si材料。最近,在GaN/Si上成功地研制出LED发光器件和有关纳米硅的受激放大现象的报道,使人们看到了一线希望。

另一方面,GeSi/Si应变层超晶格材料,因其在新一代移动通信上的重要应用前景,而成为目前硅基材料研究的主流。Si/GeSiMODFET和MOSFET的最高截止频率已达200GHz,HBT最高振荡频率为160GHz,噪音在10GHz下为0.9db,其性能可与GaAs器件相媲美。

尽管GaAs/Si和InP/Si是实现光电子集成理想的材料体系,但由于晶格失配和热膨胀系数等不同造成的高密度失配位错而导致器件性能退化和失效,防碍着它的使用化。最近,Motolora等公司宣称,他们在12英寸的硅衬底上,用钛酸锶作协变层(柔性层),成功的生长了器件级的GaAs外延薄膜,取得了突破性的进展。

2.4一维量子线、零维量子点半导体微结构材料

基于量子尺寸效应、量子干涉效应,量子隧穿效应和库仑阻效应以及非线性光学效应等的低维半导体材料是一种人工构造(通过能带工程实施)的新型半导体材料,是新一代微电子、光电子器件和电路的基础。它的发展与应用,极有可能触发新的技术革命。

目前低维半导体材料生长与制备主要集中在几个比较成熟的材料体系上,如GaAlAs/GaAs,In(Ga)As/GaAs,InGaAs/InAlAs/GaAs,InGaAs/InP,In(Ga)As/InAlAs/InP,InGaAsP/InAlAs/InP以及GeSi/Si等,并在纳米微电子和光电子研制方面取得了重大进展。俄罗斯约飞技术物理所MBE小组,柏林的俄德联合研制小组和中科院半导体所半导体材料科学重点实验室的MBE小组等研制成功的In(Ga)As/GaAs高功率量子点激光器,工作波长lμm左右,单管室温连续输出功率高达3.6~4W.特别应当指出的是我国上述的MBE小组,2001年通过在高功率量子点激光器的有源区材料结构中引入应力缓解层,抑制了缺陷和位错的产生,提高了量子点激光器的工作寿命,室温下连续输出功率为1W时工作寿命超过5000小时,这是大功率激光器的一个关键参数,至今未见国外报道。

在单电子晶体管和单电子存贮器及其电路的研制方面也获得了重大进展,1994年日本NTT就研制成功沟道长度为30nm纳米单电子晶体管,并在150K观察到栅控源-漏电流振荡;1997年美国又报道了可在室温工作的单电子开关器件,1998年Yauo等人采用0.25微米工艺技术实现了128Mb的单电子存贮器原型样机的制造,这是在单电子器件在高密度存贮电路的应用方面迈出的关键一步。目前,基于量子点的自适应网络计算机,单光子源和应用于量子计算的量子比特的构建等方面的研究也正在进行中。

与半导体超晶格和量子点结构的生长制备相比,高度有序的半导体量子线的制备技术难度较大。中科院半导体所半导体材料科学重点实验室的MBE小组,在继利用MBE技术和SK生长模式,成功地制备了高空间有序的InAs/InAI(Ga)As/InP的量子线和量子线超晶格结构的基础上,对InAs/InAlAs量子线超晶格的空间自对准(垂直或斜对准)的物理起因和生长控制进行了研究,取得了较大进展。

王中林教授领导的乔治亚理工大学的材料科学与工程系和化学与生物化学系的研究小组,基于无催化剂、控制生长条件的氧化物粉末的热蒸发技术,成功地合成了诸如ZnO、SnO2、In2O3和Ga2O3等一系列半导体氧化物纳米带,它们与具有圆柱对称截面的中空纳米管或纳米线不同,这些原生的纳米带呈现出高纯、结构均匀和单晶体,几乎无缺陷和位错;纳米线呈矩形截面,典型的宽度为20-300nm,宽厚比为5-10,长度可达数毫米。这种半导体氧化物纳米带是一个理想的材料体系,可以用来研究载流子维度受限的输运现象和基于它的功能器件制造。香港城市大学李述汤教授和瑞典隆德大学固体物理系纳米中心的LarsSamuelson教授领导的小组,分别在SiO2/Si和InAs/InP半导体量子线超晶格结构的生长制各方面也取得了重要进展。

低维半导体结构制备的方法很多,主要有:微结构材料生长和精细加工工艺相结合的方法,应变自组装量子线、量子点材料生长技术,图形化衬底和不同取向晶面选择生长技术,单原子操纵和加工技术,纳米结构的辐照制备技术,及其在沸石的笼子中、纳米碳管和溶液中等通过物理或化学方法制备量子点和量子线的技术等。目前发展的主要趋势是寻找原子级无损伤加工方法和纳米结构的应变自组装可控生长技术,以求获得大小、形状均匀、密度可控的无缺陷纳米结构。

