公务员期刊网 精选范文 光电化学技术范文

光电化学技术精选(九篇)

光电化学技术

第1篇:光电化学技术范文

【论文摘要】:介绍了光机电一体化技术特征,研究了国内外技术现状和发展趋势,指出了未来发展前景和一些重要技术热点。

近些年来,光机电一体化技术得到迅猛发展,在民用工业和军事领域得到广泛地应用。因此,光机电一体化技术成为当今机械工业技术发展的一个主要趋势。

1.光机电一体化技术特征

光机电一体化系统主要由动力、机构、执行器、计算机和传感器五个部分组成,相互构成一个功能完善的柔性自动化系统。其中计算机软硬件和传感器是光机电一体化技术的重要组成要素。与传统的机械产品比较,光机电一体化产品具有以下技术特征。

1.1体积小,重量轻,适应性强,操作更方便

光机电一体化技术使得操作人员摆脱了以往必须按规定操作程序或节后频繁紧张地进行单调重复操作的工作方式,可以灵活方便地按需控制和改变生产操作程序,任何一台光机电一体化装置的动作,可由预设的程序一步一步控制实现,甚至实现操作全自动化和智能化。

1.2功能增加,精度大幅提高

光机电一体化系统包括以激光、电脑等现代技术集成开发的自动化、智能化机构设备、仪器仪表和元器件。电子技术的采用使得包馈控制水平提高,运算速度加快,通过电子自动控制系统可精确按预设动作,其自行诊断、校正、补偿功能可减少误差,达到靠单纯机械方式所不能实现的工作精度。同时,由于机械传动部件减少,机械磨损及配合间隙等引起的误差也大大减小。

1.3部分硬件实现软件化,智能化程度提高

传统机械设备一般不具有自维修或自诊断功能。光机电一体化技术使得电子装置能按照人的意图进行自动控制、自动检测、信息采集及处理、调节、修正、补偿、自诊断、自动保护直至自动记录、显示、打印工作结果。通过改变程序,指令等软件内容而无需改动硬件部分就可变换产品的功能,使机械控制功能内容的确定和变化趋势向"软件化"和"智能化"。

1.4产品可靠性得到提高,使用寿命增长

传统的机械装置的运动部分,一般都伴随着磨损及运动部件配合间隙所引起的动作误差,导致可动摩擦、撞击、振动等加重,严格影响装置寿命、稳定性和可靠性。而光机电一体化技术的应用,使装置的可动部件减少,磨损也大为减少,像集成化接近开关甚至无可动部件、无机械磨损。因此,装置的寿命提高,故障率降低,从而提高了产品的可靠性和稳定性。

1.5融合了多种学科新技术,衍生出许多功能更强、性能更好的新产品

光机电一体化产品的研究开发涉及到许多学科和专业知识,包括数学、物理学、化学、声学、机械工程学、电力电子学、电工学、系统工程学、光学、控制论、信息论和计算机科学等。例如人们很熟悉的静电复印机、彩色印像机等,就是一种由机、电、光、磁、化学等多种学科和技术复合创新的新型产品。光机电一体化技术将光电子技术、传感器技术、控制技术与机械技术各自的优势结合起来,衍生出许多功能更强、性能更好的新一代技术装备。

1.6产品系统性增强,各部分系统间协调性要求提高

光机电一体化是一门学科的边缘科学技术,多种技术的综合及多个部分的组合,使得光机电一体化技术及产品更具有系统性、完整性和科学性。其各个组成部分在综合成一个完整的系统中相互配合有严格的要求,这就要求各种技术扬长避短,提高系统协调性。

2.研究现状和发展趋势

2.1研究现状

自从我国实行改革开放以来,科技领域急起直追,我国的光机电一体化技术已取得明显的成效,数控产品有了很大的提高,尤其是经济型灵敏数控装置发展很快,是我国特有的经济实用产品,不但适用国内市场的需要,部分产品还随主机配套出口。国内的机械产品采用可编程控制器(PC)和微电子技术控制设备也越来越多,覆盖面也日益扩大,从纺织机械、轴承加工设备、机床、注塑机到橡胶轮胎成型机、重型机械、轻工业机械都是如此,我国自行研制和生产的光机电设备,在质量上也有重大突破,为今后的推广应用打下了良好的基础。

2.2发展趋势

光机电一体化技术已经渗透到各个学科、领域,成为一种新兴的学科,并逐渐成为一种产业,而这些产业作为新的经济增长点越来越受到高度重视。从世界科学技术的发展情况来看,光机电一体化技术的未来技术热点主要包括:

(1)激光技术

1)高单色性,利用激光高单色性作精密测量时,可极大地提高测量精度和量程。

2)高方向性,因具有很远距离传输光能和传输控制指令的能力,从而可以进行远距离激光通信、激光测距、激光雷达、激光导航以及遥控。

3)高亮度性,利用激光的高亮度特性,中等亮度激光束在焦点附近可产生几千到几万度的高温,可使照射点物体熔化或汽化,对各种各样材料和产品进行特种加工。

4)相干性,由于激光速频率单一、相位方向相同。适用于激光通信、全息照相、激光印刷以及光学计算机的研制,而在实际运用中也会通过一些激光技术改变激光辐射的特性,应用范围更广。

(2)传感检测技术

1)激光准直,能够测量平直度、平面度、平行度、垂直度,也可以做三维空间的基准测量。

2)激光测距,其探测距离远,测距精度高,抗干扰性强,体积小,重量轻,但受天然影响大。

3)光纤探测器,在目标很小,间隔受限或危险的环境中,最常选用的是光纤探测器。

其他还有激光打孔、刻槽=标记、光化学沉积等加工技术。

(3)激光快速成型技术

激光快速成型是利用计算机将复杂的三维物体转化为二维层,将热塑性塑料粉末或胶粘衬底片材纸张烧结,由点、线构造零件的面(层),然后逐层成型。激光快速成型技术可使新产品及早投放市场,极大地提高了汽车生产企业对市场的适应能力和产品的竞争能力。

(4)光能驱动技术

利用光致变形材料可制作光致动器和光机器人。现已研制成功一种光致动器,其工作原理是将光照在形状记忆合金上,反复地通、断使材料伸缩,再利用感温磁性体的温度特性,将材料末端吸附在衬底上。利用材料本身的伸缩和端部的吸附特性,加上光的通断便能实现所要求的动作。实验验证,该致动器能可在顶面步行。这种状态目标处于初级阶段,如果能发现具有优异光作用特性的动态物质,则可使光能驱动技术广泛应用。

3.结语

技术上的改革和与之相配套的技术支持是创新技术的基础。开发光机电一体化产品有不同的层次和灵活的自由度。在机械技术中恰当地引入电子技术,产品的面貌和行业的面貌就可以迅速发生巨大变化。产品一旦实现光机电一体化,便具有很高的功能水平和附加价值,将给开发生产者和用户带来巨大的社会经济效益。

参考文献

[1]刘志,朱文坚.光机电一体化技术,现代制造工程,2001(12)

[2]梁进秋.微光机电系统国内外研究进展.光机电信息,2000(8)

[3]宋云夺编译.光机电一体化业的未来.光机电信息,2003(12)

第2篇:光电化学技术范文

【关键字】:光通信技术;电力通信;系统应用;意义;应用方法

引言

电力系统是一个集发电、变电、输电、配电为一体的复杂的系统。为了对电力系统进行科学高效的管理,我国现在正在推动智能电网的建设。而智能电网其中一项重要的内容就是智能化的电力通信系统。这个智能化的电力通信系统具有网络化、信息化、一体化、高效化的特点,对于保障电力运行系统的安全和高效管理具有重要的意义。因此、我们需要运用具有现代化的方式进行电力通信系统的建设。而光通信技术就是这样一个具有科学化、现代化的技术。所以,我们需要对于光通信技术在电力通信系统运用的意义及应用的方法进行科学研究。

