公务员期刊网 论文中心 系统优化论文范文

系统优化论文全文(5篇)

系统优化论文

第1篇:系统优化论文范文

新的系统选用2台37kW电机分别驱动一台A10VSO100的恒压变量泵作为动力源,系统采用一用一备的工作方式。恒压变量泵变量压力设为16MPa,在未达到泵上调压阀设定压力之前,变量泵斜盘处于最大偏角,泵排量最大且排量恒定,在达到调压阀设定压力之后,控制油进入变量液压缸推动斜盘减小泵排量,实现流量在0~Qmax之间随意变化,从而保证系统在没有溢流损失的情况下正常工作,大大减轻系统发热,节省能源消耗。在泵出口接一个先导式溢流阀作为系统安全阀限定安全压力,为保证泵在调压阀设定压力稳定可靠工作,将系统安全阀调定压力17MPa。每台泵的供油侧各安装一个单向阀,以避免备用泵被系统压力“推动”。为保证比例阀工作的可靠性,每台泵的出口都设置了一台高压过滤器,用于对工作油液的过滤。为适当减小装机容量,结合现场工作频率进行蓄能器工作状态模拟,最终采用四台32L的蓄能器7作为辅助动力源,当低速运动时载荷需要的流量小于液压泵流量,液压泵多余的流量储入蓄能器,当载荷要求流量大于液压泵流量时,液体从蓄能器放出,以补液压泵流量。经计算,系统最低压力为14.2MPa,实际使用过程中监控系统最低压力为14.5MPa,完全满足使用要求。顶升机液压系统在泵站阀块上,由于系统工作压力低于系统压力,故设计了减压阀以调定顶升机系统工作压力,该系统方向控制回路采用三位四通电磁换向阀,以实现液压缸的运动方向控制,当液压缸停止运动时,依靠双液控单向阀锥面密封的反向密封性,能锁紧运动部件,防止自行下滑,在回油回路上设置双单向节流阀,双方向均可实现回油节流以实现速度的设定,为便于在故障状态下能单独检修顶升机液压系统,系统在进油回路上设置了高压球阀9,在回油回路上设置了单向阀14。该液压站采用了单独的油液循环、过滤、冷却系统设计,此外还设置有油压过载报警、滤芯堵塞报警、油位报警、油温报警等。