2.5宽带隙半导体材料

宽带隙半导体材主要指的是金刚石,III族氮化物,碳化硅,立方氮化硼以及氧化物(ZnO等)及固溶体等,特别是SiC、GaN和金刚石薄膜等材料,因具有高热导率、高电子饱和漂移速度和大临界击穿电压等特点,成为研制高频大功率、耐高温、抗辐照半导体微电子器件和电路的理想材料;在通信、汽车、航空、航天、石油开采以及国防等方面有着广泛的应用前景。另外,III族氮化物也是很好的光电子材料,在蓝、绿光发光二极管(LED)和紫、蓝、绿光激光器(LD)以及紫外探测器等应用方面也显示了广泛的应用前景。随着1993年GaN材料的P型掺杂突破,GaN基材料成为蓝绿光发光材料的研究热点。目前,GaN基蓝绿光发光二极管己商品化,GaN基LD也有商品出售,最大输出功率为0.5W.在微电子器件研制方面,GaN基FET的最高工作频率(fmax)已达140GHz,fT=67GHz,跨导为260ms/mm;HEMT器件也相继问世,发展很快。此外,256×256GaN基紫外光电焦平面阵列探测器也已研制成功。特别值得提出的是,日本Sumitomo电子工业有限公司2000年宣称,他们采用热力学方法已研制成功2英寸GaN单晶材料,这将有力的推动蓝光激光器和GaN基电子器件的发展。另外,近年来具有反常带隙弯曲的窄禁带InAsN,InGaAsN,GaNP和GaNAsP材料的研制也受到了重视,这是因为它们在长波长光通信用高T0光源和太阳能电池等方面显示了重要应用前景。

以Cree公司为代表的体SiC单晶的研制已取得突破性进展,2英寸的4H和6HSiC单晶与外延片,以及3英寸的4HSiC单晶己有商品出售;以SiC为GaN基材料衬低的蓝绿光LED业已上市,并参于与以蓝宝石为衬低的GaN基发光器件的竟争。其他SiC相关高温器件的研制也取得了长足的进步。目前存在的主要问题是材料中的缺陷密度高,且价格昂贵。

II-VI族兰绿光材料研制在徘徊了近30年后,于1990年美国3M公司成功地解决了II-VI族的P型掺杂难点而得到迅速发展。1991年3M公司利用MBE技术率先宣布了电注入(Zn,Cd)Se/ZnSe兰光激光器在77K(495nm)脉冲输出功率100mW的消息,开始了II-VI族兰绿光半导体激光(材料)器件研制的高潮。经过多年的努力,目前ZnSe基II-VI族兰绿光激光器的寿命虽已超过1000小时,但离使用差距尚大,加之GaN基材料的迅速发展和应用,使II-VI族兰绿光材料研制步伐有所变缓。提高有源区材料的完整性,特别是要降低由非化学配比导致的点缺陷密度和进一步降低失配位错和解决欧姆接触等问题,仍是该材料体系走向实用化前必须要解决的问题。

宽带隙半导体异质结构材料往往也是典型的大失配异质结构材料,所谓大失配异质结构材料是指晶格常数、热膨胀系数或晶体的对称性等物理参数有较大差异的材料体系,如GaN/蓝宝石(Sapphire),SiC/Si和GaN/Si等。大晶格失配引发界面处大量位错和缺陷的产生,极大地影响着微结构材料的光电性能及其器件应用。如何避免和消除这一负面影响,是目前材料制备中的一个迫切要解决的关键科学问题。这个问题的解泱,必将大大地拓宽材料的可选择余地,开辟新的应用领域。

目前,除SiC单晶衬低材料,GaN基蓝光LED材料和器件已有商品出售外,大多数高温半导体材料仍处在实验室研制阶段,不少影响这类材料发展的关键问题,如GaN衬底,ZnO单晶簿膜制备,P型掺杂和欧姆电极接触,单晶金刚石薄膜生长与N型掺杂,II-VI族材料的退化机理等仍是制约这些材料实用化的关键问题,国内外虽已做了大量的研究,至今尚未取得重大突破。

3光子晶体

光子晶体是一种人工微结构材料,介电常数周期的被调制在与工作波长相比拟的尺度,来自结构单元的散射波的多重干涉形成一个光子带隙,与半导体材料的电子能隙相似,并可用类似于固态晶体中的能带论来描述三维周期介电结构中光波的传播,相应光子晶体光带隙(禁带)能量的光波模式在其中的传播是被禁止的。如果光子晶体的周期性被破坏,那么在禁带中也会引入所谓的“施主”和“受主”模,光子态密度随光子晶体维度降低而量子化。如三维受限的“受主”掺杂的光子晶体有希望制成非常高Q值的单模微腔,从而为研制高质量微腔激光器开辟新的途径。光子晶体的制备方法主要有:聚焦离子束(FIB)结合脉冲激光蒸发方法,即先用脉冲激光蒸发制备如Ag/MnO多层膜,再用FIB注入隔离形成一维或二维平面阵列光子晶体;基于功能粒子(磁性纳米颗粒Fe2O3,发光纳米颗粒CdS和介电纳米颗粒TiO2)和共轭高分子的自组装方法,可形成适用于可光范围的三维纳米颗粒光子晶体;二维多空硅也可制作成一个理想的3-5μm和1.5μm光子带隙材料等。目前,二维光子晶体制造已取得很大进展,但三维光子晶体的研究,仍是一个具有挑战性的课题。最近,Campbell等人提出了全息光栅光刻的方法来制造三维光子晶体,取得了进展。

