公务员期刊网 精选范文 电机控制论文范文

电机控制论文精选(九篇)

电机控制论文

第1篇:电机控制论文范文

[关键词]数控系统伺服电机直接驱动

近年来,伺服电机控制技术正朝着交流化、数字化、智能化三个方向发展。作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。本文对其技术现状及发展趋势作简要探讨。

一、数控机床伺服系统

(一)开环伺服系统。开环伺服系统不设检测反馈装置,不构成运动反馈控制回路,电动机按数控装置发出的指令脉冲工作,对运动误差没有检测反馈和处理修正过程,采用步进电机作为驱动器件,机床的位置精度完全取决于步进电动机的步距角精度和机械部分的传动精度,难以达到比较高精度要求。步进电动机的转速不可能很高,运动部件的速度受到限制。但步进电机结构简单、可靠性高、成本低,且其控制电路也简单。所以开环控制系统多用于精度和速度要求不高的经济型数控机床。

(二)全闭环伺服系统。闭环伺服系统主要由比较环节、伺服驱动放大器,进给伺服电动机、机械传动装置和直线位移测量装置组成。对机床运动部件的移动量具有检测与反馈修正功能,采用直流伺服电动机或交流伺服电动机作为驱动部件。可以采用直接安装在工作台的光栅或感应同步器作为位置检测器件,来构成高精度的全闭环位置控制系统。系统的直线位移检测器安装在移动部件上,其精度主要取决于位移检测装置的精度和灵敏度,其产生的加工精度比较高。但机械传动装置的刚度、摩擦阻尼特性、反向间隙等各种非线性因素,对系统稳定性有很大影响,使闭环进给伺服系统安装调试比较复杂。因此只是用在高精度和大型数控机床上。

(三)半闭环伺服系统。半闭环伺服系统的工作原理与全闭环伺服系统相同,同样采用伺服电动机作为驱动部件,可以采用内装于电机内的脉冲编码器,无刷旋转变压器或测速发电机作为位置/速度检测器件来构成半闭环位置控制系统,其系统的反馈信号取自电机轴或丝杆上,进给系统中的机械传动装置处于反馈回路之外,其刚度等非线性因素对系统稳定性没有影响,安装调试比较方便。机床的定位精度与机械传动装置的精度有关,而数控装置都有螺距误差补偿和间隙补偿等项功能,在传动装置精度不太高的情况下,可以利用补偿功能将加工精度提高到满意的程度。故半闭环伺服系统在数控机床中应用很广。

二、伺服电机控制性能优越

(一)低频特性好。步进电机易出现低速时低频振动现象。交流伺服电机不会出现此现象,运转非常平稳,交流伺服系统具有共振抑制功能,可涵盖机械的刚性不足,并且系统内部具有频率解析机能,可检测出机械的共振点,便于系统调整。

(二)控制精度高。交流伺服电机的控制精度由电机轴后端的旋转编码器保证。例如松下全数字式交流伺服电机,对于带17位编码器的电机而言,驱动器每接收217=131072个脉冲电机转一圈,即其脉冲当量为360°/131072=9.89秒。是步距角为1.8°的步进电机的脉冲当量的1/655。

(三)过载能力强。步进电机不具有过载能力,为了克服惯性负载在启动瞬间的惯性力矩,选型时需要选取额定转矩比负载转矩大很多的电机,造成了力矩浪费的现象。而交流伺服电机具有较强的过载能力,例如松下交流伺服系统中的伺服电机的最大转矩达到额定转矩的三倍,可用于克服启动瞬间的惯性力矩。

(四)速度响应快。步进电机从静止加速到额定转速需要200~400毫秒。交流伺服系统的速度响应较快,例如松下MSMA400W交流伺服电机,从静止加速到其额定转速仅需几毫秒。

(五)矩频特性佳。步进电机的输出力矩随转速升高而下降,且在较高转速时转矩会急剧下降,所以其最高工作转速一般在300~600RPM。交流伺服电机为恒力矩输出,即在其额定转速(一般为2000RPM或3000RPM)以内,都能输出额定转矩。三、伺服电机控制展望

(一)伺服电机控制技术的发展推动加工技术的高速高精化。80年代以来,数控系统逐渐应用伺服电机作为驱动器件。交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。目前交流伺服系统已在很大范围内取代了直流伺服系统。在当代数控系统中,交流伺服取代直流伺服、软件控制取代硬件控制成为了伺服技术的发展趋势。由此产生了应用在数控机床的伺服进给和主轴装置上的交流数字驱动系统。随着微处理器和全数字化交流伺服系统的发展,数控系统的计算速度大大提高,采样时间大大减少。硬件伺服控制变为软件伺服控制后,大大地提高了伺服系统的性能。例如OSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置,网络连接,进一步发挥了它对机床的控制能力和通信速度。这些技术的发展,使伺服系统性能改善、可靠性提高、调试方便、柔性增强,大大推动了高精高速加工技术的发展。

另外,先进传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。交流伺服电机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器,其传感器具有小于1μs的响应时间。伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。为保证高速时电动机旋转更加平滑,改进了电动机的磁路设计,并配合高速数字伺服软件,可保证电动机即使在小于1μm转动时也显得平滑而无爬行。

(二)交流直线伺服电机直接驱动进给技术已趋成熟。数控机床的进给驱动有“旋转伺服电机+精密高速滚珠丝杠”和“直线电机直接驱动”两种类型。传统的滚珠丝杠工艺成熟加工精度较高,实现高速化的成本相对较低,所以目前应用广泛。使用滚,珠丝杠驱动的高速加工机床最大移动速度90m/min,加速度1.5g。但滚珠丝杠是机械传动,机械元件间存在弹性变形、摩擦和反向间隙,相应会造成运动滞后和非线性误差,所以再进一步提高滚珠丝杠副移动速度和加速度比较难了。90年代以来,高速高精的大型加工机床中,应用直线电机直接驱动进给驱动方式。它比滚珠丝杠驱动具有刚度更高、速度范围更宽、加速特性更好、运动惯量更小、动态响应性能更佳,运行更平稳、位置精度更高等优点。且直线电机直接驱动,不需中间机械传动,减小了机械磨损与传动误差,减少了维护工作。直线电机直接驱动与滚珠丝杠传动相比,其速度提高30倍,加速度提高10倍,最大达10g,刚度提高7倍,最高响应频率达100Hz,还有较大的发展余地。当前,在高速高精加工机床领域中,两种驱动方式还会并存相当长一段时间,但从发展趋势来看,直线电机驱动所占的比重会愈来愈大。种种迹象表明,直线电机驱动在高速高精加工机床上的应用已进入加速增长期。

参考文献:

[1]《交流伺服电机控制技术的研究》,中国测试技术,郑列勤,2006.5.

