公务员期刊网 精选范文 直流稳压电源的设计方法范文

直流稳压电源的设计方法精选(九篇)

直流稳压电源的设计方法

第1篇:直流稳压电源的设计方法范文

【关键词】开关型;直流稳压电源;探究;电路设计

【中图分类号】G64【文献标识码】A【文章编号】2095-3089(2016)04-0163-02

在电力电子技术的不断发展与技术革新下,开关型直流稳压电源以其自身的工作表现与其可靠性成为我国电力系统中广泛使用的一种设备。在实际应用中,开关型直流稳压电源自重轻,工作内故障低,工作效率高,且其性价比占优势,并具有功耗晓得良好表现。相比于其他开关型电源,开关型稳压电源应用范围广,竞争力强,特别是对于粒子加速器等电源应用范围来说,开关型稳压电源具有着良好的专业性与稳定性。通过对于开关型稳压电源的技术标准研读与相关的影响因素分析,目前此类技术研究区域人员都是采用移相控制桥来对DC/DC变换小信号模式进行开关型稳压电源的电路设计。

1.对于动态小信号模型的相关阐述

对于动态小信号模型来说,不同的模型选取进而得到的设计结果都会存在差异。所以,在模型的选取上,应根据其实际情况进行分析与配置。对于开关电源来说,其本质是作为一个非线性的控制对象在进行工作,如果要对其进行成功的设计与分析,那么在进行指导建模时,应以近似建立在其稳态时的小信号扰动模型为依据。这一思路一方面取决于小信号扰动模式稳态时具有与设计目标相近的工作表现;另一方面也是由于这样的模型对于大范围扰动时的拟态不够精准,会造成相应结论的误差或偏差。基于此,以小信号扰动模型来进行开关型稳压电源的电路设计是保证其最终设计结果满足设计要求的必要条件。

2.开关型稳压电源的相关性能指标

2.1性能指标之稳定性

通过相关数据与实践结果研究表明,在不同的开关型稳压电源系统设计下,会产生不同程度的鲁棒性。而在暂态特性方面,其表现也会相应提高。但对于直流新稳压电源来说,其系统下对于增益余量的要求是大于或等于40dB,对于相位余量的要求则是大于或等于30dB。

2.2性能指标之瞬间响应指标

当开关电源处于非稳定状态下,由于其所受的干扰,输出量会出现相应的抖动现象。且其抖动量会随着其干扰而变化,当干扰停止时,则其最终也会回到稳定值,基于此,在对开关型稳压电源进行这方面的性能指标确定时,是以过冲幅度与动态恢复时间的长短来衡量其系统的动态特性的。在此定义下,瞬态响应指标内容主要是表现为,如果穿越频率越高,则其系统恢复到动态平衡点的时间就越短,另一方面,系统在干扰情况下所表现的过冲幅度与其相位余量呈相关性。

2.3性能指标之电源精度

在电源精度方面,其控制要求严格,一般其最终的电源精度误差需要控制在设计目标的1‰以下,且其纹波不得在1‰以上。考虑到纹波自身的分类有高频与低频两种,而这两种纹波是基于开头频率表现的。如高频纹波就是受到开头频率的影响,必须通过滤波器进行控制。而低频纹波则是受到电网波动的影响,必须通过系统的负反馈来进行控制。

3.关于开关型稳压电源的电路设计

3.1关于系统下的补偿网络与相关相关设计应用

目前来说,对于开关型直流稳压电源系统来说,其补偿网络是通过PI或者PID的算法来设计与制作的。也就是说,PI调节器的主要作用是对抗高频纹波影响,也就是提高系统对于高频干扰能力的抵抗性,但对于PI调节器来说,动态性差的缺点是无法忽视的。目前来说,实际应用中通过引入微分算法后可以有效提高系统的响应速度。但其缺点也显而易见:一方面是由于零点的大量引入直接造成系统对于高频信号的敏感度大幅度提高,放大器在此情况下,很容易产生堵塞现象;另一方面则是当开关纹波的放大倍数得到增大时,放大器也会随之进入非线性区,这结果只会造成整个系统的不稳定。目前来说,对于这些缺陷是以超前滞后的方法来进行补偿的。

3.2关于开关型稳压电源的电路设计原理

3.2.1理想性技术指标如下:(1)输入交流:电压220V(50—60Hz);(2)输出直流:电压5V,输出电流3A;输入交流电压在180—250V区间变化时,输出电压相对变化量应小于2%;(4)输出电阻R0<0.1欧;(5)输出最大纹波电压<10mv。3.2.2关于开关型稳压电源的基本工作原理。当线性自流稳压电源处于低频率工作状态下时,那么调整管的工作由于其体积大,则其效率相应低,但当其调整管工作处于开关状态下时,那么其的工作表现就为体积小,效率高。

3.3开关型稳压电源的电路设计探究

从以上论述可以看出,开关型直流稳压电源系统其低功耗的特点是由于晶体管位于开关工作状态下时,对于功率调整管的功耗要求低。特别是对于理想状态下的晶体管来说,当其处于一种截止状态时,晶体管所经过的电流为0,相应的功耗也就为0;另一方面,由于开关型稳压电源系统的穿越频率较高,所以对于电路的动态响应速度得以提高,而且整个系统的响应速度不受低通滤波器的影响;另外,相对于直流470V的电压来说,并环穿越频率远未达到这一频率,输出只为48V,特别是其电压稳定性方式,经过测试,其低频纹波稳定率都在0.996以上,完全满足了设计要求。

4.结语

综上所述,在进行开关型稳压电源的电路设计时,小信号的模型选择是关键点。为了进一步提高开关型稳压电源系统的稳定性,超前滞后网络补偿原理有效地弥补了精度电源的纹波限制高的问题。通过实践也表明,开关型稳压电源的适用性非常强,必将为人们生活提供更好的服务。

参考文献:

[1]汤世俊.浅谈高性能开关型直流稳压电源[J].学术探讨,2011,(10).

[2]樊思丝.高性能开关型直流稳压电源的设计探究[J].企业技术开发,2011,(03).

第2篇:直流稳压电源的设计方法范文

关键词:S3C2440; 测试系统; 稳压电源; ARM

中图分类号:TN919-34 文献标识码:A 文章编号:1004-373X(2011)24-0011-03

Design of Digital Stabilized Voltage Supply for Testing System Based on S3C2440

ZHANG Ran, FU Zhi-zhong, ZHANG Han-jin, ZHANG Zhong-liang

(Shanghai University of Science and Technology, Shanghai 200093, China)

Abstract: A solution of the digital stabilized voltage supply for testing systems is proposed in combination with the analysis result of the demanded power supply and the embedded control technology. The method to realize the solution is offered. The data sampling is conducted by the aid of ARM control technique. The regulation of voltage and the protection of circuit are controlled with appropriate algorithm to achieve the purpose of providing a stabilized voltage supply for testing systems. The power supply designed with the method can provide stable power for testing systems and satisfy the requirement of the chip testing. The hardware architecture and software flow chart are given in this paper.