1、光通信技术在电力通信系统中的应用意义

现在我国主要应用的是一种新型的ASON光通信技术,它是集传递信号与交换信号为一体的一种技术,对于保障电力通信系统的安全、处理各种线路问题提供了有力的技术支持。除此之外,这种新型的光通信技术还具有网络布置的优点,可以有效的提高我国光传输电网的应用功能与应用质量,全面的为广大的用电群体提供更好的服务。

2、光通信技术在电力通信系统中的应用方法

2.1制定科学的组网方案

光通信技术在电力通信系统中的应用方法是制定出科学的光通信组网方案,实现光通信技术的有效应用。具体的方案主要有两种。第一种方案,利用现代的网络通信技术进行对于目前使用的电力传输网络进行科学化与标准化的改进,融入先进的光通信技术、比如:ASON技术,实现科学化现代化的电力网络通信的建立与完善,形成良好的电力通信系统,全力保障电力的科学运行。第二种方案,利用现代的网路科技对于目前应用的网络传输平面进行网络化的升级与改造,全面的保障电网的有效运行。总之,电力工作人员需要从实际出发、具体问题具体分析,对于需要进行光通信技术应用的地方进行权衡利弊的科学规划,创建一个高效的网络电力通信系统运行模式。

2.2精心挑选光通信技术设施设备

精心挑选光通信技术设备设施也是进行光通信技术在电力通信系统中应用的一个重要方法。目前我国主要进行光通信技术设施设备生产的厂家有华为公司、中兴公司。我们进行现代化、标准化的光通信技术的网络应用,需要从这些知名公司生产的优质产品中进行设施与设备的挑选,以保障质量与应用的要求。同时,进行这些设备与设施的挑选时需要注意以下几个方面。第一,设备设施的网络节点槽位数量规模要很大,总线路带涉及的范围要很广。第二,设施设备要具有良好的安全性能与通用性能,为今后的智能化电力通信系统的建设提供有力的保障。第三,电力工作人员对于卡板的挑选要使其可以保障现阶段工程的要求。第四,卡板要具有热备份的功能。第五,光通信技术应用的设备设施要与低阶业务交叉调度项目的基本要求相适应,保障这些设施设备可以投入到正常运行。第六,在电力通信系统中,多方向线路的应用要尽量在多个业务卡板中,使整个的业务运行出现事故的概率大大降低。

2.3进行高效的业务规划分析

光通信技术在电力通信系统中应用的又一个方法是进行高效的业务规划分析。首先,进行高效的业务分析与规划,拉近业务与业务之间的距离。其次,进行科学的规划、使网络跳数出现的次数要少。再次,进行有效规划、保证网络负载均衡。最后,对于光通信技术的应用情况进行有效的观察与监督,使规划分析的业务与实际的落实情况一致,最大限度的保障光通信技术的功能得以有效发挥。同时,对于光通信技术的应用进行高效规划,对于促进我国经济的发展与保障人民的用电需求也具有重要作用。

3、光通信的发展技术

3.1SON技术

所谓的ASON其实和其它的光信息网络体制一样,就是利用ASON技术来完成信息传输的新型网络。其技术核心是,在光传输信息网络平台上利用ASON技术进人控制平台,以实现网络资源的实时分配计划和按需分配计划。简答的来说,它是一种具有交换功能的新时代电网。ASON技术是可以进行网络连接和自动交换功能的新一代光网技术。传统的网元只具有两个层面:设备层面、网管层面。而ASON加你个控制层面引人其中构成了三个层面。并且将网管层面功能转移到控制层面,采用了分布式的控制将传输、数据和交换结合起来。

3.2OTN

技术。OTN技术是在对SHD技术的借鉴之上,引人了开销理念。在其中OTN技术定义了三个光层概念:OCH、OMSN、OTSN。定义了域内和域间的网络接口。运用了FEC技术增强了线路容差。WDM基A下的OTN技术拥有一套完善的体制结构,其体制内容包括:第一,规定OTN机制下的光层与电层具有网络生存机制。第二,对所有客户进行任意的透明传输。第三,提供FEC纠错能力。第四,OTN技术下的网组具有分级管理特征,对各个层级都具有特定的管理体制。

3.3EPON技术的组网方式

EPON技术的组网方式的组网方式主要是对局端和分散器的连接方式进行改变。其中将局端和分散器的连接方式变为一条光纤,这样减少了局端到用户之间不必要的成本并且提高了传输效率。利用EPON技术的组网方式拥有着维护简单、供高带宽、网络覆盖面积大范围广、网络可靠性高及简化网络乘此的特点。

结语

对于光通信技术在电力通信系统中的应用问题进行科学的研究与实施,可以有效地促进电力通信系统朝着现代化、科技化、信息化、一体化的目标迈进,保障我国智能电网的建设与完善。

【参考文献】:

[1]蒋新平.光通信技术在电力通信系统中的应用与组网方案研究[J].中小企业管理与科技(上旬刊),2015,12:265-266

[2]陈启明.光通信技术在电力通信系统的应用[J].通讯世界,2015,21:4-5

第3篇:光电化学技术范文

关键词:光机电一体化 技术 趋势

近些年来,光机电一体化技术得到迅猛发展,在民用工业和军事领域得到广泛地应用。因此,光机电一体化技术成为当今机械工业技术发展的一个主要趋势。

一、光机电一体化技术特征

光机电一体化系统主要由动力、机构、执行器、计算机和传感器五个部分组成,相互构成一个功能完善的柔性自动化系统。其中计算机软硬件和传感器是光机电一体化技术的重要组成要素。与传统的机械产品比较,光机电一体化产品具有以下技术特征。

1、体积小,重量轻,适应性强,操作更方便

光机电一体化技术使得操作人员摆脱了以往必须按规定操作程序或节后频繁紧张地进行单调重复操作的工作方式,可以灵活方便地按需控制和改变生产操作程序,任何一台光机电一体化装置的动作,可由预设的程序一步一步控制实现,甚至实现操作全自动化和智能化。

2、功能增加,精度大幅提高

光机电一体化系统包括以激光、电脑等现代技术集成开发的自动化、智能化机构设备、仪器仪表和元器件。电子技术的采用使得包馈控制?水平提高,运算速度加快,通过电子自动控制系统可精确按预设动作,其自行诊断、校正、补偿功能可减少误差,达到靠单纯机械方式所不能实现的工作精度。同时,由于机械传动部件减少,机械磨损及配合间隙等引起的误差也大大减小。

3、部分硬件实现软件化,智能化程度提高

传统机械设备一般不具有自维修或自诊断功能。光机电一体化技术使得电子装置能按照人的意图进行自动控制、自动检测、信息采集及处理、调节、修正、补偿、自诊断、自动保护直至自动记录、显示、打印工作结果。通过改变程序,指令等软件内容而无需改动硬件部分就可变换产品的功能,使机械控制功能内容的确定和变化趋势向“软件化”和“智能化”。

4、?产品可靠性得到提高,使用寿命增长

传统的机械装置的运动部分,一般都伴随着磨损及运动部件配合间隙所引起的动作误差,导致可动摩擦、撞击、振动等加重,严格影响装置寿命、稳定性和可靠性。而光机电一体化技术的应用,使装置的可动部件减少,磨损也大为减少,像集成化接近开关甚至无可动部件、无机械磨损。因此,装置的寿命提高,故障率降低,从而提高了产品的可靠性和稳定性。

5、?产品系统性增强,各部分系统间协调性要求提高

光机电一体化是一门学科的边缘科学技术,多种技术的综合及多个部分的组合,使得光机电一体化技术及产品更具有系统性、完整性和科学性。其各个组成部分在综合成一个完整的系统中相互配合有严格的要求,这就要求各种技术扬长避短,提高系统协调性。