2机械手机体阀台的液压原理

对于每台机械手都单独配置一套机体阀台,机体阀台采用集成阀块设计,通过整合优化液压控制系统,将各相关液压元件采用集约布置方式,使全部液压元件集中安装在集成阀块上,元件间的连接通过阀块内部油道沟通,从而最大限度地减少外部连接,基本消除外泄漏。机体阀台的四个出入油口(P-压力油口,P2-补油油口,T-回油油口,L-泄漏油口)分别与液压泵站的对应油口相连接。压力油由P口进入机体阀台后,经高压球阀1及单向阀2.1后,一路经单向阀4给蓄能器6供油以作为系统紧急状态供油,一路经插装阀3给系统正常工作供油。为保证每个回路产生的瞬间高压不影响别的工作回路,在每个回路的进出口都设置了单向阀,对于夹钳工作回路因设置了减压阀16进行减压后供油,无需设置单向阀。对于小车行走系统,由比例阀12.1控制液压马达21的运动方向,液压马达设置了旋转编码器,对于马达行走采用闭环控制,以实现平稳起制动以及小车的精准定位。为避免制动时换向阀切换到中位,液压马达靠惯性继续旋转产生的液压冲击,设置了双向溢流阀11分别用来限制液压马达反转和正转时产生的最大冲击压力,以起到制动缓冲作用,考虑到液压马达制动过程中的泄漏,为避免马达在换向制动过程中产生吸油腔吸空现象,用单向阀9.1和9.2从补油管路P2向该回路补油,为实现单台机械手的故障检修,在补油管路P2上设置了高压球阀8,为实现检修时,可以将小车手动推动到任意检修位置,系统设置了高压球阀5.2。对于双垂直液压缸回路,由比例阀12.2控制液压缸22的运动方向,液压缸安装了位移传感器,对于液压缸位置采用闭环控制,实现液压缸行程的精准定位,液压缸驱动四连杆机构来完成夹钳系统的垂直方向运动;为防止液压缸停止运动时自行下滑,回路设置了双液控单向阀13.1,其为锥面密封结构,闭锁性能好,能够保证活塞较长时间停止在某位置处不动;为防止垂直液压缸22因夹钳系统及工件自重而自由下落,在有杆腔回路上设置了单向顺序阀14,使液压缸22下部始终保持一定的背压力,用来平衡执行机构重力负载对液压执行元件的作用力,使之不会因自重作用而自行下滑,实现液压系统动作的平稳、可靠控制;为防止夹钳夹持超过设计重量的车轮,在有杆腔设置了溢流阀15.1作为安全阀对于夹钳液压缸回路,工作压力经减压阀16调定工作压力后由比例阀17控制带位置监测的液压缸23的运动,来驱动连杆机构完成夹钳的夹持动作,回路设置了双液控单向阀13.2,来保证活塞较长时间停止固定位置,考虑到夹钳开启压力原小于关闭压力(液压缸向无杆腔方向运动夹钳关闭),在液压缸无杆腔回路上设置了溢流阀15.3,调定无杆腔工作压力,当比例换向阀17右位工作时,压力油经液控单向阀13.2后,一路向有杆腔供油,一路经电磁球阀18向蓄能器19供油,当夹钳夹住车轮,有杆腔建立压力达到压力继电器20设定值后,比例换向阀17回中位,蓄能器19压力油与有杆腔始终连通,确保夹持动作有效,当比例换向阀17左位工作时,蓄能器19压力油经电磁球阀18与有杆腔回油共同经过比例换向阀17回回油口。紧急情况下,电磁换向阀7得电(与系统控制电源采用不同路电源),将蓄能器6储存的压力油,一路经单向阀9.11供给夹钳液压缸23,使夹钳打开,同时有杆腔回油经电磁球阀18,单向阀9.9回回油T口;一路压力油经节流阀10,单向阀9.3使液压马达21带动小车向炉外方向运动,液压马达回油经比例换向阀12.1,单向阀9.5回回油T口。以确保设备能放下待取车轮,退出加热炉内部,保护设备安全。

3结论

第2篇:系统优化论文范文

该工程是集客房、餐饮、宴会、会议办公为一体的多层公共建筑,地下一层、地上五层,建筑体总高度22.46米,总建筑面积13735平方米。本建筑各层平面主要功能为:地下1层为厨房、库房及设备用房等,首层为餐饮、会议功能,二层~四层为客房层,五层为设备层。该工程的酒店级别定为五星级标准。

2空调系统设计

2.1冷热源设计

该工程空调计算冷负荷为1058kW,计算热负荷为423kW。由于该项目的功能特性决定了其空调设备同时开启的情况极少,故在冷热源装机容量的选择上取同时使用系数为较小值,制冷时的同时使用系数约为0.8,制热时约为0.6。由此,该工程选用了2台60冷吨(211kW)的螺杆式水冷冷水机组(其中有1台为热回收型机组)、1台120冷吨(422kW)热回收型螺杆式水冷冷水机组作为冷源,集中放置于地下一层空调主机房。热源选用2台额定制热量为130kW模块式风冷热泵机组作为热源,同时该风冷热泵机组可兼作过渡季节或夜间的极低负荷以及高峰负荷时的冷源。冷源系统的冷却塔及风冷模块式热泵机组放置于二层露天平台处,水泵则统一置于地下一层主机房内,方便集中统一管理。如图1所示为空调冷热源系统流程图。