4量子比特构建与材料

随着微电子技术的发展,计算机芯片集成度不断增高,器件尺寸越来越小(nm尺度)并最终将受到器件工作原理和工艺技术限制,而无法满足人类对更大信息量的需求。为此,发展基于全新原理和结构的功能强大的计算机是21世纪人类面临的巨大挑战之一。1994年Shor基于量子态叠加性提出的量子并行算法并证明可轻而易举地破译目前广泛使用的公开密钥Rivest,Shamir和Adlman(RSA)体系,引起了人们的广泛重视。

所谓量子计算机是应用量子力学原理进行计的装置,理论上讲它比传统计算机有更快的运算速度,更大信息传递量和更高信息安全保障,有可能超越目前计算机理想极限。实现量子比特构造和量子计算机的设想方案很多,其中最引人注目的是Kane最近提出的一个实现大规模量子计算的方案。其核心是利用硅纳米电子器件中磷施主核自旋进行信息编码,通过外加电场控制核自旋间相互作用实现其逻辑运算,自旋测量是由自旋极化电子电流来完成,计算机要工作在mK的低温下。

这种量子计算机的最终实现依赖于与硅平面工艺兼容的硅纳米电子技术的发展。除此之外,为了避免杂质对磷核自旋的干扰,必需使用高纯(无杂质)和不存在核自旋不等于零的硅同位素(29Si)的硅单晶;减小SiO2绝缘层的无序涨落以及如何在硅里掺入规则的磷原子阵列等是实现量子计算的关键。量子态在传输,处理和存储过程中可能因环境的耦合(干扰),而从量子叠加态演化成经典的混合态,即所谓失去相干,特别是在大规模计算中能否始终保持量子态间的相干是量子计算机走向实用化前所必需克服的难题。

5发展我国半导体材料的几点建议

鉴于我国目前的工业基础,国力和半导体材料的发展水平,提出以下发展建议供参考。

5.1硅单晶和外延材料硅材料作为微电子技术的主导地位

至少到本世纪中叶都不会改变,至今国内各大集成电路制造厂家所需的硅片基本上是依赖进口。目前国内虽已可拉制8英寸的硅单晶和小批量生产6英寸的硅外延片,然而都未形成稳定的批量生产能力,更谈不上规模生产。建议国家集中人力和财力,首先开展8英寸硅单晶实用化和6英寸硅外延片研究开发,在“十五”的后期,争取做到8英寸集成电路生产线用硅单晶材料的国产化,并有6~8英寸硅片的批量供片能力。到2010年左右,我国应有8~12英寸硅单晶、片材和8英寸硅外延片的规模生产能力;更大直径的硅单晶、片材和外延片也应及时布点研制。另外,硅多晶材料生产基地及其相配套的高纯石英、气体和化学试剂等也必需同时给以重视,只有这样,才能逐步改观我国微电子技术的落后局面,进入世界发达国家之林。

5.2GaAs及其有关化合物半导体单晶材料发展建议

GaAs、InP等单晶材料同国外的差距主要表现在拉晶和晶片加工设备落后,没有形成生产能力。相信在国家各部委的统一组织、领导下,并争取企业介入,建立我国自己的研究、开发和生产联合体,取各家之长,分工协作,到2010年赶上世界先进水平是可能的。要达到上述目的,到“十五”末应形成以4英寸单晶为主2-3吨/年的SI-GaAs和3-5吨/年掺杂GaAs、InP单晶和开盒就用晶片的生产能力,以满足我国不断发展的微电子和光电子工业的需术。到2010年,应当实现4英寸GaAs生产线的国产化,并具有满足6英寸线的供片能力。

5.3发展超晶格、量子阱和一维、零维半导体微结构材料的建议

(1)超晶格、量子阱材料从目前我国国力和我们已有的基础出发,应以三基色(超高亮度红、绿和蓝光)材料和光通信材料为主攻方向,并兼顾新一代微电子器件和电路的需求,加强MBE和MOCVD两个基地的建设,引进必要的适合批量生产的工业型MBE和MOCVD设备并着重致力于GaAlAs/GaAs,InGaAlP/InGaP,GaN基蓝绿光材料,InGaAs/InP和InGaAsP/InP等材料体系的实用化研究是当务之急,争取在“十五”末,能满足国内2、3和4英寸GaAs生产线所需要的异质结材料。到2010年,每年能具备至少100万平方英寸MBE和MOCVD微电子和光电子微结构材料的生产能力。达到本世纪初的国际水平。

