公务员期刊网 精选范文 人工智能神经网络技术范文

人工智能神经网络技术精选(九篇)

人工智能神经网络技术

第1篇:人工智能神经网络技术范文

关键词:人工智能;计算机网络技术

在计算机网络技术当中,通过运用人工智能,不仅可以给人们的日常生活带来更多便利,而且能够显著提升人们的生活水平。但是,计算机网络安全问题的出现,严重影响计算机网络技术的快速发展。基于此,本文深入探讨计算机网络技术当中人工智能的具体应用。

1人工智能特点分析

第一,提升模糊信息处理效率。由于计算机网络结构发生变化,使得计算机网络产生海量数据,在一定程度上增加了计算机网络管理难度。计算机网络系统运行期间,为了保证海量数据信息得到高效处理,运用人工智能特别重要。例如运用人工智能技术的逻辑推理理论,构建完善的数据模型,提升计算机网络模糊信息化处理效率。第二,提高成本控制水平。在传统的计算流程当中,相关人员需要采取相同方法,进行多次计算与验算,此种方法应用效果较差,而且会增加成本控制难度。而人工智能技术的出现,可以保证计算机网络系统运行成本得到高效控制,帮助相关人员在最短时间内解决各类难题,进一步提升计算结果的准确性。第三,非线性能力突出。从理论角度来分析,人工智能技术主要是机器人来模仿人类各项行为,机器人在模仿的过程当中,能够将各项技术有效结合并运用。在计算机网络系统之中,存在大量的原始简单计算协议,通过运用人工智能技术,能够将各项基础信息有效整合,提升数据信息的利用率。

2计算机网络技术当中人工智能的具体运用

2.1在数据信息挖掘当中的具体运用

在数据信息挖掘期间,通过运用人工智能技术,可以保证各项数据信息得到高效的处理,结合各项数据信息的特点,生成相应的数据报表,为用户提供更加直观的网络成果。在具体操作环节,要求相关人员将自身计算机网络系统和外部信号有效连接,从而获得更加准确的数据信息,掌握相应的对话内容。该对话内容不但可以用来进行行为的描述,而且能够在数据库当中详细记录下各项操作信息,进而保证计算机网络体系的可靠、安全运行。

2.2在网络安全防护当中的具体运用

2.2.1加强智能入侵的检测在人工智能当中,入侵检测技术应用在专家系统当中,通过科学运用智能入侵检测技术,可以保证计算机网络数据库内容更加完善。检测系统在运行的过程之中,可以和计算机网络系统保持稳定连接,运用对比方法,准确判断出入侵行为是否满足规定标准,并在最短的时间之内,制定出完善的应对措施。[1]另外,人工智能入侵检测技术的良好运用,也可运用人工神经网络系统,对人类的各项行为进行有效模仿。人工智能系统通过模仿人类行为,可以形成更具有特色的检测体系。在计算机网络系统当中,通过运用先进信息技术,能够帮助有关人员找到潜在信息,并将此类信息有效提取,有目的性的对各项数据信息实施评判,减少入侵现象的发生。

2.2.2防火墙的构建本文主要某大学图书馆为例,要想进一步提升图书馆文献资料的安全性,技术人员在原有防火墙基础之上,构建人工智能防火墙,显著提升图书信息的管理效率。在传统的图书馆文献信息管理工作之中,计算机网络系统需要对海量信息进行综合管理,消耗的资源特别多,图书馆文献资料安全防护水平较低。而人工智能技术的运用,通过构建智能防火墙,可以保证网络环境当中的各项行为得到准确识别,针对图书馆系统的登录与访问,进行准确判断与控制。通过采用上述防范措施,可以保证图书馆中的各项文献信息资料更加安全,操作人员的身份识别更加准确。[2]

2.3在人工神经网络当中的具体运用

人工智能可以模拟人类大脑思考方式,长时间的学习与训练,人工智能的网络神经接收能力与评判能力得到显著提升。根据大量的研究数据得知,在人工神经网络当中,通过运用人工智能技术,能够准确的识别出噪声,针对异常信息的输入,也可以准确判断,进而保证智能化计算机网络系统的可靠运行。将人工智能神经网络和不同的网络信息技术有效结合,能够提升系统检测效率,取得良好的叠加效果。

第2篇:人工智能神经网络技术范文

(北京信息科技大学自动化学院,北京100192)

摘要:针对人工神经网络的课程特点,提出将前沿科技引入教学内容,基于兴趣与任务驱动开发一系列课程案例,对教学内容和教学方式进行课程改革。介绍在实验教学环节基于倒立摆系统开发出的一系列实验案例。

关键词 :兴趣与任务驱动;人工神经网络;课程改革;智能科学与技术

基金项目:北京信息科技大学2015年课程建设立项项目(2015KGYB11);2015年人才培养质量提高项目(5111523309)。

第一作者简介:陈雯柏,男,副教授,研究方向为人工神经网络、智能机器人,chenwb@bistu.edu.cn。

O 引言

目前很多高校合并重组原有的多个专业,组建了智能科学与技术专业。在此情况下,各高校智能科学与技术专业的本科教学模式不但具有融合、交叉、综合等特点,还具有自身特色。人工神经网络课程是各个学校智能科学与技术专业开设的专业课,但是我国智能科学与技术本科专业的发展尚属初级阶段,很多课程和教学都处于建设和摸索阶段。

1 人工神经网络教学的现状

人工神经网络是智能科学与技术专业的一门核心专业课,它为机器人技术、以新一代网络计算为基础的智能系统、微机电系统( MEMS)以及与日常生活密切相关的各类智能技术提供有力的理论支撑。目前,人工神经网络教学过程主要存在以下3个问题。

1)教学内容相对滞后,脱离前沿科技。

随着高等教育的大众化和普及化,教育体系渐渐无法适应社会经济与科技的发展。教育体系与教学内容相对滞后尤其表现在智能科学与技术专业。近几年,人工神经网络的技术在工业、机器人产业甚至互联网产业都取得了较大的进展,而目前人工神经网络教学却几乎忽视了人工智能领域的最新发展。

2)内容讲解理论性强,讲授枯燥无味。

目前,大多数人工神经网络的教材和教学内容集中在研究生教育阶段,教学内容的理论性较强,这就要求学生具备较好的数学基础。然而,大部分本科学生还不具备足够的知识储备,很难深刻理解教师讲授的人工神经网络原理,容易产生厌学情绪。