2.2空调水系统设计

结合本工程业主方的要求及整体管理水平,该空调水系统以方便有效的管理为原则,以合理的节能运行为目的进行设计。空调水系统采用分区两管制,按照建筑功能,分为客房区域、餐饮区域及办公会议区域。各区供冷/供热转换在主机房内分集水缸的各环路总管上设手动蝶阀实现手动切换。空调冷却水、冷冻水、供暖热水系统均为水泵与主机一对一的一次泵定流量系统。冷冻水/冷却水/供暖水系统均采用二管制异程式系统。冷冻水供回水温度为7℃/12℃;冷却水供回水温度为32℃/37℃;供热系统供回水温度为45℃/40℃。

2.3热回收系统设计

为了降低能耗,酒店建筑一般需要设计空调热回收系统,利用回收其冷水机组的冷凝热来获得免费的生活热水,而广东地区明确规定采用集中空调系统的大面积酒店建筑应当配套设计和建设空调废热回收利用装置[1]。本工程空调热回收系统分别由1台制冷量为60RT(211kW)的热回收型螺杆式冷水机组和1台制冷量为120RT(422kW)的热回收型螺杆式冷水机组、2台热回收循环水泵以及2个梯级蓄热水罐组成。空调热回收热水系统主要为该工程的客房区及厨房区提供生活热水,同时综合考虑了热水管网的回水加热循环。空调热回收系统的设计热水供/回水温度为60℃/35℃。如图2、图3所示分别为冷凝热回收系统流程图(空调主机侧)及冷凝热回收系统流程图(水专业侧)。

3系统节能性分析

3.1冷源系统节能分析该空调系统的冷源具有大小主机搭配、并且与风冷热泵机组互为备用,基本可以满足该项目的各种不同运行工况,同时有效避免了冷源容量配置过大,可降低初投资成本,其运行也比较节能。

3.2空调水系统节能分析空调水系统根据项目特点设计为分区两管制系统,实现客房区及餐厅区不同时段冷热负荷需求,在满足实际需求的同时运行更加节能。冷冻水泵、冷却水泵及热水泵与主机采用一对一的连接方式,以达到合理的流量分配及稳定的运行效果,同时采用定流量系统运行,减少了系统控制的复杂性,运行更加可靠,但是系统节能性相对变流量系统会差一些。

3.3热回收系统节能分析

3.3.1热回收的基本原理本工程的空调热回收系统采用了回收冷水机组的冷凝热。冷水机组冷凝热回收系统就是把制冷循环中制冷工质冷凝放热过程释放的热量利用来制备生活热水。所示为冷水机组排气热回收系统原理图。由文献[2]及相关厂家的实际测试数据可知,标准测试条件下(热水供回水温度一般为55℃/30℃)冷水机组的显热回收量约为制冷量的12.5%~15%范围内,很多时候可按照15%计算。当热水的供回水工况与测试工况不一致时则需根据实际情况分析,具体方法可按照文献的分析方法计算得出总热回收量。

3.3.2热回收系统设计分析由于传统热回收系统存在一系列的问题,故本文在文献的热回收系统基础上进行了以下几点的优化设计。

(1)为了减少热水罐的蓄水时间以及为了避免进水温度对主机性能系数产生较大的影响,设计工况下的进出水温度为35℃/60℃,温差25℃。

(2)蓄热水罐采用立式水罐,更好的实现了水温分层作用及热水的梯级利用。

(3)本工程的热回收系统考虑了热水管网的回水加热循环,更加充分地利用了冷水机组的冷凝热,更加节能。

(4)控制方面,在热回收系统的回水管上设置温度传感器,当回水温度超过58℃时,输出信号关闭热回收水泵,同时在用水点最远段的回水管上设置温度传感器,当回水温度低于55℃时,输出信号开启水专业的回水循环水泵。按照一台120RT(422kW)的热回收机组来分析,由文献]的计算方法可得,该热回收机组的显热回收量为63.3kW,热回收水流量为2.47m3/h,从而根据此水流量及25℃的设计供回水温差即可求出总热回收量为71.8kW,热回收系统设计的总热回收量为制冷量的17%左右。由此可知,供回水温差越大,同等制冷量的情况下的热回收量就越大,但相应的对冷水机组的性能系数影响也就越大。由以上分析可知,热回收系统的实际供回水工况是一直在不断变化的,其热回收量也是一个变数,严格来说分析一个工况范围内的热回收量才更有参考价值,这部分还有待于下一步做更详细的分析计算。