宽带隙高温半导体材料如SiC,GaN基微电子材料和单晶金刚石薄膜以及ZnO等材料也应择优布点,分别做好研究与开发工作。

(2)一维和零维半导体材料的发展设想。基于低维半导体微结构材料的固态纳米量子器件,目前虽然仍处在预研阶段,但极其重要,极有可能触发微电子、光电子技术新的革命。低维量子器件的制造依赖于低维结构材料生长和纳米加工技术的进步,而纳米结构材料的质量又很大程度上取决于生长和制备技术的水平。因而,集中人力、物力建设我国自己的纳米科学与技术研究发展中心就成为了成败的关键。具体目标是,“十五”末,在半导体量子线、量子点材料制备,量子器件研制和系统集成等若干个重要研究方向接近当时的国际先进水平;2010年在有实用化前景的量子点激光器,量子共振隧穿器件和单电子器件及其集成等研发方面,达到国际先进水平,并在国际该领域占有一席之地。可以预料,它的实施必将极大地增强我国的经济和国防实力。

第8篇:半导体光电技术范文

关键词:节能;电源管理;功率半导体;智能电网

随着环保问题日益引起重视,低碳、环保之词充斥于各大媒体,引发了一系列关于环保问题的讨论。其实。在我们讨论环保问题之时,必须明确的一个前提是不影响现阶段的生活状态。试想,如果让人们强调环保以至于回到过去“钻木取火”“日出而作日落而息”的状态,估计没多少人会继续坚持将环保的口号喊下去。因此,所谓环保,就是在现有生活水准基础上尽可能减少对地球环境的破坏,直观点就是尽可能减少不可再生能源的应用,以缓解二氧化碳给气候带来的压力。然而人类现代化生活所需要的正常能源又是不可或缺的,因此必须在解决必要能源需求的基础上实现环保的要求。

开源节流,从来都是相辅相成的两个方面,对于环保而言同样如此。开源,就是充分开发如太阳能、风能、水利等可再生资源,而节流则是在相同生活需求的前提下,尽量降低能源损耗。对于半导体产业而言,环保的责任就是通过尽可能降低半导体产品的电力消耗以及由半导体产品带来的电力节省来实现能源消耗的节流。

BP世界能源报告指出,2007年全球能源消耗的三分之一来自于电子系统,累计耗电量超过17:IM Gwh(17.1兆千瓦时),这个数字还将以3%左右的速度不断攀升。2007年,中国电子系统的能源消耗超过2.8兆千瓦时,仅次于美国,如果通过半导体技术将现有电能消耗节约5%,就相当于每年节省出5个三峡水电站的发电总量。

半导体的节能趋势

无论从半导体厂商还是电源制造商的观点来看(往往两者有很多共同点),今后的主体发展趋势仍将集中在进一步提高转换效率,提升功率密度,高可靠性及更低成本。电源的效率几乎是电源技术与应用中永恒的主题,随着全球经济的一体化和对节能环保的关注,更高的转换效率意味着对能源的有效利用和减少能耗开支。以马达驱动为例,近年来逐渐得到普及和应用的电力电子变频调速技术就变革性地改变了全世界工业和家庭用的交流电动机的使用,并极大程度地节约能源。配合液晶显示技术而来的背光源电力电子应用完全改变了传统彩色电视机的市场、产品和消费。

Microsemi功率产品部应用工程经理钱昶认为,随着电源系统功率处理能力的不断上升和对系统体积不断减小的要求,功率密度变成未来发展的重要课题:不同于早期的体积重量要求主要集中在航天军工等特殊领域,功率密度现在大量的民用产品和应用中也占据了举足轻重的地位。便携式电脑和手持移动通信设备就要求有极高的功率密度,使得设备本身变得更小超薄。另外,在中等功率范围的应用中。例如集中式的太阳能逆变器和工业电焊机,设备体积和重量也是重要的考虑因素。

高可靠性和成本常常是一对矛盾:在提高可靠性的同时,将会牵涉到使用更昂贵的材料或更多的元器件与电路。如何在此二者之间找到最佳的平衡和折衷也是未来电源技术与市场发展的主题之一。在通信电源领域,器件工作的可靠性历来受到制造商和终端客户的重视。半导体和系统的可靠性越高,生产厂商所承担的产品保证所带来的费用就越低,而且同时降低了用户在设备维护方面的人工与成本。在可靠性与成本方面突破性的发展将依赖于半导体器件的新工艺技术,以及无源元件,特别是磁元件和电容的材料,设计和制造的进展。