Keywords: S3C2440; testing system; digital stabilized voltage supply; ARM

0 引 言

直流稳压电源是一种比较常见的电子设备,一直被广泛地应用在电子电路、实验教学、科学研究等诸多领域。近年来,嵌入式技术发展极为迅速,出现了以单片机、嵌入式ARM为核心的高集成度处理器,并在自动化、通信等领域得到了广泛应用。电源行业也开始采用内部集成资源丰富的嵌入式控制器来实现数字稳压电源的控制系统。数字稳压电源是用脉宽调制波(PWM)来控制MOS管等开关器件的开通和关闭,从而实现电压电流的稳定输出。数字稳压电源还具备自诊断功能,能实现过压过流保护、故障警告等。

相比之前的模拟电源,数字稳压电源大大减少了在模拟电源中常见的误差、老化、温度漂移、非线性不易补偿等诸多问题,提高了电源的灵活性和适应性。将SAMSUNG公司的嵌入式ARM处理器S3C2440芯片应用到实验室测试系统数字稳压电源的设计中,采用C语言和汇编语言,实现一种以嵌入式ARM处理器为核心,具备PID控制器以及触摸屏等功能的测试系统数字稳压电源控制系统。

1 测试系统数字稳压电源组成及工作原理

数字稳压电源由主控制器、PWM稳压电路、电压电流取样电路、PID控制器、触摸屏组成,系统原理框图如图1所示。

图1 系统原理框图本电源对输出的电压电流信号进行采样,进行PID控制,最后输出PWM驱动波形调节输出电压。输出电压提供给芯片测试平台,供其测试芯片时使用。

前端交流电源输入到整流模块,经整流滤波后输出平稳的直流电压。该直流电压直接输出至IGBT模块。高精度A/D转换器将后端输出的电压电流信号由模拟信号量变为数字量供给S3C2440进行数字PID运算,经过PID控制器运算后,由S3C2440输出PWM至IGBT,从而构成一个闭环控制系统,控制电压电流稳定输出,从而实现数字稳压电源设计,提供给芯片测试系统使用。ARM控制器通过触摸屏实现人机交互界面,在触摸屏上设置参数和显示信息。

2 硬件设计

2.1 ARM控制系统组成

鉴于PID运算和PWM波输出模块要求高,通过考查,选择SAMSUNG公司的S3C2440,这是一款32位基于ARM920T内核的CPU,拥有高达400 MHz的频率,完全能满足PID控制器运算的实时性要求;16位的定时器,可实现精度高达0.03 μs的PWM脉冲波,并且有防死区功能;24个外部中断源,完全可以满足对系统外部故障信息进行实时响应;内部嵌入LCD控制器,并拥有DMA通道,使得电压电流值能够实时显示在LCD上,还可以通过触摸屏设计一些所需的参数;多达140个通用I/O口,可以方便地扩展外部接口和设备;拥有8通道多路复用ADC,10位的数字编码,高达500 kSPS转换率,满足了测试系统所需的A/D转换精度。

2.2 PWM稳压电路设计

脉冲宽度调制(Pulse Width Modulation,PWM)原理是PWM调制信号对半导体功率开关器件的导通和关断进行控制,使输出端得到一些列幅值相等而宽度不相等的脉冲,经过处理后得到稳定的直流电压输出。PWM调制信号由ARM主控制器根据设定的电压值,按一定的规则对各脉冲宽度进行调制后给出脉冲信号。PWM稳压电路如图2所示。

图2 PWM稳压电路半导体功率开关器件其开关转换速度的快慢直接影响电源的转换效率和负载能力,本系统PWM稳压电路中,驱动电路由电阻、电容、晶体管和场效应管组成,MOSFET是电压单极性金属氧化硅场效应晶体管,所需驱动功率很小,容易驱动。MOSFET的输入阻抗很高,其导通和关断就相当于输入电容充放电过程。根据所选器件的参数,计算出满足的条件,保证驱动电路提供足够大的过充电流,实现MOSFET快速、可靠的开关。

3 软件设计

采用S3C2440为核心处理器,其丰富的片上资源和优秀的运算速度,保证了系统的实时性,编写软件主要以C语言进行驱动和应用程序的开发,其大容量存储器,完全能满足系统程序的数据存储。

该测试系统中ARM处理器所要实现的主要功能和软件实现方法如下。

3.1 PWM波产生

PWM用于对电路中IGBT的驱动。根据输出采样,设定和调整定时器配置寄存器TCFGn和定时器n计数缓存寄存器TCNTBn中的值来改变输出PWM波的周期和脉冲宽度。修改TCNTBn的值可以控制PWM波的占空比增加或减少1,PWM输出占空比增加或者减少千分之一,可以达到千分之一的控制精度。

3.2 监控和保护系统

为了使数字稳压电源能够可靠、安全地为测试系统提供电压,该系统设置了监控和保护系统,主要用于过流保护和过压保护等,ARM处理器对电压和电流采用双重检测,当电压电流超出所设定的危险值范围时,声光报警,并启动保护电路。

3.3 PID控制算法

PID控制器由比例、积分、微分控制器组合,将测量的受控对象(在本系统中为电压电流值)与设定值相比较,用这个误差来调节系统的响应,以达到动态实时的控制过程。

在数字稳压电源PID控制系统中,使用比例环节控制电压电流的输出与输入误差信号成比例改变,但是这里会存在一个稳态误差,即实际值与给定值间存在的偏差,因此需要引入积分环节来消除稳态误差以提高系统精度。但由于电源系统在导通、关断时,产生积分积累,会引起电压电流超调,甚至会出现震荡。为了减小这方面的影响,设定给定一个误差值范围,当电压电流与设定工作值的误差小于这一给定值时,采用积分环节去消除系统比例环节产生的稳态误差。PID控制算法设定阈值ε,当|e(k)|>ε时,采用PD控制环节,减少超调量,使系统有较快的响应;当|e(k)|< ε时,采用PID控制,以保证电压电流精度和稳定度。在电压达到千分之一精度范围后,需要加入积分环节,以完成电源开机时迅速稳定的输出。PID算法流程图如图3所示。

PID控制算法程序采用结构体定义:

struct PID {

unsigned int SetPoint;

//设定目标 Desired Value

unsigned int Proportion;

//比例常数 Proportional Const

unsigned int Integral;

//积分常数 Integral Const

unsigned int Derivative;

//微分常数 Derivative Const

unsigned int LastError;

//Error[-1]

unsigned int PrevError;

//Error[-2]

unsigned int SumError;

//Sums of Errors

} spid;

在PID控制算法中,经过不断与给定值进行比较,动态控制电压电流输出的稳定,同时确保电压电流输出的精度。

图3 PID控制算法流程图PID控制算法程序如下:

unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )

{

unsigned int dError,Error;

Error = pp->SetPoint -NextPoint;

//偏差

pp->SumError += Error;

//积分

dError = pp->LastError -pp->PrevError;

//当前微分

pp->PrevError = pp->LastError;

pp->LastError = Error;

return (pp->Proportion * Error

//比例

+ pp->Integral * pp->SumError

//积分项

+ pp->Derivative * dError);

//微分项

}

3.4 系统程序

测试系统的整体程序流程图如图4所示。

本文所设计的测试系统数字稳压电源能够满足芯片测试所需的电源要求。图5为输出的一路电压。由图可知,所输出的电压稳定。

4 结 语

本文设计的稳压电源提供的电压稳定可靠,系统运行也非常稳定。由于可扩展的I/O非常多,可以同时为多个芯片提供各种所需的稳压电源电压值。该系统不仅能够用在实验室芯片测试工作中,而且可以通过软件编程的方法,修改一些控制程序,使所设计的稳压电源作为智能电子产品性能测试的电源电压,这样提高了设备的使用效率,有着不错的应用前景。

参 考 文 献

[1] Samsung. S3C2440 datasheet \[EB/OL\]. \[2010-12-23\]. wenku.省略

[2] 白林绪,申利飞,王聪.基于51单片机控制的数字可调高效开关电源设计[J].电源世界,2010(9):21-24.

[3] 杜春雷.ARM体系结构与编程[M].北京:清华大学出版社,2003.

[4] 何清平,江建钧,黄振升,等.基于ARM处理器的数控电源设计[J].电脑知识与技术,2006(11):65-67.

[5] 胥静.嵌入式系统设计与开发案例详解:基于ARM的应用[M].北京:北京航空航天大学出版社,2005.

[6] 王晓雷,吴必瑞,蒋群.基于MSP430单片机的开关稳压电源设计[J].现代电子技术,2008,31(13):186-187.