二、研究现状和发展趋势

1、研究现状

自从我国实行改革开放以来,科技领域急起直追,我国的光机电一体化技术已取得明显的成效,数控产品有了很大的提高,尤其是经济型灵敏数控装置发展很快,是我国特有的经济实用产品,不但适用国内市场的需要,部分产品还随主机配套出口。国内的机械产品采用可编程控制器(PC)和微电子技术控制设备也越来越多,覆盖面也日益扩大,从纺织机械、轴承加工设备、机床、注塑机到橡胶轮胎成型机、重型机械、轻工业机械都是如此,我国自行研制和生产的光机电设备,在质量上也有重大突破,为今后的推广应用打下了良好的基础。

2、发展趋势

光机电一体化技术已经渗透到各个学科、领域,成为一种新兴的学科,并逐渐成为一种产业,而这些产业作为新的经济增长点越来越受到高度重视。?从世界科学技术的发展情况来看,光机电一体化技术的未来技术热点主要包括。

(1)激光技术

1)高单色性,利用激光高单色性作精密测量时,可极大地提高测量精度和量程。

2)高方向性,因具有很远距离传输光能和传输控制指令的能力,从而可以进行远距离激光通信、激光测距、激光雷达、激光导航以及遥控。

3)高亮度性,利用激光的高亮度特性,中等亮度激光束在焦点附近可产生几千到几万度的高温,可使照射点物体熔化或汽化,对各种各样材料和产品进行特种加工。

4)相干性,由于激光速频率单一、相位方向相同。适用于激光通信、全息照相、激光印刷以及光学计算机的研制,而在实际运用中也会通过一些激光技术改变激光辐射的特性,应用范围更广。

(2)传感检测技术

1)激光准直,能够测量平直度、平面度、平行度、垂直度,也可以做三维空间的基准测量。

2)激光测距,其探测距离远,测距精度高,抗干扰性强,体积小,重量轻,但受天然影响大。

3)光纤探测器,在目标很小,间隔受限或危险的环境中,最常选用的是光纤探测器。

其他还有激光打孔、刻槽=标记、光化学沉积等加工技术。

(3)激光快速成型技术

激光快速成型是利用计算机将复杂的三维物体转化为二维层,将热塑性塑料粉末或胶粘衬底片材纸张烧结,由点、线构造零件的面(层),然后逐层成型。激光快速成型技术可使新产品及早投放市场,极大地提高了汽车生产企业对市场的适应能力和产品的竞争能力。

(4)光能驱动技术

利用光致变形材料可制作光致动器和光机器人。现已研制成功一种光致动器,其工作原理是将光照在形状记忆合金上,反复地通、断使材料伸缩,再利用感温磁性体的温度特性,将材料末端吸附在衬底上。利用材料本身的伸缩和端部的吸附特性,加上光的通断便能实现所要求的动作。实验验证,该致动器能可在顶面步行。这种状态目标处于初级阶段,如果能发现具有优异光作用特性的动态物质,则可使光能驱动技术广泛应用。

3.结语

技术上的改革和与之相配套的技术支持是创新技术的基础。开发光机电一体化产品有不同的层次和灵活的自由度。在机械技术中恰当地引入电子技术,产品的面貌和行业的面貌就可以迅速发生巨大变化。产品一旦实现光机电一体化,便具有很高的功能水平和附加价值,将给开发生产者和用户带来巨大的社会经济效益。

参考文献

[1]?宋云夺编译.?光机电一体化业的未来.?光机电信息,2003(12)

第4篇:光电化学技术范文

关键字:生物化学检验;发展趋势;常用技术;临床诊断

0引言

在检验医学中临床生物化学检验是重要的组成部分之一,在实验室有主要地位。临床生物化学检验主要是通过现代科学技术,对患者体液中的化学成分进行分析,在临床诊断中有助于医师对患者的病情进行分析、预防、治疗,临床生物化学检验是一门新兴技术,随着医疗技术的不断发展,改线技术也逐渐的完善、成熟,逐渐的成为临床诊断中重要的技术之一。对生物化学检验进行深入的研究与分析,能在一定程度上促进临床医学的发展。

1临床生物化学检验概述

在对临床生物化学检验进行了解前,首先应对生物化学进行简单的认识,生物化学是对生物的化学组成、生物结构与生命中的化学变化进行研究的学科,生物化学的内容包含了激素、核酸、维生素、无机离子、蛋白质、遗传、繁殖、结构、功能以及物质代谢等等[1]。进行研究的目的是对疾病发生过程中生物化学的变化情况进行描述,帮助临床医师对患者病症的生物化学成分进行分析、判断,提供相应的治疗依据。临床生物化学检验主要是通过生化检验对主要化学成分进行分析,对患者的机能、病情进行有效的评估,为临床疾病的治疗与预防提供依据。

2临床生物化学检验技术发展趋势

20世纪末期,随着生物化学、临床医学及分析化学的发展与进步,同时计算机技术与自动化技术的迅猛发展,在一定程度上促进了生物化学的进步,提升了临床生物化学检验技术水平。新世纪以后,随着分子生物学的逐渐成熟与核酸分子杂交技术的推广[2],临床生化试验在一定程度上提高了生物学检验技术水平。另一方面,临床生化检验技术在计算机信息技术与自动化分析技术的支持下迅速发展。目前,临床生物化学检验在电介质平衡、酸碱平衡、糖尿病、精神疾病、肾脏疾病、心肌损伤等多种疾病的检验中得到了广泛的应用,且取得了显著的效果,该项技术的发展也开始从横向发展专为纵向深化。

3临床生物化学检验常用技术

临床生物化学检验技术是在自动化生化仪器的广泛应用的基础上对生物化学检验技术进行推动的一种检验技术,现阶段医学技术中生化检验的频率逐渐的增加,现代科学技术与生化技术不断融合,产生了一些新兴的检验技术,例如:生物传感、光谱分析等,取得了显著的应用效果,其中光谱分析技术与电化学分析技术是临床生物化学检验中最常用的两种技术。

3.1光谱分析

发射光谱分析技术发射光谱分析技术主要包含了火焰光谱与荧光分析两种方法,其中火焰光谱主要是在火化与电弧的作用下,让物质在高温状态离解为离子或者原子后,发射出光谱线,然后根据强度在试样品中的含量为标准,得到具体的含量。荧光分析则是利用荧光强弱对物质的含量进行测定,该种方法具有高灵敏度,能够对复杂组分进行微量分析的应用优势,但是对测定条件与仪器的要求较高。原子吸收分光光度法原子吸收分光光度法是待测元素灯的特征谱线穿过供试品,经过试原子化产生原子蒸汽以后,将蒸汽中需要测量的元素基态原子吸收,并对辐射光的强度减弱情况进行测定,得到供试品内元素的含量。进行原子吸收测定会受到背景干扰,因此在进行原子吸收分光广度分析时,必须对背景影响进行考虑,同时原子化条件、波长变化也会影响检测的灵敏性与稳定性[3-11],因此在检测时应尽可能的避免影响因素,提高检测质量。可见分光光度法该方法的应用原理是朗柏-比尔定律,比较法、标准曲线法师进行吸收光谱法的定量测量方法。

3.2电化学分析

在实验技术与电化学基本原理的基础上,根据物质的电化学性质,例如:电导、电量、电位计化学含量的多少进行分析的一种方法。电化学分析技术具有高灵敏度、高精确度、高选择性、操作简单等优点。现阶段所应用的例子电位选择分析法,其原理是根据溶液内活性物质与电极电位之间的关系进行分析,具有操作简单、选择性好、分析效率高的优点。

3.3生物传感技术

第5篇:光电化学技术范文

摘 要:科学技术与信息化技术日新月异的变化,在其推动下,工程领域也得到了迅猛的发展。机械领域的管理体系、生产方式以及产品结构等都发生了翻天覆地的变化,工业生产正式步入到机械电气化朝着机电一体化的过度阶段。本文主要针对机电一体化技术的发展现状与发展趋势进行了详尽的探讨,仅供参考与借鉴。

