公务员期刊网 精选范文 柔性制造范文

柔性制造精选(九篇)

柔性制造

第1篇:柔性制造范文

一、规模

按规模大小FMS可分为如下4类:

1.柔性制造单元(FMC)

FMC的问世并在生产中使用约比FMS晚6~8年,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,具有适应加工多品种产品的灵活性。FMC可视为一个规模最小的FMS,是FMS向廉价化及小型化方向发展和一种产物,其特点是实现单机柔性化及自动化,迄今已进入普及应用阶段。

2.柔性制造系统(FMS)

通常包括4台或更多台全自动数控机床(加工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。

3.柔性制造线(FML)

它是处于单一或少品种大批量非柔性自动线与中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心、CNC机床;亦可采用专用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生产过程中的分散型控制系统(DCS)为代表,其特点是实现生产线柔性化及自动化,其技术已日臻成熟,迄今已进入实用化阶段。

4.柔性制造工厂(FMF)

FMF是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投入实际,实现生产系统柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特点是实现工厂柔性化及自动化。

二、关键技术

1.计算机辅助设计

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。

3.人工智能、专家系统及智能传感器技术

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了柔性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中起着关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术(IMT)旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。故IMT被称为未来21世纪的制造技术。对未来智能化FMS具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能而产生的,它使传感器具有内在的“决策”功能。

4.人工神经网络技术

人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。

三、发展趋势

1.FMC将成为发展和应用的热门技术

这是因为FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。

2.发展效率更高的FML

多品种大批量的生产企业如汽车及拖拉机等工厂对FML的需求引起了FMS制造厂的极大关注。采用价格低廉的专用数控机床替代通用的加工中心将是FML的发展趋势。

3.朝多功能方向发展

第2篇:柔性制造范文

【关键词】 科技革命 制造业 柔性制造

科技的迅猛发展不但改变了物理世界,而且改变了人们的思想观念,并从根本上改变了人们的生活方式,从而给制造业实体和理念上双重性的深远影响。科技革命带了变革的速度持续加快,从根本上加强了世界的互联性,增加了多样性,使得多元化成为常态,并加剧了不稳定性,从而使商业环境更加呈现出动态性的特点。由此,产品的革新速度和多样性空前加快,特别是全球竞争与国际贸易深入发展,企业想在全球供应链和国际竞争中占据有利位置而不被淘汰,就必须适应由科技突变而带来的环境快速变化的趋势。柔性制造策略是制造业面临信息时代挑战的重要策略,也是适应外部商业环境快速变化和客户需要动态要求的重要策略。因此,建立柔性制造系统对于我国制造业的生存和发展具有重要现实意义。

一、柔性制造概述

1、柔性制造的内涵。柔性制造技术是1967年英国莫林斯(MOLINS)提出来的用于机械制造行业的一种先进制造技术,此后这一理念在各行各业得到了广泛应用,并已成为现代制造的一种科学“哲理”,倍受推崇。柔性制造技术的范围是十分广泛的,是对不同品种实现柔性制造的各种技术的总和。凡是侧重于快速转换的柔性要求、适合多品种、小批量生产的加工技术都属于柔性制造技术的范畴,如柔性制造系统、柔性制造单元、柔性制造线、柔性制造工厂等。

2、柔性制造的影响因素。企业柔性制造的能力受到许多因素的影响,是企业综合灵活适应能力的体现。但具体而言,影响柔性制造技术水平的因素主要包括以下方面:(1)设备柔性:即设备满足工艺变化的程度,这一点主要体现在市场需求变化时,设备转换生产一系列不同品种产品的能力。(2)工艺柔性:工艺柔性包含两个方面:一是工艺流程不变化时,其自身适应产品和原材料变化的能力;二是为适应产品和原材料变化而改变原有工艺的难易程度。(3)产品柔性:一是产品更新或完全转型后,系统能够非常经济和迅速地生产出新产品的能力;二是产品更新后,对老产品有用的特性的继承能力和兼容能力。(4)生产能力柔性:当生产量、品种变化时,系统也能经济地运行的能力。(5)维护柔性:持续高效地查询、处理故障以保证生产正常进行的能力。(6)扩展柔性:当生产需要时,扩展系统结构,增加模块,构成一个更大系统的能力。(7)服务柔性:一是在顾客产品使用寿命周期内,用新部件维修旧产品的能力;二是一些产品还需要可升级的能力。

3、柔性制造的指标体系。整体而言,柔性制造中“柔性”表现为两个方面:第一方面是系统适应外部变化的能力,第二方面是系统适应内部变化的能力。具体而言,衡量一个制造系统柔性高低程度主要有三个衡量指标:数量的柔性,允许各种因素(如产量)自由变化的幅度;时间的柔性,能够实现变量(如销售量)自由变化的幅度所需对应的时间;成本的柔性,在订单波动、产量波动的情况下,各项费用尤其是人工变动费用如何随之变化,其费用的变动,尤其是人工成本随产量波动而相应变动的逼近程度反映了柔性管理的水平高低。如图1所示。

二、柔性制造系统的优势

1、灵活的适应能力。柔性制造技术的“柔性”是相对于传统生产方式的“刚性”而言的,它是相对的,动态的,也是不断改进的技术,而不是一成不变的。由于工业化带来需求的规模化,传统生产线主要实现的是单品种的持续性的大批量生产,优点是生产效率高,次品率低,单位产品生产成本低,能同时满足大量客户的需求,适合标准化占领市场。但随着科技革命的进一步发展,它改变了商业环境和现代市场的需求方式,客户需求快速变化,并表现为多元化和个性化特征。传统的制造方式难以满足现代市场要求的多品种、小批量和快速化的生产需求,更缺乏现代市场所要求的灵活适应性能力。基于现代市场环境的变化,制造系统的生存能力和竞争能力在很大程度上取决于它能否在很短的开发周期内生产出低成本、高质量、不同品种产品的能力,能否适应客户需求的不断变化。因而,柔性生产对于制造业变得越来越重要。