4总结

第3篇:系统优化论文范文

1.1多车型翻车机系统在港口的应用

经过发展后的现代化多车型翻车机在实际操作工作中的应用越来越广泛,其起到的作用来越来越重要。特别是对我国港口在大型大宗货物运输装卸方面,其重要程度不言而喻。像目前港口的大宗松散货物的运输装卸,多采取倾倒的方式来对其进行卸车,在这种情况下的卸车的效率是比较高的。随着翻车机系统的不断发展,其设备机器和规模也越来越庞大。随之而来的改变就是翻车机的结构构造和卸车方式上的不同。目前翻车机有多种不一样的机型和种类。主要有KFJ—1型侧倾式翻车机;M2型转子式翻车机;C型转子式翻车机等。现代化的转子式多车型翻车机主要为齿轮来进行的转动。目前多用于生产规模较大的物流运输公司,特别是港口在卸载大宗货物方面,起到了不可替代的作用。但是,受限于发展技术水平的影响,其相关的一些设计技术还不完善,所以,我国港口在卸载货物物料的时候,速度不能得到保障,有时候还得一定程度上借助于人力劳力的帮助。翻车机它是翻车机系统的主体,在整个翻车机卸载系统中,如何发挥其最大效果关键是取决于翻车机的内部构成及结构设计。

1.2多车型翻车机系统在港口应用中的问题

首先,因为多车型翻车机这种超大型的机械设备机体比较大,同时结构也相当复杂,再加上不少港口的机械设备更新不及时,使用的多是过于陈旧的机械设备,就比如说转子式驱动翻车机,它就是采用的钢丝绳来进行传动,虽然整体来看结构比较简单、轻便,但是其中的钢丝绳容易磨损、使用寿命也比较短,不利于工作运行效率的提高。其次,我们也都知道港口的地理位置,由于其特殊的天气状况等自然气象环境,像一些性能并不是很好的机械设备,则会非常容易造成伤害、磨损、腐蚀等现象。例如南京的浦口码头,以前经常会发生一些机械故障。因为有的翻车机入口坡度比较大,一般的机车已经无法顶送。但是,后来经过研究技术人员的优化改造,开发出了———铁牛推送装置。

2关于多车型翻车机系统的优化设计方面的探究

2.1多车型翻车机电动力系统的优化设计

翻车机系统主要有三套性能在各方面都不一样的机器系统设备。它们是翻车机驱动;推车机驱动;定位车驱动。在设计方面应该加强注重系统的性能设计和控制。上一部分在问题中也提到了“铁牛推送装置”,铁牛推送装置在港口作业中比较普遍,作业方式多样化,相比较于传统的单一的机车顶送作业方式,使作业效率得到极大的提高和改善。

2.2对多车型翻车机作业工艺过程中检测装置的设计进行优化

为了更好地满足定位车在翻卸过程中不摘钩的翻车机车型工艺,以便更好的来保证定位车和其它车厢之间的联接,所以应当在检测装置等方面不理想的部分进行合理的优化及其工艺改造。

2.3多车型翻车机控制系统的优化设计

根据我国的在多车型翻车机作业的模式的认识上,可以知道翻车机系统应用的具体子系统:Con-troILogix控制器;上位机系统;用户操作站点;Flex远程控制网络等。这些都是最基本的条件,也是翻车机系统进行工作的前提。为了能更好地提高其系统的运行效率,通过研究翻车机相关控制系统的设计,更有助于系统整体对多车型翻车机的控制操作。

