公务员期刊网 精选范文 工厂电池回收范文

工厂电池回收精选(九篇)

工厂电池回收

第1篇:工厂电池回收范文

[关键词]城市供热电厂中水零排放

中图分类号:X701 文献标识码:A 文章编号:1009-914X(2016)25-0137-01

水是生命之源,水资源的污染将严重影响人类的健康、生产和生活,城市供热电厂作为火力发电厂中耗水量较高的电厂类型,如何做好节水工作至关重要。另外,电厂产生的废水如果直接排放到水体中,将造成严重的水污染事件发生。通过废水零排放技术的应用,即节约了水资源又避免了环境污染,可谓一举两得。

1.概述

大唐洛阳热电有限责任公司是国家“一五”期间156个重点项目之一。1956年动工建设,1957年12月第一台高温高压供热机组投产发电,迄今已有60年的光辉历史。经过三期扩建,现装机容量1045MW:两台165MW可调整供热机组,一台75MW后置余热机组,以及两台320MW供热机组,担负着发电上网及洛阳市地区性工业供热、采暖供热的艰巨任务。两台320MW机组(5、6号机组)循环水补水系统设计为使用城市中水水源,通过混凝、澄清、过滤、加酸等工序将中水处理成达到循环水补水标准的成品水。

为了保证循补水系统出水水质正常,必须使机械搅拌澄清池保持不大于10%的泥渣循环量。但是,随着时间的累积,泥渣会不断增加,如果不定期排放多余的泥渣将造成出水浊度超标,所以必须保证废水排放系统的稳定运行。该厂的澄清池泥渣定排至排渣池,由排渣泵将泥渣输送至浓缩池,经过浓缩后的泥浆由排泥泵输送至柱塞泵前池,再由柱塞泵输送至灰坝,浓缩、澄清后的水溢流至废水回收池。废水回收池内的泥渣过多的话,也可以排到浓缩池进行浓缩。

2.废水排放的问题

2.1 中水处理系统产泥量过大

该厂1、2、3号机组(2×165MW+75MW)的循环水补水设计为自来水通过弱酸阳床处理后,补入循环水前池。为了进一步提高中水使用量,降低生产用水成本,该厂将老厂循环水补水也完全使用中水处理系统出水代替。经过运行发现在处理中水的过程中,澄清池一直大负荷运行,泥渣生成速度加快、产量过大,澄清池需要经常定排,但排泥泵排出的泥量远远小于系统中的产泥量,所以就导致了排渣池、浓缩池内泥渣高度逐渐升高,最终导致浓缩池满泥,为了不影响系统正常运行,只能将浓缩池的筒壁开孔,把泥放出来晾干清走,造成了现场的大面积污染。

2.2 灰坝禁排废水影响加剧

由于环保要求的进一步提高,对城市供热电厂不再允许其将废水排放至灰坝,以免造成灰坝附近土壤、地下水层发生渗透污染。这无疑增加了浓缩池的运行负担,使浓缩池的泥浆无处可排,带有大量泥渣的水没有完全浓缩便溢流至废水回收池,导致废水回收池内的泥渣越积越多,由于废水回收池有效容积的减少,直接影响了双室过滤器的定期清洗工作,而且废水回收到澄清池以后使澄清池内泥渣增多,导致刮泥机经常跳闸或者链条断裂,两台澄清池被迫经常倒池。

2.3 泥浆回收至脱硫塔影响脱硫效率达标

由于灰坝停用,为了缓解中水处理系统内泥渣积存的影响,该厂技术人员对泥渣成分进行了化验,发现其中碳酸钙含量为85%左右,氧化钙含量为47%左右,经过讨论决定将浓缩池内浓缩过的泥浆排放至5、6号机脱硫吸收塔地坑,通过地坑泵回收至吸收塔内循环利用。这样可以在不影响脱硫效率的前提下大量回用泥浆。但是经过长时间的运行发现,由于泥浆的浓度经常不稳定,使吸收塔浆液密度不好控制,尤其是排泥系统检修前,要用工艺水将系统管道冲洗干净,冲洗后期大量清水循环进入吸收塔,导致浆液密度较低,影响机组脱硫效率达标。

3.排水问题的解决

为了保证脱硫系统达标排放,浓缩池泥浆只能间断的向脱硫塔排放,这显然是无法达到中水处理系统废水大量、长时间排放要求的。浓缩池开孔放泥的情况虽已有减少,但还是没有完全杜绝,而且澄清池仍然会发生刮泥机跳闸等问题。为了设备安全运行、现场文明卫生等需要,急需彻底解决排水难题,该厂技术人员再次对现场情况进行分析,对现有零排放技术进行了调研。

3.1 废水零排放技术分析

3.1.1脱水制泥法。主要工艺为在澄清池中向废水加入混凝剂、助凝剂等化学药品,使废水中的泥渣、悬浮物长大、浓缩,上清水溢流收集至水箱,可以进行煤场喷淋、皮带冲洗等,底部沉泥输送至脱水设备,制成泥饼外运。

3.1.2深度结晶法。该方法是在脱水制泥的基础上发展而来的,废水经混凝、澄清后得到的上清水再经过膜法除盐得到高品质除盐水可用作锅炉补水,浓水经过分段蒸发、低温蒸发等手段制成结晶盐回收利用。

3.1.3烟道雾化蒸发法。废水经过固液分离后,再经过雾化处理,然后将雾化后的废水喷入烟道并利用锅炉尾部烟气的余热使之快速蒸发,其所含盐分结晶成颗粒后附着在烟气中的粉煤灰上在除尘系统中被捕获收集并随灰一起外排。

3.2 废水零排放方案的选择

以上介绍的三种方案是目前国内相对比较成熟、应用较为广泛的废水零排放技术。经过分析对比,结合该厂中水处理系统废水含泥量较大的特点,以及场地、资金、系统设备利旧等因素,最终确定引入脱水制泥法解决废水排放问题。通过系统优化把原来的四台离心式排泥泵全部拆除,更换为更适合输送泥浆的,而且出力更大的螺杆泵,新增一套脱水离心机及加药设备(设备规范见表1),把泥浆离心后制成含固率45%-50%的泥饼外运至指定地点,离心机出水回收至废水回收池,废水回用至澄清池。

系统中保留了向脱硫吸收塔地坑排放的运行方式,这样可以在脱水机检修时,也不影响中水系统废水的排放。这打破了原来大部分泥浆只能在系统内循环,使设备超负荷或带病运行,系统出水水质不达标的局面。因为该套设备的处理能力较大,而且可以连续运行,所以可以使系统内的泥浆废水持续减少,使系统变得更清洁。

3.3 废水排放效果明显

通过系统升级后的运行,把原来浓缩池、废水回收池、排渣池内的积泥慢慢消化掉,清水再次回收利用,没有再发生浓缩池外壁割孔放泥污染环境,也没有再发生澄清池刮泥机跳闸或链条断裂频繁倒池的情况,而且使中水处理系统废水实现了零排放的目标。

4.结束语

废水零排放技术的应用,不仅节约了生产用水成本,降低了电厂周边环境污染的风险,还满足了中水处理系统的正常运行。该厂技术人员将继续探索最佳的运行方式,使脱水机能够长周期、健康、高效运行,确保不再发生系统内积泥、污染现场、被迫频繁倒池等情况。

第2篇:工厂电池回收范文

不舍不弃废电池

导致王自新投资失利的是在河北易县建立的国内第一家废旧电池再生处理厂因为环保部门认为可能造成污染,迟迟不批,同时回收体系不足,无米下锅。项目下马了,但王自新与废旧电池的不解之缘才刚刚开始。那一年是2001年。

而令他彻底绝望的是2002年权威专家刊文指出,废电池在外壳保护和大量垃圾的稀释下,随生活垃圾填埋不会造成污染,集中回收后处理不善反而容易造成局部地区的汞污染。

从1997年以来,国家相关部门就一直开始禁止厂商生产汞含量高的电池。《关于限制电池产品汞含量的规定》表明,从2006年1月1日开始禁止在国内经销汞含量大于电池重量0.001%的碱性锌锰电池。

关于废电池回收,2003年10月国家环保总局出台的一份《废电池污染防治技术政策》明确表示:没有处理条件,废干电池不鼓励回收。从此,很多公众糊涂了,不知道废电池该不该收。很多生产电池的厂家也不愿意回收废电池,因为处理每吨废电池需增加1 600元左右的成本。

一面是废电池处理技术的不成熟,一面是回收体系的不足,一面是政策的不支持,面对这三面夹击的窘境,任谁也会放手另寻他路,但王自新没有!