[7] 赵异波,何湘宁.电力电子电路的数字化控制技术[J].电源技术应用,2002(11):557-559.

[8] 白林绪,申利飞,王聪.一种基于DSP控制的数字开关电源设计[J].电源世界,2009(11):32-35.

[9] 卜红霞,胡永杰,王月香,等.基于DSP的开关电源的设计与实现[J].微计算机信息,2008(28):280-281.

第3篇:直流稳压电源的设计方法范文

关键词:稳压电源;单片机;D/A转换;直流电源;电压调节

中图分类号:TM131文献标识码:A文章编号:1009-2374(2009)21-0036-02

随着电力电子技术的迅速发展,直流电源应用非常广泛,其好坏直接影响着电气设备或控制系统的工作性能。直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。而基于单片机控制的直流稳压电源能较好地解决以上传统稳压电源的不足。其良好的性价比更能为人们所接受,因此,具有一定的设计价值。

一、系统设计

(一)方框图设计

该电路采用单片机(AT89C51)作为主控电路,由三端集成稳压器(LM317)作为稳压输出部分。另外,电路还增加参考电压电路、D/A转换电路、电压放大电路、显示电路等部分电路。其方框图如图1所示:

整个电路的运行需要模拟电压源提供+5V,±15V的模拟电压,以便使电路中的集成数字芯片能够正常工作。电路运行时,首先由单片机设置初始电压值,并送显示电路显示。然后将电压值送D/A转换电路进行数模转换,再经放大电路进行电压放大,最终反馈到三端集成稳压器(LM317)输出模拟电压。

(二)硬件设计

本电路的硬件组成部分主要由单片机(AT89C51)、变压器、整流电路、滤波电路、稳压器(LM317)、参考电压电路、D/A转换电路(DA0832)、放大电路、显示电路等组成。

硬件电路如图2所示,整个电路通过单片机(AT89C51)控制,P0口和DAC0832的数据口直接相连,DA的CS和WR1连接后接P26,WR2和XFER接地,让DA工作在单缓冲方式下。DA的11脚接参考电压,通过调节可调电阻使LM336的输出电压为5.12V,所以在DAC的8脚输出电压的分辨率为5.12V/256=0.02V,也就是说DA输入数据端每增加1,电压增加0.02V。

DA的电压输出端接放大器OP07的输入端,放大器的放大倍数为(R8+R9)/R8=(1K+4K)/1K=5,输出到电压模块LM317的电压分辨率为0.02V×5=0.1V。所以,当MCU输出数据增加1的时候,最终输出电压增加0.1V,当调节电压的时候,可以以每次0.1V的梯度增加或者降低电压。

本电路设计两个按键,S1为电压增键,S2为电压减键,按一下S1,当前电压增加0.1v,按一下S2,当前电压减小0.1V。

显示部分由三位共阳数码管和74LS164串入并出模块组成,电路如图3所示,可以显示三位数,一位显示十位,一位显示个位,另外还有一个小数位,比如可以显示12.5v,采用动态扫描驱动方式。本主电路的原理就是通过MCU控制DA的输出电压大小,通过放大器放大,给电压模块作为最终输出的参考电压,真正的电压,电流还是稳压模块LM317输出。

(三)软件设计

在本电路中由于CPU的工作任务是单一的,因此,源程序的工作过程为:系统上电复位后,默认输出9V电压,然后扫描S1,S2键,当S1或S2键有按下时,程序跳转至相应的按键处理子程序,经按键子程序处理后,再嵌套调用显示子程序,完成显示与输出操作后返回主程序,继续扫描此两键,程序运行原理如下:

程序设计需要考虑的主要问题有两个方面:一方面要找出数字量Dn与输出电压的关系,这是程序设计的依据;另一方面要建立显示值与输出电压值的对应关系,这是程序设计是否成功的标志。因为在本系统中,显示的输出电压值不是之前从输出电路中通过检测得到的,因此显示与输出并不存在直接联系。但为了使显示值与实际输出值相一致,在程序编写时,必须人为地为两者建立某种关系。采用的方法是:在程序存储器中建立TAB1和TAB2两张表格,TAB1放101个Dn值,数值从小到大顺序排列,其值分别对应输出电压0~10v,TAB2存放数码显示器0~9字符所对应的数据。TAB1表格的数据指针存放在内存RAM中23H单元,内存20H,21H和22H三个单元分别存放数码显示器小数点一位,个位和十位的字符数据指针。在主程序中初始化后之后首先给23H赋予40的偏移量,这个偏移量指向TAB表中的Dn为145,此值对应的输出电压为9V,由于这个原因,必然要求显示器显示的字符为“05.0”,为此,须分别给20H,21H和22H赋予0,5和0的偏移量,这三个偏移量分别指向TAB2中0,5和输出两者之间就建立了初步的对应关系。为了使两者保持这种对应的关系,在K1和K2按键处理子程序中,必须使23H,20H,21H和22H四个数据指针保持“同步”地变化,即为当K有键时,23H单元增加1指向下一Dn时,20H单元也相应增加1指向下一字符,并且20H单元(小数点一位指针)、21H单元(个位指针)和22H元(十位指针)应遵循十进制加法的原则,有进位时相应各位应作出相应地变化;当K2有键时,23H单元减1指向前一Dn时,20H单元也相应减1指向前一字符,并且20H,21H,22H三个单元的数据指针应遵循十进制减法原则,有借位时相应的各位须作出相应地变化。按照这一算法只要控制TAB1表格数据指针不超出表格的长度就能使显示值与输出值保持一一对应的关系,即显示器能准确地显示出电源输出电压值的大小,达到电路设计的目的。由于理论计算与实际情况还存在着一定的差异,为了使显示值更加接近实际输出值,本电路需要对输出电压进行校正。

二、调试与分析

调试仪器:数字万用表、电烙铁、斜口钳、尖嘴钳、吸锡器、镊子。

硬件调试:首先检查整个电路,电路连接完好,没有明显的错连,漏连。接上电源,电源指示灯亮,数码管显示初始电压值+5V,用万用表的两只表笔测试LM317的输出电压为4.96V。当按下S1键一次,数码显示电压值变为4.9V,万用表读数变为4.85V。再按下S2键一次,数码显示电压值变为5.0V,万用表读数再次变为4.96V。通过改变显示电压值,用万用表测得几组输出电压数据见表1:

系统平均误差Δd=0.41V。

误差原因分析:(1)工作电源不够稳定,不能为数字集成块提供精确工作电压;(2)电路参数设定不够精确;(3)提供给D/A转换的参考电压不够精确,使得转换过程存在误差;(4)单片机的P0口传输给D/A转换的数据不够准确,使得输出出现误差;(5)系统缺少电压电流采样电路。

三、结语

在本文中,实现了以单片机为核心的直流稳压电源的智能控制,达到了预期的目的和要求。

参考文献

[1]郝立军.直流稳压电源的设计方法[J].农业机械化与电气化,2007,(1).

[2]王翠珍,唐金元.可调直流稳压电源电路的设计[J].中国测试技术,2006,(5).

[3]殷红彩,葛立峰.一种多输出直流稳压电源的设计[J].传感器世界,2006,12(9).

[4]何希才.稳压电源电路的设计与应用[M].北京:中国电力出版社,2006.

[5]郑耀添.直流电源技术的发展方向[J].韩山师范学院学报,2005,26(3).

[6]Lu Yansun.Manufacturing Development Emphases On Power Generation and Transmission Apparatus In 11th Five-Year Plan Period And Prospect To the Year 2020 [J].ELECTRICITY,2004.

[7]陈宁.基于单片机的高品质直流电源[[J].电子产品世界,2005,(2).

[8]顾旭.关于直流稳压电源整流电路的探讨[J].科技信息,2005,(10).