2、较高的客户价值。由于柔性制造的思想和方法非常适合小批量、多品种、及时交货的现代市场需求趋势,在适合市场变化和客户要求方面具有极大的快速灵活适应能力。企业通过创造柔性优势,一方面,可以满足了客户的小批量、多品种的订单需求,适应了制造业市场快速多变的需求;另一方面,柔性制造系统能够充分发挥企业的柔性优势采取DESIGN IN 的销售模式,主动为客户提升产品个性化价值,提高产品的附加值和客户的满足度,为品牌赢得声誉,树立良好的品牌形象。DESIGN IN即“设计介入”,是指销售人员要在客户进行产品设计的前端介入。企业在实施DESIGN IN 的销售模式中,要推广“顾问式销售,专家式服务”的销售文化:要求每位销售人员要成为客户产品问题的解决方案的专家,不仅仅推销自己的产品,更重要的是要从客户需求的角度帮助客户实现产品的优化设计,提升产品的个性化,为客户带来较高的附加价值。同时,将客户的个性化方案与企业的技术优势、柔性优势相结合,实现利润模式上的双赢。在客户价值得到提升的同时,企业也将获得大量订单及个性化的溢价。

三、构建完善的柔性制造系统

1、提高设备柔性。(1)增加灵活性设备。为适应柔性制造的要求,企业在设备设计方面,必须针对柔性的要求进行全面和重大的调整。如在设备的调整方面,可以逐渐放弃单一用途的设备,增加多功能用途的设备;可以放弃难以转换的设备,增加转换能力较强的设备;可以减少设备整机的配备,增加多用途零部件组装型设备等。这样不仅能够提高企业设备的转换能力,而且能够减少设备成本,在最佳经济条件下提高企业的柔性制造能力。(2)统一设备类型。不同型号转换时,由于要求不同,每次转换都会要求进行设备参数的重新调整等许多环节的重复无效率的工作,既影响工效又影响质量。为此,企业应该在生产许可和技术条件可行的情况下,统一零部件生产要求,或产品生产要求,并通过优化设计,将多种型号材料和零部件减少类型,或统一化,同时增加它们的灵活适应性。这样不仅能够提高工作效率,而且能减少浪费,缩减成本,提高柔性制造能力。

2、柔性生产系统的设计。企业在构建适合自身的柔性制造系统时,必须进行生产系统的柔性设计,这里所提高的柔性生产系统主要是“以单元化作业+人工辅助的生产模式”的生产模式。这种方式和完全的人工和自动化相比,具有巨大的优势:通过单元中自动化设备保证了质量水平;通过人工连接,降低了投资与运行成本,而又不影响质量;在一些简单操作工序,采取人工操作,但通过工装夹具来预防和控制人工生产的质量波动。此外,这种模式还具有较好的柔性,对批量的要求大大降低。这一点在中国的许多制造业企业中具有典型的体现,中国之所在在全球供应链中成为重要的零配件生产、加工,以及产品的组装基地,和中国半自动化和人工化的灵活性有一定联系。不过,我国企业未来构建柔性制造系统的重点应该加强科学合理的管理系统建设,加强单元自动化作业和人工辅助的双重建设,并在设备转换,工艺变化,生产能力的维护、扩展和服务方面更加柔性化,提高适应市场变化和客户个性化需求的要求。

3、建立完全信息化的管理系统。在快速变化面前,企业面临的最大风险就是库存的风险。这种风险体现在:客户的个性化要求,带来产品的通用性差,多余的成品就变成了废品,导致企业的成本急剧增加;技术的快速进步引起新生产的产品性能的阶段性提升,导致原来库存的产品自然降级,失去市场流通的利润价值,给企业带来巨大经济损失;有些产品随着库存时间的延长,产品会性能变差,产品有可能损坏而不能出售,给企业造成经济损失。基于快速变化带来的库存性风险,我国制造也企业应该开发或先进的ERP系统,提升了信息化管理水平,更重要的是优化了企业的流程,强化了企业精细化管理的观念,对库存产品实行“专用型号订单化管理,通用型号流量化管理”,并按生产批号对库存产品的质量实行全寿命周期的追踪管理,使库存得到有效管理,及时预防和控制因库存而产生的质量问题,使因库存质量而造成的经济损失最小化。

4、建设多能工队伍。由于现代制造业都是按订单生产,而订单的波动性又相当大,由此便导致了产量的剧烈波动。在订单多时,繁忙的季节,员工都能够全员工作,取得可观的收入;但当订单下降时,原来数量的员工就会变得多余,如要保持员工数量的不减少,就会使员工的工作时间大幅缩减,从而使一线工人收入大幅下降,最终将导致员工队伍的稳定。为此,企业应该采用了柔性化的绩效管理机制。将核心骨干和关键岗位的员工发展为多能工,用高工资保证这部分员工队伍的稳定,在较低的订单下,能够一人多能,保持80%的工作饱和度;当订单突然增大时,能够在关键岗位保证产品质量,并带动新人快速适应简单岗位的工作。这样,实现了短期内从较低的产能过渡到较高的产能的快速变换能力。从而使变动成本与实际产量实现基本的同步波动,提高成本的柔性水平。

四、结束语

现代商业的竞争已经从产品和质量的竞争变成快速适应能力的竞争。在现代全球竞争和科技突飞猛进的今天,只要跟不上市场和客户的需求变化的速度,质量再好的产品也会被淘汰。柔性制造是现代制造业企业适应现代商业竞争环境的重要策略,对于提高企业的灵活适应性能力、满足市场需求和客户需求快速变化的能力至关重要。我国制造业企业具有开阔的视野,在借鉴国外先进柔性制造技术的基础上,结合自身的优势,扬长避短,创建适合自身发展的具有中国特色的制造业企业的柔性制造系统。特别是,我国制造业企业要利用我国丰富的人力资源,并把我国制造业自动化程度不高的缺点转变为转换能力强的优势,因势利导地构建适合现代国际制造业竞争需求和客户需求快速变化的要求,实现我国制造业柔性制造的跨越式发展。

参考文献

[1] 孙新、刘铁军、王毅:企业质量管理中精确检测手段的应用[J].郑州航空工业管理学院学报,2005(3).

[2] 肖智军、党新民、刘胜军:精益生产方式[M].海天出版社,2005.

[3] 张晓玲、史金飞、洪著财等:敏捷制造企业的分布式质量控制系统[J].东南大学学报(自然科学版),2007(6).