直面设计挑战

帮助工程师提升电源设计效率,一直是半导体厂商与电源系统工程师最关注的问题。进一步提高能效依赖于半导体器件,电路拓扑结构和封装技术的新发展或优化选取。

首先,从器件方面,功率型金属氧化物场效应管(MOSFET)一直以来在小功率应用方面占主导地位。沟道栅极技术已普遍于低压MOSFET以减小通态电阻从而降低损耗。而在未来几年里,淘道栅极技术有向较高电压MOSFET推广的趋势。所以这对于300V以上的功率型MOSFBT管是一个新变化。近些年来超结(SuperJunction)MOSFET发展也很快,对应于传统的500V以上的平面MOSFET在通态电阻和电流密度方面具有竞争力,但是它的动态开关特性还是弱于平面MOSFET,从而使高频高电压应用仍然偏向传统型的MOSFET。另外宽禁带MOSFET器件。例如氮化镓(GaN)和碳化硅(sic)MOSFET在研发中不断取得的成就也表明这些新型的复合半导体器件会逐步走向商用化,极大提升系统能效,改变硅半导体目前在市场上的一统局面。

其次,工程师可以灵活运用各种各样的拓扑结构以提高系统效率。像现在通信电源和服务器电源设备中常用的零电压开关相移式全桥结构就是新拓扑加新控制的典范。在太阳能功率变换中,三电平二极管钳位逆变器具有低成本、高效率的特点,作为一种新兴的电路拓扑结构能在特定应用场合下提高能效。

最后,优化半导体器件或电路的封装也是提高系统能效的一种积极手段。关于这点常常被人们忽视。优化的封装可以直接改善电路中的杂散参数,例如寄生电感,从而优化电特性。实践表明紧凑的封装不仅减小电路体积,更重要的是能减小开关过程中的电压电流尖峰。使用相对低电压等级的器件将有利于减少损耗。另外,优化的封装可改善系统散热,以减低电路或器件的工作温度,从而进一步降低损耗。

概括地说,从系统角度出发,认真选择与优化器件,电路与封装配合优化的控制方法就一定能最大限度地降低损耗,提升系统能效。

凌力尔特公司电源产品市场总监Tony Armstrong介绍,任何系统中的功耗都必须以两种方式解决,首先,跨整个负载电流范围最大限度地提高转换效率,其次,降低DC/De转换器在所有工作模式时的静态电流。因此,为了在降低系统功耗方面发挥积极作用,电源转换和管理Ic必须提高效率,也就是降低功耗,并在轻负载和休眠模式具有非常低的功耗水平。特别是很多大功率系统都采用多种单阶转换或两阶转换方法的组合来应对有关的热量问题。然而,系统设计师面临着一个以哪种方式来满足特定系统需求的难题。电压不断下降的同时提高电流的需求日益增加,这持续促进了很多这类大功率系统的开发。在这一领域取得的大多数进步都可以追溯到电源转换技术领域的改进,尤其是电源Ic和电源半导体的改进。总之,这些组件允许在对电源转换效率影响最小的情况下提高开关效率,对提高电源性能做出了贡献。这是通过降低开关和接通状态的损耗、同时允许高效率去除热量而得以实现的。不过,向较低输出电压迁移给这些参数施加了更大的压力,这反 过来又导致了极大的设计挑战。

节能方法大家谈

当能效标准逐渐成为电子产品新的紧箍咒,各大电源半导体厂商不得不面对电源管理技术的全新挑战。

节能减耗是电源技术发展的主要趋势和方向。目前的国际国内标准对待机功耗,负载效率提出严格要求,比如EnergyStar、EPA等,对于半导体厂家来说要求提供更为有效方案来节能减耗。数字电源是另外一个发展趋势,其具有传统模拟所不具备的许多优势,在通信电源,新能源等将会得到更多应用。德州仪器高级技术市场开拓工程师刘学超认为,对于电源半导体供应商来讲,主要是通过新的控制方式和模式转换来帮助提高效率降低功耗,在电源领域未来比较重要的发程热点包括谐振控制技术、低待机功耗、超薄电源、LED驱动电源和数字电源。

半导体制造商正在开发多种创新技术,如全新的控制方法,可以省去附加的外部组件,从而也可以降低功耗。同时,虽然效率主要由所选择的外部功率级设计和开关频率来决定,但是半导体组件能够减少I2R损耗。飞兆半导体亚太区市场行销及应用工程副总裁蓝建锎认为,主要发展趋势和市场需求将会集中在提高功率转换效率、组件集成度和降低待机功耗等方面。同步整流、交错式拓扑和数字通信等应用不断增多,未来数年,这三个方面将给电源和功率管理方式带来重大的影响。