第2篇:电机控制论文范文

1)KA1吸合的前提是KA8吸合,KA8动作是因油压达到0.35MPa。为保证KA8动作,QF5电源经KA1常开触点后串入“站正常”电路,其余电路不变,同时取KA17一对常开触点与窑主传电动机连锁。

2)为了防止重故障信号误报或误动作,在重故障信号电路里,串入时间继电器KT,当油压低或油位低时KA9和KA11动作后延时2s,重故障信号才输出,重故障指示灯亮,避免了因误报或误动作造成窑主传电动机跳闸。在图1b中,“站正常”电源来自KA1常开触点,只有KA1吸合后,不论是启动1号泵或2号泵,KA3或KA4动作,其常开触点闭合,“站正常”指示灯亮,同时KA17吸合,为窑主传电动机提供启动信号。因KA1动作前提是KA8动作,故“站正常”指示灯亮就表明KA8已动作,油泵在启动时油压已达到0.35MPa,为判断运行中窑主传电动机油站与其连锁能否起作用提供了直接依据。同时在KA1动作后,油压低时,油压开关SP2断开,KA9失电,常闭触点导通,时间继电器KT得电延时2s后动作,电路导通,中继KA16动作,重故障信号输出,窑主传电动机跳停。同理,油位低时KA11动作导致KA16动作,重故障信号输出,窑主传电动机跳停。

3)由于原减速机油站的油位和油压未接入中控,为防止继电器故障或压力开关卡涩造成重故障信号不能输入,因此将油位和油压接入中控,并作工艺连锁,保证窑主传电动机与减速机油站的连锁有效,同时为防止出现2台油泵未运行但油压误报或虚高的情况出现,在DCS程序里作了延时6s后动作,加强对窑主传电动机的保护。

2改进效果

1)不论现场还是远程控制,当油压低或油位低时,重故障信号均能输出,窑主传跳停,保证减速机油站与窑主传电动机连锁的可靠性,窑主传电动机和减速机安全运行能力提高。

第3篇:电机控制论文范文

在值班室内安装控制箱,当将鼓风机控制方式转到手动控制方式时,在控制箱可以控制鼓风机的启、停,并可以手动改变变频器运行频率,在生产比较稳定的情况时,手动输入变频器频率,风机云新稳定;控制箱上安装双回路数显表,显示鼓风机的运行状态,包括鼓风机的运行电流、运行频率。

2自动控制

当将鼓风机控制方式转到自动控制方式时,鼓风机启动后,鼓风机的运行频率根据调节池的液位变化自动调整变频器的运行频率;调节池液位达到高液位时,鼓风机在工频下运行,当调节池液位达到高液位以前,鼓风机运行频率随液位的变化而变化;为了保证3台变频控制的鼓风机同时自动控制运行频率一致,在液位显示控制仪表输出的4~20mA信号加装一拖二模拟信号隔离器,通过一拖二模拟信号隔离器将频率信号分别传输给每台鼓风机变频器;从而保证了三台风机变频器的运行频率的一致,保证生产稳定运行。系统图及控制箱原理图如图2所示。

3变频器的选型和技术特性

目前市场上变频器的种类较多,考虑到变频器的性价比及公司内部备品备件问题,我公司选用AB生产的PowerFlex750系列的PowerFlex753变频器,其功能强大,易于使用、灵活且适用于各种工业应用特点,维修方便。变频器具体参数为6脉冲,带直流端子;机柜为IP20,NEMA/UL,变频器功率为160kW,额定电压为400VAC;选用风机水泵类变频器;变频器的具体型号为:20F1NC302。变频器控制柜距离风机距离为60m,小于100米,因此没有选用出线电抗器。

4安装调试

为了保证公司生产稳定,3台鼓风机分开单独改造,一台机组改造成功以后,再着手进行另1台鼓风机改造,即保证了生产的稳定,又使鼓风机变频改造工作连续进行,安装调试一次成功。

5结语

第4篇:电机控制论文范文

关键词:充电电源PC/104工控机全桥变换器动力电池

对电动汽车能源的动力电池及其充电技术的研究,往往需要针对不同种类的动力电池进行多种充电方式的充电试验。这就要求研制的充电电源不仅能对不同种类的动力电池进行充电,而且要能够进行多种充电方式的充电。而目前国内市场上销售的充电电源,无论是常规充电电源还是智能化充电电源,都往往是针对某一类动力电池的,并且只能采用单一充电方式进行充电。因此为了进行动力电池充电技术的相关研究,往往需要购买多台充电电源或自行研制相应的充电电源。前者需要大量的资金和宽阔的试验场地,而后者需要较强的专业技术和较长的开发周期。本课题研制了微机控制的大功率充电电源。

图1

该电源采用PC104工业计算机作为控制核心,选取全桥变换器拓扑电路作为主电路,通过控制主电路在不同时刻的输出电流和输出电压,可以实现多种充电方式充电;通过预置不同的参数,可以对多种动力电池进行充电;通过结合液晶显示屏和手控盒,可以方便地实现充电方式和充电参数的预置及各采样数据(电池端电压、充电电流、电池表面温度等)的显示。