3)实验资源缺乏,学生动手实践机会较少。

针对本科生的人工神经网络教学开展时间较短,人工神经网络方面的实验设计较少,理论教学和实验教学经验也相对缺乏。这些情况导致学生的实践动手能力得不到充分锻炼,造成实践知识和实践能力的培养缺失,很大程度上制约了应用型创新人才的培养,不能满足工程素质教育的要求[3-4]。

2 将深度神经网络引入教学内容

传统的人工智能课程由各个院校根据各自专业办学特点而自行设定,课程的教学内容也有较大差别。人工神经网络的教学内容一般只讲解经典的多层感知器和反向传播算法,或加入一些反馈网络的内容,这种教学内容设计的一个不足之处是忽视了人工智能领域的最新发展——深度学习。深度学习是近几年人工智能领域最具影响力的研究主题,并在大规模语音识别、大规模图像检索等领域取得突破性进展。

2006年以来,深度学习的研究席卷了整个人工智能领域,从机器学习、机器视觉、语音识别到语言处理,都不断涌现出新的研究成果。深度学习不仅在机器学习领域成为研究热点,在多个应用领域也成为有力工具。在工业界的系统应用中,深度学习也成为其中的关键解决技术。

深度神经网络模型如图1所示,它模拟了人脑的深层结构,比浅层神经网络的表达能力更强,能够更准确地“理解”事物的特征。基于图1的网络模型,在学习经典的前向型神经网络与反馈型神经网络后,利用前沿技术——深度神经网络,可以帮助学生建立对人工神经网络课程内容的认可,激发探索与应用连接主义人工智能学派研究成果的兴趣。人工神经网络的教学内容为:①感知器;②BP神经网络;③径向基神经网络;④Elman神经网络;⑤Hopfield神经网络;⑥自组织竞争人工神经网络;⑦CMAC神经网络;⑧神经网络的优化方法;⑨深度神经网络。将深度神经网络引入教学过程,不仅能够增加学生的知识面,也可以使学生顺应社会的需求。

3 开发人工神经网络实验,增强学生动手能力

由于教学条件和课程学时所限,很多教学内容仅停留在理论介绍。因为知识点抽象,学生理解起来比较困难,实际教学效果不甚理想。人工神经网络课程的主要教学内容是连接主义学派的成果,因此学生对该门课程的价值缺少直观感受,进而出现了学习兴趣不足的现象。

智能科学技术是自动化工程、计算机工程、通信工程、机电工程等工程学科的核心内容,具有极强的工程性和实践性。工程技术型人才的培养目标是为各个工程领域培养具有应用能力和创新能力的人才。如果想让学生走出教室、走出纯粹的理论学习,走向实验室、走向实战,那么在教学时就要精心设计一些实验案例。CDIO工程教育依照“项目任务驱动目标学习”的教学理念,重点培养学生的创新能力、实践动手能力及团队合作精神。工程案例式教学运用多种方式启发学生独立思考,要求学生对工程案例提供的客观事实和问题运用所学理论进行分析研究、提出见解、作出判断。目前,基于上述原则,我们开发了一系列有针对性的实验案例。

我们把倒立摆的稳定控制作为人工神经网络实物实验平台,如图2所示。作为控制理论教学和科研中不可多得的典型物理模型,倒立摆系统是一个绝对不稳定系统,需要采用有效的控制策略才能使之稳定。在实验开始之前,教师先向学生介绍基于MATLAB/SIMULrNK环境和固高直线一级倒立摆系统构建前馈型人工神经网络的实验方案。实验演示使用BP网络作为控制器,实现一级倒立摆系统的稳定控制。

该实验简单易行、效果直观,让学生复现该过程有利于帮助其从本质上理解前馈型人工神经网络及其应用。以上的实验属于验证性实验,主要目的在于引导学生入门,激发学生兴趣,实验设计以简单易行为主。

为了进一步提高学生的实践动手能力及创新能力,我们在学生完成前面实验之后设计了进阶实验,更加注重培养学生自己对神经网络控制器的设计及使用。在实验过程中,我们给学生提供一定的任务,要求学生查阅资料并完成实验。实验内容包括:①基于神经网络一级倒立摆系统的舞蹈控制;②基于神经网络二级倒立摆系统的稳定控制;③倒立摆系统的神经模糊控制。

在实验中,学生可以自由发挥自己的创意,设计一些有趣的实验内容。比如,在倒立摆系统上为舞动的杆设计一定的动作,形成舞动表演。学生自己完成动作设计、控制器设计等内容,老师给予一定的理论指导,实现“迪斯科”“伦巴”“快四-中四-慢四”等一系列基于一级倒立摆系统的连贯的舞蹈表演。

这样的实验设计,学生容易上手,又能参与设计,在轻松愉快的过程中不仅掌握了枯燥的理论知识,还将其应用在实践中,解决了实际问题。

4 结语

我们以提高学生的学习兴趣为导向,综合考虑工程素质教育的要求,根据课程教学内容的性质和特点,将前沿技术引入教学内容,重构教学大纲和授课计划,充分调动学生的学习积极性,激发学生的创新潜力。实践表明,该方法高效率地提高了学生的创新意识和素质,充分调动了学生的学习积极性,激励学生自主学习。

精心设计及开发神经网络实验,增加了学生的动手实践环节。实物演示实验降低了学生对人工神经网络应用的排斥心理,增加了学生的学习兴趣。递进式的倒立摆系统创新实践案例有效锻炼了学生的创新性思维以及应用理论解决实践问题的能力。

参考文献:

[1]钟义信.智能科学技术导论[M],北京:北京邮电大学出版社,2007.

[2]王万森,方勇纯,张磊,课程与教学研究[J]计算机教育,2011(15): 47.

[3]王万森,适应智能化应用发展趋势,培养创新型智能科技人才[J]计算机教育,2013(10):1.

[4]中国工程教育专业认证协会,工程教育认证标准[EB/OL].[2015-07-30].ches.org.cn/zgslxh/rzgz/rzbz/webinfo/2013/08/1376989480089284.htm.

[5]陈雯柏,李擎,王万森,工程型智能科学与技术专业知识体系与课程研究[J]计算机教育,2014(19): 29-33.