王自新始终认为:“废旧电池必须回收”。

“电池随生活垃圾填埋不会造成污染”只是短期的预见。尽管国家很早就要求淘汰汞含量高的碳性电池,但由于其价格便宜,很多地方仍在生产销售及使用。电池并非汞一种物质,还有锌、铁,锰、铜等各种金属成分,如果汇集到一定量没有有效处理,比如随生活垃圾进入垃圾填埋场,通过水进入食物链,危害将非常严重。北京年消费电池四千八百多吨,回收一百多吨,其余大部分电池进入垃圾填埋场,北京有13个具有防渗防雨条件的垃圾填埋场,还有不计其数的野坑不具备防渗防雨条件,在高湿高温高压和微生物的环境下,将加速金属颗粒析出,很容易造成污染。

从资源利用看,每节电池中含有22%的锌,26%的锰、17%的铁,如果不回收再利用,等于每年白白扔掉几千万吨的有用原料,进而增加对环境的索取。

王自新的一席话充满忧虑,他忧心环境的迫切之情极具感染力,而他为旧电池回收所做的努力更具带动力。

在希望中潜行

回顾各国废旧电池回收之路,20世纪70年代,西方国家在经历了高消费、高污染、能源危机之后,开始重视废旧电池的无害化处理,并建立了与此有关的完善的环保产业。回收环节的费用一方面来自居民的垃圾处理费,另一方面则来自消费者缴纳的危险废物消费税以及电池的生产工厂交纳的环境税。在美国、德国、日本、台湾,工厂每处理1吨废电池分别会得到一定数额的政府补贴。瑞士等欧盟国家相继提出“延伸企业社会责任”理念,针对废电池回收,将由生产厂商负责最终回收处理。在我国,这些产业尽管已经起步,但还有许多规章需要完善,还有赖于许多怀有梦想的人士去推进。

“众多环保项目中,废电池与废纸、塑料瓶、易拉罐等并列其中,它们之间有什么区别?”当这个问题抛出后,王自新沉沉地叹了一口气。只这一个“唉!”字,让听者分明感受到期望中夹杂的无奈,前行中背负的重担。

“废电池是一个非常特殊的环保项目,这么多年是一个焦点、难点,热点”,王自新掷地有声地说。

这也许正是王自新十年来与废旧电池博弈而成果甚微的原因所在。

同是废旧物品回收,废纸,塑料瓶等则有着完全不同的命运,其回收产生经济效益,吸引着大量人群参与,形成了完整的产业链。而干电池回收经济效益微薄,企业缺乏投入的积极性。后端不能产生经济效益,前端有偿回收难以实现。在没有经济利益驱动下回收干电池意义更大,这将从根本上改变公众对环境资源的态度。我们与环境不应是利益交换的关系,而是无条件地热爱它,保护它。

王自新谈到废旧电池回收艰难进行的症结所在时说:“不应仅仅为了卖点,炒作而宣传,而是从使用者的角度去考虑问题,落实到具体细致的工作。很多人知道废电池要回收,但是没有方便的设施,如何让百姓方便地参与。务实最重要!”。

务实的理想主义者

走过10年,王自新为废电池回收处理也呐喊了10年。回头想想,他是在认认真真全职地做一份有益于公众的事业,这便是他对自己的最好回报。

如今,王自新更加清楚自己的责任和目标:“开始创业时,由于不太了解,我考虑在产业化格局建成后,通过工厂化处理废旧电池能产生利润。但是,2001年河北易县的项目下马之后,我就不再考虑利润。现在我非常清楚,废旧电池回收处理,不可能再谈什么企业利益。达到收支平衡,以保持正常地做一件有意义的事情,这是最简单的一个目标。我只是为了根治废电池问题的理想在奋斗。”

媒体称王自新是“环保狂人”,但见到他本人,眼看着他独自组织会场,打印文件,忙里忙外,看着他略显疲惫的面色,听着他脱口而出关于废电池回收的各种数据,法规、文献,我深深地认同他对自己的定位:一个很实干的人,一个把废电池当成事业来做的人。

“我有一个梦想,就是尽快看到中国废电池污染得到根治的那一天。在此之前,我的工作是绝对不会停下来的”,王自新说。

废电池回收建议:

1 回收意识的培养就是生活习惯的养成。

2 废旧电池不要乱扔,不要和其他垃圾混淆。

3 用塑料袋等不会造成腐蚀的容器盛放废旧电池,如果用纸盒收集里面衬一层塑料布。

4 不要用金属容器盛放,因为电池腐蚀后放出氢化钠等物质有腐蚀性。

第3篇:工厂电池回收范文

关键词:自来水厂 水厂设计 管网

 

水厂的设计中选择水处理工艺是首要问题,合理的净水工艺是保证供水水质的关键,但水厂总平面布置、厂区道路、绿化、管线设计、建筑结构、变配电、以及水厂监控系统也非常重要,要结合当地具体情况和发展的需要进行研究;同时水厂的运行管理也是重要环节,运行管理的好坏直接影响水厂的两个效益。本文就水厂设计方面的几个问题谈谈自己的看法。 1 总平面布置的注意事项

净水厂总平面布置的要求是功能分区合理,各构筑物布置紧凑、流程合理、管理方便,同时尽可能利用地形,并适当留有发展的余地。但有些设计中总图布置过于松散片面贪大,非生产性设施过多,有的水厂设计中设有游泳池、观赏鱼池、亭台楼阁,既不符合国情浪费了土地资源,又增大了工程投资,还给水厂管理带来不便。在总平面具体布置时下面几点要引起设计者注意:

①加矾间应靠近反应沉淀池进口。

②加氯间一般宜靠近滤池与清水库。当需要对原水预加氯时,此时可能管线较长,对于水源水质较差、菌藻含量较高,预投氯量相对较大的宜把加氯间设在沉淀池前端;对水源距水厂较远而又需预加氯的可在取水泵房处增设加氯间就近加注。另外,也可利用下面办法解决:如系氯、水混合后加注的,可采取在加注点增设水射器;或改用氯气输送,距离可达100~200m。

③沉淀池和滤池尽量靠近。

④在厂区道路布置上,各生产构筑物之间如:沉淀池、过滤池、加矾加氯间等处,必须道路便捷,除地面交通外,池与池之间也应设置架空桥,以便巡回检查管理。

⑤加矾用料往往品种多样,不易整洁,最好避开厂主干道两侧,将加矾间设到较为隐蔽的地方。

⑥滤料堆场应尽量靠近滤池布置,并合理利用厂区空地砌筑堆砂池,以使厂区整洁,环境优美。 2 厂区标高的确定

厂区设计地面标高宜高出厂外地面0.3~0.5m,或更高一些,以免汛期淹水。但若填方量过大,一时难以办到,可先只填高道路。解决这一问题最可行的办法是利用生产排出污泥,经过长期填充之后,使厂区地坪逐渐升到设计标高。

供水泵房一般均为地下式或半地下式,为了减小埋深,一般选在厂区地势最低处建造,虽然泵房的地下埋深浅了,建造费用省了,但从安全生产角度来看,却最为不利,每遇暴雨或构筑物溢水事故时,水就会涌向泵房,即使泵房有排水系统,仍旧有被淹的危险。所以,将泵房设到地势较高的场所比较好,或提高泵房周边地面标高。 3 厂自用水系统设计

厂自用水管网宜布置成环状管网,并分别由两根出厂总管上接出,管径应根据水厂规模、自用水量计算确定,但不宜小于dn200。

沉淀池上、清水库边要专设清洗用水管,管径dn100~150;设dn50~65消火栓,沿池分布,其间距在30~60m,不宜过长。露天管线要有防冻措施。

双阀滤池,进水、排水两虹吸管的外露抽气管,寒冷地区冬季常冻结,影响滤池运行,可在管子的一端接一个水射器,不停抽吸防冻。 4 滤池反冲洗排水回收

近年来,新设计的水厂多将滤池反冲洗排水集中排入回收池,经回收泵送回源水管中再用。但必须使回收水含泥浓度保持基本稳定,做到均衡输送。若时清时浑,时大时小,时送时停,人工加矾无法掌握,即使自动投加,亦不好控制,最后索性废止不用,这已为经验所证实。基于上述原因,回收工艺必须:

①池中设搅拌设备(如潜水搅拌泵),使含泥浓度稳定。

②每小时回流水量,按全民总冲洗水量的1/24考虑。

③回收池容量不宜过大,可按可能出现的连续冲洗滤池格数和总排水量考虑,或按日总冲洗水量的1/5考虑,但不能小于单格滤池冲洗排水量。过大不但会造成污泥沉积,而且占用场地。

④回收系统不宜放在加矾间和沉淀池之间。该处是加矾人员经常往返的通道,一旦阻断,影响生产管理,故应结合排污设施,另行布置。

⑤回收池上应设盖板,池内不需分格,既便于管理,也减少造价;一旦发生故障,可以暂停运行,废水则可直接排入排污系统。

滤池反冲洗排水的回收可以节省水厂自用水量,减少水资源浪费。但若水源距水厂很近,由于回收水泵小,泵效率较低,单位电耗相对较大,很可能大于取水单位电耗,或两者相当,同时回收系统还增加了设备的管理维护。若滤池使用气水冲洗,冲洗水量减少,也可能节水不明显,所以,回收与否应从整体上考虑。