第3篇:柔性制造范文

随着社会的进步和生活水平的提高,社会对产品多样化,低制造成本及短制造周期等需求日趋迫切,传统的制造技术已不能满足市场对多品种小批量,更具特色符合顾客个人要求样式和功能的产品的需求。90年代后,由于微电子技术、计算机技术、通信技术、机械与控制设备的发展,制造业自动化进入一个崭新的时代,技术日臻成熟。柔性制造技术已成为各工业化国家机械制造自动化的研制发展重点。

1 基本概念

1 1 柔性柔性可以表述为两个方面。第一方面是系统适应外部环境变化的能力,可用系统满足新产品要求的程度来衡量;第二方面是系统适应内部变化的能力,可用在有干扰(如机器出现故障)情况下,系统的生产率与无干扰情况下的生产率期望值之比来衡量。“柔性”是相对于“刚性”而言的,传统的“刚性”自动化生产线主要实现单一品种的大批量生产。其优点是生产率很高,由于设备是固定的,所以设备利用率也很高,单件产品的成本低。但价格相当昂贵,且只能加工一个或几个相类似的零件,难以应付多品种中小批量的生产。随着批量生产时代正逐渐被适应市场动态变化的生产所替换,一个制造自动化系统的生存能力和竞争能力在很大程度上取决于它是否能在很短的开发周期内,生产出较低成本、较高质量的不同品种产品的能力。柔性已占有相当重要的位置。柔性主要包括

1) 机器柔性 当要求生产一系列不同类型的产品时,机器随产品变化而加工不同零件的难易程度。

2) 工艺柔性 一是工艺流程不变时自身适应产品或原材料变化的能力;二是制造系统内为适应产品或原材料变化而改变相应工艺的难易程度。

3) 产品柔性 一是产品更新或完全转向后,系统能够非常经济和迅速地生产出新产品的能力;二是产品更新后,对老产品有用特性的继承能力和兼容能力。

4) 维护柔性 采用多种方式查询、处理故障,保障生产正常进行的能力。

5) 生产能力柔性 当生产量改变、系统也能经济地运行的能力。对于根据订货而组织生产的制造系统,这一点尤为重要。

6) 扩展柔性 当生产需要的时候,可以很容易地扩展系统结构,增加模块,构成一个更大系统的能力。

7) 运行柔性 利用不同的机器、材料、工艺流程来生产一系列产品的能力和同样的产品,换用不同工序加工的能力。

1 2 柔性制造技术柔性制造技术是对各种不同形状加工对象实现程序化柔性制造加工的各种技术的总和。柔性制造技术是技术密集型的技术群,我们认为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为:

1) 柔性制造系统(fms)

关于柔性制造系统的定义很多,权威性的定义有:

美国国家标准局把fms定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放在其他联结装置上送到各加工设备,使工件加工准确、迅速和自动化。中央计算机控制机床和传输系统,柔性制造系统有时可同时加工几种不同的零件。 国际生产工程研究协会指出“柔性制造系统是一个自动化的生产制造系统,在最少人的干预下,能够生产任何范围的产品族,系统的柔性通常受到系统设计时所考虑的产品族的限制。” 而我国国家军用标准则定义为“柔性制造系统是由数控加工设备、物料运储装置和计算机控制系统组成的自动化制造系统,它包括多个柔性制造单元,能根据制造任务或生产环境的变化迅速进行调整,适用于多品种、中小批量生产。” 简单地说,fms是由若干数控设备、物料运贮装置和计算机控制系统组成的并能根据制造任务和生产品种变化而迅速进行调整的自动化制造系统。 目前常见的组成通常包括4台或更多台全自动数控机床(加工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。目前反映工厂整体水平的fms是第一代fms,日本从1991年开始实施的“智能制造系统”(ims)国际性开发项目,属于第二代fms;而真正完善的第二代fms预计本世纪十年代后才会实现。

2) 柔性制造单元(fmc)

fmc的问世并在生产中使用约比fms晚6~8年,fmc可视为一个规模最小的fms,是fms向廉价化及小型化方向发展的一种产物,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,其特点是实现单机柔性化及自动化,具有适应加工多品种产品的灵活性。迄今已进入普及应用阶段。

3) 柔性制造线(fml)

它是处于单一或少品种大批量非柔性自动线与中小批量多品种fms之间的生产线。其加工设备可以是通用的加工中心、cnc机床;亦可采用专用机床或nc专用机床,对物料搬运系统柔性的要求低于fms,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(dcs)为代表,其特点是实现生产线柔性化及自动化,其技术已日臻成熟,迄今已进入实用化阶段。

4) 柔性制造工厂(fmf) fmf是将多条fms连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整fms。它包括了cad/cam,并使计算机集成制造系统(cims)投入实际,实现生产系统柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。fmf是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(ims)为代表,其特点是实现工厂柔性化及自动化。

2 柔性制造所采用的关键技术

2.1 计算机辅助设计

未来cad技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用cad数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.2 模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。

2.3 人工智能、专家系统及智能传感器技术

迄今,柔性制造技术中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为柔性制造的诸方面工作增强了柔性。展望未来,以知识密集为特征

,以知识处理为手段的人工智能(包括专家系统)技术必将在柔性制造业(尤其智能型)中起着日趋重要的关键性的作用。目前用于柔性制造中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在柔性制造技术中的应用规模将在比目前大4倍。智能制造技术(imt)旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。故imt被称为未来21世纪的制造技术。对未来智能化柔性制造技术具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能而产生的,它使传感器具有内在的“决策”功能。

2 4 人工神经网络技术

人工神经网络(ann)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分。

3 柔性制造技术的发展趋势

3 1 fmc将成为发展和应用的热门技术

这是因为fmc的投资比fms少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将fmc列为发展之重。

3 2 发展效率更高的fml

多品种大批量的生产企业如汽车及拖拉机等工厂对fml的需求引起了fms制造厂的极大关注。采用价格低廉的专用数控机床替代通用的加工中心将是fml的发展趋势。

3 3 朝多功能方向发展

由单纯加工型fms进一步开发以焊接、装配、检验及钣材加工乃至铸、锻等制造工序兼具的多种功能fms。

4 结束语

柔性制造技术是实现未来工厂的新颖概念模式和新的发展趋势,是决定制造企业未来发展前途的具有战略意义的举措。届时,智能化机械与人之间将相互融合,柔性地全面协调从接受订货单至生产、销售这一企业生产经营的全部活动。

近年来,柔性制造作为一种现代化工业生产的科学“哲理”和工厂自动化的先进模式已为国际上所公认,可以这样认为:柔性制造技术是在自动化技术、信息技术及制造技术的基础上,将以往企业中相互独立的工程设计、生产制造及经营管理等过程,在计算机及其软件的支撑下,构成一个覆盖整个企业的完整而有机的系统,以实现全局动态最优化,总体高效益、高柔性,并进而赢得竞争全胜的智能制造技术。它作为当今世界制造自动化技术发展的前沿科技,为未来机构制造工厂提供了一幅宏伟的蓝图,将成为21世纪机构制造业的主要生产模式。实现了按端口、mac地址、应用等来划分虚拟网络,有效地控制了企业内部网络的广播流量和提高了企业内部网络的安全性。