第3篇:人工智能神经网络技术范文

关键词 电力系统自动化;智能技术;监控系统

中图分类号TM7 文献标识码A 文章编号 1674-6708(2012)64-0160-01

电力系统分布地域广阔,而且大部分元件具有延迟、磁滞、饱和等复杂的地理特性,要对这样大型的系统实现有效控制是极其困难的。而且电力系统在不断增大,人们对电力系统的控制有了越来越高的要求。智能技术是通过先进的传感和测量技术、先进的设备、先进的控制方法,以及先进的决策支持系统,实现电力系统可靠、安全、经济、高效和使用安全的目标。它在电力系统自动化控制中应用得越来越广泛。本文就针对五种典型的智能技术进行了探讨。

1 智能化监控系统

对于电力系统,实时监控是及时有效发现问题的重要手段。特别是随着计算机技术、网络技术和工控技术的不断提高,对电力监控系统智能化的要求也越来越高。智能监控系统采用图形化用户界面,有数字化的监控界面,也有实时趋势显示、柱状图显示、表盘式数据显示、位图动画等直观显示,还有实时报警、图形界面遥控、遥控闭锁、置数、遥调等功能。不仅提高了工作效率,节省了人力成本,更重要的是切实提高了生产的安全可靠性,使科技手段为电力系统的安全管理提供了强有力的保障。

实施智能化监控系统,要根据实际要求定制系统结构。比如,要考虑高压进线、母联和馈线部分;低压变压器进线、联络回路部分;低压的电容补偿、电源切换等回路部分,馈线部分等。具体施工时可考虑采用分层分布式结构。如分为现场监控层、通讯管理层和主控层。实现的功能有监测变压器温度;发电机全电量的测量及转速、油温、油量等发电机状况监测;采集断路器开关量、继电保护跳闸信号、异常报警信号和非电量等遥信量信号;谐波分析、故障录波及事故追忆功能;自动调峰控制,电力需求的控制,设备的开合次数统计及损耗状态的监视等。

2 在故障诊断中的人工智能技术

电力系统的故障诊断传统上是根据某些设备和装置在故障过程中出现的一系列数字的状态信息进行分析,然后推理得出故障原因和故障发生的元件,并预测故障恶化的趋势。近几十年来,国内外将人工智能技术用于电力系统已取得了有效的实际效果。常用的人工智能技术有ES、ANN、FST、GA及Petri网络技术等。

ES是比较成熟的一种人工智能技术,它不融合了书本相关的理论知识,还可总结专家的经验知识来解决问题,是与知识工程研究紧密联系在一起的。它一直在改进知识获取和构造,使知识获取和知识表达工作简化,提高故障诊断的推理效率。基于ANN原理的故障诊断系统最大的特点是不需要为专业知识与专家启发性的知识转化、知识形成、知识表达方式和知识库构造进行大量的工作,而只需以领域专家所提供的大量故障实例,自我学习、自我组织,形成故障诊断样本集,在故障定位和故障类型识别等方面用处很大。FST故障诊断原理是采用模糊隶属度来对故障与对应的动作保护装置和断路器状态之间的可能性进行描述的度量。基于GA和Petri的故障诊断技术都各有优势和存在一些问题。

3 模糊逻辑控制技术

模糊逻辑控制是模拟人的模糊思维方法,用比较简单的数学形式直接将人的判断、思维过程表达出来,用计算机实现与操作者相同的控制。

模糊控制技术应用于电子技术的各个方面,使人容易操作和掌握。相较于建立常规的数学模型,建立模糊关系模型非常简易,在实践中有巨大的优越性。模糊控制通过已经存在的控制规则和数据,对模糊输入量进行推导,从而得到模糊控制输出,进入实时控制。这种模拟人脑的智能技术的优势主要体现在以下几个方面:能有效处理具有不确定性、不精确性的问题和由于噪声造成的问题;通过模糊知识的语言变量表达专家的经验,与人的表达方式接近,知识的抽取和表达更容易完成。如果电力系统出现故障,通过应用模糊理论,也能够及时进行应对并给出解决办法。

4 人工神经网络控制技术

人工神经网络(Artificial Neural Networks,简写为ANNs)是一种模仿动物神经网络的行为特征,进行分布式并行信息处理的算法数学模型。神经网络由大量神经元连接而成。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系。人工神经网络在智能电网中的优势主要表现在3个方面:

1)具有自学习功能。通过用不同的实时运行数据输入人工神经网络,网络就会通过自学习功能,慢慢学会识别电力系统的运行情况,从而为人类快速判定问题提供依据;2)具有联想存储功能。用人工神经网络的反馈网络就可以实现这种联想;3)具有高速寻找优化解的能力。寻找一个复杂问题的优化解,往往有很大的计算量。利用一个针对某问题而设计的反馈型人工神经网络,发挥计算机的高速运算能力,可能很快找到优化解。

5 综合智能控制技术

综合智能控制包含了智能控制与现代控制方法的结合,也包含各种智能控制方法之间的组合。在电力系统中研究得较多的综合智能控制有神经网络与专家系统的结合。

神经网络适合处理非结构化信息,而模糊系统更适于处理结构化的知识。人工神经网络控制主要应用于低层的计算方法,把感知器传来的大量数据进行安排和解释,模糊逻辑控制则提供应用和挖掘潜力的框架,用来处理非统计性的高层次的推理。所以,人工神经网络控制和模糊逻辑控制这两种技术正好起互补作用,相结合可以相得益彰,有良好的技术基础。

6 结论

电力系统是一个巨维数的动态大系数,具有强非线性、时变性且参数不可确知,并含有大量未建模动态部分的特征。智能技术能有效地组织相关电力系统规划的大量知识,进行选优运算,从而得出优化的决策,它的使用将对电力系统的智能化起到积极的促进作用,对电力系统的稳定性、安全性和经济性起重要的作用。

参考文献

第4篇:人工智能神经网络技术范文

关键词:智能信息处理技术;发展;通信技术;网路技术;模糊理论

中图分类号:P208 文献标识码:A 文章编号:1007-9599 (2013) 02-0000-02

伴随着计算机技术和通信技术的不断发展创新,信息处理技术理论已经迈上了一个新的台阶,如今信息处理研究领域并不再局限于原有的一般理论与方法的研究,而是努力拓宽研究领域,把主要精力放在新方法、新理论的探索上。信息处理技术,主要研究对象已经由原来简单的线性、因果、最小相位等特殊系统,逐步发展到现在的非线性、非因果、非最小相位,更具有普遍意义的系统,对随时变化的信号进行处理和分析是信息处理技术发展的一个重要方向。智能信息处理技术的最大特点就是将不确定、不可靠的信息进行加工处理,转变为确定的、可靠的信息。通过智能信息处理,从一些不精确、不确定的信息中,依然可以得到较为确定的结果,从而更加充分、合理的利用已经获取的信息,提高信息的利用效率。