3结束语

第4篇:系统优化论文范文

变频技术不仅仅是异步电动机,结构坚固,易于维护,更重要的是由于采用变频技术的异步电动机的机械性可以达到了直流电动机调压调速的功能。这样子可以很好的解决国内供水的很多问题。从而人们可以按照序曲自行研发一个合适的而且比较方便环保的调速控水系统。恒压供水系统改变原有的调速方式,实现了无极控制恒压供水,依据用水量的变化自动控制调节系统运行的参数,保证了供水的安全可靠。随着电子技术的不断深入,恒压变频器的日益完善,功能越来越强,即可利用恒压变频的各种功能对其变频调速恒压供水系统提供更多的服务,从而保证恒压供水系统的更多功能,供水的更稳定,更好的为人类服务。

二、项目介绍

恒温恒压供水控制系统由可编程控制器、可视化触摸屏显示器、变频器、交流电动机、压差传感器、液位变送器、温度变送器、板式换热器、继电器、辅助加热器、以太网线及相应模块、等其它电控设备、以及5台循环水泵和一台小流量隔膜泵等构成。在整个系统中,可编程控制器与可视化显示器安装在中控室,远程可使用以太网络监控现场模块。在水箱入空和出口安装压差传感器,检测水压。在水箱底部安装液位变送器。在水箱里安装温度变送器。可编程控制器中的模拟量模块采集液位变送器、温度变送器送来的4-20mA信号电流。将测量信号与PLC设置的信号进行比较,经过PID模糊运算后,由PLC控制变频器输出的频率来调节交流电动机的转速,改变循环泵的流量,来保证供水水压恒定。箱体水温温度由板式换热器供给。温度控制阀来调节温度。辅助加热器用来保证温度的恒定。这样就构成了以设定压力温度为基准的恒压恒温闭环系统。触摸屏显示器用于显示供电电压、工作电流、变频器实际频率、供水压力及各循环泵的工作状态等;可以通过触摸屏以太网络在线修改供水压力和温度控制恒温供水系统的运行。

三、程序设计原理

3.1整套热水供给系统采用西门子CPU226PLC控制

软件使用西门子S7-200进行控制程序编辑。可视化面板使用西门子Smart1000显示屏,软件使用WinCCflexible。同一公司系列产品,兼容性好,协议一致利于通讯。STEP7是用于SIMATIC可编程控制器组态和编程的标准软件。它是SIMATIC工业软件的组成部分。为功能模板和通讯处理器赋值参数、强制和多处理器模式、全局数据通讯、使用通讯功能块的事件驱动数据传输、组态连接。WinCCflexible项目包括能让系统接受操作和监视的所有组态数据。在WinCCflexible中,组态数据根据主题类别进行编译。每个类别都在单独的编辑器中进行处理。编辑器的可用性取决于所用的WinCCflexible版本和要组态的HMI设备。WinCCflexible的工作环境只显示当前使用的HMI设备所支持的编辑器。也就是说,组态工作非常简单且易于进行。

3.2稳定运动状态的自动控制系统设计

系统为了解决水压波动,流量变化对供水系统的扰动。采集管网压力、温度、电流等信号。参考传统的PID调节器算法,即:U(T)=Kp[e(t)++T]

关于P值,I值,D值的设定可采用测试法

最短短时间内完成参数设定,避免造成不良影响。设定的依据:增益P值大,有利于减少供水管网的实际压力与恒压给定值的差值,但是P值过大,系统将产生振荡,稳定性变差。积分I值越小振荡作用越强烈,适当增大I值,使系统更加稳定,但是时间长又会发生难以迅速恢复的情况,系统的动态响应变差。微分D愈短,微分作用越弱。P,I,D经验值和参数设定依据,在测试过程中依照先比例后积分的原则对系统进行调节。在程序控制中使用比较指令函数运算等先关算法更精准的计算调整相关参数,实时精确的控制恒温恒压供水系统。