4 结 论

第4篇:柔性制造范文

随着社会的进步和生活水平的进步,社会对产品多样化,低制造本钱及短制造周期等需求日趋迫切,传统的制造技术已不能满足市场对多品种小批量,更具特色符合顾客个人要求样式和功能的产品的需求。90年代后,由于微电子技术、计算机技术、通讯技术、机械和控制设备的发展,制造业自动化进进一个崭新的时代,技术日臻成熟。柔性制造技术已成为各产业化国家机械制造自动化的研制发展重点。

1 基本概念

11 柔性柔性可以表述为两个方面。第一方面是系统适应外部环境变化的能力,可用系统满足新产品要求的程度来衡量;第二方面是系统适应内部变化的能力,可用在有干扰(如机器出现故障)情况下,系统的生产率和无干扰情况下的生产率期看值之比来衡量。“柔性”是相对于“刚性”而言的,传统的“刚性”自动化生产线主要实现单一品种的大批量生产。其优点是生产率很高,由于设备是固定的,所以设备利用率也很高,单件产品的本钱低。但价格相当昂贵,且只能加工一个或几个相类似的零件,难以应付多品种中小批量的生产。随着批量生产时代正逐渐被适应市场动态变化的生产所替换,一个制造自动化系统的生存能力和竞争能力在很大程度上取决于它是否能在很短的开发周期内,生产出较低本钱、较高质量的不同品种产品的能力。柔性已占有相当重要的位置。柔性主要包括 1) 机器柔性 当要求生产一系列不同类型的产品时,机器随产品变化而加工不同零件的难易程度。

2) 工艺柔性 一是工艺流程不变时自身适应产品或原材料变化的能力;二是制造系统内为适应产品或原材料变化而改变相应工艺的难易程度。

3) 产品柔性 一是产品更新或完全转向后,系统能够非常经济和迅速地生产出新产品的能力;二是产品更新后,对老产品有用特性的继续能力和兼容能力。

4) 维护柔性 采用多种方式查询、处理故障,保障生产正常进行的能力。

5) 生产能力柔性 当生产量改变、系统也能经济地运行的能力。对于根据订货而组织生产的制造系统,这一点尤为重要。

6) 扩展柔性 当生产需要的时候,可以很轻易地扩展系统结构,增加模块,构成一个更大系统的能力。

7) 运行柔性 利用不同的机器、材料、工艺流程来生产一系列产品的能力和同样的产品,换用不同工序加工的能力。

12 柔性制造技术柔性制造技术是对各种不同外形加工对象实现程序化柔性制造加工的各种技术的总和。柔性制造技术是技术密集型的技术群,我们以为凡是侧重于柔性,适应于多品种、中小批量(包括单件产品)的加工技术都属于柔性制造技术。目前按规模大小划分为:

1) 柔性制造系统(FMS)

有关柔性制造系统的定义很多,权威性的定义有:

美国国家标准局把FMS定义为:“由一个传输系统联系起来的一些设备,传输装置把工件放在其他联结装置上送到各加工设备,使工件加工正确、迅速和自动化。中心计算机控制机床和传输系统,柔性制造系统有时可同时加工几种不同的零件。国际生产工程探究协会指出“柔性制造系统是一个自动化的生产制造系统,在最少人的干预下,能够生产任何范围的产品族,系统的柔性通常受到系统设计时所考虑的产品族的限制。”而我国国家军用标准则定义为“柔性制造系统是由数控加工设备、物料运储装置和计算机控制系统组成的自动化制造系统,它包括多个柔性制造单元,能根据制造任务或生产环境的变化迅速进行调整,适用于多品种、中小批量生产。”简单地说,FMS是由若干数控设备、物料运贮装置和计算机控制系统组成的并能根据制造任务和生产品种变化而迅速进行调整的自动化制造系统。目前常见的组成通常包括4台或更多台全自动数控机床(加工中心和车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及治理。目前反映工厂整体水平的FMS是第一代FMS,日本从1991年开始实施的“智能制造系统”(IMS)国际性开发项目,属于第二代 FMS;而真正完善的第二代FMS预计本世纪十年代后才会实现。

2) 柔性制造单元(FMC)

3) 柔性制造线(FML)

它是处于单一或少品种大批量非柔性自动线和中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心、CNC机床;亦可采用专用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生过程中的分散型控制系统(DCS)为代表,其特征是实现生产线柔性化及自动化,其技术已日臻成熟,迄今已进进实用化阶段。

4) 柔性制造工厂(FMF)FMF是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投进实际,实现生产系统柔性化及自动化,进而实现全厂范围的生产治理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营治理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特征是实现工厂柔性化及自动化。

2 柔性制造所采用的关键技术

2.1 计算机辅助设计

未来CAD技术发展将会引进专家系统,使之具有智能化,可处理各种复杂的新题目。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用 CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操纵,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。

2.2 模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制用具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。

2.3 人工智能、专家系统及智能传感器技术

迄今,柔性制造技术中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类新题目(如解释、猜测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论和通过经验获得的知知趣结合,因而专家系统为柔性制造的诸方面工作增强了柔性。展看未来,以知识密集为特征

24 人工神经网络技术

人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自动化系统中的一个组成部分。 3 柔性制造技术的发展趋向

31 FMC将成为发展和应用的热门技术

这是由于FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。

32 发展效率更高的FML

多品种大批量的生产企业如汽车及拖拉机等工厂对FML的需求引起了FMS制造厂的极大关注。采用价格低廉的专用数控机床替换通用的加工中心将是FML的发展趋向。

33 朝多功能方向发展

由单纯加工型FMS进一步开发以焊接、装配、检验及钣材加工乃至铸、锻等制造工序兼具的多种功能FMS。

4 结束语

柔性制造技术是实现未来工厂的新奇概念模式和新的发展趋向,是决定制造企业未来发展前途的具有战略意义的举措。届时,智能化机械和人之间将相互融合,柔性地全面协调从接受订货单至生产、销售这一企业生产经营的全部活动。

近年来,柔性制造作为一种现代化产业生产的科学“哲理”和工厂自动化的先进模式已为国际上所公认,可以这样以为:柔性制造技术是在自动化技术、信息技术及制造技术的基础上,将以往企业中相互独立的工程设计、生产制造及经营治理等过程,在计算机及其软件的支撑下,构成一个覆盖整个企业的完整而有机的系统,以实现全局动态最优化,总体高效益、高柔性,并进而赢得竞争全胜的智能制造技术。它作为当今世界制造自动化技术发展的前沿科技,为未来机构制造工厂提供了一幅宏伟的蓝图,将成为21世纪机构制造业的主要生产模式。实现了按端口、MAC地址、应用等来划分虚拟网络,有效地控制了企业内部网络的广播流量和进步了企业内部网络的平安性。