1 智能信息处理技术的产生与发展

智能信息处理技术的产生可以追溯到上世纪30年代,但当时缺乏具有一定运算能力的工具,智能信息处理无法发挥其作用,束缚了智能信息处理技术的发展。计算机的出现,成为了智能信息处理技术的迅速发展的基础,一些具备智能信息处理能力的产品出现在人们的日常生活学习中,给人们的生活带来了巨大的方便,也产生了良好的经济效益,例如现在医学上广泛应用的CT机,就是建立在智能信息处理技术基础之上的;以美国著名科学家J.W.Cooley为首的科研团队提出的FFT算法,对科学界产生了巨大的影响。这种算法应用于硬件电路后,被广泛的应用于各个智能检测仪器当中,促进了高自动化检测设备的迅速发展,取得了良好的效果。近些年,计算机技术和智能信息处理技术的发展日新月异,技术水平不断提高,大量的信息处理系统中都可以发展智能信息处理技术的身影。

2 智能信息处理技术主要理论与方法

智能信息处理技术涉及领域广泛,包含信息科学的多个学科,是计算机技术、通信技术、电子技术和控制技术等多种技术的融合。就目前的研究状况来看,智能信息处理方法主要包含以下几种:

2.1 人工神经网络方法。人工神经网络方法是在数学模型和网络模型的基础上研究提出的。在数学模型中,人工神经参考大脑神经元,是信息处理的基本单元体,大量的人工神经元有机的组合在一起,构成一个复杂的神经网络结构。这个结构的基础就是单个的人工神经元和各个神经元之间的连接结构。

网络模型中,也是以人工神经元为基础,按照一定的结构组合在一起,构成一个完成的模型。从目前的调查研究来看,已经开发出的人工神经元网络模型多达数十种。如果按照连接方式和信息流动方向对人工神经元网络模型进行分类,可以划分为以下两种类型:前向型网络和相互结合型网络。其中前向型网络模型中没有信息反馈机制,而相互结合型模型中的信息可以反馈,又被成为反馈型神经网络模型。

2.2 模糊理论。当研究对象是一些不确定的现象时,就需要用到模糊理论。对象的不确定性是事物自身具有的,并不受数学理论中二元性原则的束缚,是对象差异的中间过渡状态,难以给予明确的划分,这就使得对象的划分不明,具有一定的模糊性。模糊系统以模糊理论为基础,是具有一定模糊信息处理能力的动态模型。通常的模糊系统可以看成一个输入―输出的对应关系,并可以当作连续函数的通用逼近器应用,它是由模糊规则库、模糊产生器、反模糊化器和模糊推理机四部分组成的。以模糊系统和神经网络为基础,研究发展出了模糊神经网络。模糊神经网络把神经网络和模糊系统的理论有机的结合在一起,优势互补,并将语言、逻辑计算、处理方法和动力学理论融合起来,是自身具备了良好的学习、识别、联想和模糊信息处理能力。模糊神经网络的核心内容就是将模糊的输入信号与权值施加于普通的神经网络之中,二者相互取长补短,充分的发挥了模糊系统和神经网络各自的优势。模糊神经网络的出现,对于智能信息处理技术的发展具有里程碑式的意义。

2.3 进化算法。进化算法学习、借鉴了生物界中的自然选择定律和遗传定律,对优化和机器学习等领域的研究具有极大的指导意义。

模拟生物的遗传模型,在全局中进行优化搜索,这是遗传算法的工作原理。该算法方法简单,应用范围广,适于信息的并行处理。遗传算法以个体为对象,进行选择、交叉和变异操作,使得该算法具有了一些区别于传统算法的独特性质。经过科学家的研究探索,进化算法已经在自动控制、图像识别、机器学习等众多领域广泛应用,是智能信息处理技术中最常用的算法之一。

2.4 信息融合技术。如何将多种信息进行加工、利用,并使其相互补充,以获得更加真实、准确的信息是信息融合技术的主要研究内容。利用多传感器系统,可以对目标进行精确的监测,排除不确定的信息,从而达到提高可靠性的目的。信息融合技术的基本原理,就是对人脑综合处理信息能力进行模拟。由于系统中具有多个不同的传感器,各个传感器发出的信息并不是完全相同的,而多传感器信息融合系统就会想人脑处理不同的信息一样,对各个传感器传来的信息资源进行处理、整合,然后进行合理的支配和使用,并将对冗余的信息进行合理的组合,以提高信息的正确性和精确程度,由此,使该信息系统的性能比它的各组成部分的子集所构成的系统更加优越。

信息融合可以分为高层次处理和低层次的处理,数据的预处理;目标检测、分类等工作属于低层次的处理,高层次的处理主要包括态势和威胁估计以及对整个融合过程的提取。目前的信息融合模型分为两类:数据型模型和功能型模型

3 智能信息处理技术在生活中的应用

智能信息处理技术在日常生活中具有较大的应用价值,主要体现在以下几个方面:(1)可以实现智能、自动化操作,减少人类的脑力劳动量。(2)可以在生活中实现文字、语音、影像等对象的识别功能,机器可以自行进展理解、翻译等工作。(3)如今互联网应用广泛,智能信息处理技术可以通过路由器,对数据的传输路径进行分析,得出最佳路径,从而解决网络阻塞问题。(4)随着计算机技术越来越广泛的应用于实际生产,计算机技术需要进一步提高,速度不断加快、存储容量不断增大、成本不断降低,智能信息处理技术的发展将有效的促进计算机技术的发展,实现一些以前无法完成的任务。

4 结语

经过多年的研究探索,智能信息处理技术已经取得了较大的发展,但在实际应用中还存在许多问题需要解决和完善。想要将智能信息处理技术进一步发展,并在实际应用中得到良好的应用,必须要和科学技术的前沿紧密结合,产生新的思维方式和研究方法,并根据实际应用中出现的具体问题对原有理论进行归纳和修正,提高理论高度和认识深度。随着科技的不断进步,智能信息处理技术将会越来越复杂,若仅仅依靠某一个信息处理方法,很难满足应用中的复杂需求。因此,智能信息处理技术在今后的发展过程中,必然会将多种只能信息处理方法结合在一起使用,这是智能信息处理技术研究的必然趋势。

参考文献:

[1]陈国良.遗传算法及其应用[M].人民邮电出版社.

[2]林明星,付晨.基于神经网络的多传感器信息融合技术[J].新技术工艺.