关键词 :机电一体化 现状 发展趋势

改革开放三十多年来,我国的国民经济与科学技术水平都得到了显著的提升,处在这样的背景下,机电一体化越来越受到重视,逐渐开始在社会当中各个领域进行渗透,有效推动了各个学科的相互交叉,同时促进了各个学科的有效渗透,对国民经济的建设与发展发挥着巨大的促进作用[1]。但是相较于发达国家来说,我国当前的机电一体化水平仍然存在较大的差距,所以针对机电一体化的发展现状与发展趋势进行探讨具有一定的现实意义。

一、机电一体化技术的发展现状

关于机电一体化的发展大致可以分为三个部分。上个世纪六十年代为第一个部分,在这个阶段,人们开始尝试应用电子技术的初步成果来完善机械产品性能。因为第二次世界大战的刺激,促使电子技术与机械产品进行结合,战争时期的军用技术最终转化为民用技术,该时期的研究基本上处在自发的状态。因为该时期电子技术的发展水平较低,机电一体化无法实现更为深入的发展,其所开发的产品也不能进行有效的推广使用。

上个世纪70-80年代是机电一体化的第二部分。处在这个时期,通信技术、信息化技术以及控制技术都获得了巨大的突破,为机电一体化的发展打下了坚实的基础。Mechatronics最早在日本被人们所接受,直到80年代其才在世界范围内得到广泛的认可,各个国家都开始重视机电一体化技术。

上个世纪90年代末期为机电一体化发展的第三部分。机电一体化技术正式进入了深入发展的阶段。其一,通信技术与光学技术等进入了机电一体化,微细加工技术也开始逐渐推广,开始出现微机电一体化、光机电一体化等相关的分支领域;其二,针对机电一体化系统的分析、集成方法以及建模设计,众多专家与学者开始针对机电一体化的发展趋势与学科体系都进行了深入的研究分析。与此同时,在光钎技术、人工智能技术以及神经网络技术等相关领域的突破,使得机电一体化技术具有极为广阔的发展空间。

我国在机电一体化技术领域的起步较晚,但国家在80年代末期,出台了一系列促进机电一体化技术发展的政策,提出了在汽车电子、数控机床以及工业机器人等6项共性关键技术与15个优先发展领域的研究课题与方向[2]。通过多年的发展,我国在机电一体化技术已经获得了许多突破性的发展,正朝着国际先进水平努力。

二、机电一体化技术的发展趋势

(一)光机电一体化

所谓光机电一体化技术,指的是机械技术、光学技术、控制技术、信息化技术以及微电子技术的有效整合与交叉,是现阶段众多高兴技术设施与高兴技术产业的基础。其主要包含技术与产品两个层面:光机电一体化产品整合了通信技术、自动控制技术、微电子技术、机械技术以及光学技术等新兴技术,具有极高的附加值与功能;相关产品具有操作便捷、寿命长、适应性强、重量轻以及体积小的优势。通过合理应用光机电一体化技术,可以产生极高的附加价值与功能水平,能够为广大用户与生产商带来良好的经济利润。未来,光机电一体化技术的热点包含光能驱动技术、传感检测技术、激光快速成型技术以及激光技术等。

(二)智能化

智能化是现阶段机电一体化技术重要的发展方向,针对人工智能在机电一体化中的应用研究越来越多,当中数控机床与机器人的智能化就是非常重要的应用。该“智能化”是针对机器行为,主要是在控制理论的体系上,充分吸收混沌动力学、生理学、心理学、模糊数学、计算机科学、运筹学以及人工智能等,使其具有自主决策、判断推理以及逻辑思维等基本能力,以此来获取更高的控制目标。虽然使机电一体化产品获取与人基本相当的智能是不大现实的,同时也是没有必要的,然而,高速、高性能的微处理器给予机电一体化产品低级智能则是非常必要的。

(三)绿色化

上个世纪是机械工业迅猛发展的一个世纪,然而当时的发展基本都是建立在耗费巨大能源与资源的基础上。然而许多能源与资源是不可再生的,随着人们对物质生活的要求及人口数量的不断增长,传统的高投入、高输出模式显然已经不能适应当前的社会形式,机电一体化技术的发展自然也不例外。未来,机电一体化技术的发展要避免传统粗放型的模式,必然朝着能源、资源高效利用的集约型模式,绿色化的发展才是机电一体化技术真正实现可持续发展的目标。

(四)网络化

当前这个时代是信息化技术高度发展的时代,在互联网技术的不断普及与发展过程中,市场竞争环境正在发生巨大的变革。网络化在各行各业中的应用越来越广泛,不但企业内部生产管理要进行网络化控制,并且技术服务在鲜花、消费行为网络化、产品销售网络化以及产品设计虚拟化等都会成为未来市场发展竞争的必然趋势。而机电一体化的新产品一经开发,在短时间内就能够畅销全世界。当前基于网络的监视技术与远程控制技术方兴未艾,远程控制的终端设施本身就属于机电一体化产品。此外,局域网技术与现场总线技术的普及使得家用电器正在朝着网络化的趋势进行发展,应用家庭网络把各类家用电器连接成以计算机为核心的计算机集成家电系统,使得人们能够足不出户就能够享受到各种新兴技术所带来的快乐与便利[3]。所以,机电一体化技术未来必然会朝着网络化的趋势发展。

三、结语

总而言之,机电一体化的不断发展并非孤立的,其是众多科学技术共同发展的结晶,同时也是社会生产力发展到某个阶段的必然要求与趋势。在科学技术持续发展的推动下,各个技术进行整合的趋势必然会越来越多,机电一体化技术未来必然拥有极为广阔的发展空间。

参考文献

[1]余仕彪.机电一体化精确定位装置及其控制系统的研究[D].上海海洋大学,2013.

[2]贾启升.简述机电一体化技术发展状况及趋势[J]. 中小企业管理与科技(上旬刊),2012,01:195-196.