4 结 论

第5篇:柔性制造范文

一、规模 

按规模大小FMS可分为如下4类: 

1.柔性制造单元(FMC) 

FMC的问世并在生产中使用约比FMS晚6~8年,它是由1~2台加工中心、工业机器人、数控机床及物料运送存贮设备构成,具有适应加工多品种产品的灵活性。FMC可视为一个规模最小的FMS,是FMS向廉价化及小型化方向发展和一种产物,其特点是实现单机柔性化及自动化,迄今已进入普及应用阶段。 

2.柔性制造系统(FMS) 

通常包括4台或更多台全自动数控机床(加工中心与车削中心等),由集中的控制系统及物料搬运系统连接起来,可在不停机的情况下实现多品种、中小批量的加工及管理。 

3.柔性制造线(FML) 

它是处于单一或少品种大批量非柔性自动线与中小批量多品种FMS之间的生产线。其加工设备可以是通用的加工中心、CNC机床;亦可采用专用机床或NC专用机床,对物料搬运系统柔性的要求低于FMS,但生产率更高。它是以离散型生产中的柔性制造系统和连续生产过程中的分散型控制系统(DCS)为代表,其特点是实现生产线柔性化及自动化,其技术已日臻成熟,迄今已进入实用化阶段。 

4.柔性制造工厂(FMF) 

FMF是将多条FMS连接起来,配以自动化立体仓库,用计算机系统进行联系,采用从订货、设计、加工、装配、检验、运送至发货的完整FMS。它包括了CAD/CAM,并使计算机集成制造系统(CIMS)投入实际,实现生产系统柔性化及自动化,进而实现全厂范围的生产管理、产品加工及物料贮运进程的全盘化。FMF是自动化生产的最高水平,反映出世界上最先进的自动化应用技术。它是将制造、产品开发及经营管理的自动化连成一个整体,以信息流控制物质流的智能制造系统(IMS)为代表,其特点是实现工厂柔性化及自动化。 

二、关键技术 

1.计算机辅助设计 

未来CAD技术发展将会引入专家系统,使之具有智能化,可处理各种复杂的问题。当前设计技术最新的一个突破是光敏立体成形技术,该项新技术是直接利用CAD数据,通过计算机控制的激光扫描系统,将三维数字模型分成若干层二维片状图形,并按二维片状图形对池内的光敏树脂液面进行光学扫描,被扫描到的液面则变成固化塑料,如此循环操作,逐层扫描成形,并自动地将分层成形的各片状固化塑料粘合在一起,仅需确定数据,数小时内便可制出精确的原型。它有助于加快开发新产品和研制新结构的速度。 

2.模糊控制技术

模糊数学的实际应用是模糊控制器。最近开发出的高性能模糊控制器具有自学习功能,可在控制过程中不断获取新的信息并自动地对控制量作调整,使系统性能大为改善,其中尤其以基于人工神经网络的自学方法更引起人们极大的关注。

3.人工智能、 专家系统及智能传感器技术 

迄今,FMS中所采用的人工智能大多指基于规则的专家系统。专家系统利用专家知识和推理规则进行推理,求解各类问题(如解释、预测、诊断、查找故障、设计、计划、监视、修复、命令及控制等)。由于专家系统能简便地将各种事实及经验证过的理论与通过经验获得的知识相结合,因而专家系统为FMS的诸方面工作增强了柔性。展望未来,以知识密集为特征,以知识处理为手段的人工智能(包括专家系统)技术必将在FMS(尤其智能型)中起着关键性的作用。人工智能在未来FMS中将发挥日趋重要的作用。目前用于FMS中的各种技术,预计最有发展前途的仍是人工智能。预计到21世纪初,人工智能在FMS中的应用规模将要比目前大4倍。智能制造技术(IMT)旨在将人工智能融入制造过程的各个环节,借助模拟专家的智能活动,取代或延伸制造环境中人的部分脑力劳动。在制造过程,系统能自动监测其运行状态,在受到外界或内部激励时能自动调节其参数,以达到最佳工作状态,具备自组织能力。故IMT被称为未来21世纪的制造技术。对未来智能化FMS具有重要意义的一个正在急速发展的领域是智能传感器技术。该项技术是伴随计算机应用技术和人工智能而产生的,它使传感器具有内在的“决策”功能。 

4.人工神经网络技术 

人工神经网络(ANN)是模拟智能生物的神经网络对信息进行并行处理的一种方法。故人工神经网络也就是一种人工智能工具。在自动控制领域,神经网络不久将并列于专家系统和模糊控制系统,成为现代自支化系统中的一个组成部分。 

三、发展趋势 

1.FMC将成为发展和应用的热门技术 

这是因为FMC的投资比FMS少得多而经济效益相接近,更适用于财力有限的中小型企业。目前国外众多厂家将FMC列为发展之重。 

2.发展效率更高的FML 

多品种大批量的生产企业如汽车及拖拉机等工厂对FML的需求引起了FMS制造厂的极大关注。采用价格低廉的专用数控机床替代通用的加工中心将是FML的发展趋势。 

3.朝多功能方向发展 

由单纯加工型FMS进一步开发以焊接、装配、检验及钣材加工乃至铸、锻等制造工序兼具的多种功能FMS。 FMS是实现未来工厂的新颖概念模式和新的发展趋势,是决定制造企业未来发展前途的具有战略意义的举措。目前反映工厂整体水平的FMS是第一代FMS,90年代此种状况仍将会持续下去,日本从1991年开始实施的“智能制造系统”(IMS)国际性开发项目,属于第二代FMS;而真正完善的第二代FMS预计至21世纪才会实现。届时,智能化机械与人之间将相互融合、柔性地全面协调从接受订单货至生产、销售这一企业生产经营的全部活动。 

第6篇:柔性制造范文

关键词:时间Petri网;状态类方法;柔性制造系统;建模与调度

中图分类号:TP301 文献标识码:A

1引言

在大规模制造系统中,通常有少数几种产品的效率是很高的。但在面对瞬息万变的市场时,它不具有灵活性。为了解决这个问题,一种新的生产系统出现了:柔性制造系统(Flexible manufacturing systems, FMS)。FMS是一个由半独立工作站和原料处理系统组成的计算机可控系统,用于高效地生产中小批量的、多品种的零部件[1]。柔性是指系统能对变化做出快速反应的能力。变化可以是内部的,比如产品质量问题;也可以是外部的,比如设计和需求的变化。

