公务员期刊网 精选范文 直流稳压电源设计思路范文

直流稳压电源设计思路精选(九篇)

直流稳压电源设计思路

第1篇:直流稳压电源设计思路范文

在以单片机为核心控制器的智能MCB控制模块的设计中,信号采样电路实现的功能是通过电压、电流传感器将一次侧的大电压、大电流信号转换为二次侧的小电压、小电流信号,经信号调理电路调理后送至单片机的A/D转换器,将模拟量信号转换为单片机能够识别的数字量信号并送入单片机内[7-9]。单片机依据事先编写好的程序进行分析、处理,并做出相应的判断。因此,采样电路的采样精度高低决定着智能MCB控制单元能否完成各项功能,并直接影响到测量及保护的精度,甚至关系到MCB操作的准确性。1.1互感器的选择考虑到智能MCB体积和尺寸的限制,传统的电压、电流互感器显然不能满足设计的要求。随着电子技术的迅速发展,目前小型互感器技术已经相对比较成熟,且在很多测量系统、仪器仪表系统都有着较为广泛的应用。在MCB的工作线路中,电压变化范围并不是很大,因此电压互感器选用性价比较高的LCTV51CF-220V/0~7.07V小型互感器。电流互感器的选用是智能MCB设计中的一大难题。线路发生短路故障时,线路中的短路电流可能达到几十安甚至上千安。若想精确地测量这么宽范围的电流,只由一个普通的空心电流互感器是很难完成的,又考虑到MCB尺寸体积的限制,就更加难以实现。考虑到MCB一般工作在线路的终端,很多都是家庭使用,当额定电流为几十安的MCB通过上百安的电流,甚至更大的电流时,一定是线路中发生了较严重的短路故障。在这种情况下,就无需经过采样、单片机判断、发出动作信号等一系列流程,应该由独立的模拟脱扣电路立即切断电路。本设计中选用了测量范围相对较宽的霍尔电流传感器。1.2信号调理电路的设计信号调理电路是将来自传感器的模拟信号变换为用于数据采集、控制过程、显示读出和其他目的的数字信号[10-11]。信号调理电路技术包括信号的放大、衰减、隔离、滤波等[12]。本设计中的滤波电路是由单个运放构成的压控电压源二阶带通滤波电路,如图2所示。为了较彻底地滤去杂波,本设计中用了两个压控电压源二阶带通滤波电路。经过滤波的信号还不能直接作为单片机的采样信号,因为单片机只能识别0~5V的电压信号,而经过滤波之后的信号为正弦信号,负半周信号不能被单片机识别。从图2可以看到,在滤波之后有一个电压抬升的电路,其作用就是将正弦的信号抬升,使其变成0~5V内的正弦直流信号。其仿真波形如图3所示。图3中曲线1正弦波形为滤波电路的输出波形,曲线2为经过电压抬升后的直流正弦波形。