1硬件设计

1.1主电路设计

充电电源的主电路采用目前技术上比较成熟的全桥变换拓扑电路,其原理图如图1所示。三相380V交流电压经三相整流桥整流、电容滤波后得到约514V的直流电压,经全桥逆变电路变换后得到高频脉冲电压,再经高频变压器隔离变换后,由高频整流器整流及滤波器滤波后得到所需的直流电压。主电路的PWM控制方式采用常规的PWM控制方式。功率开关器件采用新型的复合器件--绝缘栅双极晶体管IGBT,它集MOSFET和GTR的优点于一体,具有输入阻抗高、电压型驱动控制、开关损耗小、饱和电压低、通断速度快、热稳定性好等优点,是大功率全桥变换器的首选功率开关器件。变换频率取为20kHz,利于减小高频脉冲变压器及副边滤波用扼流圈的体积和重量。二次整流器件采用快恢复二极管,利于减小整流管反向恢复时间对输出电压的影响。

1.2控制系统设计

充电电源主要由主电路和控制系统组成。控制系统以PC/104嵌入式工业计算机为核心,配以接口电路、采样电路、PWM控制电路及IGBT驱动电路等,可按照预置自动控制充电过程,并在充电过程中进行充电数据(包括电池端电压、充电电流及电池表面温度等)的自动采集、实时显示、批量存储及分析处理等。控制系统组成框图如图2所示。

1.2.1PC/104嵌入式工业计算机

控制系统之所以采用PC/104嵌入式工业计算机,主要是考虑到PC/104嵌入式工业计算机具有以下几方面的显著特点:(1)小型化。PC/104采用模块化的设计方法,单个模块的体积为90mm×96mm×l5mm。若一个PC/104系统采用三个模块,在90mm×96mm×45mm的小空间内就能实现台式工控机的全部功能;(2)低助耗。绝大多数模块采用+5V电源,芯片采用CMOS芯片,功耗特别低,只有1~2W,无需外加散热装置;(3)PC/104在软、硬件上与标准PC/AT体系完全兼容,可以很快掌握其软、硬件的使用方法,而将主要精力放在软件和接口的设计上。CPU模块提供PC机的不同档次的标准化产品,便于进行更新和升级;(4)模块齐全,提供显示控制、磁盘控制、通讯控制、数据采集控制等各种功能的产品;(5)采用一种紧凑的层叠栈接结构,各模块间通过加固的64针和40针的直立式连接器连接,并用四个金属托架支撑,更加坚固牢靠。本系统中采用了深圳盛博科技有限公司生产的PC/104总线SCM/SuperDx嵌入式CPU模块,其内包含了Intel80486CPU(100MHz)、16M在板内存、1个与PC/AT兼容的双向并行口、两个RS232串行口、7个DMA、14个中断、三个计数器、一个PC/AT键盘接口等。此外,为了消除频频读写硬盘可能带来的不稳定因素,采用32MB的DiskOnChip2000半导体固态盘取代硬盘,直接装在SCM/SuperDx嵌入式CPU模块的32脚DIP插座上。

数据采集模块选用了盛博科技有限公司的DMMAT模块。该模块具有16路12位模拟输入、2路12位模拟输出、8路数字输入、8路数字输出、1024字节FIFO,100kHz最大采样速率,是一款功能较全、性价比较高的接口板,可以满足该系统所需的A/D、D/A转换及手控盒开关量输入的需要。

液晶显示屏担负着各种充电信息显示和充电参数设定等功能。选用了北京创业科技开发中心开发的型号为KY-D29A的智能液晶显示屏,整个液晶外形尺寸为113mm×65mm×l4mm,显示点阵为128x64,可经RS232C直接与嵌入式微机连接,通过专用的指令可以方便地实现字符和汉字的显示及各种几何图形的绘制。手控盒作为PC/104的输入设备,通过和智能液晶显示屏的配合使用,可以很方便地进行各种参数的设置和各种充电数据及曲线的显示。

另外,为了便于应用程序的编写、调试、修改及维护,还选用了盛博科技有限公司的SysExpanModule/VFI系统扩展模块。该模块以高分辨率的图形控制器、软盘驱动器和IDE硬盘接口为PC/104系统提供扩展,使用标准自堆栈式总线接头,可以通过堆栈方式与CPU模块或其它模块相连接。通过给主控计算机外接显示器、标准PC/AT键盘、软驱和IDE硬盘,可很方便地进行应用程序的开发和调试。

蓄电池的电压采样和电流采样电路分别由电压霍尔传感器与信号放大电路以及电流霍尔传感器与信号放大电路组成。温度采样电路由热敏电阻、温度变送器和放大电路组成。

1.2.2PWM控制及驱动电路

PWM控制电路的核心器件选取美国通用公司生产的电压型PWM控制器SG3525A。SG3525A是一种性能优良、功能齐全、通用性很强的单片集成PWM控制器。该芯片简单可靠且使用方便灵活,通过适当地外接电路,不仅能够实现PWM控制,还可以完成输入软启动、过载限流、过压保护等多种功能。PWM控制电路如图3所示。考虑到SG3525A作单端输出使用时,变换器的最大占空比不到50%,在实际使用中将输出端11和14的信号采用了取或的办法以得到较大的占空比。

驱动电路的核心器件选取日本三菱公司生产的ICBT专用厚膜集成电路M57962L。M57962L采用双电源供电方式,可保证IGBT可靠通断,内置高速光耦隔离输入,隔离电压有效值可达2500V,并具有短路、过载保护及过流慢速关断等功能,只需外接少量的元器件,便可组成完善的IGBT驱动及保护电路。驱动电路如图4所示。电源电压VCC和VEE分别取为15V和-12V,电阻R201为IGBT栅极限流电阻,二极管D201用以进行短路和过流检测,串接稳压二极管Z201可以改变M57962L模块的过流保护起控点.稳压二极管Z202可以避免l脚承受过电压。