3.3变送器的安装、电气连接、调试和维护必须由通过培训、有资格的专业人员操作

如果在管系上需要进行焊接工作,不要将焊接设备的接地接在本测量设备上。安装者必须保证仪表根据接线图正确接线。如果电源不隔离,变送器必须接地。在打开和修理电气设备时请遵守当地所有相关规定。

四、工作流程介绍

该系统具有手动操作模式和自动工作模式两种运行方式

4.1手动操作模式

选择手动模式时,操作可视画界面。可实现单独设备的启动和停止,这种方式用于检修或控制系统出现故障时使用。

4.2自动运行模式

4.2.1系统补水

4.2.1.1地下储水池由一台7.5KW的深井潜水泵供水,当蓄水池水位达到最低下限(通过压力传感器测量水位)1米时,启动深井补水泵开始补水。(蓄水池深度2米)达到最高水位2米时,停止供水。

4.2.1.2由地下蓄水池为1号水箱供水(冷水)(5.5KW水泵2台,由变频器控制),1号水箱高度3米,2号水箱高度2米,1、2号水箱之间落差1.5米;1、2号水箱由管道相连实现自动补水,补水时当1号水箱水位达到1.5米时,自动开始为2号水箱补水,2号水箱加满后,再为1号水箱加水,直至1号水箱加满为止。(2.8米)

4.2.1.3当1号水箱水位达到最低保持水位(热水)1米时,启动1、2号之间的补水泵(1台2.2KW)开始由2号水箱为1号水箱补水(热水);当2号水箱水位达到最低保持水位1米时,停止为1号水箱补水,关闭2号水箱为1号水箱补水的补水泵;同时开启冷水水箱上水电动阀门为1号水箱补水(冷水).1号水箱水位达到2.8米时,关闭水箱进水电动阀门。

4.2.1.4当1号或2号水箱水温达到80℃以上时,启动水箱上水电动阀门,水位达到2.8米,温度达到70℃时,关闭水箱上水电动阀门。设置一个最高水位,起保护作用,达到这个高度时停止所有上水。

4.2.2系统循环

4.2.2.1对1、2号集热器采集热能,通过与1号水箱相连的管道将热能传导进入1号水箱当1号水箱水温与1号或2号集热器水温的温差超过10℃时,启动1、2号集热器循环水泵。温差低于5℃时关闭.;1号、2号集热器循环泵各自独立可单独启停。

4.2.2.2冬天当1号、2号集热器室外管道温度低于5℃时,启动集热器和1号水箱之间的循环泵,室外管道温度高于10℃时循环泵停止。当1号水箱水温与板式换热器的温差超过15℃时,启动板式换热器循环水泵;温差低于5℃是循环泵停止。当1、2号水箱水温的温差达到10℃时启动1、2号之间的循环水泵;达到温差5℃范围内停止循环泵。

第5篇:系统优化论文范文

1.1给水系统优化设计

对变电站给水系统进行优化设计时,必须要严格遵照给水设计规范中相关技术指标。事实上,给水系统中的主要流量类型包括居民生活运水、工业企业生产用水、消防用水、绿化用水、公共设施用水和未预见水量等,用水来源是市政给水管网或地下水加压所提供的清洁水资源。为实现绿色智能变电站供水方案,我们可以根据节水性优化设计原则,对生活污水、生产污水进行物理和化学净化处理,将其用作绿化用水,从根本上降低变电站区情节水资源的综合使用量。比如本人曾参与某220kV户外GIS变电站给水系统优化设计工作,其设计用水量主要包括生活用水、绿化用水、未预见用水量等,工业用水、公共设施用水相对较小,此处不作考虑,而消防用水为一次性用水,可不计入设计用水量中,变电站内绿化用水量最大,占总用水量64.39%。为有效减少该变电站区清洁水使用量,经讨论决定尽可能降低绿化用水量,除了变电站区内绿化尽可能选择养护少、耐气候性的植物,还应釆取合理工艺对生活污水进行处理,经处理后的水用作绿化用水,有效减少清洁水源的使用量。经长时间分析统计可知,站区清洁水使用量已减少到常规用水量的84.3%,在户内GIS布置变电站,由于站区面积较小、站内绿化面积较小,清洁水使用量还望减少到常规用水量的72%以下。由此可知,对变电站给水系统的优化和实现中水回用对变电站的经济效益、环境保护来说具有十分重要的意义。