第6篇:光电化学技术范文

一太阳电池技术的发展 1873年英国科学家WiloughB.Smith发现了对光敏感的硒材料,并提出在光的照射下硒导电能力的增加正比于光通量。1880年,第一片以硒为基础的太阳电池由CharlesFritts制造出;1954年,美国贝尔实验室G.Pearson、D.Chapin和C.Fuller开发了第一个实用单晶硅太阳电池。第一代太阳电池以硅片为基础,其技术已经发展成熟。太阳电池的主要材料为晶体硅。目前主要研究方向为:硅基太阳电池的转换效率,目的在于采用双面电池、减小光反射来提高光电转换效率;运用吸杂技术减小半导体材料的复合效应;使电池超薄型化;降低硅片的缺陷;快速掺杂和表面处理技术;连续和快速的布线工艺;多晶硅电池表面织构化技术和薄片化;高效率电池工艺技术等。第二代太阳电池基于薄膜技术,其结构主要是在非硅材料的衬底上生长薄膜光电材料,这样就能够大大减少硅材料的消耗,并且易于形成批量自动化生产,从而降低太阳电池的成本。高转换效率的薄膜太阳电池主要通过减少非光能耗、增加光子有效利用以及减少太阳电池内阻,实现转换效率的大幅度提升。国际上已经开发出电池效率在15%以上、组件效率10%以上和系统效率8%以上、使用寿命超过25年的薄膜太阳电池工业化生产技术。新一代太阳电池的发展方向是化合物太阳电池(如铜铟镓硒等),其具有转换效率高、成本低、弱光性好以及寿命长等优点。我国于1959年成功研制第一个具有实用价值的太阳电池,1979年开始生产单晶硅太阳电池。近年来,我国科研工作者的研究方向包括晶体硅高效太阳电池技术、非晶硅薄膜太阳电池技术、碲化镉和铜铟硒薄膜太阳电池技术、多晶硅薄膜太阳电池技术及应用系统关键技术等。 二光伏行业专利技术分布 随着全球光伏产业的迅速发展,用于太阳电池的活性材料及其制造工艺技术也得到迅速发展,全球专利申请量逐年稳定增长。专利申请主要集中在日本、美国、欧洲、德国、中国和韩国等国家和地区,其中以日本的专利申请量最多,占全球总申请量的64.0%,远远超出其他国家和地区所占比例;专利申请量居前列的是日本和德国企业。近年来,用于太阳电池的活性材料主要是单晶硅和多晶硅。由于多晶硅是制造单晶硅的主要原材料,因此,多晶硅的制造是关键。目前工艺成熟并用于大规模生产的工艺主要是西门子法。国内外申请人的专利申请也以多晶硅及其制造申请量居多,主要涉及西门子法和冶金法,但是国内外申请人的侧重点不同,国外在华专利申请中涉及西门子法的专利申请较多,而国内申请中涉及冶金法的专利申请较多。用于太阳电池的活性材料及其制造工艺主要集中在日本、德国、美国和韩国。在全球专利申请量中,申请量居前列的公司包括住友、夏普、三菱、西门子、松下、川崎制铁、佳能、京瓷、瓦克和德山等(注:数据来源于中国专利检索数据库,公司名称统一采用简称)。重点生产厂商都侧重于多晶硅制造技术,松下主要侧重于化合物材料制造,佳能主要侧重于多晶硅薄膜的制造。在多晶硅工艺方面,京瓷主要侧重于多晶硅后续加工,如铸锭等方面。住友在各个主要技术分支的发展较均衡,但更侧重于对西门子法的完善和改进,同时也在积极研究金属还原法。 1多晶硅制备技术 近年来光伏产业飞速发展,多晶硅制备技术的相关专利年平均增长率超过40%。目前世界大部分多晶硅生产厂商主要还是采用改良西门子法进行生产,这表明改良西门子法仍是目前较成熟的多晶硅制造方法。除了改良西门子法外,当前出现了很多新的多晶硅制造工艺,其中一个热点工艺是冶金法制造多晶硅。国外在华专利申请中,冶金法的专利申请量在总量中位居第二,一些主要厂商如川崎制铁、住友等也积极开发此方法。冶金级硅的纯度不如传统西门子法制造的多晶硅纯度高,使用冶金级硅制造的太阳电池衰减也较严重,其使用寿命还没有得到验证,但成本优势明显。道康宁和西日本制铁公司所正在用冶金法试生产高纯冶金多晶硅,用其制造的多晶硅太阳电池的转换效率可达15%。其中重要专利包括佳能的冶金法CN100341780C、三菱的硅烷法JP3864693B2及金属还原法JP3844856B2以及日本德山公司的西门子法CN100436315C、CN1230379C、CN100347083C,川崎制铁公司的冶金法CN1092602C、JP3205352B2、JP1733986C,美国Hemlock公司的EP334664B1、EP1392601B1。 2太阳电池技术 全球太阳电池技术发展迅猛,专利申请的技术重点主要是薄膜太阳电池相关技术,同时染料敏化太阳电池相关技术也是近几年的研究热点。在专利技术申请方面,我国的技术方向与国外基本一致。技术分支较全面,主要集中在薄膜太阳电池相关技术方面。同时,在近年来备受关注的染料敏化太阳电池方面的研究也较活跃。其中北京行者公司、李毅(申请人)和南开大学的研究重点为薄膜太阳电池;彩虹集团公司、复旦大学、清华大学和中科院长春应用化学研究所在染料敏化太阳电池领域的研究较活跃;常州天合公司的研究则主要集中在晶体硅太阳电池相关技术;此外,中科院长春应用化学研究所对有机太阳电池的关注度较高。太阳电池领域全球专利申请中,日本申请人在该领域处于绝对优势地位,在申请量上已经基本处于垄断地位。夏普和三菱自1999年开始,专利申请量迅速增长,在近几年一直保持发展势头。各主要厂商分别侧重于不同技术领域,目前主要生产厂商都非常注重在薄膜太阳电池领域的技术开发,尤其是佳能、三洋和松下,基本上全部研发重心都放在薄膜太阳电池领域,夏普和三菱的发展都为全面,在晶体硅太阳电池、薄膜太阳电池、染料敏化太阳电池以及有机聚合物太阳电池4个技术领域均有一定数量的专利申请,其中夏普在晶体硅太阳电池方面的实力最强,而三菱则在染料敏化太阳电池和有机聚合物太阳电池领域略强于夏普。太阳电池领域的重要专利也主要集中于日本,如佳能、三洋、夏普等公司。其中晶体硅太阳电池和薄膜太阳电池技术的专利申请起源都较早,因此基础性的专利都已经超过保护期限,重要专利均为改进型专利技术;染料敏化太阳电池是太阳电池领域中较新的一个研究分支,是目前全球专利申请的技术热点。其中重要的专利包括佳能的叠层结构US6180870B1、US6383576B1、衬底/电极CN1096713C、US5500055A以及成膜方法/设备EP0828301B1等;夏普的衬底/电极CN100472817C、钝化膜/抗反射EP1816683B1、染料敏化太阳电池JP1063802B2等;三菱的叠层结构CN100435357C;松下的叠层结构US6441301B1及染料敏化太阳电池US7256147B2。国内申请人分别具有不同的技术重点。在晶体硅太阳电池技术方面,无锡尚德的发明专利申请主要包括晶体硅太阳电池电极制绒和镀减反射膜工艺;常州天合的专利申请涵盖晶体硅太阳电池的衬底、电极的设计等;阿特斯的专利申请主要涉及太阳电池的抗反射及钝化工艺。在薄膜太阳电池技术方面,叠层结构方面专利申请较活跃的主要申请人有南开大学、北京行者以及李毅,其中南开大学和李毅在薄膜太阳电池方面的专利技术较全面,涵盖了衬底、电极以及叠层结构的设计,还有制造电池的方法和设备,北京行者的专利申请则主要集中在电池的电极和叠层结构方面。#p#分页标题#e# 3硅基薄膜太阳电池技术 作为光伏行业的另一重要分支,薄膜太阳电池近年来得到快速发展,目前已达到实用化的薄膜太阳电池是硅基薄膜电池、碲化镉(CdTe)薄膜电池、铜铟镓硒(CIGS)薄膜电池。其中硅基薄膜太阳电池具有更多优势,因而成为薄膜光伏市场的主流。硅基薄膜电池品种多,只需改变气相成分可制备各种硅基单结电池和叠层结构电池。材料结构上包括非晶硅、微晶硅;电池结构上包括非晶硅单结、非晶硅/非晶硅双结叠层、非晶硅/微晶硅双结叠层电池,还包括以硅为基础的各种合金材料和电池等。例如非晶硅锗叠层电池,这个组合可扩宽光波谱吸收率,提升能源转换效率,与传统的非晶硅单结太阳电池相比提升了约50%,但仍不及晶体硅太阳电池的转换效率。国内申请和国外在华申请中,薄膜太阳电池的申请量最大(分别占32.6%、35.8%),主要申请人为佳能、三洋和松下,其基本上全部研发重心都放在薄膜太阳电池领域。国内薄膜太阳电池技术主要从材料组分控制、衬底材料及薄膜淀积生长设备等方面进行研发。 4染料敏化太阳电池技术 染料敏化太阳电池在中国的专利申请量从2000年以后明显增加,在国内申请和国外在华申请中所占比例分别为24.1%和19.2%,仅次于晶体硅太阳电池技术。在此技术领域中,韩国三星公司的染料敏化太阳电池方法的专利申请量远高于其他主要申请人。在该领域的专利申请中,国内申请量排名前十的申请人有彩虹集团、复旦大学、清华大学以及中科院长春应用化学研究所等。 5有机半导体太阳电池技术 在有机半导体太阳电池技术领域,日本、欧美国家研发时间较长。夏普和三菱在有机半导体太阳电池技术领域均有一定数量的专利申请,中科院长春应用化学研究所对有机太阳电池的关注度较高,共提交了11件相关专利申请。 6光伏组件技术 光伏组件技术的发展伴随着太阳电池技术的发展而持续推进,在这方面主要集中了日本、美国和德国等发达地区的专利申请,其中以日本的专利申请数量最多,而且专利申请量居前列的几乎全为日本申请人。总体来看,日本在光伏组件技术方面占据优势地位,美国、德国等地区也具有雄厚的实力。中国地区光伏组件技术方面的专利申请量近十年增长快速,然而国内专利申请的主体是实用新型,发明专利申请的数量不足,通过PCT途径提交的发明专利申请更少;另外国内专利申请的分布区域较为集中,但申请人较为分散,尤其科研机构及个人所占比例较大。在光伏组件重要技术分支的研发上,国内外申请人的侧重点不同,国外申请和国外在华申请中以互连技术和封装技术的申请量居多;而国内申请中聚光技术和封装技术的比例较多,尤其以聚光技术最多;对于封装技术,国内申请人主要集中在封装工艺方面提出申请,而在封装材料方面的申请相对较少。其中重要的专利包括佳能的互连技术CN1227747C、封装技术US5728230A;夏普的互连技术、保护技术US5330583A;三洋的封装技术、保护技术US6552258B2、聚光技术JP3738129B2等。 (1)先进封装材料制造技术 封装技术方面的专利申请侧重于制造工艺,重要专利包括将旁路二极管集成在太阳电池片内部的专利US6359210B2、在太阳电池片与背膜之间增加绝缘树脂片的专利CN1194421C等。光伏组件对于高耐候性和高阻隔性的需求使封装材料的发展极其迅速,然而目前来看光伏组件的封装材料特别是背膜材料尚存在电气性能、阻隔性与耐候性不高的情况,这都严重影响了光伏组件的电性能与工作寿命。杜邦、普利司通等公司在封装材料制造方面占有相当优势的地位。 (2)聚光光伏组件技术 采用聚光技术提高照射在光伏组件表面上的太阳光能量,可提高光伏组件单位面积的光电转换效率,同时降低太阳电池片本身的材料用量,有利于产生更多电能并且降低组件成本。然而,目前聚光光伏技术存在太阳电池温度升高导致光电转换效率下降以及光伏发电系统复杂度提升的问题,这些问题成为制约聚光光伏发电发展的障碍,导致产业化的实现存在困难。聚光光伏组件技术的专利申请量较少,可在此基础上继续深入研究聚光光伏技术。该技术领域的研究重点在于解决光伏与光热综合利用,提高太阳电池转换效率的同时有效回收所产生的热量。 三结论 本文从专利领域对光伏技术发展现状及其发展趋势进行了分析,结合我国太阳电池技术领域的产业现状、发展目标和发展趋势,得出以下结论: (1)太阳电池技术应注重向光伏转换理论、光谱选择性机理、材料工艺特性、产品性能检测与仿真、生产装置等技术领域的发展。 (2)多晶硅技术仍可持续发展,薄膜太阳电池和染料敏化电池将成为重点突破的技术领域。薄膜太阳电池领域如铜铟镓硒薄膜太阳电池作为新兴的薄膜太阳电池,具有生产成本低、污染小、不衰退、弱光性能好、光电转换效率高等显著特点,在应用上可与晶体硅电池形成良好的互补,应该加大研究开发力度。 (3)西门子法多晶硅制造技术的研发重点在反应器及尾气回收利用等方面;冶金法多晶硅制造技术的研发重点在转换效率方面;化合物材料制造技术的研发重点在I-III-VI族化合物,如CIGS、CIS;多晶硅薄膜制造技术的研发重点是材料组分控制、衬底材料及薄膜淀积生长设备等方面;而薄膜太阳电池技术的研发重点为衬底的材料和结构、电极的材料和结构、叠层结构以及制造电池的方法和设备等方面;染料敏化太阳电池技术的研发重点为新材料、新工艺方面;有机聚合物太阳电池技术的研发重点是材料的转换效率;光伏组件的研发重点在于封装技术和聚光技术方面。