图5

第5篇:电机控制论文范文

关键词:无刷直流电机(BLDC)单片机电机控制

引言

1概述

ST72141是ST公司专门用于同步电机控制的一款单片机,特别适合3相无刷直流电机的控制。无刷直流电机可用于工业控制、汽车电子产品、电冰箱、空调、压缩机和风扇等产品。无刷直流电机的优点是效率高、工作噪声低、体积小、可靠性好和寿命长。

ST72141是ST7微控制器家族产品中的一员。它包括A/D转换和SPI接口,有专门用于无刷直流电机控制的片内外设,可选择带传感器模式和不带传感器模式。

ST7片内的电机控制电路可看成是一个脉宽调制多路复用器。它有6路输出和1个用在无刷直流电机不带传感器控制时的反电动势零点检测电路。

ST72141的电机控制外设有4个主要的部分:

去磁结束和反电动势零点的检测电路;

延迟管理电路;

PWM管理电路(需要PWM信号来驱动电机);

通道管理电路。

ST72141在无刷直流电机中的典型应用如图1所示。

图26步长120度的驱动模式

2无刷直流电机的基本原理

无刷直流电机包含2个同轴的磁性电枢:外部电枢,即固定的定子;内部电枢,即可动的转子。定子是电机的引导部分;转子是电机的感应部分。无刷直流电机内部电枢的转子是一个永磁体。这个电枢由恒流源供电。定子可以有多相(这里以3相为例)。电机是同步电机。无刷永磁体直流电机是同步电机,定子的磁场旋转速度和转子的机械旋转速度相同。

反电动势是使用ST72141在不带传感器模式下驱动无刷直流电机的基础。反电动势和转子的转速、流过转子的磁通和相应绕组的转子数目成正比。

绕组产生的力矩大小与电流和磁通量成正比关系。

ST72141提供2种控制方式:电压模式和电流模式。电流模式下可以直接按比例调节力矩;电压模式下可以调节速度,设置力矩限阈值(即电流的阈值)。

3ST72141用于无刷直流电机控制

图2为采用6个步长的电机控制原理图。

ST72141中的电机控制是基于标准的三个半桥6个步长控制原理。

T1、T3、T5是电机A、B和C绕组相的上端晶体管。

T2、T4、T6是电机A、B和C绕组相的下端晶体管。

在步长1时,相A为正向偏压,所以这个绕组中的电流是正向的;相B为反向偏压,所以这相绕组中的电流是负向的。这时C相绕组没有施加电源。

无刷模式下,使用ST72141控制电机,可以读取这个没有施加电源的相绕组反电动势(这里以绕组相C为开始的步长1)。通过读取这个反电动势,可以确定转子的实际位置。

图时序示意图

如图3所示,反电动势和相绕组的电流同方向时,效率最佳。

ST72141可以有2种不同的驱动模式:电压模式和电流模式。电流模式下,通过改变电机的参考电流而改变力矩的大小(因为力矩和电流成正比)。电流的控制是通过PWM来调整的。电压模式下,通过改变电机的参考电压来改变速度。这种模式不是直接控制电流,但设置了电流的最高限制,即力矩可达的最大值。电压的控制也是通过改变PWM周期来实现的。

电机速度的调整使用闭环实现。ST72141内部有2个速度调整回路。第1个回路是自动换向时效率的调整回路。这个回路使得反电动势和相绕组的电流信号同方向。第2个回路是速度调整回路,可使电机维持在设定的速度。

ST72141对电机控制基于3个事件的处理:反电动势过零点事件(Z事件)、换向(C事件)、向绕组去磁结束(D事件),如图4所示。

去磁结束和反电动势过零点是物理事件,但是换向事件是通过ST72141计算得来的,也就是计算过零点事件和下一个换向之间的延迟时间。如果速度加快,过零点事件将更早发生,延迟必须减小以使反电动势和相绕组的电流同方向。

ST72141的电机控制外设总是以相同的次序处理这3个事件:Z事件在计算的延迟之后产生C事件,然后等待D事件。电机启动时,根据检测到一定的连续Z事件后进入自动换向模式。

图5过零点事件检测原理

ST72141中,Z事件(过零点)和D事件(去磁结束)的检测由相同的外设部分处理。这些信号通过ST72141的MCIA,MCIB和MCIC三个引脚输入。过零点事件(Z事件)检测的原理如图5所示。

图5所示为电机控制的两种状态。在图5左部,绕组C已经去磁。在大约20μs之后,读取反电动势的窗口打开。在T1关闭时,电流流经续流二极管,A点为地。假设A相绕组的反电动势为Ea,B相绕组的反电动势为Eb,C相绕组的反电动势为Ec。当Ec过零点时,有Ea=-Eb,这样N处为零电势。这就意味着可以不需要虚拟地就可以获得需要的反电动势的信息。反电动势过零点事件通过输出比较器获得,无传感器模式时,一定频率的PWM信号加在T1上。C的电压被钳位二极管钳位在+5V/0.6V(而需要关注的是过零点)。这里的分析同样适应于电机绕组为三角型连接。

比较器的一个输入是C相绕组的电压信号,另一个输入是一个门槛电压(通过软件可选择0.2、0.6、1.2和2.5V)。ST72141等待C相绕组的反电动势到达选择的阈值电压。PWM信号施加在T1上,当T1关闭时,C相绕组的电压为地。因此,ST72141只需要读取反电动势就可以检测到到达这个阈值的时间点。

检测去磁结束事件的方法和过零点事件相同,并使用相同的外设。电机控制按照固定的顺序处理这三个事件,Z事件后经过一段延迟,产生一个C事件,然后等待一个D事件。

图6去磁结束事件

在换向之后,开始相绕组加速去磁。为了避免过早地检测去磁结束事件,换向之后有20μs的滤波时间,如图6所示。为了避免检测去磁结束事件太晚,去磁结束的检测使用相同的比较器,但是取样频率是800kHz。