所有FMS具有一组共同的特征:①状态空间是离散集,状态转移是事件驱动的;②系统中的某些事件必须顺序发生,某些以异步方式发生,而某些则可以独立地发生(并发);③系统会出现冲突的情况,因此会导致非确定性;某些操作过程可能是互斥的;④另外,系统也可能会陷入死锁状态,这是系统设计时应该尽量避免的。因此,柔性制造系统的设计是非常复杂的工作:需要组合很多不同的元素,而且还要考虑许多不同的方面。这种复杂性决定了对形式化方法的重要需求。Petri网的形式化方法家族是柔性制造系统的绝好选择,它已成功应用于FMS设计和操作的各个方面:建模、调度、性能分析、控制和监视[1,2]。

如果我们需要考虑FMS系统性能或实时控制问题,那么引入时间限制是必需的。通常,可以采用两种时间引入方式:时间关联到库所,时间关联到变迁。其中后者更自然,因为变迁通常模拟系统的活动(它们需要一些时间来执行)。联系到变迁上的时间也有多种形式,其中计时 Petri网赋给每个变迁一个固定的延时[3];时间 Petri网为每个变迁联系一个时间间隔[4]。已经证明,时间间隔比固定延时具有更强的表达能力[5],因为间隔既能反映事件发生的不确定性,又能刻画事件发生的时限性。时间Petri网已成为描述和验证实时系统最常用的形式模型之一。

文章首先给出时间Petri网的基本定义,然后以一个典型柔性制造系统为例,建立时间Petri网调度模型,并利用状态类分析方法,计算柔性制造系统的所有可行调度及执行时间,获得最优调度,为模型的调度和控制提供有效支持。

4结论

制造系统大多具有离散事件动态系统的特征,所以Petri网非常适合这类系统的建模和分析。特别是柔性制造系统已成为一个活跃和有趣的应用领域,时间Petri网理论可以很好地用于这类系统的实时控制、调度分析和性质验证。文章以一个典型柔性制造系统,给出了基于时间Petri网的柔性制造系统的建模与分析方法,并通过状态类分析方法,得到所有可行调度及执行时间,进而获得模型的最优调度。

参考文献

[1]江志斌. Petri网及其在制造系统建模与控制中的应用[M]. 北京: 机械工业出版社. 2004.

[2]N. Wu, F. Chu, C. Chu, and M.C. Zhou. Schedulability analysis of shortterm scheduling for crude oil operations in refinery with oil residency time and chargingtank-switchoverlap constraints[J]. IEEE Transactions on Automation Science and Engineering, 2011, 8(1): 190-204.

[3]C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets[D]. Ph.D. thesis, project MAC technical report 120, MIT, Cambridge, MA, 1974.

[4]P. Merlin and D. J. Farber. Recoverability of communication protocolsimplication of a theoretical study[J]. IEEE Trans. on Communications, 1976, 24(9): 1036-1043.

[5]B. Berthomieu and M. Diaz. Modeling and verification of time dependent systems using Time Petri Nets[J]. IEEE Trans. on Software Eng., 1991, 17(3): 259-273.

[6]J. Wang, Y. Deng, G. Xu. Reachability analysis of real-time systems using time Petri nets[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2000, 30(5): 725-736.

[7]R. Hadjidj, H. Boucheneb. Onthefly TCTL model checking for Time Petri nets[J]. Theoretical Computer Science, 2009, 410(42): 4241-4261.

第7篇:柔性制造范文

关键词:柔性制造系统;可靠性分析;广义随机Petri网;动态故障树

中图分类号:TP393文献标识码:A文章编号:1009-3044(2012)01-0109-03

Reliability Formal Modeling and Analysis of the Flexible Manufacturing System

CHEN Yan-xia

(Hainan University, Danzhou 571737, China)

Abstract:This paper mainly discussed about the reliability of the flexible manufacturing system (FMS), established a reliability model of FMS based on the generalized stochastic Petri nets and dynamic fault tree. TimeNet was used to simulate models, these simulation experi? ments verified the feasibility and effectiveness of the model, then improved the reliability and security of system.

Key words:flexible manufacturing system(FMS); reliability analysis; generalized stochastic petri nets; dynamic fault trees

柔性制造系统(Flexible Manufacturing System简称FMS)最初由英国Molins公司的Theo Williamson提出。它是一种复杂的自动化制造系统。FMS系统的可靠性指系统在规定的条件下和规定的时间内完成规定功能的能力。系统(FMS)的可靠性直接影响到产品生产的可靠性和安全性,传统的可靠性建模方法如可靠性框图、排队论、故障树、活动循环图等只能分析具有静态特性的系统。由于柔性制造系统属于复杂的离散事件动态系统,采用传统的可靠性分析方法显然不能满足要求,为此在传统建模分析方法的基础上引入了各种具有动态特性的建模方法如Petri网、马尔可夫过程、动态故障树等。利用传统Petri网对FMS建立的模型存在状态空间爆炸问题,因此为了简化状态空间复杂的问题,本文利用广义随机Petri网对柔性制造系统进行建模。针对建立的模型进行可靠性分析。

3基于随机Petri网和动态故障树的柔性制造系统可靠性建模

3.1柔性制造系统动态故障树

柔性制造系统属于复杂的离散事件动态系统,分析该系统的动态可用度时,在传统方法的基础上引入了动态故障树,用广义随机Petri网对动态故障树各个逻辑门建立Petri网模型,利用动态故障树的动态特性以及广义随机Petri网具有的时间特性,从而分析

了系统的可靠性指标[3]。

柔性制造系统属于可修系统,故障发生后通过维修可以继续使用。每个单元的故障率和维修率取统计平均值,可以认为是常数。根据动态故障树的建立方法,建立柔性制造系统(FMS)的系统故障树如图2所示。

3.2柔性制造系统系统故障逻辑判定

根据组成柔性制造系统各个部分的特点,下面给出各个部分对应的动态逻辑门。如表1所示。

表1 FMS系统故障对应的逻辑门

5结论

本文采用广义随机Petri网对柔性制造系统的故障树建立可靠性模型,通过仿真实验验证了模型的正确性和可行性,从而提高了系统的可靠性。

本文的不足之处在于采用GSPN为各个子系统建模后,模型还是比较复杂,在利用仿真工具TimeNet进行仿真还存在状态空间较复杂的问题,随着模型数的增加计算状态空间的工作量也会增加。

本文进一步研究的内容是在设计中采用更好的方法提高柔性制造系统的可用度。另外寻求一种合适的模型简化方法将建立的模型进行再次简化,从而更容易的求解出系统的可靠性指标。

参考文献:

[1]林闯.随机Petri网和系统性能评价[M].北京:清华大学出版社,2009.