美国国家半导体(Ns)亚太区资深市场经理吴志民介绍。NS一直在提高电源产品的易用性和功率密度方面进行不懈的努力:客户希望减少在电源设计方面的工作量,因此倾向于选择易于使用的电源技术。电子设计业的专业化分工日趋明显,许多客户并非电源管理技术的专家,他们希望电源厂商提供容易使用的电源模块,并且能够提供相应的设计指导来加快产品设计进程。另一方面,由于现在的电子越来越朝着“轻薄”方向发展,供电系统占用越来越少印制电路板的板面空间,因此电源管理解决方案的功率密度必须不断提高。美国国家半导体目前有多个办法可以解决这些问题,例如采用更高的开关频率、更先进的封装技术以及更精密的生产工艺。

安森美半导体电源及便携产品全球销售及营销高级总监郑兆雄认为,主体趋势将是以创新技术来帮助电子产品提高能效,进一步推动绿色节能趋势。举例来说,目前液晶电视市场快速发展,就其背光源而言,仍是传统的冷阴极荧光灯(ccFL)占主导地位;新兴的发光二极管(LED)背光源与之相比,色彩表现更优势,大幅降低能耗,且更加环保,但碍于成本因素,目前市场渗透率还相对较低,不过,LED背光源的液晶电视市场将在今后几年内赶上及超过CCPL背光源。除了液晶电视背光应用,LED通用照明市场也将快速发展,随着应用规模的扩大,将进一步从商业应用向主流消费及住宅市场渗透,让用户更广泛地享受到绿色节能的好处。

更高层面的机遇

第9篇:半导体光电技术范文

[关键词]环鄱阳湖;南昌;LED产业

2006年12月中旬召开的江西省第十二次党代会上,江西省委、省政府提出了构建“环鄱阳湖经济圈”的发展战略构想,随后江西省发展改革委员会出台了《环鄱阳湖经济圈规划(2006~2010)》,这是江西策应中部崛起战略的重大举措,也是继中部湖北“武汉城市圈”、湖南“长株潭城市群”、河南“中原城市群”、安徽“皖江城市带”之后的第五大“经济圈”规划。2008年“两会”期间,江西代表团又提出了建设“环鄱阳湖生态经济区”的战略构想,积极争取列入国家规划,上升为国家的区域发展战略。江西省省长吴新雄指出,建立环鄱阳湖生态经济区,是实现江西崛起新跨越的必然选择,是争取江西在全国区域发展格局中有利地位的战略抉择,必将对全省经济社会又好又快发展产生积极的促进作用。鄱阳湖是全国最大的淡水湖,是江西生态环境优势的集中体现。如何利用生态这一优势,把握机遇,实现“生态立省”和“加快发展”的统一,是摆在江西人民面前的重大课题。本文从现代光电产业基地建设的角度对环鄱阳湖经济圈龙头城市――南昌LED产业的发展问题进行探讨。

一、环鄱阳湖经济圈发展南昌LED产业的必要性

(一)LED的内涵

LED(Light Emitting Diode,发光二极管)是一种半导体材料制成的光电器件。作为一种新型的固态冷光源,它具有节能、环保、寿命长、启动时间短、结构牢固、体积小、美化生活七大优点,是人类照明史上继白炽灯、荧光灯之后又一次新的光源革命,被人们称为第四代照明光源或绿色光源,也被公认为21世纪最具发展前景的高技术领域之一。

(二)环鄱阳湖经济圈发展南昌LED产业的重要意义

1.发展南昌LED产业有利于在环鄱阳湖经济圈内培养新的经济增长点

为了节能减排,提倡使用绿色资源,近年来世界各主要发达国家相继制定相应的部级LED发展计划,加大研发力度,欲抢占半导体照明新兴产业制高点。美国能源部曾经预测,2008年,全球LED产业规模达到74.99亿美元(数据不包括LED应用产业),年均增长率近20%。到2010年,美国将有55%的白炽灯和荧光灯被半导体灯所替代,每年节约电费可达350亿美元,预计到2015年,半导体灯将形成500~1000亿美元的大产业。

我国是世界照明电器生产和出口大国之一,拥有巨大的照明工业和照明市场。经过多年的快速发展,我国在LED领域已具备一定技术和产业基础。目前中国LED产业已经形成四大片区(珠三角、长三角、福建江西地区、北方地区)、七大基地(大连、上海、深圳、南昌、厦门、扬州、石家庄)。

基于国内外发展LED产业的背景下,环鄱阳湖经济圈从自身条件出发,欲将南昌LED产业培养成为圈内新的经济增长点。一方面,LED照明是安全、健康的“绿色光源”,环保效果明显,这一优势恰好与江西省“生态立省”的指导思想一致;另一方面,作为我国第一批半导体照明工程产业化基地,南昌LED产业基础良好、发展迅速。2008年,高新区LED产业产值超过50亿元,销售收入连续五年进入全国前五名。2012年前,南昌市将重点实施有关LED产业的12个重大工程和项目,这批项目总投资88亿元,建成投产后可实现销售收入100亿元以上,远期规划工程和项目3个,总投资超过200亿元,预期经济效益可达800亿元。