第5篇:人工智能神经网络技术范文

【关键词】电力系统;变革性;智能控制;发展趋势

目前,大量应用实例及工程实际研究进一步表明应用控制理论在电力系统的安全稳定控制的巨大效益以及现实可用性和广阔前景。现代控制理论在中国电力系统中的应用,碧口水电站100Mw机组上最优励磁控制得到最好的证明。如今,现代控制理论在电力系统中的应用已发展成电力系统学科中一个引人注目的活跃的分支。近年来,模糊技术、神经网络、专家系统等技术的发展又开拓了智能控制技术的新道路。

1、电力系统中智能控制的应用领域

人工智能控制作为一门新的技术学科,涉及到多方面知识,如数学、哲学、心理学、计算机科学、控制论、不定性论,人工智能控制技术运用于多个层次,在智能控制,机器人学,语言和图像理解,遗传编程上相当于催化剂,使工作更有效地进行着。在现代科学技术不断进步的社会,效率的提高是最重要的,无论在生产还是生活方面。计算机技术的广泛运用是当今社会发展的强有力保障,自动化生产、运输、传播离不开计算机编程技术。

2、智能控制的优势

把人工智能控制的方法引入电力控制系统,将控制理论的分析和理论的洞察力与人工智能控制的灵活框架结合起来,才有可能得到新的认识上的突破。人工智能控制主要表现在智能决策上,能够有效地解决复杂性和不确定性的控制问题。模糊控制就是在研究人的控制行为特点的基础上发展起来的。对于无法构造数学模型的被控制对象,让计算机模仿人的思维方式,进行控制决策。人的控制可以用语言加以描述,总结成一系列的条件语句,即控制规则。运用微机的程序来实现这些控制规则,这样就很像是人的思考行为了。因此,人工智能控制可以有效地解决现代工业生产中许多无法用数学模型精确描述的工艺工程,以及利用传统数字计算机难以获得令人满意效果的诸多问题,在电力系统应用中表现了很大的优势。

3、智能控制的主要应用方法

3.1模糊技术在电力系统中的自动化控制中的应用

“模糊理论”(FT)是将经典集合理论模糊化,它是一个经典集合论。模糊语言变量,模糊逻辑和模糊推理,是有完整的推理系统的智能技术。模糊控制是一种切实可行的方法,控制的模拟模糊推理和决策过程。它的原理是根据已知规则的控制和数据,由模糊输入量推导出模糊控制输出主要包括模糊化、模糊推理与模糊判决三部分。根据这三个部分的分析,做出正确的决策。

随着科学技术的进步和社会的不断发展,模糊控制理论也在随之改进,模糊控制的优点逐渐得到体现,并且已被广泛应用与推广。模糊理论在电力系统中的应用越来越多,显示了模糊理论在解决电力系统问题上未来的发展潜能。在国外的成功案例中也不断在使用这一控制技术。例如,在欧洲某些国家调度中心,研究用模糊控制的方法描述调度员的负荷预测方法,已取得了令人满意的效果。

在应用控制中,大多依据模型来进行,并且这一方法已经渐渐的被广泛接受。模型有简单的也有复杂的。一般线性模型为简单模型,但是实际应用中大多为复杂的非线性系统。在模拟非线性过程中,模糊关系模型(FRM)是一个简单而有效的方法,仍然只是“次优”方法。模糊关系模型来直接描述的输入和输出之间的关系,单输出系统是容易实现的,但实现多输出系统仍然是困难的。如果要为了克服这些缺点,要与其他人工智能技术和模糊理论相结合,并且在实际应用中取得良好的效果。

3.2专家系统在电力系统自动化控制中的应用

专家系统(ES)是发展较早、也是比较成熟的一类人工智能控制技术。专家系统主要由知识库和推理机构成,它根据某个领域的专家提供的特殊领域知识进行推理,模拟人类专家作出决策的过程,提供具有专家水平的解答。目前,电力系统运行和控制由有经验的调度人员借助自动化技术完成。这是由于一方面传统数值分析方法缺乏启发性推理的能力,同时也无法进行知识积累,另一方面电力系统自身的复杂性使一些必要的数学模型及状态量很难获取,单纯的数值方法难以满足电力系统的要求。因此,在电力自动化系统中引入电力专家的经验知识是十分必要的。

目前,全球都有不少与电力系统控制相关的专家系统投入试运行或进入实用化推广阶段,并取得了不错的效果,但是仍然存在着一些问题值得研究和探索:①当系统规模较大、规则较多时,完成推理的速度受到限制,因此目前已有的专家系统大多是用于离线,或者在线解决属于系统分析方面的问题,而在实时控制方面的应用还刚刚起步,有待进一步的研究;②现有的专家系统缺乏有效的学习机制,对付新情况的能力有限,而且容错能力较差,当系统发生故障或网络结构、系统参数、设备控制器配置等发生变化的情况下,将有可能得不到结果或给出错误的结果。如何与ANN、模糊推理等其它人工智能控制方法结合以提高专家系统的自学习能力和容错能力是值得研究的课题;③大型专家系统的建造周期长,知识的获取和校核比较困难,要建立完备的知识库,维护难度比较大,在建造专家系统之前必须充分考虑这些问题。

3.3人工神经网络在电力系统自动化控制中的应用

人工神经网络出现在上世纪40年代,(ANN)它是一个模拟的传输和处理,由人工只能模仿简单的控制,以神经元信息的人的基本特征连接而成。经历了七十多年的研究发展,在模型结构、学习算法等方面取得了许多重大的研究成果。与ES相比有三点优势,ANN的特点是用神经元和它们之间的有向权重来隐含处理问题的知识:首先,人工神经网络可以把信息分布存储,而且容错能力强;其次,人工神经网络有很强的学习能力,可以把知识实现自我组织,以适应不同的信息处理的需求;还有就是,人工神经网络计算神经元之间是相对独立性的,以方便的并行处理,执行速度更快。

人工神经网络的应用目前还存在一些问题,如果想更好的运用人工神经网络就要找到它的弱点。人工神经网络的应用研究方向重心就要去处理如何利用人工神经网络的优点,克服其缺点,以达到更好的效果。如果人工神经网络理论想在电力系统自动化及控制领域的应用发展的更加广阔,就加大对技术研究。

第6篇:人工智能神经网络技术范文

关键词:电气 自动化 人工智能

全面应用人工智能技术的最新成就,充分推动电气设备自动化的进一步深化发展,提高其系统运行趋于智能化的同时,人工智能技术的应用还利于强化系统工作的安全性、稳定性,有利于企业生产效率的提升以及市场竞争力的增强。

一、人工智能技术研究与应用的现实情况

近年来,大量科研单位以及专业院校都在人工智能技术的创新与研究以及其电气设备控制系统中的应用上开展了大量工作,人工智能用于电气设备系统的结构设计、故障诊断、预警、监控以及自动保护等方面都达到了一定的水平。

以结构设计方面为例,因电气设备系统结构设计复杂性高,涉及到诸如电路、电磁、电机电器应用等等大量的学科专业知识,更要求工作人员有丰富的实践经验。目前,在数字技术空前创新发展的背景下,电气产品及其控制系统的设计工作业已转向了CAD,使得新产品新系统的构建周期显著缩短。在此基础上加入人工智能技术,系统设计的质量以及速度都可得到全面提升。