[9]葛晖.直流稳压电源的基本原理[J].集宁师专学报,2004,26(4).

[10]韩建文.基于单片机的智能稳压电源的设计[J].琼州大学学报,2004,11(2).

第4篇:直流稳压电源的设计方法范文

Li Bingxiang1,Fan Chao2,Zhang Weina1,Zhang Wei1

(1 Xi’an Shiyou University,Shaanxi Xi’an 710065;2 Shaanxi Youth Vocational College, Shaanxi Xi’an 710068)

Abstract: In the process of oil production, sand production not only lead to the equipment damage and reduce the

production, but also can affect the life of the oil well, so take reasonable sand measurements and control is very important.

But the signals detected by the piezoelectric ultrasonic sensor contain strong fluid noise and electromagnetic interference,

in order to get the useful signals, the interferences must be removed. This paper uses wavelet transform, and simulate in the

MATLAB, and compares the de-noising effects with the Fourier transform, the results show that the wavelet transform

can effectively remove noises, and it also preserves the useful information of the signals. Through the data from laboratory

test and field test show that the wavelet transform have very good de-noising effect.

Keywords: piezoelectric ultrasonic sensor; wavelet transform; de-noising

基金项目:陕西省教育厅项目“油气井出砂实时监测方法研究”资助 (2010JK786)