[2]邓子琼,李小宁,何沛仁等.柔性制造系统建模与仿真[M].北京:国防工业出版社,1993.

[3]徐杜,蒋永平,张宪民.柔性制造系统原理与实践[M].北京:机械工业出版社,2001.

[4]宋小庆,吴松平,常天庆等.基于随机Petri网的装甲车辆综合电子系统可靠性研究[D].装甲兵工程学院学报.2009,23(3):45-47.

第8篇:柔性制造范文

主要研究汽车制造企业柔性自动化装配生产线,对汽车装配生产线的国内发展情况和柔性生产线在国内推广的弱势情况进行了阐述,并对柔性自动化生产线进行了一个简单介绍,最后对柔性汽车装配自动化生产线的主要构成进行了分析。

【关键词】柔性生产线 汽车 装配

柔性自动化装配生产线主要负责完成大批量、多品种、多车型、多颜色混线的汽车装配。这套系统应用了自动化机器人,转接重读定位的精度在0.6mm以内,能够完成9种车型、20多种汽车产品的混线生产,并实现有效的生产管理。柔性自动化装配生产线有着极高的生产效率,每小时能够完成65辆以上车辆的装配,而目前国内现有装配线最大产能是每小时44辆车,产能提高了47.6%。这种产能已经和国际先进水平十分接近,可以不再依赖进口。

1 国内发展现状

柔性自动化装配生产线系统主要有车身存储、内饰装配、底盘装配、轮胎储运、座椅储运、分装车门、动力集成、整车装配和线间相互转挂机器人等设备,应用了包括自动识别、跟踪、在线监测、自动存储、工业现场等技术,系统不仅能够进行汽车装配操作,还能够实现对装配过程的生产调度、质量管理和柔性装配控制等功能,提高了汽车装配过程的自动化和信息化水平。

一些部门对世界汽车工业的未来格局进行了预测,认为,在2025年以后,汽车工业的产销将逐渐转移到亚洲市场,中国汽车销量将占到世界总销量的30%。汽车装配生产线的柔性自动化技术是重要的核心关键技术,实现了装备的本土化,为我国汽车生产工业提供了先进并且自主知识产权的生产设备,对我国装备制造业有着重大的意义。该系统能够改变汽车制造生产线依赖进口的情况,基础技术等还能够出口和向相关领域扩散。

但是,即便柔性自动化汽车装配生产线有着非常大的优势,但是在国内的汽车装配制造厂家中应用的仍然多为刚性生产线,应用柔性装配生产线仍然属于少数,年产在10-30万台的大型汽车总装厂的生产流水线基本上都是进口设备,目前我国的一些技术实力较强的企业如华远,开始研发柔性自动化汽车装配生产线成套设备,争取行业高端。

2 柔性自动化生产线

柔性生产线是联结多台能够调整的机床,配合自动化装置组成的生产线,有着很高的自动化和信息化水平,能够通过计算机进行管理和操作,还能够结合多种生产模式同时进行,有效的节省了生产成本,并且极大的提高了生产效率。

汽车装配柔性生产线的基本组成主要有自动加工、物流系统、信息系统、软件系统等几部分。柔性生产线技术复杂,自动化程度非常高,结合了微电子学、计算机和系统工程等技术,有着更高的设备利用率,编入柔性生产线的机床会比单机作业产量高出数倍。柔性生产的产能比较稳定,系统中往往存在几台机床同时工作,出现故障会调整降级运转,物料传送系统可以自行绕过故障机床。在柔性生产线中,零件结构过程装卸一次即可完成,加工精度高,并且形式稳定。

3 生产线组成

柔性生产线按照范围可划分为产品生产线和零部件生产线,按照生产节奏快慢能够划分为流水线和非流水线两种,按照自动化程度则有自动化和非自动化生产线两种。

汽车装配柔性生产线主要有车身存储、内饰、底盘装配、轮胎座椅、最终装配、整车检测、车门分装、发动机前桥分装、仪表等相互独立但相互关联的机床模块组成。

3.1 智能化控制

利用计算机技术和网络技术实现智能化控制。借助计算机、网络和PLC总线网络以及无线LAN网络和射频识别系统以及光电接近开关、机器视觉传感器和执行器等部分组成,对系统的智能化控制按照集中管理、分散控制的形式进行。

电控系统主要三层结构,分别为监控层、控制层、设备层,不同层次均由不同的网络结构和不同的软硬件层进行控制,实现诸如自动识别、跟踪、在线监测和柔性装配等智能化操作。

3.2 自动化执行

自动化执行是智能化控制的执行层面,由智能感知系统获得实时准确的现场信息,智能化管理以及控制系统,在网络环境中控制滑橇滚床系统、滑板系统、摩擦系统、自行单轨车系统和机器人执行指令,通过执行系统完成汽车的整个装配操作过程。

3.3 控制系统

集中管理方式需要有一个有力的管理核心。系统主要通过管理计算机、工业以太网和冗余光纤网连接现场分系统PLC,实现现场信息的采集,进而进行整个装配生产线的柔性管理。上位管理计算机借助工业以太网对现场控制器上传的有效信息进行接受,并建立管理数据库,用于系统的开发和更改,并建立交互界面,管理、监控、记录工件物流状态、质量信息和运行状态,打印报表。

3.4 螺纹柔性装配系统

螺纹联接装配方式经历了手动、半自动、全自动三个发展阶段,目前已经进入了柔性装配阶段。柔性螺纹装配系统能够进行整车螺纹联接的高精度自动化装配,这种技术中应用了伺驱动、机械传动、电力电子、智能控制、传感检测、网络通信等技术,有效的提高了螺纹联接的精度,实现了螺纹联接的自动化、集成化、网络化。

4 结束语

柔性自动化系统能够完成非常复杂的汽车装配操作流程,具有多品种、准时化和高产能的优势,能够同时完成大批量、多品种、多车型和多颜色同时进行的装配生产任务,可以作为各种车型的总装车间。这种生产线除了能够进行装配之外,还能够在适当的改造改建之后用做生产企业的涂装、焊装或者其他分类、储存的柔性系统。柔性装配生产线在汽车装配中的应用能够大程度的提高汽车装配车间的生产效率,提高了装配工作的智能化和自动化水平,提高了生产效率和生产质量,并且还能够节省能耗。汽车制造柔性自动化装配生产线融合了机器人、计算机、自动规划、软件、网络、机械等多个领域的诸多技术,在研发整合之后形成了这套柔性自动化装配生产线,为我国“掌握核心科技”,从制造大国到技术大国的转变做出了微小的贡献。

参考文献

[1]王春华,朱林剑,孙守林等.基于工控机的多工位电动螺栓拧紧机控制系统的研制[J].组合机床与自动化加工技术,2013(02):58-59.