第7篇:光电化学技术范文

光电技术是将传统光电技术与现代计算机技术和微电子技术相结合的一门先进技术,是获取光电信息和借助光电来提取其它有用信息的途径,例如研究力、电流、声音、温度等。这一先进技术也促使人类有效地拓展了自身的视觉功能。当前光电技术已经渗透发展到许多科学领域,并且得到了迅猛的发展。具有代表性的应用之一是半导体激光器的广泛应用,第三代微光像增强器的实用化和具有高量子效率的负电子亲和势光电阴极的充电倍增管,在热成象中的红外焦平面技术的应用,超大规模的CCD面阵的团体摄象器件已经在工业和民用领域都得到了广泛的应用等等,新技术和新器件在不断涌现。

全球光电产业快速发展

光电子技术是21世纪的尖端科技。近年来,我国光电子产业规模不断飞速发展,市场潜力巨大,光电子技术和产业在各个领域得到了广泛应用,其发展状态日新月异。以光电显示器件为代表的基础产品LED为例,由于化合物半导体发光材料技术性能的逐步提高,使得LED产品技术性能日益提高,其应用产品正在向薄型化、低成本、高解析度、视角宽度、响应速度快、大尺寸及高亮度方面发展,使得LED光彩照人,魅力四射,极大地促进了我国LED照明产业发展,信息家电的基础产品,就视角特点而言,如PDP、TFT-LCD、OLED、PLED等,在大屏幕显示方面将成为未来市场发展的引导。

如表1,近10年来其平均增长率在 11%左右。到 2009年全球光电产业产值已经突破 3 530 亿美元。预计未来几年全球光电子市场产值仍会持续以两位数的速度保持增长。正是由于这种快速增长的产业发展速度吸引了众人的眼球,带动了世界各国与光电产业相关行业的发展,同时也造成了光电相关资源的紧俏,特别是光电技术方面专业人才的大量需求,这也为世界各国教育的发展方向提出了新的要求。发展光电产业的重要性显而易见,但光电产业是技术、资本密集的产业,需要雄厚的资金投入和坚实的技术支持。

光电产业已成为我国主要的新兴科技产业

2006年上半年中国光存储销量比2005年同期增长17.5个百分点,市场增长速度超出前期市场预期。

光电子是涉及专业众多的一个综合性产业。如果按其使用功能,可以分为光显示、光通信、光存储、光处理等行业;如果按其使用阶段来分,也可分为光材料、光器件、光整机和加工装备等四个方面。

与集成电路产业不同,我国的光电子行业与发达国家几乎是同时起步,相对而言,技术差距比较小。早在建国初期,根据当时国防与民用的特殊需要,我国就已经开始了中国光电子产业的集中布局,先后在长春、武汉、上海、北京等地,建设了一批从事光学、光电子研究的院校和企业,初步形成了一个完整的光电子产业结构。

目前,我国在激光、光纤、光缆、光器件上的技术和产业水平已经达到或接近国际先进水平。不少产品的国内市场主要份额已被中国厂家所占据并保持较大数量的出口,这些都为中国光电产业进一步参与国际竞争奠定了可靠的基础

但与集成电路等其他高科技产业一样,我国的光电产业也存在工艺技术、核心材料、关键器件与生产设备等四个关键因素落后等情况;在产业布局上,还呈现着“小、散、乱”的现状,缺乏规模化的系统配套与产业,部分重要的器件与材料依旧需要进口;同时,由于过去计划经济的影响,光电企业与研究院所相互独立,难于取得相互支持的有利效应。