1

2013.24 设计与研发

0 引言

控制器用电源和功率器件驱动电源是有源电力滤波器的主

要部分,其中控制器用电源主要用于控制器、传感器和包括触摸

屏在内的人机界面供电;功率用器件驱动电源顾名思义用于功

率器的驱动供电。传统的有源电力滤波器以对负载电流和电源电

压进行采样检测补偿的谐波分量,并获取电流基准为其主要的控

制策略。但实际工作环境中有源电力滤波器系统对于供电的稳定

性和可靠性要求非常苛刻,其中APF 挂网运行必须满足电力系

统,如控制电路和驱动电路要先上电等,的要求。而传统的控制策

略因其计算量大、控制器复杂以及实时性差等原因已经不能满足

有源电力滤波器的实际工作需求。如何有效的保障在电力系统故

障出现时,电源系统能够有效的将APF 从电力系统故障中切除,

并具有自动启动有源电力滤波器的功能,成为本文探讨的一种重

要方向。因此,有源电力滤波器的控制电源设计必须做到科学性

和有效性。

1 电源设计

整个有源电力滤波器的电源方案包括驱动电源、控制电源以

及驱动和控制电源的一次供电电路三部分。其中驱动板是驱动电

源和驱动电路设计在一起的结合物,也是整个电源系统组成中的

重要部分之一。控制电源有普通的开关电源组成,用于对控制器、

传感器和包括触摸屏在内的人机界面供电控制和服务。一般而

言,交流电网和有源电力滤波器功率直流母线双电源供电方式是

初级电源所采取的方案。由于开关调制频率疋远大于电网频率和

负载电流频率.因此可以假设在一个开关周期内负载电流不变,

所以电源电流上升和下降的斜率近似等于APF 交流侧电感电流

的上升与下降斜率,顾此方案能够满足有源电力滤波器对控制电

源稳定性的要求。

1.1 驱动电源设计

在驱动电源整体组成中,M57962L 是功率器件IGBT 驱动电

路的重要核心芯片。为满足供电特点的需求以及IGBT 驱动电路

的特殊性,驱动电源需要为3 桥臂的IGBT 提供6 路独立的26—

30 V 直流电。在系统运行过程中,稳压管分压起到在各路电源产

生IGBT 开通和关断需要的正、负电压,以确保驱动电源的有效运

行。

驱动电源采用单端反激式DC ∕ DC 变换电路。在整个电路中,

电压输入和电压输出在电路、功能等方面相互切合,形成互相配

合的整体。部分电压输出线路用于稳压管的分压,并相应产生正、

负电压。个别电路输出用于稳压控制作用。为有效实现对输出电

压以及初级电流的控制,一般采用脉宽调职芯片UC3844 用于控

制系统的芯片。输出电压通过电路反馈脉宽调制芯片的误差放大

器以此实现稳压控制的目的。初级电流通过电阻采样,采样值输

入到脉宽调制芯片UC3844 的相应位置,实现电路峰值电流控制。

此外,在驱动电源设计过程中,还采用由电阻、电容和三极管组成

缓冲电路,能够有效的实现当开关状态转换过程中产生的尖峰电

压进行筘位和吸收。

1.2 控制电源设计

在有源电力滤波器工作过程中,控制器需要的±15 V,±5

V 电源、传感器需要的±15 V 电源及触摸屏和接触器需要的24V

电源全部是由控制电源提供。在控制电源使用过程中,必须保障

控制电路先上电,以此完成对相关参数的设置和对开关器件的封

锁,以满足有源电力滤波器对在电力系统出现故障时及时从电力

系统中切除隔开,以及在排除电力故障后能够自动启动复用的要

求。开关电源产生控制器和触摸屏等各个部件所需要的各种电源

都能够从220V 的交流电通过普通开关电源分流,由此在采用普

通开关电源给控制电路供电时能够满足有源电力滤波器对电力

系统稳定性的苛刻要求,同时节约了成本。

普通电源开关具有操作简便、制作和使用成本低,安全性和

可靠性高等特点,而被用于控制电路供电,但当仅采用电网作为

初级供电时,在遇到电网掉电或者电网电压瞬时值过低的情况西

安,电路还需进一步改进,以满足特殊问题出现时的应急措施需

求。

1.3 基于双电源的初级供电设计

上文提到当仅有电网供电时,出现电网掉电或者电网电压

瞬时值过低的情况时,电路可能出现突发的问题。当电网突然掉

电时,开关电源失去对电能的有效控制盒输入,输出电压瞬间降

为零,最直接的后果是控制器因断电而无法继续对驱动电路进行

控制。更糟糕的事情是此时的APF 直流母线电压仍旧处于高压状

态,上下桥壁会在驱动信号干扰功率器件后而出现同时导通,由

此造成功率器的损坏。

而基于双电源的初级供电设计是指基于交流电网和APF 功

率直流母线双电源供电方案的一种方法,实践证明该双电源设

计方法能够有效的克服上述突发情况。其基本的设计思路为交

流电网和APF 功率直流母线分工合作负责不同情况下的电路供

电,电网主要负责在APF 正常工作时控制电路供电,而出现供

电异常后。截止功率器件的驱动信号。并将APF 直流母线的电

能通过DC ∕ DC 电路回馈给控制电路和驱动电路。需要注意的

是DC ∕ DC 转换电路因其输出为直流电而不能与220V 交流电

直接并联,为此,通过设计二极管进行220V 交流电整流,然后与

DC ∕ DC 转换电路因其输出为直流并联。

通常情况下,经过二极管整流并联后的输出电流在电容器上

能够得到310V 的直流电。在电路设计过程中,只要保障DC ∕ DC

转换电路输出电压的正极能够通过二极管与电容的正极相对应,

二者的负极直接相连,在DC ∕ DC 转换电路输出电压小于电容的

电压时,就可保障APF 正常工作时,DC ∕ DC 转换电路而停止工

作。此外,由于电容器的存在,保证了在电网出现突然供电异常

时,开关电源和驱动电源输入电压不会马上低于DC ∕ DC 转换电

路输出电压而造成,DC ∕ DC 转换电路无法正常的发挥功能。在

DC ∕ DC 转换电路会在电容电压低于DC ∕ DC 转换电路输出电

压的情况下开始工作,控制电路和驱动电路会接受来自直流母线

的电能,当电压恢复至安全值后,DC ∕ DC 转换电路停止工作。

单端反激式变换电路是对DC ∕ DC 转换电路在有源电力滤

波器工作时的一种补充。DC ∕ DC 转换电路的功能具有局限性,

只能够在电网出现供电异常的情况下,为控制电路和驱动电路

供电供电,导致其在实际工作中输出容量不足,效率低下的问题

出现。与驱动电源相比,单端反激式变换电路的输入电压范围更

广,对于工业电压等级的APF,直流母线电压在正常工作时约为

750V。而电网断电后,直流母线电能回馈到控制、驱动电路,电压

逐渐降至安全值,但DC ∕ DC 转换器是否能在此过程中输出较稳

定的约200 V 直流电压成为未知数。对此需保证DC / DC 变换器

在断续电流模式( 和连续电流模式(CCM) 两种模式下都能安全

工作。

对于工业电压等级的APF 而言,对于DC / DC 转换电路的开

关器件的选择非常的苛刻,而在单端反激式电路中则能够轻易满

足其要求。才外为满足DCM 和CCM 两种工作模式的需要,在单端

反激式电路设计中变压器采用EC3521 型磁芯、变比120:55:4,

在整体电路中,个别输出电路用于电压反馈控制,此外,利用

UC3844 脉宽调制芯片的控制芯片实现对稳压控制和峰值电流控

制的稳定输出。在设计中保障直流母线电压低于控制电压(约为

180V),以此保证在驱动信号不确定或者缺失时而不至于损坏开

关器件。

2 实验分析

选用磁芯EI33,频率40kHz.变比97:12:12:12:12:12:12:7,

初级电感量4.2mH ∕ 1kHz ;APF 功率单元为750V,输出电流60A

的七路输出的多路变压器用于测试该设计的有效运行性能。实验

过程中,在正常工作中APF 的功率单元为750V,在正常运行过程

中将电网电压突然跌至为0,其中DC ∕ DC 转换电路的输出设定

值为180V,DC ∕ DC 转换电压在电网突然停电的情况下,开始工

作,直流侧电能回馈到控制电路和驱动电路,经过一段时间后,直

流侧电压降至安全值,DC ∕ DC 转换电路停止工作。经现场进行

调试验证,采用交流电网和APF 功率直流母线双电源供电方式,

未出现因电网电压故障而导致器件损坏情况的发生,此外在电网

故障排除以后,有源电力滤波器(APF) 能够有效的运行。实验结

果表明:该电源方案,即该电源初级输入采用交流电网和APF 功

率直流母线双电源供电方式,其中驱动电源和直流母线反馈电源

均采用单端反激式DC / DC 变换电路。具有实现简单、工作可靠、

成本低的特点。

4 结论

有源电力滤波器(Active Power Filter,简称APF) 的控制

电源包括控制器用电源和功率器件驱动电源两部分,对控制电源

的要求非常的高,不仅需要其能够提供稳定安全的电压以供系

统正常的运行,此外对于零器件的选择和使用上也要求求经济性

和安全性,依据APF 供电电源的要求,为IGBT 驱动电源设计了一

种基于单端反激拓扑的多路输出DC ∕ DC 电源,为控制器选用了

通用开关电源。该系统电源初级输入采用交流电网和APF 功率直

流母线双电源供电方式,其中驱动电源和直流母线反馈电源均采

用单端反激式DC / DC 变换电路。由本文的研究结论我们不难发

现,采用用交流电网和APF 功率直流母线双电源供电方式的电源

初级输入,别且驱动电源和直流母线反馈电源均采用单端反激式

DC / DC 变换电路的有源电力滤波器对控制电源具有非常明显

的优势,适合在电网,尤其是工业用电网中的推广应用,具有非常

巨大的推广意义。

参考文献

[1] 刘进军,刘波,王兆安. 基于瞬时无功功率理论的串联混合型

单相电力有源滤 波器[J]. 中国电机工程学报1997(12):

37-41.

[2] 吕利明,肖建平,钟智勇,等.高频开关电源单端反激变压器的

原理与设计方法叨.磁性材料及器件,2006,37 :36-38.

[3] 刘建宝,赵录怀,邹晓松.基于双极型模式的新型定频积分有

源滤波器[J].电力电子技术,2004,38(2) :32—33.

[4] 钱挺,吕征宇,胡进,等.基于单周控制的有源滤波器双环控

制策略[J].中国电机工程学报,2003,23(3) :34—37.

[5] 钱挺。吕征字.新型有源滤波器的双向互补控制方案[J].中

第5篇:直流稳压电源的设计方法范文

【关键词】STM32;DC/DC;PWM控制器;闭环控制

一、系统方案设计

本系统主要由2块DC/DC开关电源模块和单片机测控模块两部分构成。其中,DC/DC模块输入为24V直流电压,输出为8V直流电压信号。采用了Buck降压电路结构。测控模块采集电压和电流量,经过计算之后,使用STM32F103产生调整信号。保证电压和电流按照一定比例输出。每一个模块都是双环控制系统,分别为电压控制和电流控制,电压环为内环,电流环为外环,两个环路的信号共同通过SG3525进行脉宽调制,将输出的信号反馈回输入端,形成闭环控制系统。如图1所示:

均流电路:实际应用中,往往由于一台直流电源的输出参数不能满足要求,需要采用模块式电源,按照并联、串联方式,实现输出电压、输出电流、输出功率的扩展。在设计中使用了电源并联技术,但是简单的并联不能保证整个扩展后的系统稳定可靠的工作,电源模块存在“均流”问题。解决的方法对整个系统的稳定性、可靠性都有很大影响。本设计使用强迫均流法,该方法通过监控模块实现均流,实现方式主要有软件控制和硬件控制两种。其中软件方式比较容易实现,均流精度高。软件方式是通过软件计算,比较模块电流与系统平均电流,然后调整模块电压,使其电流与平均电流关系固定。

Buck变换器电路:采用SG3525作为Buck型拓扑的PWM控制芯片。SG3525是高性能固定频率电流模式控制器,专为离线和直流变换器应用而设计,只需最少外部元件就能获得成本效益高的方案,能进行精确的占空比控制。

二、电路分析与实现

1.DC/DC变压器稳压原理分析

系统共有两个DC/DC电源模块,输入是24V直流电压,调整负载电阻时要保证负载上的输出电压不变,即保证在8V。电路里使用了电压反馈和电流反馈,使整个系统形成稳定的闭环,如图2所示。

调整负载电阻的时候,根据欧姆定律,电路电流发生了变化(取自B点),为保证输出的电压稳定在8V,就需要采用单片机测控电路配合调节。单片机产生的PWM信号经LM331进行频率—电压转换后,电压信号与B路输入形成互补。为保证反馈的电压不变,只需调整SG3525PWM控制器输出固定脉冲占空比,使B端电压和PWM输出的电压保持平衡状态。

2.电流电压检测

如图3中所示,从DC/DC模块中电源的输出端取8V输出分压后的A(电压)、B(电流)信号,分别接到单片机STM32F103的两路AD通道上进行测量。另外一个电源模块也用同样的方法,测量其电流的输出。

3.均流方法分析

本系统采用强迫均流法,强迫均流法是通过监控模块实现均流,实现方法主要有软件控制和硬件控制两种。这里采用软件控制。

软件控制是通过软件计算,比较模块电流和系统平均电流,然后再调整模块的电压,使其电流与平均电流相等,这种方法易于实现,均流精度高。

实现的公式:设总电流I0;分电流:I1, I2; I0=I1+I2;I1= I0; I2=I1—I0;

使用测控模块输出的电压调整其中一个电源模块的电流为I0,那么另一个模块的电流自动变为I0,实现均流。

4.过流保护分析

本设计中电路保护功能的实现由两部分构成。其中一部分使用软件保护,一部分使用硬件保护。

软件保护部分使用测控模块检测电压信号,当发生短路故障,电压变为0,使用PWM转换后输出较小电压,然后循环检测,直到检测到电压不为0,说明短路故障已经修复,重新调整电源模块电流恢复原来的状态。如此可以实现短路故障的自动恢复功能。硬件保护部分使用了可控硅。如图4所示,当检测到E端有较高电压信号时,既满足控制级有足够的正向电压和电流的条件,同时也满足阳极电位高于阴极电位的条件,此状态使得Q5截止,Q6导通,在F端有电压输出。把F端电压加载到SG3525的软启动引脚。使得PWM输出关闭,调整反馈回路的电压。