无传感器模式下,比较器的输出取样频率在过零点事件时是PWM信号,在去磁结束事件检测时是800kHz。

4电机的启动和控制举例

这里以2个极对数的电机的启动为例。电机启动后目标速度是1400r/min。启动电机之前,必须预先固定位置。刚启动时,反电动势信号太弱,不能读取。读取反电动势信号前的过程中,电流必须提供>(负载力矩+摩擦力矩+电机的惯性负载的力矩)。故启动时,ST72141定时器A的PWM占空比在启动过程中必须高于一般运行下需要的值。

一定步长后,为了检测到过零点事件,需要一个特别的方法启动电机,称为同步(强制换向)模式,或者称为电机根据加速表加速的过程。

图7启动过程

第6篇:电机控制论文范文

关键词:机电设备;安装工程;施工质量

1机电设备安装目标控制内容

1.1质量控制。机电设备安装工程质量控制的目标是实现设计及合同规定的质量标准和水平,施工组织主要是工程承包商和监理的主要职责是采取有效措施对工程质量严格检查、监督和控制,以保证质量目标的实现。

1.2进度控制。施工组织主要是工程承包商和监理对进度控制主要职责是采取有效的施工技术、监理措施协助业主对工程进度进行动态控制。将工程建设合同、设计文件及专门技术法规和经批准的安装进度计划及网络图,作为控制工程进度的依据。施工进度控制的主要任务:工程开工,对承包商的施工总进度进行细致严格审批;组织或参加各种会议对进度进行协调,对按合同规定应由业主提供的施工条件进行落实;施工组织的主要任务:工程开工,主要对施工主体质量控制和精度控制,首先做好技术交底是保证施工质量的重要措施之一;其次项目开工硬编制测量控制方案经研究后实施;再次施工过程中由一系列的相互联系与制约的工序构成,施工组织要保证工序施工质量控制,也是机电安装工程质量控制的基础与核心,其包括工序施工条件质量控制和工序施工效果质量控制。

1.3投资控制。施工阶段施工组织主要是工程承包商和监理对工程投资控制主要工作内容包括:协助业主投资控制目标;审查承包商提交的资金流计划;按照合同规定进行现场计量和签认;严格审核承包商的月计量报告,签发工程款支付凭证,建立支付台账,及时与工程量报价单和批准的资金流计划进行对比,发现偏差立即分析原因并报告业主;严格审查并确定新增项目和变更项目的单价,当业主有要求时,报业主批准;根据业主授权确定并严格控制工程变更的费用;承包商按照合同文件进行计量控制,保证计量准确;协助业主编制竣工决算报告。

1.4合同管理。施工阶段施工组织主要是工程承包商和监理工程承包合同管理的主要内容包括:全面管理工程承包合同,对合同条款负责解释;对承包商选择的分包单位资格及分包项目进行审查;协助业主进行有争议的谈判;依据业主授权处理合同变更事宜,当发生重大工程变更时,报业主批准后实施。

1.5安全管理。施工组织主要是工程承包商和监理对施工中专职安全管理人员的资格,检查、督促承包商建立安全工作保障体系,制订各项规章制度,完善安全防范措施。定期召开安全例会,检查总结安全工作,参加重大安全事故调查,并协助业主审查有关单位提出的事故报告;开展安全宣传教育,加强现场各类人员的安全意识。

1.6设备管理。机电设备的质量控制是安装质量控制的前提。因此,机电设备到货验收是一项很重要的工作。参加验收的监理工程师和施工负责人要严格按合同的规定进行验收,质量不合格的设备决不能入库。所以,其必须要有高度的责任心和良好的职业道德,丰富的实践经验,才能担此重任,为保证设备安装质量控制打下坚实的基础。

2机电设备安装工程的管理的重要性

2.1质量管理的重要性。工程的质量是整个工程的重中之重,是决定工程建设的成败的关键。要求我们的管理人员严格把关,施工人员严格按照规范来进行才能保证整个工程的有序进行并按期完工。机电设备安装是一个大概念,涉及范围很广,程度深,施工复杂,这就要求我们必须在质量上严格把关,提高施工人员的专业素养,制定一系列的施工方法、施工机械,建立一套完整的质量管理体系。影响机电安装的质量有诸多因素,为了保证安装质量,必须从各个方面入手,全面进行分析,严格按照工艺规程以及行业规范来执行。保证机电安装工程的质量也就是保证了今后机电设备使用的安全性。机电设备的安装大都需要后期的维护维修,如果在工程初期就在质量上严格把关,防止偷工减料的豆腐渣工程,可以减少设备后期的维护维修,延长设备的使用寿命,不仅减少人力物力的投入,更能为国家节能减排做出贡献。

2.2进度管理的重要性。机电安装工程进度控制就是对机电安装各个阶段工作的内容根据工程总进度进行合理的安排,科学合理的安排施工,安排好工程之间的衔接,从而保证工程有序的进行,最终确保工程建设项目按照预定时间竣工验收并交付使用。建立健全的施工组织机构,建立控制目标体系,把工程进度落实到实质上,协调沟通好各个单位之间的施工,保证整个工程良好有序的运转,保证工地各种生产要素的合理利用,保证按期完成任务以及质量达标。工程进度过快过慢都不宜,按照施工进度控制书把工程进度控制在一定的范围内,也有利于各方面工程施工的合理进行。

2.3安全管理的重要性。施工工地必须做好日常安全管理,不仅保证施工时不发生安全事故,保证施工人员的自身安全,更要在将来机电设备投入使用以后杜绝、减少安全隐患和安全事故的发生。机电设备的安装较其他工程有所不同,更易产生安全问题,施工人员应严格按照规程规范,和评验标准进行施工,而施工单位也应提高施工人员的安全意识、专业素养以及职业道德,避免安全隐患以及安全事故的发生。安全管理能够提高工程的整体质量水平,避免工程建设施工中的各类问题的发生,也保证了工程在施工中的进度,能够有效的减少后期维护维修的费用及时间,能够为将来在使用上增加安全性。