此外,人工智能技术在进行电气设备系统故障控制与预警方面也有非常独特的优势。电气控制系统出现故障之前征兆呈非线性,因此人工智能技术中的模糊逻辑、神经网络等等部分可以充分发挥其优势。

最后是人工智能技术在电气自动化控制系统中的运用,主要的技术方法有、神经网络、专家系统以及模糊控制三种,其中以最后一种控制技术最为简便,可应用性最强。人工智能技术在电气自动化控制系统中以AI控制器为主,其可以视为非线性函数近似器。与一般的函数估计设备相比较,AI控制系统在进行设计时不一定必须工作对象的具体模型,这就避免在设计时需要考虑控制对象模型本身的参数变等不确定性。此外,其性能提升的空间比较大,而且易于调节,一致性强,对于新的数据信息适应性良好;配置成本低而且更新简便、抗干扰能力强。

二、电气自动化控制系统中人工智能技术的具体应用

电气自动化控制系统当中,人工智能技术的应用有两种,一是直流传动控制;另一种是效流传动控制。

在直流传动控制中,人工智能技术的应用有模糊逻辑控制技术为主,有Mamdani与两种可用于调速控制系统。它们均具备规则库部分,规则库实质上是一个if-them的模糊规则集合。以后者为例,它最主要的规则就是“if x=A,且y=B,则z=f(x,y)z则z”。其中的都是模糊集。模糊控制设备以推理机为核心部分,它负责模仿人脑的智能化决策以及模糊控制命令的推理。除此以外还有模糊化部分、知识库部分以及反模糊化部分,第一个部分是通过多种不同形式的函数对所输入的变量做出测量,并将其量化、模糊化;第二部分就是由数据规则以及语言控制库构成所构成的知识库,本库设计时就是应用专家的知识与经验对电气设备进行控制,在建立设备模型时,模型操作设备依据人工神经网络系统的推理机制进行模型建设;最后是以模型参数量化与中间平均技术等模糊化技术的应用。

除了模糊逻辑控制技术以外,还有人工神经网络控制技术。这种技术主要用于不同模式的识别以及各种信号的处理,可以在电气传动控制工作中发挥有效作用。这种技术以并行结构为主,适用范围比较广,可以大大提升条件监控、诊断系统的准确性;该控制技术最常用的学习策略是误差反向传播,也就是说在网络具备充足的隐藏层、结点和恰当的激励函数的情况下,多层人工神经网络只要利用反向传播就可以计算出对应的非线性函数近似参数,大大提高网络运行速度。

在交流传动控制中,人工智能技术的应用也同样有模糊逻辑与神经网络两种具体运用。

就模糊逻辑而言,到目前为止均以模糊控制器直接代替原有的普通速度控制设备为主,不过西方某大学研发了一种高性能的带有多个模糊控制器的全数字化传动控制体系,该体系所带有的模糊控制器即可以用来代替普通的速度控制设备,又可以用于执行它控制任务。

就人工神经网络控制技术而言,实践研究中以其对交流电气设备及其驱动环境参数监测及诊断为主。人工神经网络用作步进电动机控制时,可采用一般的反向转波计算方法,就是通过实验数据的应用,通过电机负载转矩以及电机的初始速度最终确定智能监控系统可监测的最大速度增加值。这种设计方案的实现,要求神经网络具备识别三维图形映射的能力,以便达到比常规梯形控制计算模式强的控制成效。在此模式下,人工神经网络可以大大缩减电气自动化系统定位所需要的时间,并且强化对于负载转矩以及非初始速度变化范围的控制工作。人工神经网络的结构以多层前馈型为主,具体可分为两个系统:系统一是在辨识电气动态参数的基础上对通过定子的电流进行自动调节与控制,系统二是在辨识机电系统的运行参数基础上对转子速度进行自动调节与控制。

第7篇:人工智能神经网络技术范文

关键词:液压系统;智能;故障诊断;神经网络

液压系统是结构复杂的机电液综合系统,具有机电液耦合,结构时变性、非线性等特性,液压装置对污染敏感,容易产生各种故障,且故障形式多样,难于检测和判断。智能诊断技术在知识层次上实现了辨证逻辑与数理逻辑的集成、符号逻辑与数值处理的统一、推理过程与算法过程的统一、知识库与数据库的交互等功能,为构建智能化的液压故障诊断系统提供了坚实的基础。本文对液压系统的智能故障诊断技术现状进行了分析,并提出了今后的研究方向。

1.基于神经网络的液压系统智能诊断方法

1982年美国物理学家J. J. Hopfield提出了HNN神经网络模型,使神经网络的研究有了突破性进展。在液压系统的故障诊断中,广泛应用的是多层前向神经网络及反向传播算法。

基于神经网络系统的诊断基本原则是:把领域专家的经验输入网络,通过对故障实例和诊断经验的训练学习,依据一定的训练算法,使网络的实际输出在某种数学意义下是理想输出的最佳接近,对应于特定的输入征兆,产生一故障输出模式,可以模仿人类专家的直觉、联想、记忆等能力,能较好地解决知识不完全性或不确定情况下的故障诊断问题。

文献[1]以轴向柱塞泵外壳的振动加速度信号为依据,采用3层神经网络,运用BP训练算法(通过误差反向传播修正权重,使网络的实际输出与期望输出之差的平方和达到极小),用C语言在微机上建立了泵的故障信号采集、预处理及神经网络的故障诊断框架。经实际检验,证明了神经网络诊断法的有效性。

基于神经网络的诊断法是利用神经网络具有非线性和自学习以及并行计算能力,使其在液压系统故障诊断方而具有很大的优势。其具体应用方式有:从模式识别角度应用神经网络作为分类器进行液压系统故障诊断;从故障预测角度应用神经网络作为动态模型进行液压系统故障预测;从检测故障的角度应用神经网络得到残差进行液压系统故障检测。

2.基于小波变换的液压系统智能诊断方法

小波分析是1986年以来由于Y. Meyer 和S. Mallat及I. Daubechies等的奠基工作而迅速发展起来的一门新兴学科。小波分析的另一个作用是通过不同尺度的小波变换,得到典型频率下的系统信号,以此分析系统的技术性能,判断系统故障所在。

潘宏等[2]研究了基于小波分析的液压系统泄漏检测方法。通过压力传感器检测出容腔的压力变化曲线,对压力信号进行Morlet小波变换。通过基本小波尺度的伸缩和平移计算得到的小波系数,在压力信号的多个带宽范围内能辨识信号特征。