图4 硬件保护模块

5.测控电路

该部分电路使用了STM32自带的3个通道的AD转换器,分别采集2个开关电源输出的电压和电流信号,该信号在CPU中处理后,得到调整结果,经过内部的PWM模块产生占空比可调的方波脉冲,该脉冲经过LM331模块进行频率和电压的转换,然后供给电源模块,和原来的模拟量电流输出进行平衡,以保证SG3525的输出稳定。

三、总结

采用Buck降压变换器为核心的并联开关电源供电系统,可以在负载不同时,通过设定自动控制两路开关电源按照任意电流比例输出。通过测试结果表明,该系统输出稳定,纹波小,精度高,有一定的应用意义。

【参考文献】

[1]张占松,蔡宣三.开关电源原理设计[M].北京电子工业出版社,1999.

[2]刘胜利.现代高频开关电源使用技术[M].北京电子工业出版社,2001.

第6篇:直流稳压电源的设计方法范文

关键词:LED;单片机;驱动系统;智能;恒流驱动

中图分类号:TM923.34 文献标识码:A 文章编号:1006-8937(2012)14-0138-02

近数年来,LED的使用越来越普遍,其拥有环保、节能、光电效率高、使用寿命长、亮度高、安全性、稳定等多方面的优点。由于其众多的优点,近年来各行各业的应用得以迅速地发展起来。从一定程度上也说明了LED驱动电路成为了产品应用中一大极其关键的因素。从理论上来讲,LED的使用寿命是10万个小时以上,但由于种种原因,主要的是在实际应用的过程中,因为驱动方式的选择不当以及驱动电路设计的不周全,致使LED极为容易受到损坏。

1 LED驱动现状分析

当前,市场上的很多生产商所生产出来的LED产品,大多采用的都是阻容降压的方式,同时采用一个外加的稳压电源,实现对LED灯的持续供电,这样则能有效的降低LED 的成本,但是这种供电方也存在着一定的弊端,对LED也造成了一定的影响。一方面,这种供电方式的效率驱动效率很低,耗费了大量的电能用来实现降压点受阻,甚至其产生的电能消耗可能会超过LED 自身对电能的消耗,而且电流的驱动也十分有限,当电流较大时则对于降压电容产生的需求较大,这样就会造成电能的消耗不断的增加;另一方面,在电压的稳定方面较差,对于通过LED 的电流无法确保其能够满足工作需求,在进行LED的产品设计时,需要通过降低LED 两端的电压来实现驱动,但是这种驱动必须要降低LED产品的亮度才能够实现。总的来说,使用这种方法来实现LED产品的驱动,使得LED自身的亮度无法得到有效的保证,流经的电源也不够稳定。如果供电源的电压降低时,则会造成LED的亮度降低,只有在电源电压稳定时,才能够保证LED的亮度不受影响。

2 LED驱动设计注意事项

LED照明产品是全球主流的节能产品之一,它将会成为未来照明发光产品中的主流趋势。LED照明产品在使用的过程中,比传统的照明产品节电60%-70%。其具有的众多优势让人们不得不重视LED的发展前景。LED之所以能维持如此多的优点,其还是要靠LED驱动来支撑的。

在进行LED驱动电路的设计时,前提是必须清楚的了解LED电流和电压的特性,因为在不同的LED 生产厂家中,生产出来的LED产品也具有不同的规格,因此在电流和电压方面也存在着一定的差异,以白光LED典型规格为例,按照LED的电压、电流的变化规律,一般应用正向电压是3.0-3.6 V左右,典型值电压为3.3 V,电流为20 mA,当LED两端的正向电压超过3.6 V后,正向电压只会有很小的增加,但是LED两端的正向电流可能会成倍的增加,致使LED发光体的温度升高地过快,从而加快了LED亮光的衰弱,一般程度导致LED的使用寿命的缩短,严重时甚至会使LED烧坏。所以,面对LED使用过程中的多种损耗,对LED驱动电路的设计提出严格的要求。

3 理想的LED驱动方式

通过对LED的电压和电流所产生的不同变化特征进行详细的观察和分析,可以发现,在恒压方式下对LED进行驱动存在着一定的可行性。虽然在一般情况下,我们使用的稳定电压电路有着一定的弊端和不足,比如电压不够稳定或者是稳流能力较差等问题,但是必须认识到,稳压电路具有一定的精确设计,通过稳压电路实现LED 的持续供电也是一种较为稳定的途径。根据相关的研究发现,对于LED来说,采用横流驱动是一种十分理想的方式,这种方式能够使LED 的正向电压发生改变引起电流变化的问题得到很好的解决,同时也能够保证LED供电的持续性和稳定性。也可以说,理想的LED 驱动方式,是保证电压的恒定和稳定,通过串联实现多个LED 同时供应。

4 LED模型

LED模型在建立的过程中,会引起电流的变化。当LED的电压值超过其恒定的规定值之外,LED的电流流向会发生变化,而且会随着正向电压的增大而不断的增加,当电压发生极小的变化时也容易引起电流的变化。电流对于电压的变化是十分敏感的,当正电压的某一个值小于规定值时,则会使电流发生变化,LED 的发光变得极为微弱;而当电压的某个值大于规定值时,则会使LED 的光变得更强。

5 驱动系统设计

LED的驱动系统对于光源运行系统的整体运行效率有着直接的影响,同时也影响着光源运行系统的稳定性和使用寿命,而本文则主要结合恒流驱动电路、单片机恒流控制、开关电源几种方式来针对驱动系统的设计进行探讨。而在本系统设计中,主要运用单片控制作为核心程序,通过对输出电流进行不断的调整和反馈,实现对LED 亮度的调整。同时,该系统能够适用于各种使用LED产品的驱动系统,能够使LED产品性能得到有效的改善,同时也使得LED 光源不稳定的问题得到有效的解决。

第7篇:直流稳压电源的设计方法范文

本文结合国内相关技术研究成果,综合考虑投资成本及应用效果,提出了井组数字化控制柜交直交稳压电源解决方案。

【关键词】交直交稳压电源 感应电压 电源浪涌

数字化技术在油田的广泛应用,让油田的管理效率得到大幅度的提高。但由于生产区电压质量不高、天气原因、燃气发电等原因造成数字化前端系统供电电压不稳定,电源浪涌,频繁切换,对没有供电保护的井组数字化设备正常运行产生了一定影响,甚至造成设备损坏,增加维护成本。因此给井组数字化设备提供一款稳压电源是非常重要的。

1 现状分析

1.1 油区供电现状分析

1.1.1 电压质量不高对供电的影响

我厂白豹油田供电情况复杂,白7增、白19增、白一联附近区域供电电压偏低,白13增附近区域供电电压偏高,无法提供平衡稳定的三相正弦波形的供电压,供电质量差会引起用抽油机、井组数字化设备的效率和功率因数降低,损耗增加,寿命缩短,损坏率较高。

1.1.2 浪涌造成的影响

浪涌现象对数字化设备正常运行造成的影响主要有两方面原因:

白豹油田因各类供电线路检修造成各区块累计停电次数每年高达50次以上,来电后抽油机与井组数字化设备同时直接供电启动,强大的浪涌现象伴随产生过大的瞬间电流,造成井组数字化设备的损坏。