2.4人员管理的重要性。人员管理不仅包括对施工建设人员的在施工方面的管理,还应包括工地管理层对整个工程有序良好运作的管理。我们要严格要求工程质量和控制工程进度就必须要选取经验丰富,知识面广,有良好职业道德的施工人员。严谨的对待机电安装中的每一个细节,让每个员工都积极的投入到生产中。一个工程中项目经理的素质高低直接影响到整个工程,不仅要过硬的专业素养,能够监督判别工程中的质量问题,杜绝偷工减料,还要求能够真真正正的发挥管理的作用,调动员工的积极性,让各方面协调合作,使整个工地保持良好有序的运作。

第7篇:电机控制论文范文

单片机是集成电路芯片的一种,它微处理器中的技术能够有效地快速处理数据,如逻辑运算、中断处理、数据传输等等。它的组成模块主要有中央处理器,只读程序存储器以及随机存取数据的存储器,定时计数器等等,各个模块相互关联,共同构成一个微型的计算机处理系统。在事先设定好的程序下,能够准确、迅速、高效地完成程序设计者事先规定的任务,给与用户以完美的体验。单片机与微型计算机有着很多的共同之处,但是也有着本质的区别。单片机是用特定的芯片来设计应用程序的,通过芯片的指令系统以及集成电路来传导程序,从而使得芯片具备特定的功能。单片机的硬件特征与软件特征是与其自身的规格与特息相关的,不同类型的单片机有着不同的技术特征。比如在电梯中应用的单片机都有着完善的指令系统以及感应系统,对于电梯的安全性提供了很好的保障。在生产不同使用性质的电梯时,就需要合理的选用相关类型的单片机,前提就是要掌握单片机的结构以及技术特征。

2单片机的电梯控制系统分析

系统控制部分和显示部分是电梯控制系统的主要构成部分,其中系统控制的部分又由单片机控制模块、传感器信号处理模块以及报警模块构成,检测模块、电路模块则构成显示模块。

2.1传感器系统模块对电梯的运行状态进行实时的监控是在电梯机械化控制系统中应用的一大好处之一,因此,应该在实际应用中大力的进行推广工作。这里的传感器系统既可以根据时间节点进行传输,也可以利用不同的频分制来进行信号的发送工作。当信息最终录入系统之后,就可以在单片机的自动化系统的控制下对电梯的安全性及稳定性进行控制,如有差错及时的进行调整。单片机的电梯控制系统中的传感器是信号处理电路,集合电路以输入高低电平信号来控制LED灯的运行,与此同时能够把输出的信号传送给单片机进行处理。另外,电梯门处安装了开关式传感器,能够通过一个小的直流电机来控制电梯门的开关。2.2中央控制系统的模块中央控制技术在电梯机械控制系统中的应用主要是通过中央控制系统来对各个层面的工作进行调配,利用众多的网络接口及时的传达信息,从而提升系统的运行效率。另外中央控制系统还可以具备报警和制定解决问题的方案等功能,可以及时的对紧急情况进行快速的处理。

2.3电梯的控制面板设计技术电梯里的按钮主要有向上、向下以及开关,这些按钮的运作都是由控制面板进行控制的。在电梯的外面有6个呼叫请求指示灯以及相应的按钮,当乘客按下按钮时,点亮和其相对应的指示灯,在响应呼叫请求之后,电梯内指示灯则熄灭。2个电梯运行的指示灯,分别表示电梯的上升和下降两种不同状态。电梯内部则有相应的控制按钮及相关的4个指示灯,电梯楼层的指示灯也是由LED的数码管来显示的。单片机都电梯运行的控制主要是通过这些指示灯和按钮来进行的,因此,在电梯的控制面板设计时一定要合理的规划,选好相应的参数。

2.4电梯输电线路的路径选择路径的选择对输电线路的设计非常重要,路径选择合理可以降低电梯施工的难度和建设成本,同时也对输电线路后期的稳定和维护起着重要作用。在实际设计中,要对线路进行精确的计算与测量,使输电线路的长度尽量降低,这要求进行测量的工作人员有较高的专业技能和耐心。质地特点好和施工难度低的线路是最优选择,同时也要尽可能地降低电梯建设成本。

2.5电梯运行的维修情况单片机的参数值具有不稳定性,能找到一定的规律性,但也有随机性的成分,设备在未来某一时刻的参数值常与过去的参数值、当前的运行状况、预测期的气象因素等密切相关。在日常维修电梯时,既要按照相关的制度、标准来进行,也要结合自身经验,注意一些易被忽视的问题,如认真考量每一个小零件的作用,保障电梯的正常运行。

3结语

第8篇:电机控制论文范文

关键词:自动控制理论 海上钻井平台 应用研究

中图分类号:TP13 文献标识码:A 文章编号:1672-3791(2014)07(a)-0060-01

在我国自动控制技术不断改进的前提下,企业生产已经能够通过系统程序设置来控制相关外部设备来实现自动化生产模式,根据控制理论分类我们可以将其分为经典控制理论以及现代控制理论两大类。在本文中笔者将就自动控制理论在海上钻井平台的应用的相关问题进行分析和研究,希望本文能够对海上钻井平台的开发和研究能够有所帮助。

1 海上钻井平台的自动控制系统分类

海上钻井平台的自动控制理论在过去的几十年中取得了较好的发展,而其中所使用的控制理论主要为经典控制理论中的闭环控制理论。海上钻井平台的控制理论主要涉及到电动机的调速控制系统、发电机的压力调节系统的数字调压装置等的使用都是十分广泛的,在海上钻井平台的直流电动机调速的使用也比较多,而海上钻井平台所使用的西门子的整流装置例如SIMOREG K系列的产品都是通过这种闭环控制系统实现控制功能的。