1.2排水系嬈优化设计

变电站排放的废水主要是含油废水和生活污水,含油废水常产生于重大事故中,如主变电站发生火灾等,但由于变电站重大事故较少发生,且我国目前许多变电站都会设有事故油地实现油水分离,尽可能减少对环境的污染,因此含油废水对变电站区环境污染影响较小。目前,变电站排放出的废水主要是生活废水,生活污水的排水方向主要有2处,即城市污水管网和变电站外附近自然水体,一般变电站会选择近期排至站外自然水体、远期排至城市污水管网的排水方式。变电站在选址时,为尽量少占经济效益较高的地段,常常会选择设置城市周边或偏远地区,这些地方一般欠缺完善的市政污水管网,因此,变电站内污水一般是与雨水合流排至附近自然水体,在一定程度上污染了周边环境。立足于节能减排理念,绿色变电站排水工程设计可以摒弃传统的污水外排形式,对站内生活污水进行合理净化,使之在变电站内实现有效循环。由于生活污水中含有大量有机物,具有较好可生活性,我们可以对其进行生物降解,以净化水质。除此以外,为实现绿色智能变电站的排水系统优化设计,设计变电站排水系统时应尽量占用较少空间、提高水处理质量、注重养护管理方便,若选用传统的传统钢筋混凝土构筑物进行污水处理,必然无法满足处理要求。因此,在设计该变电站排水系统时采用技术成熟的地埋式一体化生活污水处理工艺处理生活污水。该一体化生活污水处理设备能将氧化池、沉淀池、污泥消化池、消毒池集于一身,只需在实际工程中配套设计相应的污水调节池、集水井和控制系统则可实现生活污水在变电站内的有效循环。经地埋式一体化生活污水处理设备处理后的水质能达到生活杂用水水质标准,可用作绿化用水’这样一来,不仅可以有效减少清洁水使用量,还可以尽量避免生活污水排至变电站外对环境造成污染,真正实现绿色智能变电站的节能减排目的。

1.3管材合理性优化选择

绿色变电站给排水系统管道管材必须遵循合理性、适宜性原则,我国当前对变电站给排水系统管材的选择欠缺统一的标准,给排水设计人员在选择管道管材时随意性较大,像铸铁管、混凝土管等耐腐蚀性差、自重大的管道仍被广泛应用于设计中。对此,绿色智能变电站给排水系统对管道管材提出更髙要求,不仅要求给排水系统管材要符合安全卫生标准,还必须考虑管道管材是否安装使用方便、是否环保经济。近年来,人们的环保意识不断增强,已研制出环保经济、安装方便的环保型管材,如硬聚氯乙烯管材、交联聚乙烯管材、铝塑复合管材、无规共聚聚丙烯管材等新型环保型管材,因此,我们在设计绿色智能变电站给排水系统时应根据工程实际状况合理选择管道管材,实现变电站的节能降耗、绿色环保,为我国社会经济提供可靠保障》另一方面,我们要不断探索绿色智能变电站给排水系统优化设计方案,在给排水系统设计中积极引入先进的科学技术、机械设备和设计理念,探索更多节能降耗、绿色环保、经济可靠的给排水系统设计方案,促进绿色智能变电站给排水系统设计朝着可持续方向蓬勃发展,保证工程建设项目能顺利保质保量地完成,确保我国今后能安全稳定地发展。

1.4合理选择卫生器具

绿色变电站以节能环保、高效和谐为管理目标,所以给排水系统要体现节水节能,不仅要做到给排水系统的合理规划,还应合理选择节水节能器具,如节水型冲洗水箱、太阳能热水器等,真正实现绿色变电站的节能降耗。

2结束语