白豹油田变压器安装地势高,易受雷击产生过大的瞬间电流,造成井组数字化设备的损坏。

1.1.3 燃气发电对供电的影响

我厂白豹油田应用燃气发电机供电井组较多,达20%左右。由于井组供气量不稳或发电设备自身原因造成输出电压不稳,无法提供较稳定的电压,直接损坏井组数字化设备。

1.2 由于供电品质低造成的损失

1.2.1 直接损失

2010年白豹油田由于电压质量不高造成井场数字化设备的烧毁现象较多,设备更换及维护费用偏高,共计损失费用64万。

1.2.2 间接损失

供电系统不正常导致数字化设备损坏,造成数据采集中断,严重影响数字化系统的正常使用,资料录取、现场监控等功能的失效为生产管理带来诸多不便。

2 对策研究

2.1 目前的保护措施

按照油田公司相关数字化建设标准要求,仅有的浪涌保护器也未规定型号及具体的技术要求。根据运行现状来看,目前的保护措施不能有效对井组数字化设备起到保护作用。主要原因有两点:

(1)目前使用的浪涌保护器质量不高,自然气候条件恶劣易造成电气保护设施的损坏。

(2)由于抽油机启动瞬间产生远大于稳态的峰值电流与电压,以及雷击产生的瞬间电流过大,都会击穿浪涌保护器,造成井组数字化设备损坏。

2.2 需求分析

2.2.1 所需稳压电源分析

由于井组数字化设备使用环境比较恶劣,所以电源应能在高温及低温条件下稳定运行。所需稳压电源应能消除电网供电电压变化大、供电频率不稳定、电压畸变严重(谐波分量高)、闪变等综合性电压质量问题,并具有输出波形纯净、稳压范围宽、精度高、重量轻、体积小、价格低等特点。

2.2.2 市场调研

根据所需稳压电源特点,调研目前市场主流的稳压电源主要有三类:

(1)磁饱和稳压电源:其性能优良,但价格很高且体积庞大而笨重,电压反应电路是工作在线性状态,调整管上有一定的电压降,在输出较大工作电流时,致使调整管的功耗太大,转换效率低。

(2)UPS电源:具有一定的稳压效果且停电后在一定时间内持续供电的功能。但UPS电源运行受环境影响较大,主要对室内用电设备起到保护措施,所以无法应用在井组。

(3)电子式稳压电源:大多为民用产品,达不到工业使用要求,且变压范围较小(160V~220V),不能满足井组数字化建设需求。

3 解决方案

3.1 交直交稳压电源设计技术原理

一般交直交电源主要有两大种类:线性放大型和PWM开关型,根据目前的技术发展,我们采用了目前最先进的双PWM正弦波脉宽调制技术,主动元件IGBT模块设计,瞬时值反馈、正弦脉宽调制等技术。

本电源为适应供电电源电压波动范围大、浪涌、畸变、闪变的供电特点,采用了整流、调制、稳压、中间回路电压反馈的直流稳压输出。

3.2 交直交稳压电源特点

体积小:稳压电源内部采用集成度高、功能强大的大规模集成电路,并使用全新的现代化器件,如新型高频功率半导体器件使电源高频化,电源高频化可以缩小体积重量,新型磁性材料和新型变压器,如集成磁路、平面磁芯、新型元器件。特别改善二次整流管的损耗,变压器及电容小型化,并同时采用表面安装技术,使电源体积和重量都可减少许多。并且使用模块化电源组成电源系统,功率器件的模块化、电源单元的模块化,将开关器件的驱动保护电路安装到功率模块中;将一些硬件都以芯片的形式安装到一个模块中,使元器件之间不再有传统的引线连接达到缩小体积和重量的目的。

价格低:随着半导体技术和微电子技术的高速发展,集成度高、功能强大的大规模集成电路和全新的高性能低价器件的出现,并且大规模生产使之价格降低。此电源采用了大规模集成电路和全新的高性能低价器件,使用模块化电源组成电源系统,并且以数字电路为基础,大大减少了硬件数量,降低故障率,且数字信号处理技术日趋完善成熟,这些都使此电源的价格更低。

3.3 技术指标

(1)输入电压范围 130-300V;

(2)输出电压 220V±3%;

(3)波形失真度

(4)功率因数大于0.95;

(5)工作温度 -15~60℃;

(6)具有输出短路、过流保护;

4 效果分析

4.1 性能对比

交直交电源与性能较高的磁饱和参数稳压电源比的优点:

(1)体积小、重量轻(便于客户装卸)

(2)输入功率因数达到0.95,使得自身的损耗大大降低。

(3)可与发电机组搭配使用(磁饱和稳压电源因输入的频率范围窄,所以当用户那里停电并采用发电机组供电时,则不能使用)

(4)输出电压稳定

(5)输出的波形好(失真度小

(6)能消除电网供电电压变化大、供电频率不稳定、电压畸变严重(谐波分量高)、闪变等综合性电压质量问题,为数字化系统提供电压稳定、净化的交流电源。

5 结论

交直交稳压电源的实验成功,能为井组数字化系统提供一款性价比高、稳定可靠的交流供电电源,彻底解决供电质量问题,有效保护井场数字化设备,避免经济及其它损失。

第8篇:直流稳压电源的设计方法范文

关键词:热力 热电阻 导热

一、差配方法的差异

现在我们可以注意到,这种落后的差配方不允许显式计算。相反,整个系统的节点必须被写入整个方程组,并同时解决了温度是否确定的问题。因此,我们说,向后差分方法为以后的瞬态分析产生了一个隐含的配方温度。可以按照讨论的方法进行方程组求解。毕奥和傅立叶数字也可以通过使用这个符号以下面的方式定义问题,已建成总结出一些典型的节点方程中都有显式和隐式的配方。对于这种情况,一个明确的前向差分方法的优点是直接计算未来的节点温度,但是,这种计算的稳定性有管辖选择值。自动删除一个较小的值而保留一些最大的值。在另一方面,没有这样的限制施加在从它们的隐含制剂获得的方程的解。这意味着,较大的时间增量可以被选择计算。最明显的隐式方法的缺点是对于每一个时间的数量进行较多的计算。对于涉及大量节点的问题,隐式方法可能会导致花费更多的时间在最终的解决方案里面,大多数问题只涉及一个节点数量,对于瞬态热传导一个数值分析的许多应用探讨问题,这应该是显而易见的,现在有限差分技术可适用于几乎任何情况,只需一点点耐心复杂的问题就会变得相当容易解决,只有适度的计算机设施。使用微软的Excel表格中的瞬态热传导问题的解决方案在讨论传导传热问题中有限元方法是非常必要的。

二、热电阻能力

热电阻温度检测原理:纯金属和大多数合金的电阻率都随温度升高而增加,即具有温度系数。热电阻温度计就是利用金属导体的电阻值随温度变化而改变的特性来进行温度测量的。也就是说在一定温度范围内,电阻-温度关系是线性的。温度的变化,可导致金属导体电阻的变化。这样,只要测出电阻值的变化,就可达到测量温度的目的。

在电子电路和电气设备中,通常都需要电压稳定的直流电源供电,直流电源可分为两在类,一类是化学电源,各种各样的干电池、蓄电池、充电电池等电源;其优点是体积小、重量轻、携带方便等,缺点是成本高,易污染。另一类是稳压电源,它是把交流电网220V的电压降为所需的数值,然后通过整流、滤波和稳压电路,得到稳定的直流电压,这是现实生活中应手比较广的一类。直流稳压电源的姐成一般是由电源变压器、整流电路、滤波电路、稳压电路四部分组成。 电源变压器的功能交流电压变换部分,将电网电压变为所需的交流电压,并将直流电源与交流电网隔离;整流部分的作用产将变换后的交流电压转为单方身的脉动电压。单方向在脉动电压存大很大的脉动成份,不能直接提供给负载,脉动谐波成份成为纹波。电路形式有半波整流、全波整流、桥式整流等形式;滤波电路的作用是滤除交流分量,得到更纯净的直流电源;稳压部分的作用是维持输出直流电压的基本稳定。经过滤波电路后的电压和稳定性比较差。电压受温度、负载、电网电压波动等因素的影响较大,故需要稳压电路来保持电压的恒定。