5 构筑物和清洗 5.1 沉淀池的清洗、排泥

在大中型水厂,反应-沉淀池多采用隔板反应-平流式沉淀池,其排泥问题应引起重视。反应室内一般积泥甚少,排泥间除大清洗外,不经常启用。平流沉淀池内,花墙两侧积泥最多,有时堆达池深的1/3以上。墙前(过渡区)多无排泥设施,墙后面排泥机又无法吸到,应在此两处增设小型排泥设备,如潜污泵等,定时排泥。墙侧近处、池底设排泥槽或排泥斗,作为大清洗用。

沉淀池出口积泥虽然相对较少,但最易影响出水水质,而排泥机的吸泥口又无法吸到,建议沿池尾墙壁内侧浇筑一混凝土斜坡,坡度50~60°。出口端的积泥随时可顺坡滑卸1~2m外,这样就可被吸泥机吸走。

沿池的排空阀兼有大清洗时排泥沙功能,故阀的间距不宜超过30m,以缩短清扫的距离,缩短冲洗水枪水龙带的长度。

如用斗式排泥,凡连续运行的反应-沉淀池,泥斗坡度不要小于55°,以便用池内水头排污。对于水质较好,泥沙含量很少的水库水,山溪水等水源的反应-沉淀池,一般只在汛期水浑时运行。斗底坡度可以小到20~30°,作为停池清洗之用。

为保证斗式排泥不被堵塞,可在泥斗排泥管进口处接dn50的压力水管,或在排泥管出口排泥阀内侧(迎水面)接一dn50压力水管,一旦不通则以水冲开,很快就能排泥。

5.2 清水池清洗及配管

第4篇:工厂电池回收范文

关键字:废水 环境保护 处理 回用

一、概述

热电厂在生产运行过程中,为保持良好的工作环境,防止输煤系统产生扬尘,除采取防尘措施外,还要定时对皮带、输煤栈桥、转运站、破碎室、煤仓间等部位进行冲洗,冲洗后的排水形成含煤废水。废水中通常含有大量的煤粉颗粒、大量的悬浮物、通常颜色较黑。这部分水不能直接排放,也不能直接回收利用。需进行适当处理以满足用水要求。

本文适用于火电厂的废水集中处理装置及污废水提升泵。包括其本体及其辅属设备的功能设计、结构、性能、安装和试验等方面的内容。

二、技术要求

整个处理系统包括从澄清设备进口至过滤器出口阀门法兰之间及污泥脱水机出口阀门法兰之间的所有装置、水泵、管道、阀门、管件、测量装置及仪表。

三、系统流程

为有效地节约用水,经废水处理系统处理合格后原则上全部回收复用。具体复用途径为:灰库的加湿水、输煤栈桥冲洗水或煤场喷淋水用、渣仓的加湿水。

处理系统基本流程:工业废水工业废水调节池工业废水提升泵澄清装置气浮装置中间水池中间水泵重力式过滤装置回用水池回用水泵回用。

3.1废水收集贮存系统流程

经常性废水共分为三类,其中:

第一类废水:预处理设施排污,此类废水含泥量为0.5%,经浓缩池处理后,上部溢水的水质悬浮物为70-200mg/l,故拟将其收集至污水池,再送回净水系统澄清池;其底部排泥经脱水机脱泥后,泥饼送厂外处置地处置。处理流程如下:溢水?预处理设施排污?浓缩池?污水池?去净水系统澄清池?排泥?脱水机?污泥去厂外处置地

第二类废水:是指那些仅需调节pH值的废水,如锅炉补给水处理车间的再生废水和凝结水精处理装置再生废水。这类废水在就地废水池收集后,送到废水处理车间废水贮池1,然后,去最终中和池调节pH到6-9,经清净水池或排放或回废水贮池3待用。可去复用的点为灰和煤系统。

处理流程如下:化水除盐再生废水?废水贮池1?最终中和池?清净水池?排放或回用

第三类废水:凝结水精处理系统再生废水和其他废水、灰系统排水和主厂房排水属不定时废水,悬浮物和pH超标,此类废水将在机组排水槽中收集,然后送到废水贮池2,经pH调节、絮凝、反应、澄清、最终中和后,排放或回用。可去复用的点为灰和煤系统。处理流程如下:凝结水精处理系统废水、灰系统排水和主厂房排水机组排水槽废水贮池2pH调整槽反应槽絮凝槽斜管澄清器上部水最终中和池清净水池回用或排放斜管澄清器浓缩池脱水机泥饼去厂外处置地锅炉补给水处理过滤器反洗水、阳床、阴床及混床再生废水排入补给水车间外的中和池,再用泵送至工业废水集中处理站。

非经常性废水:非经常性废水属锅炉设备检修废水,这类废水含有大量的铁、有机物、悬浮物和一些重金属离子,故需采用多种药剂来调节pH值、降COD、凝聚、澄清和最终中和等处理才能达标排放,如锅炉化学清洗排水、锅炉空气预热器冲洗排水、机组启动排水等。

处理流程如下:非经常性废水机组排水槽废水贮池(3-5)pH调整槽反应槽絮凝槽斜管澄清器上部水最终中和池清净水池排放斜管澄清器浓缩池脱水机泥饼去厂外处置地。

3.2废水处理系统

(1)锅炉补给水处理系统、凝结水精处理系统的再生废水,主要为PH不合格的废水。

处理系统如下:

(2)污泥水处理系统:

(3)锅炉化学清洗废水、除尘器冲洗废水、空气预热器清洗废水和主厂房地面冲洗废水等。此废水不仅pH不合格,而且含有大量的悬浮物、金属氧化物和少量的油等,

其处理系统为:

污泥水处理系统:

3.3系统组成

工业废水集中处理系统主要由以下各单元和设备组成:

废水池单元

废水贮存单元

絮凝剂、助凝剂加药单元

酸碱及次氯酸钠贮存加药单元

PH调节及反应槽、絮凝槽单元

斜管澄清器单元

浓缩池单元

清净水池单元

脱水机单元

清水排放泵单元

四、加药装置控制要求

1)控制方式和自动化水平

加药装置包括加酸、碱、凝聚剂、助凝剂加药装置,将分别根据处理流量、pH、浊度等实现自动加药。控制柜上将留有接口于工业废水处理的DCS连接,将对加药系统内所有被控对象进行监控,包括启、停控制,设备状态和主要工艺参数监视,并完成设备的联锁保护、设备的远方/就地切换等。

2)技术要求

所有计量泵采用变频器控制,变频器应接受DCS发出的4~20mADC控制信号,并输出4~20mADC信号和运行、故障等状态信号。

五、小结:

实际运行经验表明,当含煤废水经上述工艺处理后出水水质可达到悬浮物含量SS20

综上所述,笔者认为对含煤废水处理工艺进行改进对热电厂废水回用具有重要意义。同时,笔者还认为应对热电厂不同各类的废水处理实行分流制。采取灵活的、有针对性的处理方法分类回用。可以节约大量的新水、减少排放、降低对环境的污染,同时也可以降低生产运行成本。随着废水处理技术的发展,相信电厂工业废水的处理水平必将跃上一个新的台阶。

参考文献:

第5篇:工厂电池回收范文

关键词:废水回收处理利用

1引言

随着人们环保意识的不断提高,如何搞好环保工作,越来越受到人们的重视。火力发电厂在各种污染治理中废水的处理是比较重要的一项,废水回收、处理与利用的环保工作对发电厂来说是一个全新的课题,在很多方面没有先例可循。通过采取各种措施对废水加以处理与就地利用,可做到或接近零排放(即无污染排放)。本文通过对水质进行分析,提出一些技改措施和处理意见并付诸实施,取得了一定的成果和经验。

2污水源的组成与分析

2.1污水的来源

(1)工业回收水池溢流水;

(2)主厂房排水泵来水(含地下水);

(3)生活污水;

(4)锅炉房及灰渣系统的冲洗水;

(5)煤场冲洗水;

(6)化学中和池水;

(7)地表水(主要为雨水)。

2.2水质情况分析

以1997年全年平均值及当月水质为例,对各水源水质加以分析:

(1)工业回收水

工业回收水池部分溢流水,经地沟汇流至排涝泵房,该水质与冷却塔水质相比:pH值低,耗氧量高,导电度低,氯离子低,硫酸根低,硬度低。

该水质与生水相比pH高,耗氧量更高,导电度高,氯离子、碳酸氢根差不多,硫酸根高,硬度高。

(2)主厂房排水泵来水

排水流量约90t/h,以渗入的地下水为主。在机组正常运行或检修过程中可能有少量污油漏入地沟中,从而导致水面浮油。该水质与冷却水相比:pH低,耗氧量高,导电度低,氯离子低,硫酸根低,硬度低。该水质与生水相比:pH差不多,耗氧量高,硬度高,硫酸根高。