2电源电路的设计

智能MCB控制模块的设计中以单片机作为核心控制器件,而单片机的正常运行需要稳定的+5V电源提供电能,除单片机外,其他的一些电子电路和集成芯片也都需要有稳定的电源提供能量,因此电源模块的设计及其运行的稳定性对本设计而言至关重要。综合考虑智能MCB体积的限制和保证电源供电的稳定性,本设计中的电源部分采用了电流互感器、电压互感器相结合的自供电方式。由于系统电压在系统运行过程中的变化范围较母线电流要小得多,所以本设计中以电压互感器供电为主,以电流互感器供电为辅助。这种供电方式的设计既最大限度地缩小了设计所占用的空间体积,又能在一定程度上保证了供电的稳定性。电流互感器与电压互感器结合供电电路如图4所示。如图4所示,在电源电路中,采用以电压互感器供电为主、电流互感器供电为辅的结构。在电源实现电路中电阻R9、R10和三极管VT1、VT3、VT5共同构成电压比较调节电路。其作用是当线路发生短路产生很大的短路电流时,仍然能够保证所提供的是稳定的5V电压,从而保证了供电的稳定性,为MCB能够准确切断电路提供了保障。适当选取R9、R10,满足母线电流正常时R10两端的电压为给定值。当母线出现大于额定电流的大电流时,R10两端的电压大于给定值(VD4两端电压等于给定值),此时VD4、VT1、VT3、VT5导通,起到分流的作用,从而使电路输出电压维持稳定。其中VD4的稳压值为4V。VD2、可调电阻RV1和继电器KR1起到当母线电流很大时转为电流互感器供电的作用。适当选用VD2、RV1,使得母线在正常工作时,继电器KR1处于常闭状态,由电压互感器电路供电;当线路发生短路故障时,线路中的电流比较大,此时KR1线圈得电吸合,转换为电流互感器电路供电。这种结构的供电方式能保证当母线电流接近空载时,母线电压仍保持在额定范围内,因此在电压互感器供电时,能保证电源提供稳定的电压输出。2.1电流互感器供电电流互感器供电部分的设计是本设计中的难点,因为线路中电流的波动范围相对于线路中的电压来说要大很多,但需能保证在几十安培到几百安培的电流范围内都能稳定的输出5V电压供给单片机和其他电子器件。电流互感器供电的电路原理图如图5所示。该电路设计的关键是各个器件数值的确定。器件数值确定的基本思路是:先从MCB正常工作时即线路在正常运行状态下的情况进行仿真,调试电路中器件的数值,使输出电压接近5V,在此情况下,起分流作用的VT1、VT3、VT5应该处于截止状态,即没有分流。因为VT1、VT3、VT5应该是在线路发生短路故障、线路中的短路电流比额定电流大时才起到分流的作用,这样才能保证在正常运行和故障情况下,提供的电压值都是5V左右,将误差限定在允许的范围内。电流互感器供电部分的输出电压波形如图6所示。图6电流互感器供电电路输出波形从图6可看出,电流互感器供电电路的输出电压波形经过短暂的延时后,升至5V左右,满足本设计中对供电电源的要求。2.2电压互感器供电线路在故障状态下线路电压的波动不会很大,因此本设计采用以电压互感器供电为主的供电方式。电压互感器的供电原理图如图7所示。从图7中可以看出,电压信号经过电压互感器变换,通过全波整流电路进行整流,电容C3、C4进行滤波,经过集成三端稳压器W7805稳压后输出+5V电压。电压互感器供电部分的仿真输出波形如图8所示。在本设计中用到的集成运放需要的电源是±5V,因此在供电部分还要设计出将+5V电压信号转换为-5V电压信号的部分。这部分电路中采用芯片ICL7660。电源转换ICL7660是Maxim公司生产的小功率极性反转电源转换器。采用ICL7660搭建的电路如图9所示,电流互感器和电压互感器供电电路的输出连接到引脚8,由ICL7660的引脚5输出-5V电压,输出波形如图10所示。

3结语

第2篇:直流稳压电源设计思路范文

关键词:LM317;可调;稳压电源

直流稳压电源一般由电源变压器,整流,滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。

1 LM317 简介

LM317是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。其主要性能参数如下。

输出电压:1.25~37VDC;输出电流:5mA~1.5A;芯片内部具有过热、过流、短路保护电路;最大输入-输出电压差:40V DC,最小输入-输出电压差:3V DC; 使用环境温度:-10~+85℃ 。

2 性能指标要求

(1)输出电压可调:UO=+3V~+9V。

(2)最大输出电流:I0max=800mA。

(3)输出电压变化量:Vop_p5mV。

(4)稳压系数:Sv3×10-3。

3 电路图如下

元件清单如下:二极管都是IN4007,电阻22KΩ一个,200Ω一个,2KΩ可调一个,LED灯一个,LM317稳压模块一个,电解电容1000U一个,220U一个,瓷片电容103一个,鳄鱼夹二个,电源线一根,PCB万能板一块,变压器一个。

4 总体设计思路

本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在3-9V之间可调。LM317可调式三端稳压器电源能够连续输出可调的直流电压. 它能连续可调正负电压,稳压器内部含有过流,过热保护电路。

(1)电源变压器:电源变压器是降压变压器,它的作用是将220V的交流电压变换成整流滤波电路的需要的交流电压。

(2)整流电路:整流采用桥式整流电路,用4个IN4007二极管对交流电进行整流,使之成为脉冲直流电。其构成原则就是保证在变压器副边电压u2的整个周期内,负载上的电压和电流方向始终不变。为达到这一目的,就要在u2的正、负半周内正确引导流向负载电流。设压器副边两端分别为A和B,则A为“+”、B为“-”时应有电流流出。A为“-”、B为“+”时应有电流流入A点;相反A为“+”、B为“-”时应有电流流入B点,A为“-”、B为“+”时应有电流流出B点;因而A和B点应分别接两只二极管的阴极和阳极,以引导电流;当U2为正半周期时,电流由A点流出,经D1、RL、D3流入B点,因而负载电阻RL上的电压等于变压器的副边电压,即UO= U2, D2和D4管承受的反向电压为-U2。当U2为负半周时,电流由B点流入,经D2、RL、D4流入A点,负载电阻上的电压等于-U2,即UO=-U2,D1、D3承受的反向电压为U2。