2 闭环控制系统介绍及控制原理

在海上钻井平台中使用的闭环控制系统是自动控制理论中十分重要的内容,在经典控制理论中又称之为反馈控制系统,而这种控制系统的控制原理主要是通过偏差变化作为系统控制信息的信息驱动机构,而自动控制系统则能够根据系统中的变化量产生相应的控制信息来对偏差量进行纠正。在经典控制理论中负反馈的控制理念主要有比例调节器、积分调节器以及比例积分调节器这三种调节器。在以上的这三种调节器中反应速度最快的是比例调节器,但是由于这种调节器在稳态性能方面不够完善,而积分调节器的稳态误差最小,但是对于偏差量的反应不够灵敏。在海上钻井平台中使用的调节器主要是比例积分调节器,因为这种调节器是将比例调节器和积分调节器的优点结合在一起,不但能够对调节信息作出迅速的反应,而且稳态性比较好。

在海上钻井平台的控制系统中所使用的调速器中所使用的电位器控制的,例如在PI调节器的调节量中的P增益主要是用来对自动控制系统中的调节速度进行调节的,而PI调节器的积分控制主要是用来对积分的增益进行调节的,还有一个调节器就是ACTUATOR COMPENSATION这种执行补偿部分,这一部分发挥着对执行器的阻尼系数进行指导的作用。在海上钻井平台中使用的柴油机、汽轮机等的控制要求将其控制阻尼系数调整为15%左右,而蒸汽机这类的机械设备的控制阻尼系数要求控制在50%左右。在海上钻井平台的自动控制系统中通常不要求对控制系统进行调整,但是在系统运行中出现不稳定等状况时要求对系统中的控制量进行控制。由于在海上钻井平台中使用的电机设备比较多,因此在现场的实际情况中要根据发电机的需求对发电机的无功负载进行调节和选择。通过配合合理的闭环调节系统能够保证控制系统在反应速度、系统的稳定性以及设备的运行寿命等方面起到十分重要的作用。

3 双闭环调节系统介绍及控制原理

在比例积分调节系统中所使用的单环控制系统能够很好地保证自动控制系统本身的稳定性,也能够实现对控制系统的无静差的调节。但是在海上钻井平台中所使用的电动机对于设备的启动速度以及控制程度的要求比较高,比例积分调节系统的控制能力和特点显然不适合对此类电动机的控制。为了能够保证海上钻井平台所使用的电动机能够在电动机的电流以及电动机的转矩控制方面得到满足,可以采用西门子厂家生产的的装置对海上钻井平台中所使用的电动机进行控制。

对于此类电动机的控制最主要的就是能够迅速的获得较好的动态特征,西门子厂家生产的比例积分调节器就能够很好地做到这一点。这种调节器主要是通过对限幅的控制来实现对转速的调节的,通过对电动机通电电压的控制来进行无静差控制,并且通过对电压的控制来实现以上控制作用。当电动机在运行的过程中一旦设备的负载电流到达最大值,比例积分调节器的调节作用达到饱和状态,通过这种双重的控制系统从而很好地实现控制作用。

在比例积分调节器的系统控制中主要有以下两种静态特征:首先就是电动机的转速不饱和阶段中,比例积分调节器的偏差量为0,此时电动机的转速在输入量以及系统的反馈量这两项量都是相同的;除此之外还有就是电动机的转速达到饱和阶段,电动机的转速调节器的转速达到饱和状态时系统的稳定性不会再受到影响,而自动控制系统中便形成了无静差的单闭环调速系统。

在西门子公司生产的直流调速装置中主要是通过双闭环调速系统来对电动机速度进行控制,这种装置中包含有速度调节装置以及电动机电流整定装置,主要是系统量的比较环节、脉冲触发环节以及电动机电流分反馈环节这几种元部件,在其中通过模拟运算的方式来将调节器中的存储器进行调节,而且这种自动控制系统中运算速度要远远高于其它速度调节器,而且在其中装设有监控保护装置,系统的稳定性非常好,反应速度更为灵敏。

西门子控制装置在海上钻井平台中的应用十分广泛,目前我国在海上钻井平台中所使用的西门子控制调节装置主要有6RA24,这种控制系统,而在其中主要是通过模拟部件的连接来实现的,而且这种装置的工作模式十分简便,能够根据现场的实际情况进行选择性连接。在西门子控制装置6RA24中不但可以实现积分调节、比例调节、比例积分调节这三种调节模式的选择,而且能对调节器的P\I增益都能够起到控制作用,并且能够控制电动机的电流,因此该装置的反应速度十分灵敏,系统的稳定性能也很高。海上钻井平台所使用的6RA24装置不但能够通过参数的调节来实现对控制系统的控制,而且能够更好地保证控制系统的稳定性和速度控制灵敏性,因此能够有效的提升设备的工作效率。

4 结语

在本文中笔着就自动控制理论在海上钻井平台的应用进行了简单的分析和探讨,由于自动控制系统中包含有动态控制和静态控制等多个方面,因此此类控制系统是比较复杂的,而对于海上钻井平台又发挥着十分重要的作用,希望本文能够对我国海上钻井工作的开展能够有所帮助。

参考文献

第9篇:电机控制论文范文

关键词:异步电机变频调速模糊控制

中图分类号: 文献标识码:A文章编号:1007-9416(2010)01-0000-00

1 交流调速系统的概况

1.1 交流调速相关技术的发展现状

交流变频调速技术发展和许多技术的发展密切相关,涉及到电动机制造、电力电子器件、变换器电路、电子信号处理技术、古典和现代控制理论、计算机辅助设计等众多学科领域;交流高性能调速的实现有赖于电力电子技术、PWM变频技术、电机控制等核心技术的突破。