采取有效措施,促进我国光电产业发展

随着光电产业的迅猛发展,面临的竞争肯定会更加激烈,我国如何在激烈的竞争中突出发展。本人认为必须做到以下几点:

我国要做好充分的产业规划,按照“切入中游、挺进上游”的发展思路,进一步整合上下游产业,做好承载环境和产业配套体系的打造。打造好园区载体,合理布局、科学规划。要搭建好技术平台,加大相关企业和研发机构人才的对接,形成技术对产业的支撑体系。

产业竞争归根结底是人才竞争。通过调研产业发展现状,探索出亲产业、应用型的人才培养模式,发挥地方产业优势,制定科学和优化的培养方案是地方理工科院校制定光电人才培养计划的重要任务,也是高校凸显办学特色,彰显办学理念,走差异化办学道路的体现。

第8篇:光电化学技术范文

关键词:氘气;制备技术;液氢精馏;电解重水;激光技术

引言:随着全球经济的快速发展,社会对能源的需求量日益增大,各国在经济发展中都面临着能源枯竭问题。这使得氘气研究成为了备受关注的焦点,氘气被称为“未来的天然燃料”。氘气是美国科学家哈罗德・克莱顿・尤里在一九三一年,在大量液体氢蒸发后利用光谱检测方法发现的。氘气的发现轰动了整个科学界,尤里也因此获得了诺贝尔化学奖。氘气最初主要应用于军事研究,如核能工业、核武器等,随着时展,氘气应用逐步扩展到民用工业中,如光纤材料,特殊灯源等,研究氘气制备技术也具有重要意义。

一、氘气的性质

氘是氢的同位素,原子量比普通氢重两倍,三相点-254.4℃;比热容:(101.325kPa,21.2℃):5.987m3/kg;气液容积比:(15℃,100kPa):974L/L;临界温度:-234.8℃;气化热:ΔHv(-249.5℃):305kJ/kg[1]。氘气的化学性质与氢气相同,可以发生普通氢所有的化学反应,并能够生成相应化合物。同时氘气的高质量和低零点特征,使其在相同反应中有着不同反应速度,反应平衡点位置也有明显不同。氘气无毒无味,对生物没有任何危害,仅具有窒息性[2],但氘气易燃易爆,使用及生产中稍有不慎,极有可能诱发安全事故,所以对氘气安全问题必须提高重视。

二、氘气制备技术

随着科技的发展,越来越多的氘气制备技术被提出,不同技术应用效果有所不同,只有科学选择制备技术才能达到理想效果。当前主要氘气制备技术有:液氢精馏技术、电解重水技术、金属氢化物技术、激光技术、气相色谱技术等等。下面通过几点来详细分析氘气制备技术:

(一)液氢精馏技术

氘是氢的同位素,天然氢中氘含量是0.013到0.015。氘沸点为23.5K,氢的沸点为20.38K,HD沸点为22.13K。所以理论上采用精馏液氢制备氘气是完全可以实现的。通常情况下低温精馏时,首先浓缩的是HD,但HD必须经催化剂转化为D2、HD、H2平衡混合物后才能继续精馏浓缩,才能进一步制备。当前液氢精馏技术中低温精馏分离技术多采用JET低温精馏系统来实现氘气制备[3]。但精馏技术回流需要消耗大量能量,能耗问题突出,所以经济性并不理想,在能耗方面有待改进。

(二)重水电解技术

重水电解技术采用电解水装置,以碱金属的氘氧化物为电解质或固体聚合物电解重水。虽然通过该技术制备氘气纯度较高,但仍需要对已制备的氘气进一步纯化。纯化重点是去除杂质,降低氘气所含的氢同位素杂质氕,但氕去除难度较大,处理工艺十分复杂。并且电解过程中能耗问题也十分突出,应用中降低工作电压,提高能量效率的主要策略有:减小电极间距离、提高工作压力、提高工作温度、改变电极材料、使用添加剂等。

(三)气相色谱法

气相色谱法发明于一九五二年,其应用领域十分广泛。一九五七年,气相色谱法被成功用于于氘气制备。目前氢同位素主流气相色谱分离技术有H2-顶替色谱法、迎头色谱法、冲洗色谱法、自我顶替色谱法。H2-顶替色谱法制备量大,回收率和浓缩率最高,但工艺相对复杂。迎头色谱法工艺相对简单,适合从天然氢中制备氘气。冲洗色谱法制备氘气纯度较低,不能满足需求,因此较少采用。自我顶替色谱法具有着无载气、浓缩率高、回收率适中等优点[4],是最为理想的色谱制氘技术。

(四)激光制备技术

激光技术制备氘气最早提出于一九七八年,劳伦斯利弗莫尔实验室,成功通过激光技术制备了浓缩倍数为900的氘气。劳伦斯利弗莫尔实验室是通过紫外离子激光器照射含有重甲醛的甲醛混合物实现分离氘气。一九八年,一些研究者利用YAG激光器和高效率锁模脉冲激光器来制备氘气得到了浓缩倍数为11500的氘气。目前激光制备技术尚处于研究当中,相关技术手段并不成熟。

三、氘气制备技术的选择及其应用

通过分析不难看出,每一种技术的特点和特征以及制备浓度和纯度都有所不同。液氢精馏技术制备氘气使用的精馏装置比较昂贵,且能耗问题突出,技术复杂,经济性方面有所欠缺,但如果资金充足,该技术适合大规模生产。电解重水技术设备简单,小规模比较经济,但若大规模应用,需要面临高能耗问题,电解能耗无疑会增加成本,并且重水属于战略物资相对较为昂贵,所以成本控制难度较大。气相色谱法利用了贵金属,虽制备效果比较理想,但性价比较差。激光制备技术属于新型氘气制备技术仍处于研究阶段,相关技术和设备尚未成熟。当前我国还没有氘气制备工业化装置,大多氘气制备技术都处于实验研究阶段。氘气制备过程中必须合理选择氘气制备技术,结合实际情况科学确定。

虽然重水电解技术电解过程中能耗较高,但重水电解技术相关理论和制备设备相对成熟,且制备的氘气纯度很高,后期处理成本会有所降低,所以当前氘气制备主要还是采用重水电解技术。目前市场上采用的重水电解技术主要分为:固体聚合物水电解、碱性水电解、固体氧化物水电解三大类。其中相对成熟的技术是碱性水电解技术和固体聚合物电解技术,大多小规模实验室使用这两种技术制备氘气,输出量能够达到150~1000mL/min,且操作工艺简单,应用灵活,是当前氘气制备首选技术。

重水电解技术应用过程中最大的技术问题是氘气纯化、去杂质问题。通过这种技术制备氘气,其中主要包括的杂质有:HD、O2、N2以及少量D2O杂质等。该技术制备氘气过程中杂质氮主要气来自空气在重水中的溶解和管路渗透。要降低产品氘气中的氮含量,必须做好密封处理,保障设备密封性,通过加压降低重水中的氮气含量,达到降低氘气中氮气含量的目的。另一方面,想要降低氘气制备过程中的杂质氧气,应加强对管路系统引入氧的控制。目前脱氧技术已十分成熟,氘气净化过程中可使用脱氧催化剂达到去除杂质氧气目的。主流脱氧催化剂有:活性氧化铝镀钯、铜系催化剂、钯分子筛、钯炭纤维催化剂、镍系催化剂等。除此之外,HD的去除也十分重要,HD是电解重水氘气制备中最大的杂质。去除HD通常使用热循环吸附工艺(TCAP),工作介质Pd-Al2O3。利用活性氧化铝、分子筛等催化剂在低温下的氢同位素分离也能降低HD含量。在氘气制备过程中只有有效去除杂质,才能得到高纯度的氘气。

结束语:氘气制备研究对于新能源开发、经济发展、国防建设等都有着重要意义。工业发展和科技进步促使新的氘气制备技术不断涌现,与此同时,随着经济发展与科学进步,氘气在农业、医学、工业、能源等各个领域的应用也必将越来越广。■

参考文献

[1]王洪祖,沈春雷,龙兴贵,梁建华,周晓松. 激光拉曼定量分析氘气方法研究[J]. 光谱学与光谱分析,2013,04:991-995.