[2]蒋锐权,吴机育,蔡建国.数控机床神经元自适应位置控制算法[J].上海交通大学学报,2011,35(7):1088-1092.

[3]范云生,郭晨,周守民.基于模型预估的汽车主动锥齿轮总成锁紧螺母拧紧机[J].仪器仪表学报,2011,32(6):1433-1440.

第9篇:柔性制造范文

[关键词]电气制动 柔性电气制动 励磁改造 应用

中图分类号:TE34 文献标识码:A 文章编号:1009-914X(2015)22-0204-02

1、电气制动原理

电气制动主要针对大型水轮机组。大型水轮机组由于惯性大,制动慢,制动过程中机械磨损严重,会造成污染,影响机组的绝缘和散热。在制动过程中加入电气制动,利用电制动力矩加快制动过程,可以减小机械部分的磨损,延长机组的使用寿命。相比于纯机械制动,电气制动具有制动力矩大、停机速度快、清洁无污染等优点。

电气制动停机技术是基于同步电机的电枢反应, 以及能耗制动的原理。当机组停机,水轮机导叶关闭,发电机转子经一定时间的灭磁后,机端仅存由发电机剩磁决定的残压。此时,机组转子上存在四种转矩,由机组转动惯量决定的惯性转矩与原有速度的方向相同,而发电机的机械磨擦阻力矩、发电机的空气磨擦阻力矩、水轮机转轮的水阻力矩方向与原速度方向相反。此时电气制动装置自动捕捉电气制动允许通过的条件,条件一旦满足,由短路开关将发电机出口三相短路,然后重新施加励磁。根据同步发电机的电枢反应原理。此时将发生电枢反应。电枢反应的直轴分量仅体现为加磁场或者去磁,不反应有功转矩,而电枢反应的交轴分量则体现为有功转矩,其方向与原速度方向相反,从而增大制动力矩,达到快速停机的目的。

2.柔性电气制动的特点

在制动的过程中,有三个显著特点:①定子短路电流几 乎不变 ;②制动力 矩与定子短路电流的平方成正比;③制动力矩与机组的转速成反比,在制动过

程中,因为定子短路电流基本不变,因此随着转速的下降制动力矩反而加大的,制动力矩的最大值是出现在机组将停止转动前的瞬间。

根据以上特点,为了获得最大的制动力矩,应充分利用发电机的定子容量,使定子短路电流约等于额定定子电流,而要获得额定定子电流,根据发电机短路特性,励磁电流应达到发电机空载额定励磁电流值 。电制动投入可在额定 转速的60%左右。在柔性制动过程中,励磁装置处于恒流调节模式,励磁电流的给定可通过人机界面设定,也可通过 A/D转换实现数字给定 ,调整十分方便 ,这有利于使制动过程达到最优。

3、某电站电制动方案

某电站灯泡贯流式水轮发电机组,总装机容量69MW(2×34.5MW),自2010年初励磁系统改造后投入运行至今,机组在正常停机过程中均能正确投入电气制动,确保机组安全稳定地停机,取得了较好的效果。

电站电气制动采用柔性电制动方案,即电气制动与励磁系统共用可控硅整流桥,不需要独立的制动整流桥。柔性电制动包含对电气制动流程的控制和对制动状态励磁的控制两部分,电气制动流程还包括了对励磁变开关 ETC 和短路开关 SC 的控制。其中,对电气制动流程的控制可由监控系统完成,也可由励磁调节器来完成。按照水电站原电气制动控制模式,为保持用户原来的运行习惯,这两部分都由励磁调节器来完成。

电气制动设备包括发电机出口短路开关 SC、励磁变压器 T0001、励磁变高压侧开关 ETC、灭磁开关 Q0001、励磁可控硅全控整流桥以及相应的控制设备。整个电气制动一次回路原理图如右图所示:

4、电站电制动控制流程

制动电源取自发电机出口断路器高压侧,通过励磁变压器降压和励磁可控硅整流桥整流后,提供机组所需的制动电流。具体流程如下:

正常停机时,机组解列后由机组监控系统发出励磁退出命令,励磁系统执行励磁退出流程,转子回路灭磁,并断开灭磁开关 Q0001。当机组导叶全关,转速下降到额定转速的 90%时,由机组监控系统发出电制动投入命令,励磁执行电制动投入流程(详见电制动投入流程图),依次合上发电机出口短路开关 SC、灭磁开关 Q0001,转入电制动状态,由可控硅整流桥给发电机组转子绕组提供恒定的励磁电流,在发电机定子三相绕组内产生制动力矩,使机组制动。当机组转速下降到额定转速的 40%时,监控系统发出电制动退出命令,励磁执行电制动退出流程(详见电制动退出流程图),将转子电流减为 0,并断开灭磁开关 Q0001、励磁变高压侧开关 ETC 和发电机出口短路开关 SC。同时,监控系统发出投入机械制动使机组转速降为 0。当电气事故停机不投电制动。

5、电制动在运行过程中出现的问题及原因分析与处理

(1)在调试励磁电气制动投入试验过程中,机组正常停机,当机组转速下降到

(2)在调试过程中出现过投电气制动程序机组完全停下后,电制动短路SC开关不能自动退出的故障现象。出现上述现象的主要原因是机组监控系统在退电制动程序与励磁系统执行电制动退出程序的时间配合不好引起,当机组监控系统判断机组

6.结束语

电气制动停机技术是基于同步电动机的电枢反应,以及能耗制动的原理。在水轮发电机停机制动过程中加入电气制动,利用电制动力矩加快制动过程,可以减少机械部分的磨损,延长机组使用寿命。相比于纯机械制动,电气制动具有制动力矩大、停机速度快、清洁无污染等优点。

参考文献

[1] 陈遗志.刘国华.仲F.吕宏水,水电机组电气制动的设计及应用,水电厂自动化,2007,4:167-170,174。

[2] 许实章,电机学(第三版),华中理工大学、浙江大学、华南理工大学联合出版,1992,9:400-401。