(3)生活污水

生活污水流量约50t/h,部分经生化处理。该水质与生水相比:pH低,导电度低,耗氧量高出100多倍,硬度高,氯离子高,硫酸根高,碳酸氢根高,全固形物高出10倍。

(4)厂房冲洗水,煤场冲洗水。

这两种污水水量不稳定,且含有大量杂质与色素。

(5)排涝泵水质

其流量300t/h(连续1个月实测的平均值)。排涝泵房水包括工业回收水溢流部分、生活污水、主厂房排水、厂房冲洗水、煤场冲洗水、地表雨水及地下水等,具有流量较大,组成不稳定,含有色素及大量杂质,表面有浮油及漂珠等特点。该水质与生水相比:pH高,电导率高,耗氧量高,全固量高,硬度高,阴离子高。该水质与冷却塔水相比:pH值差不多,导电度低,耗氧量高,全固量低,氯离子低,硫酸根低,硬度低。

(6)中和池排水

中和池水由化学制水过程中的废水经中和后达标排放。

3废水回收处理技改实施

鉴于几类污水水质情况以及我厂现有地下排水设施情况,我们确定采用小系统闭环使用,全厂废水经处理后排入冷却塔作为循环水的补充水的综合治理方案,废水不再向浦阳江排放,做到了接近“零排放”。现将我厂污水治理的闭环小系统及综合治理方案及实施情况分述如下。

3.1化学废水的治理

化学制水再生过程中产生的废水原设计经中和后直排浦阳江,现改为在工业污水泵出口处另接一路至炉底液下泵池,管道采用衬塑钢管。废水不再作酸碱中和,直接作为冲渣水的补充水。这样既可节省酸碱的耗量,又可以改善一部分灰渣的碱性成分,对冲渣管道的防垢有一定的积极作用。最主要的是带有酸、碱成份的废水不再排向浦阳江。见图1所示。

3.2冲洗水的治理

原输煤系统冲洗水,出灰系统冲洗水经地沟汇总至排涝泵房,然后由排涝泵直排浦阳江,此类废水中含大量杂质及色素,根据我厂实际情况,分别对出灰系统和输煤系统的冲洗水设计成闭环小系统。

(1)在出灰系统的脱水仓下部开挖明沟和液下泵池,所有灰系统冲洗水汇入液下泵池,然后经液下泵提升进入脱水仓,灰系统少量溢流水经地沟汇入排涝泵房。见图2所示。

(2)输煤系统线路过长,在各转运站设汇流池,用混流泵将各栈桥和转运站的污水逐级泵至泥煤沉淀池,沉淀后的清水闭环重复使用,少量溢流水经地沟汇至排涝泵房。见图3所示。

3.3其它废水的治理

其它废水全部汇入排涝泵池,并在原排涝泵池外侧新建一个能对油污和漂浮起隔离作用的回收水泵池,经液下泵提升将全厂废水送至位于冷却塔附近的新建澄清池进行澄清处理。废水回收处理系统示意图见图4。

3.4技术改进措施

在整个污水处理设计中,采取了以下几个方面的措施:

(1)根据凝汽器铜管主要由活性污泥沉积,引发原电池反应,从而导致严重点蚀这一特点,对可以回收的废水采取澄清、过滤措施,即采用澄清池混凝处理与无阀滤池过滤处理,新增两只澄清池、无阀滤池及排泥系统,排泥采用自动排泥,为确保澄清效果,澄清池内加装斜管。

(2)根据废水回收处理的要求对混凝剂进行选型,考虑到经济实用,方便运行操作要求,经试验后确定采用液态聚合硫酸铁作为混凝剂。储矾箱采用高位自流,以减少运行工作量,加药泵体采用进口泵。

(3)由于排涝泵房水流量不稳定,不利于澄清池正常运行,故废水处理设计时必须考虑这一因素,采用以下措施:1)补给水与回收废水互备作为澄清池处理用水,以保证水流量基本稳定;2)加药系统设计时加药泵采用联动,两台加药泵分别向污水管和补水管加药,在污水管上设流量信号,根据流量信号分别启动两台加药泵;3)排涝泵前池新增蓄水池必须有一定缓冲量,泵体出力大小与澄清出力配套,并采用自动控制。必要时可采取节流的办法。从而确保澄清池出水稳定。

(4)新增排涝泵房蓄水池,采用溢流结构防止生产过程中的废油与漂珠等杂质进入废水处理系统。池体结构见图5所示。

(5)模拟零排放的前提下,根据生活污水,工业回收水,主厂房排水流量比例,构成的水质进行动态模拟试验及静态挂片试验,测定水质对铜管的腐蚀率及加药浓度配方。

(6)在投运以后,根据工业回收水,主厂房排水,生活污水耗氧量高的特点。采取杀菌措施,降低耗氧量,改用稳定性二氧化氯作新的杀菌剂。

(7)零排放后,循环水的含盐量必将提高,浓缩倍率上升,经估算通过水、灰制浆送往灰库的水量,所起的作用能满足循环水设计的循环倍率的要求。

(8)考虑到废水处理回收后循环使用将增加冷却塔水质的含盐量,因而相应采取了提高浓缩倍率的水质稳定措施,防上凝汽器产生新的腐蚀与结垢。

(9)整套系统采用自动控制,无人值班。

4废水处理效果的评价

废水回收处理系统投入使用后,从宏观上看,运行情况良好,澄清池出水清澈,处理的水质分析情况见表1。冷却塔水质与原来相比浊度降低,停机检查时也没有发现有微生物滋生现象。由此,一方面解决了厂区内两个污水排放点,不再向浦阳江排放污水。另外,由于废水处理系统建立了排污系统,把自身产生的废水与废泥回收到制浆系统送往灰库,不再产生新的污染源。

从效益上分析:

(1)环保效益。废水回收处理系统投入使用,原汇集至排涝泵房的各种废水均不向浦阳江排放,以300t/h计,年度可减少向外排放废水约263万t。

(2)经济效益。废水回收处理系统投入使用后,可减少向浦阳江取水250t/h,折合年度为219t,折合取水费以0.02元/t计约4.5万元;减少向浦阳江排放废水263万t,折合排污费0.05元/t计约13.5万元;原两台补水泵运行只要1台即能保证全厂补水需要,可年度节约电费15万元(电机功率55kW/h);化学加药系统年度运行费约16万元。故综合计算,年度可产出经济效益约17万元。

第6篇:工厂电池回收范文

关键词:排泥水;反冲洗废水;回流比;直接回收

Abstract: a waterworks viewing the reverse wash water recycle directly way production waste water recycling. Production waste water reuse in certain degree water saving, energy saving and low turbidity in raw water can improve reaction conditions, save "consumption. Back to water the operation of the system must according to water production waste water discharge and the raw water situation is controlled.

Keywords: row mud; Reverse wash wastewater; Reflux ratio; Direct recycling

中图分类号: X703 文献标识码:A 文章编号:

1 项目背景

自来水厂的生产废水主要来自沉淀池或澄清池的排泥水和滤池的反冲洗废水,可占整个水厂日产水量的3%~7%。对这部分水进行回用,不仅可以节约水资源,提高水厂的运营能力,还可减少废水的排放量。

某水厂2011全年取水总量140965400 m3/d,日均取水量386207 m3/d,全年供水总量132076534 m3/d,日均供水总量361854,取供比(取水量与供水总量的比值)为1.067。水厂运行过程中总的生产废水排放量约为17611m3/d,包括沉淀池排泥水9040 m3/d,滤池反冲洗水8571 m3/d,总排放量占2011年平均取水量的4.56%。如果将这部分的水回收利用,在一定程度上可以节约水资源,节省能耗。同时由于部分季节原水浊度较低,若生产废水回收利用,在一定程度上可以改善反应条件,节省矾耗。因此,有必要考虑水厂生产废水回收利用。

2概况

2.1生产废水排放现状

该水厂现有生产废水排水系统与生活污水排水系统采用分流制。沉淀池排泥水和滤池反冲洗水分别排入生产废水排水系统,由一条DN1000管收集后排放至污泥处理系统。

现有平流沉淀池4组,每组池排泥水量约为1130m3,排放时间约为90min,排泥周期为12h,每次排泥1组,一天的总排水量为9040 m3。

现有普通快滤池20组,每组池反冲洗水量约为500m3,水洗历时7min,冲洗周期为28h。每次排泥1组,一天的总排水量为8571 m3。

2.2 生产废水水质

对生产废水进行取样分析,具体水质数据见下表:

滤池反冲洗水水质检测数据

注明:说明所测滤池反冲洗前的运行时间。

注:除浑浊度项目外,其余项目取静止30min(或离心后)上清液进行检测。

沉淀池排泥水水质检测数据

注:除浑浊度项目外,其余项目取静止30min(或离心后)上清液进行检测。

水厂运行过程中排放的生产废水水质较好,仅铁、锰、铝有超标现象,沉淀池排泥水浊度和色度较高,滤池反冲洗水在冲洗初期浊度较高、中末期浊度较低且铁、锰、铝均达标。

3 回用水系统设计

3.1回用方式

目前,生产废水回收利用的方式主要有两种:直接回收,处理后再回收。直接回用是目前国内采用较多的方式,主要有滤池反冲洗水直接回收和生产废水上清液回收。前者设置回收池,将滤池反冲洗废水加以收集,提升至原水絮凝前加以回收。后者设置污泥浓缩池,沉淀池排泥水和滤池反冲洗水经过浓缩,上清液提升至原水絮凝前加以回收,底部污泥进入后续污泥处理系统。

该水厂生产废水各项水质(特别是滤池反冲洗水中末期的水质)指标较好,可以考虑直接回收方式。由于该水厂污泥处理系统浓缩池距离常规处理系统构筑物较远,且地形复杂,不利于回用管道的设置,故采用滤池反冲洗水直接回收方式,靠近滤池设置回收池收集反冲洗水进行回用。

3.2回用水量

在生产废水直接回用方面,国内外学者做了大量研究,证明回流比例5%~10%的滤池反冲洗水能够显著提高混凝过程中DOC的去除率,可以改善混凝性能,减少混凝剂的投药量。

《城镇供水厂运行、维护及安全技术规程》(CJJ58-2009)3.2.4:当滤池冲洗水经沉淀后的上清液和污泥浓缩上清液回用时,回流量与原水比宜为5%~10%。

该水厂日均取水量386207 m3/d,按5%~10%回流比计算,回流量Q应控制在19310 m3/d~38621 m3/d。由于水厂清洗滤池主要在深夜用水低峰期进行,这个时期的供水量相对低,所以选用日均供水量5%的回流比,回流量为19310 m3/d,即805 m3/h。

3.3回收池设计

每组滤池反冲洗水量约为500m3,水洗历时7min,回流量Q为805 m3/h,所需调节容积为406 m3。根据现场条件在滤池附近地块设置一座20m×5m,有效水深为4m的回收池,其有效容积V为400 m3。

回收池内设置两台潜污泵,抽取上清液至原水絮凝前加以回收。潜水泵一大一小,大泵流量1000m3/h,扬程13m,功率55Kw;小泵流量600m3/h,扬程12m,功率30Kw;据污水池水位、水厂生产废水排放情况以及原水情况控制泵组启闭。

3.4运行控制

在运行时首先制定一个回用水标准,并根据此标准配置在线的水质检测自控仪表,纳入水厂的PLC控制,以便根据其反馈值对回用水系统的运行进行控制。

高峰用水期,启动一大一小两台潜污泵进行生产废水回用;低峰用水期根据实际情况启动一台大泵或小泵进行生产废水回用。当回用水质或原水水质不满足生产废水回用标准,则关闭回收池进水阀门,反冲洗水进入污泥处理系统进行处理。

根据回收池底泥积聚情况,可通过回用管道的阀门控制,启动潜污泵抽取底泥至污泥处理系统进行处理。

3.5经济效益

废水回用在一定程度上节约水资源,节省能耗,在原水浊度较低的时候还可以改善反应条件,节省矾耗。

经计算:该水厂生产废水回用项目可节省水资源费30.03万元/年,节省取水电量2179 kw.h/d,节省取水电费60.45万元/年,增加回收水电量394 kw.h/d,节省取水电费11.66万元/年,经济效益显著。

4 结论

(1)在判断生产废水是否回用时,应根据原水和生产废水的水质、水量等因素进行分析:

当原水水量足以满足供水要求且费用较低,而生产废水必须先处理再回用,回用费用远高于原水费时,可以不考虑回用。

当原水费用较高,而生产废水的水质较好可不处理,回用费用低于原水费用时,可以考虑直接回用。

当原水水量较紧张且费用较高,而生产废水的水质经过简单处理可以满足回用要求,回用费用与原水费用接近时,可以考虑处理回用。

(2)回用水系统的运行必须根据水厂生产废水排放情况以及原水情况进行控制。

(3)回用水系统的设计应结合水厂的污泥处理系统一并考虑。

参考资料:

1.许嘉炯,郑志民,许建华.关于自来水厂生产废水的回用.《净水技术》2003年第01期

第7篇:工厂电池回收范文

[关键词]六矿选煤厂 复选系统改造

中图分类号:TD94 文献标识码:A 文章编号:1009-914X(2013)06-0195-01

一、鹤煤公司六矿选煤厂现状

鹤壁煤电股份有限公司六矿选煤厂是一座矿井型选煤厂,始建于1968年,仅入洗六矿原煤,入洗能力为120万吨/年,现为跳汰浮选联合工艺。主要产品有:冶炼精煤、洗动力煤,块煤等。选煤厂现有三个露天煤泥沉淀池,主要负责浮选尾矿的沉淀和处理矿井二水平泵房排出的煤泥水沉淀。煤泥水通过日积月累的沉淀,池内沉淀物料不断增加,但总体沉淀效果较差,溢流水浓度偏高,影响了煤炭洗选加工过程的分选效果;同时矿井二水平泵房排出的煤泥水未得到较好的处理,外排时易造成浓度超标,引发环保问题,该部分溢流水若不及时外排,矿井井下二水平水池则满,导致矿井排水系统受到影响,严重影响矿井及选煤厂正常的安全生产。煤泥沉淀池物料满后,采用天然晾晒、人工开挖回收的方式处理该部分物料,晾晒时间一般在阶月左右,且需要选择在春夏季节,人工开挖吨煤成本15元左右,挖出的煤泥由于水分偏大,不能直接销售,需要再次晾晒。该方式直接造成晾晒时间长,同时人工开挖吨煤成本较高,挖出产品不能直接销售,挖出煤泥在煤场晾晒,占用面积大,周期长。

另外,煤泥沉淀池由于沉淀缓慢,为了达到理想的沉淀效果,我厂交替使用三个沉淀池,但是在原煤全部入洗、增加开机时间的情况下,煤泥沉淀池易出现交接不上,无空沉淀池使用的情况,在这种情况下煤泥水系统将无法正常运行。为彻底解决这一难题,保证煤泥水系统的正常运行和选煤厂效益最大化,我厂工程技术人员结合实际,从科技、管理创新等方面下手,研究制定了煤泥沉淀池煤泥通过机械设备方式回收的方案。

二、鹤煤公司六矿选煤厂现浮选工艺

六矿选煤厂的浮选工艺可分为三大部分:

1、0.5×0.1 5mm粗煤泥螺旋分选

原煤分级旋流器入料桶物料经原煤分级旋流器打入一组9台原煤分级旋流器组,由原煤分级旋流器分为0.5×0.15mmNl0.15×0mm两个粒级。

0.5×0.15mm粗煤泥从原煤分级旋流器底流口排出,经底流收集槽收集后经过管道进入螺旋分选机分配器,由分配器均匀分给8台螺旋分选机,经螺旋分选机分选出精煤和矸石两种产品。螺旋精煤经精煤收集槽收集后通过精煤高频筛,筛下物进入精煤分级旋流器入料桶,精煤高频筛筛上物进入精煤皮带。进入精煤分级旋流器入料桶的精煤再由精煤分级旋流器入料泵打入精煤分级旋流器进行分级。0.5×0.15mm粗煤泥经过精煤分级旋流器的底流进入精煤弧形筛预先脱水,弧形筛筛上物进入煤泥离心机脱水回收。弧形筛筛下水、煤泥离心机离心液也进入精煤分级旋流器入料桶。螺旋矸石经矸石矸石高频筛脱水,筛上物进入煤泥出厂皮带掺入煤泥产品中,矸石高频筛筛下物由浮选尾煤转排桶排入浓缩机浓缩。

2、0.15×Omm细煤泥浮选

原煤分级旋流器的溢流、精煤分级旋流器的溢流经矿浆准备器和浮选药剂混合均匀后进入两台机械搅拌式浮选机进行浮选,精煤在气泡带动下浮在上面,由浮选机两侧的刮泡机刮出,浮选尾矿由尾矿口排出。其中浮选精煤在精矿收集槽内通过加喷水消泡后进入浮选精矿池,经加压过滤机入料泵打入加压过滤机脱水回收,浮选尾煤进入浮选尾煤转排池由浮选尾矿转排泵排到浓缩池浓缩。