[2]王洪祖. 拉曼光谱分析氢同位素气体方法研究[D].中国工程物理研究院,2013.S2:301-304.

第9篇:光电化学技术范文

关键词:光电信息;功能材料;研究进展

中图分类号:TB34

新材料研制和国家科学技术与生产力发展密切相关,同时也是国家经济发展根本保障之一。在世界范围内,新材料研制是国家计划中的重点研究内容。本世纪正处于光电子时代,而光电信息功能材料不但有电子材料稳定性特点,还有光子材料先进性特点,广泛应用于电子时代,发展前景极好。

1 概述光电信息功能材料

信息科学发展进程中,材料研究作为技术发展先导,是发现与完善现代化科学规律重要基础。人们从量子论发展中得到原子中电子物理运动规律,特别是最外层的电子运动规律,最先研究的功能材料是金属,例如:不锈钢、有色金属、黑色金属和特殊钢材等,并且电子层次微观物理逐渐应用量子论。

其次,半导体材料开发和利用,电力材料的技术科学发展地位有所提高,研究功能材料是科学发现的前提保障,同时也是技术开发的物质基础,在整个科学技术领域中都有所体现。并且由于新兴起来的光纤技术,将激光技术和光纤技术结合使用,为发展信息技术奠定坚实基础。正是由于光存储和光集成技术,光电信息功能材料研究范围越来越广,走入到微观物理层次,覆盖包括无机和有机、金属和非金属、静态和非静态科学技术,将计算机应用在信息高智能存储,传输与处理方面,使得信息技术发展迅速。

2 光电信息功能材料研究重点

2.1 半导体光电材料

半导体介于绝缘体和导体之间的一种材料,半导体光电材料可将电能转化为光,将光转化为电,也可处理和扩大光电信号。21世纪上半叶至今,半导体量子和异质结构材料仍然把光电信息功能材料作为研发主要内容。

2.1.1 硅微电子材料。微电子技术基础是集成电路为主要核心的半导体器件,是一种高新电子技术。半导体光伏太阳能电池和集成电路主原材料,是新能源与信息基础。随着半导体产业和光伏产业迅速发展,我国硅材料规模迅速壮大和发展。并且,硅微电子信息功能材料与现代化信息时代相联系,其具有质量轻、可靠性高和体积小等特点。半导体硅微光电信息功能材料,可提高硅集成电路使用性能成品率,但是从成本角度分析,解决硅片直径的增大问题形成了一系列缺陷密度与均匀性变差。并且,从半导体器件特征性尺寸角度;硅集成角度来看,硅材料是未来研制方向。在锗化硅材料生长应变硅材料技术基础上,其可提高器件驱动的电流和晶体管速度,其广泛应用性可能会替代65nm以下的互补性金属氧化物的半导体电路主流技术。在硅材料技术应用的同时,人们也在研制双栅-多栅器件、高K栅介质、铜互连技术和应变沟道技术。目前,硅微电子技术难以满足庞大市场需求和信息量,需要在全新原理材料、电路技术和器件技术深入研究,例如:纳米电子技术、光计算机技术和量子信息技术。

2.1.2 量子级联的激光器材料。在通信和移动通信领域,广泛使用超晶格和量子阱材料,量子阱材料集分子束外延和量子工程为一体,打破了半导体使用限制性,真正体现出了国家纳米级量子器件的核心技术。并且其发展到现在,QCL在远红光外源、红外对抗、遥控化学和自由空间内通信等较为突出。QCL高新技术研究面也更加广阔,其中,可调谐中红外激光器在国外步入工业化阶段。

2.1.3 光子带隙功能材料。光子带隙材料常称为光子晶体,其具有介电函数、周期性变化调制材料的光子状态运行模式。根据周期性的空间排列规则和特点,光子晶体分为一维、二维与三维形式。重点分析二维光子晶体,半导体薄片堆层其可以进一步制出硅基二维光子晶体和高品质因数光子微腔含单量子点砷化镓基二维光子晶体微腔,有较广阔的应用空间。例如:借助于圈内反射可限制光电在晶体内的反应,也就是光子晶体反应,以便控制光色散;其次,光子晶体可制作出计算机芯片,计算机的运行和运算速度均有所提高。对于三维光子晶体,特别是可见光的三维光子晶体和近红外波受到一定条件限制,因此,制备工艺较难。

2.2 纳米光电功能材料

所谓纳米材料,其是粒子尺寸介于1-100纳米材料。纳米光电功能材料是将光能转化成化学能或电能一种纳米行材料,其发展前景广阔,性能好,被广泛应用于光存储、光通信、光电探测器和全光网络等方面。

尺度位于宏观物体和原子簇交接区域,纳米材料有小尺寸效应、表面效应、宏观量子隧道效应和量子尺寸效应,产生点穴、光学、化学、热血和磁学特征等,其中,表面效应属于纳米光电材料重要特征之一,粒子性能决定性因素是表面原子,当表面原子数量增加到一定范围内,原子数量越多,缺陷程度就会越大,纳米光电材料活性就越高。正是由于量子尺寸影响电学性质,纳米材料才会比一般性的光电材料光催化活性高。

2.3 光折变功能材料

光折变功能材料光照条件下会吸收光子,使电荷发生转移,形成一定的空间电场,进而借助于电光效应改变折射率。这种光电材料需要低功率就可以在室温下进行光学信息处理和运算,因此有很好的发展前景。人们对光折变材料进行高密度数据的存储、空间光调制、光放大、光学图像处理和干涉测量等研究,并随着对光折变效应深入了解和发现新型材料,使得光折变材料应用范围更加广泛。

3 光电信息功能材料制备方法

光电信息功能材料根据性能与尺寸的不同要求,因此包括有很多制备方法。常见的制备方法有:高温固相反应、溅射法、Sol-gel、PCVD、CVD等。

3.1 微波反应烧结

我国通过微波辐射法合成物质有硅酸盐、氧化物、硫化物、磷酸盐、钨酸盐和硼酸盐等荧光体,利用各种物质选择光激励,从而实现了温室光谱烧孔。

3.2高温固相反应

高温固相反应是使用最广泛的制备新型固体功能材料方式,我国上海硅酸盐研究所使用提拉法技术生产出闪烁BGO晶体,欧洲核子研究所用晶体制造出正负电子撞机电磁量能器,出口总量高达千万美元,经济效益很好。

3.3 溅射法

溅射镀膜法通过直流或者是高频电场让惰性气体形成电离反应,此过程产生辉光放电离子体,其正离子与电子对靶材进行高速轰击,溅射出靶材分子和原子,从而将这两种物质沉积在基材上,形成薄膜。

3.4 CVD(热分解化学气相沉积技术)

CVD主工艺过程是借助于过载气输送反应物到反应器中,并在一定反应条件下,发生一定的化学反应,形成颗粒大小的纳米。随着反应基质粒子和纳米颗粒共同沉积到基片上,形成一层薄膜。薄膜形式有:反应气体和气体扩散吸附于生长、扩散和挥发沉底表面,这种方法可制备出氟化物、氧化物和碳化物等纳米复合型薄膜。

4 结束语

光电信息功能材料开发与研究需要通过量子物理支撑,目前其限定于光子、电子、电波和光波为主要信息载体,对研究量子物理,分析光电信息功能材料有重要作用。

参考文献:

[1]王藜蓓,陈芬,周亚训.集中光电信息功能材料的研究进展[J].新材料产业,2011(05).

[2]周舟,陈渊,黄轶.光电信息功能材料与量子物理研究[J].科技创新与应用,2013(07).

相关热门标签