3.基于专家系统的液压系统智能诊断方法

专家系统实质上是一种计算机程序,它能够以人类专家的水平完成液压传动与控制领域的故障诊断任务。专家系统由许多收集的规则组成,它清楚地表示了知识和结果。一般的专家故障诊断系统由三部分组成,即知识库、推理机制、决策机制。目前专家故障诊断技术与其它诊断技术的结合是发展方向。

总之,智能诊断法还有许多种,但其还处在探索和发展阶段,由于液压系统故障的特征、原因普遍存在模糊性,同一故障可能由不同的原因造成,同一故障可能会产生不同的故障特征,不同的故障也可能引起相同的故障特征,多种故障并发时故障特征就更加复杂,因

此,各种智能方法互相取长补短结合运用,是今后液压系统故障诊断发展的重要趋势。

4.液压系统故障智能诊断的发展方向

随着近些年来人工智能技术的发展,智能诊断的研究也在逐步深入,并在某些领域己经取得了一定的成效。在液压系统故障诊断方面,文献[3]用BP神经网络对液压泵的振动信号进行信息融合,提出了液压泵的神经网络在线状态监测及故障诊断系统。显然液压系统的在线故障诊断与预测能提高大型液压设备的可靠性和利用率,今后的研究重点主要是以下三个方面:

(1)深入研究复杂液压系统故障的智能诊断方法。目前大多数论文是应用BP神经网络或专家系统对单个液压元件如液压泵、液压马达、液压缸的故障或系统的泄漏进行故障诊断。

(2)加强传感器等硬件的研究。神经网络诊断方法,专家系统诊断方法都需要采集大量的数据进行分析,因此传感器的高精度和高可靠性是实现智能故障诊断的前提,开展智能传感器的研究是智能故障诊断的技术保证。

(3)开展液压系统智能故障诊断通用软件的研究。开发可靠性高、信息传输标准化的传感器以及开发液压系统故障诊断专家系统通用工具软件,使不同液压系统能使用相同的软件进行故障诊断,从而实现软件的大面积推广应用和降低开发成本的目的。

当前,液压系统故障诊断技术的发展己经融合了多学科的技术,其发展趋势必将是多种智能诊断方法相互混合,相互取长补短为主,与多媒体技术、网络技术、信息融合技术、虚拟现实技术等相互融合,对液压系统故障进行综合评判和诊断。

参考文献:

[1]祝海林.人工智能在液压系统故障诊断中的应用.液压与气动,1995 (5)

第8篇:人工智能神经网络技术范文

机器人桑尼反问:你能吗?

如果你看过电影《机器公敌》,一定记得这个对白,并对电影中那个拥有自我思考能力、拥有人类情感的机器人桑尼记忆犹新。

让机器拥有学习能力,甚至能够像人类一样去思考、工作,这就是人工智能,这个概念自从1956年被提出之后一直都是科幻小说最火爆的主题之一。如今,人工智能已不是幻想。

作为人工智能实现方法之一,人工神经网络目前已在全世界范围内悄然诞生,而由谷歌XLab团队斥巨资打造的谷歌大脑(Google Brain)无疑是首屈一指的。谷歌大脑的缔造者名叫吴恩达(Andrew Ng),他是一位华裔,现任斯坦福人工智能实验室主任,真正的“X教授”。

重拾人工智能梦想

如果是对7年前的吴恩达提人工智能,他一定会用各种理由说服你放弃这个疯狂的想法。

吴恩达对人工智能技术的否定,源于当时的一种主流观点:人类智慧是由无数个负责简单功能的区域协同工作形成的,而这个过程如果用计算机的方式来完成就必须建立成千上万个独立的计算机模块,每个模块模仿一种功能,比如说话、味觉。

按照这个理论推演开去,实现人工智能所需的工作量是巨大的。因此,人工智能技术在发展了40多年之后还是处于初级阶段。

当时的神经学家们始终认为,人工智能属于大脑研究的范畴,他们不大愿意和其他领域的科学家进行合作。这样的结果就是,工程师们在对神经科学毫不了解的情况下,开始开发不完全模仿人类大脑运行的智能系统,最终的产品就是类似“Roomba”这样的吸尘机器,这种吸尘机器人在工作的时候可以自动绕过障碍物,并沿着墙角路线转弯,在如今的家电大卖场均有销售。Roomba只有按照程序躲避障碍的能力,并不能像人一样学习。在吴恩达看来,这是“伪人工智能”。

发明能像人类一样学习、思考的机器,是吴恩达从小到大的梦想,但是当他进入大学开始真正接触到人工智能技术的时候,却深受上述观念的毒害而放弃了研究。

直到有一天,吴恩达偶然接触到了一种崭新的理论,这种理论认为,“人类的智慧源于单一的算法”,人类的大脑在发育的初期,每一部分的职责分工并不是明确的,可以通过后期的调试执行特定的任务。提出这个假说的杰夫・霍金斯(Jeff Hawkins)是全球最大掌上电脑制造商Palm的创始人,也是一名有着神经科学研究背景的人工智能领域的企业家。

这个理论改变了吴恩达的人生轨迹,他重新拾起了儿时的梦想。“我有生以来,第一次感到自己有可能在人工智能的研究领域取得一点儿进展。”

谷歌大脑的缔造者

2010年,时任斯坦福大学教授的吴恩达加入谷歌开发团队XLab――这个团队已经先后为谷歌开发了无人驾驶汽车和谷歌眼镜两个知名项目。身为人工智能领域的权威,吴恩达的使命就是“以史无前例的规模,通过谷歌庞大的数据中心来打造人工智能系统。”

随后,吴恩达与谷歌顶级工程师开始合作建立全球最大的“神经网络”,这个神经网络能够以与人类大脑学习新事物相同的方式来学习现实生活。谷歌将这个项目命名为“谷歌大脑”。

吴恩达表示:“在我加入谷歌的时候,学术界最大的神经网络大约有100万个参量,而当时在谷歌,我们能够建造比这个规模大1000倍的神经网络。”

身处大数据时代,谷歌每年在超级计算机数据中心领域的投资达十亿美元,像吴恩达这样的大学教授,也只有在像谷歌这样的公司里才能完成这种研究。

谷歌大脑能够将所看到的图像或图片分解成10亿多个不同的参量,然后通过自主学习,学会如何将这些零碎的参量组合到一起。比如看到很多种花,再告诉机器这些是花,久而久之,机器就会将这类有颜色、有花瓣、有花蕊的物体自动和花这个单词联系到一起,从而从千万张图片中识别出花。这个过程好像教婴儿认卡片一样,神经网络学界将这个过程叫做“深度学习”。