2.发展南昌LED产业有利于环鄱阳湖经济圈调整和优化经济结构,促进区域内产业结构升级

全球照明目前以白炽灯为主,为了推广节能、环保的照明新技术,各国将陆续禁用白炽灯。中国已经出台LED产品推广补贴、LED研究资助、全国七大LED产业基地建设等宏观政策,全面禁用白炽灯正提上立法日程。南昌市拥有深厚的LED产业基础,优先发展LED产业可引导南昌大规模应用LED照明技术及产品,以此更新节能环保照明的消费理念,还可调整传统照明产业结构,加快环湖区内照明产业的结构升级。

3.发展南昌LED产业有利于带动环鄱阳湖经济圈内相关产业的发展

半导体照明产业涉及节能、环保、高技术、微电子、基础装备制造等诸多领域,发展半导体照明产业,对信息产业、汽车电子、原材料与装备制造、消费类电子、航空航天、太阳能光伏以及整个光电子产业等领域均起到重要带动作用。特别是根据《环鄱阳湖生态经济区规划》的要求,欲以环湖中心城市为重点,建立航空产业基地及汽车、零部件生产基地等。可以预计半导体照明的广泛应用,将显著提高这些产品的附加值,加快各基地的落成,并且在巨大的市场需求拉动下,发展半导体照明产业将带动我国原材料与装备制造业的快速发展。

二、南昌LED产业的现状及其存在的问题

经过近三十年的发展,南昌市半导体发光材料与器件在全国已具有比较明显的优势,LED产业已成为南昌市重点扶持产业之一。在研发方面,有教育部发光材料与器件工程研究中心和863(光电子领域)高技术成果产业化基地。在产业发展方面,外延材料、LED芯片、器件及应用产品均实现了规模化生产。上游产业,晶能光电依托南昌大学开发的硅衬底蓝光LED技术打破了此前日本日亚公司垄断蓝宝石村底和美国Cree公司垄断碳化硅衬底半导体照明技术的局面,形成了国际半导体照明上游技术的三足鼎立。借助这一优势,南昌市在上游技术上与北京、上海、广州、深圳等地同处国内第一梯队;中游产业,南昌欣磊光电科技有限公司的LED芯片生产规模一直为全国(大陆)最大,联创光电依托上游产能优势,在南昌封装产业中也占据重要地位;下游产业,LED应用领域已初具规模,划分为LED器件、LED显示屏、LED液晶背光源和LED照明等四大应用产品集群。总体来看,应用产品的技术力量和企业规模还相当薄弱,产品附加值低。

南昌作为我国半导体照明工程产业化基地之一,国家“十城万盏”半导体照明应用工程试点城市,在国内半导体照明产业中占有重要地位。在南昌高新区内,具有一定规模的半导体照明企业15家,从业人员3200余人,1/3为工程技术人员,年产销半导体发光产品100多亿套,占全国市场25%以上。经过多年的发展,南昌已初步形成以晶能光电、联创光电等公司的外延片产品为上游产业,晶能光电、欣磊光电等公司的芯片制造为中游产业,联创光电、联众电子、永兴电子等的芯片封装和联创博雅、恒明科技、宇欣科技等的光源、灯具、LED显示屏、联创致光的手机背光源等为下游产业,宏森高科光电子的LED支架为配套产业的一个较为完整的产业链,形成了互有分工、关联配套的企业集群;分工涉及LED衬底硅材料生产、专用切割刀

具、外延片、芯片制造、芯片封装、LED显示屏、手机背光源及照明等各个生产环节。2008年,高新区LED产业产值超过50亿元,销售收入连续五年进入全国前五名,已经产生了一定的产业集聚效应。

三、南昌市LED产业存在的问题

1.LED产业集群发展不完善

首先南昌国家高新区虽然形成了完整的LED产业链,但是受南昌及周边城市工业基础较薄弱的影响,产业配套能力较弱,和其他国家半导体照明基地相比有一定差距。其次公共服务体系的不完善制约了南昌国家高新区LED产业集群内中小企业的发展。再次从整个产业链来看,存在上中下游产业发展不均衡,应用产品产业化能力弱的问题。特别是LED照明光源、灯具等应用产品,始终不能独立形成大规模应用产品的产业化生产的能力。

2.LED产业发展的技术还有待创新

我市拥有完全自主知识产权的硅衬底蓝光LED芯片与器件,还存在亮度不够等困难;龙头企业缺乏,与欧美和台湾地区的大公司相比,不论是技术力量还是企业规模都相当薄弱;其他企业产品档次和附加值低,以中低端产品为主,高端产品少。