3、煤泥水处理及脱水回收

煤泥水处理系统主要由浓缩和压滤作业组成,浮选尾煤经浓缩机浓缩后,溢流水作为澄清水返回系统复用,底流由底流泵打入板压入料桶由板框压滤机脱水回收,滤液经由浮选尾煤转排泵返回浓缩池,滤饼由煤泥出厂皮带进入煤泥场堆放。为保证煤泥的浓缩效果,本厂设由絮凝剂自动添加装置,可以实现絮凝剂的自动制备和添加。

三、煤泥复选系统改造

(1)、根据设计思路,组织专业人员对煤泥沉淀池物料进行了多次小筛分和浓度测试,并对数据进行综合分析整理,通过对煤泥物料的筛分试验可知,+O.5mm含量粒级为3.33%,含有微量的大颗粒现象出现,但是满足我厂浮选系统入料要求,其中-200目占82.44%的比重,灰分28.43%,灰分偏低,其中含有大量的精煤未及时抽出,该部分物料若进行二次浮选,回收精煤产品指标满足要求。煤泥沉淀池物料浓度200g/l左右,浓度较高,主要是煤泥沉淀池物料大量沉积,含量较多。

(2)、煤泥沉淀池物料再次浮选,精煤抽出率分析。根据试验数据可知:煤泥沉淀池物料灰分27.22%,经过再次进入浮选系统分选,结合我厂精煤指标灰分10.00%的要求及尾矿灰分实际情况(45.00%),对应精煤产率50.80%,尾矿产率49.20%(见表1)。精煤回收率十分可观,同时沉淀池煤泥实现了通过机械设备厂内100%回收。

四、煤泥复选系统工艺设计及设备选型

煤泥复选系统设备选型的技术难点主要是在泵的选型上,根据泵需处理的物料浓度、工作量等一系列的实际问题出发,厂煤泥复选系统研究小组通过研究决定选用了HS5150进口潜水耐磨泥浆泵。

该泵的显著优点在于:

1、低寿命周期费用设计,电机范围宽,安装和维护更为简单,使用灵活,从而降低了投资和维护。

2、通过口大,可处理各种粒径的固体,即使在颗粒块或大片的杂质通过泵时也能保证有效的泵送。

3、高耐磨损性,高液压效率,保证了更为均匀的流动,降低了固体从携带流体中得分离,造就了极低的磨损性和稳定了液压效率。

4、当泵送较粗的物料时,泵轴上安装搅拌头可有助于防止固体堆积在泵坑底部。

五、煤泥复选系统改造后经济社会效益分析

经济效益:改造后三个月内共计处理煤泥7216吨,通过煤泥复选回收精煤2886.4吨(加压过滤机排料2624次,按1.1吨/次计算),销售收入365.7761万元(精煤单价1267.24元/吨);厂内回收煤泥共计4330吨(板框卸料666次,按6.5吨/次计算),销售收入188.2857万元(煤泥单价434.84元/吨)。共计销售收入554.0618万元。

全年预计煤泥2万吨,精煤抽出率约为8000吨,预计通过煤泥复选可增加销售收入665.92万元。

第8篇:工厂电池回收范文

当池中的煤泥沉淀累积到一定高度时,需要对两个沉淀池进行人工挖泥清污工作,既费时又费力。

2方案

为了确保含煤废水出水100%回收利用,在不破坏原有沉淀池的基础上新增加2X40t/h含煤废水处理系统,经过沉淀、加药、过滤等一系列工艺处理,对含煤废水进行净化处理,使出水水质达到回收利用标准。含煤废水处理系统的主要设备:行车式刮吸泥机、电絮凝装置、一体化净水装置、叠螺脱水机。2.1工艺流程图如下:2.2系统概况及原理。2.2.1螺旋沉降式净水器螺旋沉降式煤水净化器是新型煤水物化处理设备。煤水净化器取代了传统的水处理繁杂工艺,运用组合和集成新技术使废水在短时间内净化和深度处理回用,对SS、COD色度、浊度等去除率高,耐冲击负荷强(SS进水浓度可允许达60000mg/L),在废水治理中可以一次性处理达标排放或回用。2.2.2叠螺式污泥脱水机叠螺式污泥脱水机主机主要由浓缩部和脱水部组成,当浓缩污泥进入脱水机主体后,利用动静环的相对游动,使滤液快速排除,污泥向脱水部推移,当污泥进入到脱水部时,在滤腔内的空间不断收缩,污泥内压不断增强,再加调压板作用,使其达到高效脱水,污泥不断排出。2.2.3高频电絮凝装置电絮凝装置是给多组并联的极板接通直流电,在极板之间产生电场,使待处理的水流入极板的空隙。此时通电的极板会发生电化学反应,溶出Al3+或Fe2+等离子并在水中水解而发生絮凝反应,在此过程中,同时发生电气浮、氧化还原等其他作用,这些作用的结果,使水中溶解性、胶体和悬浮态污染物得到有效转化和去除。该装置具有以下几方面的作用:絮凝作用;气浮作用;氧化作用;还原作用等。2.3系统优化改进。(1)煤泥进水优化:栈桥冲洗水和煤场来水进入沉淀池前加滤网,把大的煤颗粒和杂物过滤掉。(2)在煤泥沉淀池加装自吸泵,把上清液抽到北侧大沉淀池,再溢流到小中间水池。运行方式是:每天保持煤泥沉淀池污泥量在1米左右,第二天的冲洗煤泥水全部进入煤泥沉淀池,经过长时间沉淀,再把上清液抽到沉淀池,再溢流到小中间水池,这样保证基本上没有悬浮物进入中间水池。优点:(1)沉煤泥效果好,能达到叠螺机出泥浓度,出泥稳定。(2)进入两个大沉淀池中的煤泥量很少,行车吸泥机运行时间短,省电,省人力。(3)为后续水处理系统减轻压力,水质好,系统运行稳定,设备维护周期长。

3实施效果

(1)废水采用上述工艺处理后,悬浮物含量<20mg/L,浊度<10NTU,优于《污水综合排放标准》GB8978-1996排放标准,能满足回用水和冲洗水的要求,提高了回用水的品质和使用率,节约了新鲜水的取用。(2)无需人工清理煤泥沉淀池,减少了清污费用及作业安全风险。(3)通过对栈桥和煤场冲洗水的回收、处理和再利用以及煤泥的自动干化和输送,达到了一个良性循环。

4结语

采用电絮凝新技术实现含煤废水的100%回收利用,不仅可以节省大量新鲜水资源和取水设施的建设费用,而且还会给企业带来了一定经济的效益,有益地推动了企业实施可持续发展,促进了环境友好型和谐社会的建设。

参考文献:

[1]杨明,火力发电厂含煤废水处理系统设计,《给水排水》,2009,45(4):69-71

[2]黄伟,火力发电厂含煤废水处理工艺的选择,《华电技术》,2014(7):73-74

[3]李俊文,王晶冰,张立军、徐华伟,高浓度一体化含煤废水处理装置的研究.《陕西电力》,2008,36(2):28-31

[4]陈峰,周小龙,电絮凝在含哈密电厂中的含煤废水处理系统应用与研究,《中国科技博览》,2016(8):63-63

第9篇:工厂电池回收范文

关键词:水厂建设 水厂改造

长桥水厂是一座我国自行设计建造,逐步发展起来的特大型水厂,目前供水能力已达到160 万m3/d(平面布置见图1),成为我国最大的城市水厂,担负着上海市西南和部分西北地区的供水重任。随着上海综合实力的增强,市民对自来水水质要求的提高,长桥水厂还将面临新一轮的改造。其出水水质目标是上海市供水专业规划提出的水质目标,2010年以前,依据卫生部《生活饮用水卫生规范》,同时比照美国epa水质标准及欧盟目前水质标准,结合现行美国水质标准中的微量有害物质和微生物指标进行拟定的水质目标,彻底改善自来水饮用口感;2020年的水质目标是依据上海市的水源特点制定的与当时发达国家保持同等水平的新的水质目标。

1 年代艰苦建厂

长桥水厂始建于年代,一直由上海市政工程设计研究院承担设计。1958年上海市政府为适应经济发展的需要,在特别缺水的西南地区立项建设一座新水厂,规模60万m3/d,是当时国内新建的最大水厂,分两期建设。一期工程30万m3/d,水源经多方案比较选在黄浦江关港段,水厂设在上中路南侧,当年完成施工图,为了贯彻多、快、好、省的精神和推行 投资包干,又两改设计图,反映了当时经济条件的困难和广大工程技术人员的智慧。

为节省投资,一期工程水源地由关港段缩至长桥港段,设江心式取水箱1座,直径5 m,2根?dn=1250钢制自流管,每根长250 m,设计能力30万m3/d,60万m3/d时再建一套。取水泵房和吸水井各1座,取水泵房设5台机组,水源泵站还设低压变电所1座,办公楼1幢,水源地至净水厂设2根dn=1200的浑水管,距离2 km 左右,设计管材采用预应力钢砼管,施工时由于货源原因,一部分采用预应力钢砼管,一部分采用铸铁管。开创了水厂采用大口径非金属管道的先例。