1.2 变频调速系统的类型

按变频原理分:(1)交―交变频(2)交―直―交变频

按拖动电机的类型分:(1)异步电动机变频调速系统(2)同步电动机变频调速系统

2 智能控制简介

2.1 智能控制概念

在无人干预的情况下能自主地驱动智能机器实现控制目标的自动控制技术。对许多复杂的系统,难以建立有效的数学模型和用常规的控制理论去进行定量计算和分析,而必须采用定量方法与定性方法相结合的控制方式。定量方法与定性方法相结合的目的是,要由机器用类似于人的智慧和经验来引导求解过程。

2.2 智能控制的主要技术方法

智能控制是以控制理论、计算机科学、人工智能、运筹学等学科为基础,扩展了相关的理论和技术,其中应用较多的有模糊逻辑、神经网络、专家系统、遗传算法等理论和自适应控制、自组织控制、自学习控制等技术。

3 三相交流异步电动机

3.1 结构组成

三相交流异步电动机由于其结构简单、制造容易、价格低廉、坚固耐用以及运行可靠等优点,因此在工农业生产中应用最为广泛。虽然三相异步电动机的种类很多,但究其基本结构而言是一致的,主要由定子与转子两部分组成。

3.2 数学模型简析

异步电动机在三相静止坐标系上的数学模型是一个多变量、高阶、非线性、强祸合的复杂系统。坐标变换的目的就是要简化数学模型,将交流电机的物理模型等效地变换成类似直流电机的模型,分析和控制问题就可以大为简化。

4 基于模糊控制的转速调节器研究

4.1 模糊控制简介

4.1.1 由来与概念

模糊技术的由来应追溯到1965年,美国控制论专家L•A扎德提出了模糊集合理论,它为模糊技术的产生奠定了理论基础.1974年英国学者E.H马达尼首先在试验室里实现了对蒸汽发动机的模糊控制,从而出现了一种崭新的控制技术――模糊控制,简称模糊技术。

模糊逻辑控制(Fuzzy Logic Control)简称模糊控制(Fuzzy Control),是以模糊集合论、模糊语言变量和模糊逻辑推理为基础的一种计算机数字控制技术。

4.1.2 系统组成

模糊控制系统的建立是基于知识库、推理机制、模糊化和反模糊化。要实现语言控制的模糊控制器,首先把实际输入值转化为模糊集合的隶属函数,这一步称为模糊化。然后根据有经验操作者或专家经验制定模糊控制规则,并进行模糊推理,以得到模糊输出集合即一个新的隶属函数,这一步称为模糊控制规则形成与推理。最后根据模糊推理得到的输出模糊隶属函数,用不同的方法找到一个具有代表性的精确的真实输出值,这一步称为反模糊化。这三个步骤称为模糊推理过程。

4.2 模糊控制器的结构设计

对一个常规三维模糊控制器,输入为误差e、误差积累∑e、误差变化率ec,输出为u,如下图所示,h1、h2、h3、h4分别为比例因子。

一个完善的控制规则是模糊控制具有良好控制效果的关键。然而因为模糊规则是人们对过程或对象模糊信息的归纳,对高阶、非线性、大时滞、时变参数以及随机干扰严重的复杂控制过程,人们的认识往往比较贫乏或难以总结完整的经验,这就使得单纯的模糊控制在某些情况下很粗糙,难以适应不同的运行状态,影响了控制效果。

模糊控制器设计的基本方法和主要步骤大致包括:

(1)选定模糊控制器的输入变量与输出变量,并进行量程转换。输入量的维数最高一般不超过三维。维数增加,控制规则按几何级数增加。

(2)进行模糊化,即确定各变量的模糊语言取值及相应的隶属函数。模糊语言值通常选取3、5或7个。

(3)建立模糊控制规则或控制算法。这是指规则的归纳和规则库的建立,是从实际控制经验过渡到模糊控制器的中心环节,控制律通常由一组if-then结构的模糊条件语句构成。

(4)确定模糊推理和解模糊化方法。常见的模糊推理方法有最大―最小推理法和最大―乘积推理法两种,可视具体情况选择其一;解模糊化方法有最大隶属度法,中位数法,加权平均,重心法,求和法或估值法等,针对系统要求或运行情况的不同而选取相适应的方法,从而将模糊量转化为精确量,用以实施最后的控制策略。

4.3 模糊控制算法及实现

假设一个二维模糊控制器,输入偏差e的论域为[-x ,x ],偏差变化率ec的论域为[-x ,x ],输出控制量u的论域为[-y ,y ],模糊控制算法可概括为四个步骤:

(1)根据本次采样得到的系统输出值,计算所选择的系统输入变量。考虑到系统突加给定时,有可能使实际输入超出设计输入论域,可补充映射

e(k)= x ,当e(k)≥x 时e(k)=- x ,当e(k)≤- x 时

ec(k)= x ,当ec(k)≥x ,时 ec(k)=- x ,当ec(k)≤- x ,时

u(k)= y ,当u(k)≥y 时u(k)=- y ,当u(k)≤- y 时

(2)将输入变量的精确值转换为模糊量;

(3)根据输入变量及模糊规则,按模糊推理合成规则计算输出控制量

(4)将输入变量的精确值转换为模糊量;

(5)根据输入变量及模糊规则,按模糊推理合成规则计算输出控制量;

(6)由上述模糊控制量经解模糊计算得到精确的控制量。

5 结语

模糊控制与PID控制相比,能够有效地克服系统非线性因素对调速性能的影响,模糊控制特别适用于对电机加减速实行最优速度控制。对稳态精度要求不是特别高的系统,采用模糊控制可以提高系统的鲁棒性。

参考文献

[1] 陈伯时,陈敏逊.交流调速系统[M].第二版.北京:机械工业出版社.2005.

[2] 胡崇岳.现代交流调速技术[M].北京:机械工业出版社.1998.

[3] 陈佰时,冯小刚等.电气传动系统的智能控制,电气传动,1997年第1期.

[4] 张曾科编著.模糊数学在自动化技术中的应用.北京:清华大学出版社,1997.