导热率K是材料本身的固有性能参数,用于描述材料的导热能力。这个特性跟材料本身的大小、形状、厚度都是没有关系的,只是跟材料本身的成分有关系。所以同类材料的导热率都是一样的,并不会因为厚度不一样而变化。但如果仔细看一些导热材料的资料,会发现很多导热材料的热阻值,同厚度并不是完全成正比关系。这是因为导热材料大都不是单一成分组成,相应会有非线性变化。厚度增加,热阻值一定会增大,但不一定是完全成正比的线性关系,可能是更陡的曲线关系。所以测试并计算出来的热阻值并不完全是材料本身的热阻值,应该是材料本身的热阻值加所谓接触面热阻值。因为接触面的平整度、光滑或者粗糙、以及安装紧固的压力大小不同,就会产生不同的接触面热阻值,也会得出不同的总热阻值。

物理科学就是这样,很多参数是无法真正的量化的,只是一个“模糊”的数学概念。通过这样的“模糊”数据,人们可以将一些数据量化,而用于实际应用。此处所说的“模糊” 是数学术语,“模糊”表示最为接近真实的近似。 而同样道理,根据热阻值以及厚度,再计算出来的导热率K值,也并不完全是真正的导热率值。 傅力叶方程式,是一个完全理想化的公式。我们可用来理解导热材料的原理。但实际应用、热阻计算是复杂的数学模型,会有很多的修正公式,来完善所有的环节可能出现的问题。

三、稳态的瞬态解除极限情况

正如我们所看到的,稳态数值配方的结果,当右侧被设置为零导致在不稳定情况下计算时使用大量的时间增量来计算。同时,很难获得一个稳态的解,后一种方法可能会出现相当繁琐的计算步骤,高斯赛德尔迭代方法用于解决许多稳态数值问题,如何去解决,当然还有许多采用计算机的计算。如果产生的热变电阻从对流边界条件或者可变热导率遇到变化时,一般的解决方案的稳态极限可以提供的优势是会记得直接的稳态解,当可变热阻力出现,由此产生的稳态节点方程变为非线性的,其解决方案可能很难有所改变。这种情况下,短暂的解决方案仅仅是要求每个电阻在每个时间增量端部进行重新计算,电阻可以是直接输入,如在节点方程的变量中添加计算,然后对于足够大数量的时间增量进行极值计算,直到温度值不再发生显著变化。在这一点上,才能稳态下的结果值。

参考文献

第9篇:直流稳压电源的设计方法范文

关键词:二次电源; 开关电源; 接地; 线性稳压电源

中图分类号:TN71034 文献标识码:A 文章编号:1004373X(2012)10013903

电源是一切电子设备的动力源,是保证电子设备正常工作的基础部件。据相关统计,电源故障约占电子设备征集故障率的40%~50%。为此,对电源必须提出一些基本要求,包括实用性能要求和电气性能要求。对于弹载二次电源更是如此,一定要考虑细致,除了满足供电能力以外还要考虑其接地方式、效率、开关电源与线性电源的取舍情况。

1 二次电源基本要求

1.1 高的可靠性

平均无故障时间MTBF是衡量电源可靠性重要指标,在通用标准中规定,可靠性指标大于等于3 000 h是最低要求。

1.2 高的安全性

设计制造出的开关电源,应符合相关标准或规范中规定的安全指标要求,如散热要求,抗电强度要求,防人身触电要求等,以防止在极限状态或者恶劣环境条件下,出现电源故障危及人身和设备安全。

1.3 好的可维修性

电源出现故障时,应能及时诊断出故障现象及部位,并且可以有效地解决故障或者更换故障模块。

2 二次电源设计思路

弹载电源由于其空间和系统性要求,需要二次电源设计的小型化、电磁兼容性好,DCDC效率高,可以满足各个组件的用电需求,线性集成稳压电源的测试和调试相对简单,如果两者结合对产品的后续阶段设计提供了方便[1]。综合考虑线性稳压电源、开关稳压电源或者复合型设计等方案,分析各种方案的优缺点和可行性后,此二次电源将采用线性集成稳压电源与DCDC结合进行设计,也就是复合型设计。采用该设计有比较高的效率,可满足各组件的用电需求,对于纹波要求比较高的供电电路采用线性稳压电源。

3 二次电源具体设计分析

3.1 电源接地设计

设计电源还有个重点也是难点,就是接地。接地从字面来十分简单,但是对于经历过电磁干扰挫折的人来说可能是一个最难掌握的技术。实际上,在电磁兼容设计中,接地是最难的技术。面对一个系统,没有一个人能够提出一个绝对正确的接地方案,多少会遗留一些问题。造成这种情况的原因是接地没有一个系统的理论或模型,人们在考虑接地时只能依靠过去的经验或从书上看到的经验。但接地是一个十分复杂的问题,在其他场合很好的方案在这里不一定最好。关于接地设计在很大程度上依赖设计师的直觉,也就是他对“接地”这个概念的理解程度和经验[23]。接地的方法很多,具体使用那一种方法取决于系统的结构和功能。

3.1.1 单点接地

单点接地有单元电路的、电路间的和设备间的单点接地。如图1所示为单点接地示意图\[45\]。其优点是可以抑制传导干扰。单点接地时,由于各电路和设备都接在一个接地点上,从而消了信号地系统中的干扰电流的闭合回路。设备地上的干扰电压也不会通过接地电路进入信号电路。这样的接地使用导线长,接地线本身的阻抗可观,对于高频信号接地效果不好。当接线长度达到1/4信号波长或其奇数倍时,地线阻抗变得很高,它就不是接地线而更像是辐射天线。

3.1.2 多点接地

在多点接地系统中,各电路和设备有多点并联接地。因为可以就近接地,接地导线短,可以减少高频驻波效应。但这种接地方法出现了多个地回路。公共地中的50 Hz市电容易经公共地回路耦合到信号回路中去。工程实践表明,如能将电源和信号的回流线分开,强信号和弱信号的回流线分开,微弱信号和火工品信号等敏感信号采用单独的回流线,就会大大减少的回路引起的干扰。图2所示为多点接地示意图。

图1 单点接地示意图 图2 多点接地示意图

3.1.3 混合接地

混合接地既包含了单点接地的特性,又包含了多点接地的特性。例如,系统内的电源需要单点接地,而射频信号又要求多点接地,这时就可以采用图3所示的混合接地。对于直流,电容是开路的,电路是单点接地,对于射频,电容是导通的,电路是多点接地。图3所示为混合接地示意图。

实际应用中,信号频率低于1 MHz时,采用单点接地;高于10 MHz时,多点接地;频率在1~10 MHz之间时,如果接地线长度大于1/20波长,采用单点接地;否则,应采用多点接地。该弹载二次电源是低频电路,所以选择单点接地,并且设计电路板时也要注意地线尽量宽并且走直线,保证接地干净。

3.2 电源切换设计

因产品在工作时包括“预热”与“准备”,正常工作时仅包括“预热”,所以还要设计电源切换部分,见图4。

图3 混合接地示意图 图4 电源切换原理图

电源在预热状态时,27 V电源的瞬态电流达到5.6 A;在准备状态时,27 V预热和28.5 V准备同时供电,电流达到5.25 A;在脱离载机后,电源为单一28.5 V准备供电,电流达到5.25 A。根据电压和电流特性,选取的二极管应满足额定电流大,反向工作电压高,满足使用要求,其封装容易安装,并且安装在放置舱壳体上利于二极管的散热[6]。

3.3 线性稳压电源电路设计