净水厂原设计钢筋混凝土平流沉淀池2组,每组分成2格,每格能力7.5万m3/d。为了节约钢材、水泥,加快建设进度,改为 30万m3/d土堤沉淀池1组,分成可独立运行的2格。回流隔板絮凝,絮凝时间20 min,沉淀时间75 min,前段小泥斗排泥,后段大泥斗定期冲洗。滤池采用2组钢筋混凝土快滤池,每组6格,滤速10 m3/h,单池面积106 m2,大阻力配水系统,水塔冲洗,水塔容积600 m3,下层为加氯间,滤池采用左右两翼中间水塔的布置形式,滤池管廊上层为月台式空廊,布置合理,操作方便。清水池采用钢筋混凝土,分设2座,由原设计每座1万m3减小至5000 m3,仅满足消毒接触时间,调节完全由厂外水库泵站承担。送水泵房 1座,设6台机组,为了节省联络管道,送水泵房吸水井分设2 座。水厂的总平面布置采用功能分区,进厂大道的东侧为行政管理和检修区,西侧为生产区,使工艺流程紧凑,直线型布置,便于以后扩建,为国内大型水厂的典型布置。

图1 160万m3/d长桥水厂平面布置

一期工程于1961年1月正式动工,同年6月初步通水,原水由厂区东侧春申塘边的20万m3/d临时取水泵房取水,1962年5月一期工程竣工。

1966年为了满足用水量的需要,着手对土堤沉淀池进行了技术改造。主要是絮凝部分,通过现场测定和经验总结,提出了回流隔板的改造方案,将每格絮凝能力提高到9000 m3/h,将土堤沉淀池的出水能力提高到40万m3/d,滤池滤速提高到14 m/h,使一期工程供水能力提高到40万m3/d。

1970年供水缺口增大,又提出了扩建要求,长桥水厂的供水能力需要提高到60万m3/d。水源部分,将黄浦江边的水源地由 30万m3/d挖潜至40万m3/d,厂内春申塘边的临时泵房可挖潜至 24万m3/d,满足了需要。新建10万m3/d钢筋混凝土平流沉淀池 1座,回流隔板絮凝时间20 min,沉淀时间1.8 h;新建快滤池1组,分6格,屋顶水箱冲洗;送水泵房挖潜改造更换水泵,当年12月份开始施工1971年7月竣工。扩建后出水能力勉强达到了60万m3/d。运行指标:1#,2#土堤沉淀池,回流隔板絮凝时间15 min,沉淀时间55 min,水平流速36 mm/s,平时小斗排泥,每半年停池清洗1次;3#沉淀池絮凝时间12 min,沉淀时间54 min,排泥采用虹吸式机械排泥,滤池滤速15 m/h。

2 结束后供水量继续增长

1976年,上海经济重又回升,用水量急剧增加,当时杨树浦水厂和南市水厂取用的黄浦江下游水,水质逐渐恶化,每年黑臭渐趋严重。1977年上海市政府决定扩建三期工程,扩大规模定为60万m3/d,与原系统配套为120万m3/d供水能力。当时长桥水源地正处于黑臭带的边缘,扩建水源地有3个方案:①原地扩建;②至上游28 km的黄浦江德胜港段;③淀浦河。经技术经济比较,碍于当时的经济实力,还是采用了原地扩建的方案,由于春申塘水质恶化临时泵房取消,原黄浦江取水能力为40万m3/d,水源地加建80万m3/d能力,设直径6 m进水箱1座,2根dn=2000 钢制自流管,各长180 m,新建取水泵房吸水井1座,取水泵房 1座,设6台机组,水源地到净水厂设dn=1600浑水管2根,长约 2 km。

净水厂根据已有沉淀池能力新增平流沉淀池2座,4#,5# 每座30万m3/d共60万m3/d,絮凝采用机械与回流相结合,并考虑了沉淀前段污泥至絮凝池的回流,絮凝时间约13 min,平流沉淀池总长150 m,宽29 m,沉淀时间约35 min,水平流速 55 mm/s,由于征地十分困难,在每座沉淀池下叠1万m3清水池,开创了平流沉淀池下叠清水池的先河。滤池在总结水泵冲洗移动罩滤池基础上,通过生产性试验开发了虹吸式移动罩滤池,滤池分8组,每组34格,单格面积9.6 m2,全厂滤池平均滤速11 m/h,移动罩滤池取消了管廊,结构简单,自动化程度高,并大大降低了工程造价。新建二级泵房1座,设沅江48-20立式水泵3台,预留1台泵位,每台沅江泵流量15 000 m3/h,扬程 46.6 m,配套电机功率2500 kw。该泵型占地面积小、效率高,在城市水厂中首次应用,对大型水厂有可取之处,但缺点是维修要求较高。长桥水厂三期工程,于1978年开始施工,1979年6月部分通水,1980年竣工。

1986年,随着上海经济的进一步发展,上海西部及西北部的供水一直十分紧张,另一方面黄浦江的污染也日趋严重,为了改善上海自来水的水源,国家计委批准了黄浦江上游引水工程,计划将当时上海就近取用黄浦江原水的6家水厂和计划新建的2 家水厂的水源移至黄浦江上游的黄浦江松浦大桥段,作为配套项目长桥水厂再一次扩建。1987年7月黄浦江上游引水工程完成了从黄浦江中游临江段取水的部分工程,引水230万m3/d,首先实现了黄浦江下游5家水厂的水源置换,碍于资金问题,临江以上的引水工程作为二期工程暂时缓建。

长桥水厂取用黄浦江中游水源,水源泵站再次扩建,1989 年建成直径5 m进水箱1座,dn=1800自流管1根,新建取水泵房1座,吸水井1座,设2台机组,水源泵站总取水能力达140 万m3/d。

水厂部分按140万m3/d配套,由于已建沉淀池指标较高,滤池指标相对较低,故新建6#,7#两组平流沉淀池,下设清水池,形式规模基本同4#,5#沉淀池,新建虹吸式移动钟罩滤池8组,每组24格,单格面积9.6 m2;并新建3?#送水泵房1座和吸水井 3格,共设7台机组。

长桥水厂建于我国经济条件比较困难的年代,设计指标采用都比较高,1999年上海自来水市南公司依据建设部统计指标对长桥水厂综合生产能力进行了核定。核定参数如下:取水能力144.96 万m3/d,沉淀池能力135.62万m3/d,滤池能力147.74万m3/d,清水池5万m3,送水泵房能力6.41万m3/h,综合能力 135.62万m3/d,当时统称长桥水厂的供水能力为140万m3/d。

3 改革开放迎来了新的发展

随着改革开放,迎来了长桥水厂的又一个春天。1995 年原上海自来水总公司提出了对长桥水厂进行技术改造的规划。以提高供水可靠性及运行管理水平,降低能耗、药耗和水耗,同时根据上水九五规划,将长桥水厂的供水能力扩大至160 万m3/d。由于长桥水厂技术改造工程涉及面广,实施难度大,投资高,为了不影响上海市西南地区的正常供水,结合资金筹措,总公司对改造工程作了总体考虑和分期实施的安排。

1997年底黄浦江上游引水二期工程建成并部分通水,长桥水厂完成了160万m3/d的提升泵房的建设,该泵房利用上游引水 dn=3500进厂管顶管施工的工作井建成。设计能力20 m3/s,设8 台大型飞力潜水泵,流量3.75 m3/s,扬程12 m,电机功率430 kw,其中2台暂时先装小叶轮,流量3.25 m/s,扬程12 m,必要时可更换库存的大叶轮,泵房设在水厂的南端,并将原来的浑水管同时进行了改造,以黄浦江上游引水作为常用水源,以原来水源泵站作为备用水源,两个系统可任意切换。

1997年供水高峰以后开始实施全厂加药设备、部分送水泵和相应配电、仪表监控设备改造。该项目利用西班牙政府贷款工程项目的余额,引进设备,以全套自动化加矾、加氯、加氨设备,替代了原来的手动加药设备和jz-1型加氯机;以西班牙英格索兰3台1万m3/h和3台0.5万m3/h的卧式双吸离心泵更换了3 台立式沅江泵,改建了全厂压力水系统,增设了2座变频调速的增压泵房,使加氯水射器的工作水压力稳定;絮凝池前增设了静态管道混合器;配置了相应的配电系统和仪表监控系统,设置了各工作点的控制plc子站和中央控制室。

2001年开始实施了40万m3/d老系统改造工程,该工程利用黄浦江上游引水二期工程世行贷款余额,工程包括以下内容:

备用水源地的改造。备用水源地分三期建成,一期工程的取水位置较理想,常年不淤,二、三期工程取水位置受规划限制,设在淤积区,每年要疏浚一、二次,作为备用取水口管理比较困难,但1#进水箱和2根dn=1250自流管已严重损坏,改造工程的目标是完善140万m3/d备用能力,工程在原1?#进水箱位置,就地重建直径8 m进水箱一座和1根dn=3000钢制自流管,并在水源地建旋转滤网井1座,设2台德国geiger生产的宽2 m,深15 m的转滤网。滤网中间进水,两侧出水,网孔4 mm×4 mm,改造解决了原2#,3#取水头部的淤积问题和黄浦江原水的漂浮物问题,网后水再通过虹吸管分配到原3个吸水井。取水泵房的水泵型号也都比较老,性能差,效率低,将其中4台原上海水泵厂生产的48sh-22泵更换为上海中德合资凯士比生产的rdl型水泵,流量1万m3/h,扬程22 m,电机功率800 kw。改造后的备用水源地大大改善了工作条件。

净水厂拆除原1961年建成的后扩容为40万m3/d的老系统,即土堤沉淀池和2组12格快滤池包括冲洗水塔,2座5000 m3清水池和1#送水泵房。

在拆除的位置及净水厂东北角56亩(3.73 hm2)新征地建设60万m3/d新系统。

设20万m3/d平流沉淀池3座,每座分为2格,每格沉淀池设机械混合池,采用凯米尼尔4htd型快混搅拌机,功率11 kw,混合时间20 s,絮凝为折板絮凝,絮凝时间15 min,沉淀池停留时间1.5 h,水平流速约23 mm/s,排泥采用泵吸虹吸式机械刮泥机,可根据泥位计指示,泵吸强排,虹吸弱排或只行走刮泥而不排泥,大大节省了排泥水量。采用9根不锈钢指形集水槽,其中 6根长18 m,3根长24 m,出水负荷300 m3/(m·d),沉淀池下部设清水池,每座容积1.5万m3。3座沉淀池下设3座清水池,另在水厂的东北角设独立清水池,容量1.5万m3,清水池总容量 6万m3,相当新建规模的10%。

设均质滤料气水反冲滤池2组,每组12格,双排布置,每格过滤面积138 m2,滤速约8 m/h,气冲强度55 m3/(h·m2),气水同冲时水冲强度10 m3/(h·m2),单水冲强度17 m3/(h·m2),滤料粒径 0.95 mm,厚1.20 m,k80<1.3,下部设粒径6~7 mm砾石100 mm,滤池进水和冲洗排水均采用气动闸板阀,反冲洗气、水和泄气均采用气动蝶阀,清水阀采用气动调节阀,压缩空气由一体化的空压机提供。管廊上部不设操作室,采用敞廊式布置,每组滤池下设接触池,满负荷时接触时间21 min,不足部分由清水池补充。

反冲洗泵房设在2组滤池的北端,冲洗泵房设鼓风机4台,风量64 m3/min,风压45 kpa,2台风机满足1格滤池冲洗风量。冲洗水泵4台,流量1200 m3/h,扬程12 m,1台水泵满足气水同冲时的水量,2台水泵满足单水漂洗水量。空压机2套,包括空气除湿、除油的压缩机一体机和储气罐。厂用压力水增压水泵2台,流量800 m3/h,扬程55 m。冲洗泵房的上层设滤池控制室、水厂中心控制室和水厂化验室。

新建1?#送水泵房按80万m3/h规模建设,设6台机组,其中2台备用,水泵采用上海凯士比生产的rdl型双吸离心泵,每台流量1万m3/h,目前扬程45~30 m,电机按今后可能50 m扬程配置,功率1600 kw,需要提高扬程时可更换叶轮。送水泵房吸水井做成流道形式,由清水总渠渐变而成,使水流分布更为均匀,减小了吸水井的工程量,经济地解决了吸水井抗浮问题,减小了水头损失。吸水流道通过水力模型试验,验证各种运行工况,设计按试验结果作了进一步修改,实际使用情况良好。

增设了回收池。通常情况下长桥水厂的原水由20 km外的原水厂送来,因此滤池反冲洗水的回收很有经济价值,新建回收池容积3000 m3, 分为4格,可独立运行、方便清洗。回收反冲洗水由内置油循环冷却系统的德国emu潜水泵均匀送至混合池,回流水量小于5%。由于长桥水厂用地十分紧张,回收池上部设车库、配电间和司机休息室。

增设了排泥池。长桥水厂原生产废水、雨水在春申塘低潮位时均自流排入春申塘,暴雨或高潮位时由排水泵房抽入春申塘。因环保意识的增强,水厂的生产废水也要达标排放,水厂的滤池反冲洗水已回用,生活废水收入城市管网,沉淀池排泥水需要经脱水处理,首先要将沉淀池排泥水收集起来,再行处理,排泥池容积2000 m3,分2格可独立运行,为防止污泥沉积,每格设2 台德国emu潜水搅拌机,本次改造先建设新建部分60万m3/d 规模的污泥脱水系统,其余暂时还直排春申塘,改造后的原排水泵房就改建为雨水排水泵房。

图2 规划的工艺流程

新建60万m3/d部分的排泥水处理系统也是本次改造工程的一个重点。随着环保监管力度的加大,城市水厂生产废水的达标排放已提上了议事日程,长桥水厂总体规模160万m3/d,结合本次改造排泥水处理先上60万m3/d。

长桥水厂的原水平均浊度40 ntu,按原水的水质特性和药剂的投加情况,60万m3/d水量产生的干泥为58 t/d,160万m3/d 水量产生干泥154 t/d;原水最高浊度为300 ntu,则60万m3/d水量时产生干泥201 t/d,160万m3/d水量时产生干泥535 t/d。长桥水厂的位置条件只可能采用机械脱水,根据国内外用于自来水厂污泥脱水机械的使用经验,比较理想的有离心脱水机和板框压滤机,上海自来水公司在闵行一水厂也取得了使用离心脱水机的成功经验,但长桥水厂现在已处于居民居住区,规模又特别大,板框压滤机有其更有利的一面。长桥水厂60万m3/d规模的污泥脱水系统,采用斜板污泥浓缩,上清液悬浮固体小于70 mg/l,符合 (gb8987-96)一级标准,设斜板浓缩池4座,污泥平衡池2座,受场地限制,脱水机房与储泥斗叠合布置,脱水机房设2 m ×2 m板框压滤机3台和注泥、加药、冲洗等辅助设备。脱水机在原水平均浊度时每天工作16 h,浊度较高时通过延长脱水机工作时间和平衡池调节来适应,泥饼经储泥斗储存,由环卫部门外运填埋。

长桥水厂40万m3/d老系统改造工程中的净水部分已在2002 年6月底建成送水,备用水源地的改造和污泥脱水车间正在紧张的施工中。

长桥水厂40余年的发展,反映了我国给水事业在建国后的艰辛创业的历史,在十分困难的条件下保证了上海的经济发展和人民生活的需要。充分体现了我国广大工程技术人员的智慧和艰苦奋斗的精神。现在的长桥水厂正以崭新的面貌,展现在蓬勃发展的上海,供水能力跃居国内城市水厂之最,出厂水浊度<0.2 ntu,自动化程度达国内先进水平。

4 长桥水厂新的规划目标

时代的发展向长桥水厂提出了新的要求,微污染的水源,新的水质目标,上海新的供水专业规划,都为长桥水厂的发展指明了方向。解决目前出厂水时有超标的色、铁、锰和微量有机污染等问题,是新一轮发展努力的目标,在黄浦江上游引水集中生物预处理基础上,参照上海周家渡水厂试验运行的经验,长桥水厂将进一步加强常规处理,并进行深度处理,使出厂水水质进一步提高,达到上海市供水专业规划2010年的水质目标,长桥水厂新的总体规划正在制定中(见图2和图3)。

图3 长桥水厂规划布置图

根据上海产业结构的调整和总体供水布局,长桥水厂的供水能力将调整为140万m3/d,出厂水质要达到上海新制定的供水专业规划要求,并要合理降低能耗、药耗和水耗,使长桥水厂的素质进一步提高。

长桥水厂将在1997年和2001年改造的基础上,继续改造 4#,5#,6#,7#沉淀池,取消3#沉淀池,将16组虹吸式移动罩滤池改造成均质滤料气水反冲滤池,沉淀池设计指标与新建的沉淀池相同,滤池的设计滤速将与新建的滤池统一至10 m/h左右。

新建4组臭氧接触池、生物活性炭滤池,臭氧最大加注量3 mg/l,接触时间大于10 min,活性炭滤池滤速10 m/h左右,与活性炭接触时间大于10 min,活性炭滤料采用气水反冲,活性炭滤池下叠建清水池约2万m3。

新建现场制氧车间和制臭氧车间。

改造2#,3#送水泵房,合建成1座送水泵房,泵房西侧新建35 kv变电所,满足全厂的供电需要。

污泥脱水车间扩建至140万m3/d规模,共设浓缩池6座,平衡池4座,脱水机房设板框压滤机6台。