3.LED产业化专门人才缺乏,人才培养体系尚未建立

南昌市虽然是我国最早从事LED研发和生产的地区,但是缺乏具有现代管理理念的产业化专才,也没有形成系统的LED高、中、低各类人才培养体系。

4.LED产业发展市场开拓不够

LED产品升级换代快,市场竞争导致价格下降,企业的利润减少,影响对新产品的投资研发。与此同时设计及研发成本急速上升,应用产品又还没有进入千家万户,使得LED照明产业呈现投入大产出小现象。加之招商引资重点不明确,开拓市场显得更加困难。

5.政府对LED产业发展的技术研发投入严重不足

南昌市虽然从2004年起,设立光电子产业化专项资金,用于支持南昌光电子产业发展,但是这一专项资金每年共计才600万元,与其它基地的政府投入相比,与发展该产业对我市未来经济发展的重要地位相比,从LED产业高投入、高风险的实际来看,政府投入严重不足。

四、发展南昌LED产业的对策措施

1.选择“龙头企业+工业园区”的产业集群发展模式

LED产业属于技术一资本密集型产业,需规模化生产方可降低成本,且耗能巨大,因此培育产业集群发展的模式必须选择龙头企业带动型模式。

具体做法:依托南昌国家高新区具有的优势,即晶能光电(江西)有限公司具有完全自主知识产权的硅衬底GaN基技术优势,金沙江产业园的投资带动优势,上市公司联创光电的融资优势。以及本地的劳动力廉价优势,在培育一批龙头企业的基础上,建设具有南昌国家高新区LED产业特色的三大产业集群。借助技术领先优势和劳动力廉价优势,努力开拓国际市场,将南昌国家高新区建设为LED产品出口的重要基地。借助与金沙江的合作,以政府为引导,以金沙江为带动,积极开展招商引资工作,将金沙江产业园建设为LED企业流入的聚集地,形成庞大的LED产业体系。借助联创光电的资本优势和电子元器件的生产优势,抢占全国电子元器件的市场份额,建立品牌优势,打造南昌国家高新区LED产业的一大特色产品。在此基础上,以市场为主导,积极引进LED产业投资,全面推进LED应用产品的生产。

2.大力实施技术创新与人才战略

进一步深入硅衬底GaN基核心技术的研究,将专利技术覆盖所有LED生产领域,形成LED国际和国家技术标准。通过技术攻关与研究开发,力争在功率型及超高亮度LED外延片和芯片制造技术、高性能LED封装技术等关键技术和工艺上有所突破,全面提升LED产业的技术档次和水平。技术的创新需要人才的支撑,南昌市政府应完善现有的人才引进政策,通过在住房、职称评定、子女求学等方面适当照顾大力引进一批高端管理人才和创新型技术人才,为LED产业发展提供强有力的智力支撑;以此同时,充分借助高校与科研院所的优势,分别在大学、大专、中专等院校建立LED相关学院和系,按照LED产业所需的人才梯度,培养研发专才、工程师和技术工人等一系列人才,为南昌国家高新区LED产业发展提供完善的人才保障。

3.拓展应用领域,以应用促产业发展

针对我市LED应用产品产业化能力弱的问题,本文的构思是建议以新构思、新技术、新产品引导新的应用。目前在城市路灯照明、室内装饰灯、汽车用照明等领域的LED应用才刚起步,还有很大发展空间,要通过政府采购、政府首购,新技术、新产品展示会,现场试用表演和建立示范工程等方式进行推广,不断扩大应用范围和规模,并最终实现产业化。

4.为企业和研发机构提供广阔的投融资渠道

LED产业的研发投入资金大、风险系数高,政府应为企业和研发机构提供广阔的投融资渠道。具体做法;一是对于符合LED结构调整方向的技术改造项目、技术创新项目及固定资产投资项目的LED企业可批准其申请贷款贴息。二是对符合条件且在授信额度内的LED企业贷款建立了“贷款绿色通道”,提高贷款效率。三是建立合同能源管理的“四方融资模式”,即企业与市政府签订能源管理合同,政府分期付款给企业;银行根据合同给企业贷款,市政府指导担保机构对企业提供流动资金贷款担保,企业再分期向银行还贷。解决企业本身授信不够、政府贷款过度、政策不可控制和延续性问题。四是成立LED产业发展基金,市财政在规划期内从扶持企业发展资金中,第一年、第二年各安排2000万元专项资金,第三年安排4000万元专项资金,用于扶持半导体照明产品的研发与产业化、公共服务平台建设与维护、示范应用的补助和工作经费等方面,各开发区、各县区都要安排一定资金用于半导体照明产业发展和推广应用。此外,通过举行经贸会等形式进行重点招商引资。

参考文献

[1]王万山,黄建军,《鄱阳湖生态经济区开放型经济研究》[C].江西人民出版社,2008(12)。

[2]南昌市科技局,《南昌市半导体照明(LED)产业发展规划(2009~2015)》[M].http://ncinfo.省略.2010。