去年6月,吴恩达所开发的人工神经网络通过观看一周YouTube视频,自主学会了识别哪些是关于猫的视频。这个案例为人工智能领域翻开了崭新的一页。吴恩达表示,未来将会在谷歌无人驾驶汽车上使用该项技术,来识别车前面的动物或者小孩,从而及时躲避。

为了利用谷歌的神经网络模型改善谷歌的语音识别软件,去年夏天,吴恩达为谷歌请来了杰弗里・辛顿(Geoffrey Hinton)――来自多伦多大学的“神经网络领域的教父”。杰弗里在谷歌花了数月时间对谷歌算法进行改进。当安卓Jelly Bean 4.2G版本软件去年底时,这些算法已经将其语音识别的出错率降低了25%。

今年3月,谷歌收购了杰弗里的公司DNN research,DNN是深度神经网络的英文缩写。

加入谷歌的杰弗里希望构建比其去年开发的10亿参量的神经网络更大的神经网络,杰弗里透露:如果能够建立比10亿参量神经网络大1000倍的神经网络,将会有机会教机器理解一些事物,甚至情感。

人工智能才刚刚开始

和人脑的灵活性及准确性相比,吴恩达的深度学习算法还相差十万八千里,但是吴恩达说,那一天会到来的。

吴恩达如此自信是有原因的,如今越来越多的科学家和科技公司开始意识到深度学习对于计算机科学发展的重大意义,他不是一个人在战斗。

在美国,随着奥巴马政府宣布将支持筹建一项跨学科的科研项目“基于神经科学技术创新的人脑研究”,许多类似的项目正如雨后春笋般涌现。

在谷歌发力神经网络的同时,IBM、微软、苹果、百度这些公司也竞相开始了对神经网络技术的探索。

第9篇:人工智能神经网络技术范文

【关键词】自动化;人工智能;应用

一、人工智能应用基础理论

同一些热门的学科相比,人工智能作为一门比较边沿的学科,融合了社会科学与自然科学的相关知识体系,也可以表示为机器智能。早在1956年,人工智能的概念就被提出,人工智能就是用人工的方法在机器(计算机)上实现人类的智能,或者说人类让机器具有人类的智能、也可以说是人类的智能在机器上的模拟。电气自动化技术领域中人工智能的应用主要是集中在通过模拟人脑相关的机能来对目标信息进行有效的回馈、处理、收集、交换、分析等,并且还可以实现对生产进行处理与判断的能力,通过人工智能,电气自动化可以实现其生产上的全方位自动化,极大提高其生产过程的效率,以实现产业结构的调整与优化。

二、电气领域人工智能化控制的特点

在电气自动化的领域中,人工智能控制技术运用最多的就是包含了遗传算法、模糊形神经算法、模糊理论、神经算法等内容的非线性函数的近似器,其中AI函数的特点也十分显著:(1)在进行电气自动化人工智能相关设计的时候并不需要取得实际控制对象中精准的动态化模型,同时也不需要指明非线性或是参数变化等其他具体因素。(2)按照鲁棒特性、下降时间或是响应时间来进行相应的调整,便能够有效强化智能函数的性能:运用人工智能调整后,电气模糊逻辑的控制器具备的上升时间是一般控制器的1.5倍之多,并且下降时间也比一般控制器快了4倍,其中过冲也比较小。(3)由于电气人工智能的控制器具备一致性,同时不会与驱动器的相关特性产生直接联系,那么运行新的未知信息数据的时候也可以获取准确的预测结果。(4)电气人工智能的控制器能够通过应用时间和语言来设计,同时也比较容易调节,这就使得对信息与数据相关性更好,也易于进行修改与扩展,其抗干扰性能也较好,可以便于实现。

三、电气自动化技术中人工智能的应用分析

(1)电力系统中人工智能的应用。电力系统中人工智能技术相关应用主要集中于启发式搜索、模糊集理论、神经网络、专家系统这四个方面。专家系统作为一个集许多专业知识、经验、规则于一体的综合性程序系统,主要依靠的是某一特定领域相关的专家丰富知识与经验。对其进行具体操作时,要依照新的现实情况来对专家系统中的规则库以及知识库进行及时更新,这样才能适应发展的需求。神经网络则具备了全面的学习形式与完全分布式的基础存储方式,因此它在对大规模信息数据进行处理时加以应用,同时它具备了较强的复杂状态中相关分类能力和识别能力。那么在电力系统内进行短期负荷的预测时,BP神经网络就可以在充足的信息样本中开展对模型的合理分类工作,对输入数据进行分析选择,这样便可以构建出不同季节性的日预测与周预测模型。(2)电气控制技术中人工智能的应用。电气自动化的控制技术可以实现强化分配、交换、流通、生产等关键环节,在加大财力投入的同时尽可能减少人力,以便提高电气系统中的运作质量与效率。电气设备控制系统里面人工智能技术的应用包含了神经网络控制、专家系统控制与模糊控制等,而在实际的应用过程中,使用最多的则是模糊控制,这主要是源于其简单化的控制,同时又和现实情况联系密切。(3)电气设备设计中人工智能的应用。由于电气设备的具体设计是综合性、复杂性、专业性的过程,其涉及的范围也十分广,包括了电磁场、电子技术、变压器、电机、专业电路等领域,另一方面,这对其设计者也提出了更高的要求。通过人工智能方面的技术,能够实现大批较难迅速解决处理的模拟过程与相关繁琐计算,这就加强了设计过程内的工作精度和效率。当然,在电气设备设计进行的时候还要区别不同的情况与具体算法,比如说遗传算法会用在优化设计中,而专家系统总是用在开发性设计中。(4)电气故障诊断中人工智能的应用。在电气设备的故障诊断过程中,使用最为广泛的即是神经网络、专家系统、模糊理论等人工智能技术,尤其是对电气电动机、发电机进行的故障诊断。当前,电气系统中变压器的故障诊断通常适用方法为分析气体和分解变压器油中分解的气体,借助人工智能法可以有效提高相关诊断的准确性,其中人工智能技术通过结合模糊理论与神经网络,来完成故障诊断知识的神经网络以及模糊性的共同诊断过程,这样就可以从根本上提高诊断故障的全面性与准确性。

在电气自动化领域,人工智能应用集中体现于专家系统、自动程序设计、定理证明、逻辑推理、各类问题求解等方面,因此,在电气自动化技术中充分挖掘并利用人工智能的功能与效力,这样才能使工作更加顺畅、高效。

参 考 文 献