这样,由于D1、D3和D2、D4两对二极管交替导通,使得负载电阻RL上在U2的整个周期内都有电流通过,而且方向不变,输出电压为UO=|√2U2sinωt |。

(3)滤波电路:滤波电路可以将整流电路输出电压中的交流波纹成分大部分滤除,输出波纹较小的直流电压。当变压器副边电压U2 处于正半周并且数值大于电容两端电压Uc时,二极管D1、D3导通,电流一路经负载电阻RL,另一路对电容C充电。因为在理想情况下,变压器副边无损耗,二极管导通电压为零,所以电容两端电压Uc与U2相等。当U2上升到峰值以后开始下降,电容通过负载电阻RL,其电压Uc也开始下降,趋势与U2基本相同。但是由于电容按指数规律放电,所以当U2下降到一定数值以后,Uc的下降速度小于U2的下降速度,使Uc大于U2从而导致D1、D3反向偏置而变为截止。此后电容C继续通过RL放电,Uc按指数规律缓慢下降。

当U2的负半周幅值变化到恰好大于Uc时,D2、D4因加正向电压变为导通状态,U2再次对C充电,Uc上升到U2的峰值后又开始下降,下降到一定值时D2、D4变为截止,C对RL放电,Uc按指数规律缓慢下降;放电到一定值时D1、D3变为导通,重复上述过程

(4)稳压电路:这里是选用LM317稳压模块对电路进行稳压。它是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。

5 产品的安装与调试

根据电路图进行安装与调试,接入220V市电,用万用表对电源各波段的电压进行测试,通过对电压的测试检测产品是否合格。

参考文献

1 中国计量出版社组编.新编电子电路大全[M].北京:中国计量出版社,2001

2 童诗白,华成英主编.模拟电子基础[M].北京:高等教育出版社,2006

第3篇:直流稳压电源设计思路范文

关键词: 直流开关电源;开关电源;设计

1 直流稳压电源概述

直流稳压电源在一个典型系统中担当着非常重要的角色。从某种程度上可以看成是系统的心脏。电源的系统的电路提供持续的、稳定的能源,使系统免受外部的干扰,并防止系统对其自身产生的伤害。如果电源内部发生故障,不应造成系统的故障,而确保系统安全可靠运行。因此,人们非常重视系统直流电源的设计或选用。直流稳压电源通常分为线性稳压和开关稳压两种类型。

1.1 线性稳亚电源

线性稳压电源是指起电压调整功能作用的器件始终工作在线性放大区的直流稳压电源,期工作原理如图1。

它由50 工频变压器、整流器、滤波器以及串联调整稳压器组成。

线性稳压电源的优点是具有优良的纹波及动态响应特性。但同时存在以下缺点:输入采用50 工频变压器,体积庞大且和很重;电压调整器件工作在线性放大区内,损耗大,效率低;过载能力差。

线性电源主要应用在对发热和效率要求不高的场合,或者要求成本及设计周期短的情况。线性电源作为板载电源广泛应用于分布电源系统中,特别是当配电电压低于40V时。线性电源的输出电压只能低于输入电压,并且每个线性电源只能产生一路输出。线性电源的效率在百分之三十五到百分之五十之间,损耗以热的形式耗散。

1.2 PWM开关稳压电源

一般将开关稳压电源简称开关电源,开关电源与线性稳压电源不同,它是起电压调整功能作用的器件,始终工作在开关状态。开关电源主要采用脉宽调制技术。

开关电源的优点;

1)功耗小、效率高。电源中开关器件交替地工作在导通-截止和截止-导通的开关状态,转换速度快,这使得开关管的功耗很小,电源的效率可以大幅度提高,可达到百分之九十到百分之九十五。

2)体积小、重量轻。开关电源效率高,损耗小,则可以省去较大体积的散热器;隔离变压用高频变压器取代工频变压器,可大大减小体积,降低重量;因为开关频率高,输出滤波电容的容量和体积大为减小。

3)稳压范围宽。开关电源的输出电压由占空比来调节,输入电压的变化可以通过调节占空比的大小来补偿,这样在工频电网电压变化较大时,它仍然能保证有较稳定的输出电压。

4)电路形式灵活多样。设计者可以发挥各种类型电路的特长,设计出能满足不同的应用场合的开关电源。

开关电源的缺点主要是:存在开关噪声大。在开关电源中,开关器件工作在开关状态,它产生的交流电压和电流会通过电路中的其他元器件产生尖峰干扰和谐振干扰,这些干扰如果不采用一定的措施进行抑制、消除和屏蔽,就会严重影响整机的正常工作。此外,这些干扰还会串入工频电网,使附近的其他电子仪器、设备、和家用电器收到干扰。因此设计开关电源时,必须采取合理的措施来抑制其本身产生的干扰。

PWM开关电源在使用时比线性电源具有更高的效率和灵活等特点。因此,在便携式产品、航空和自动化产品、仪器仪表以及通讯系统等,要求高效率、体积小、重量轻和多组电源电源输出的场合,得到了广泛的应用。但是开关电源的成本高,而且需要开发周期较长。

2 开关电源的设计

2.1 开关电源的工作原理

开关电源主要采用直流斩波技术,即降压变换、升压变换、变压器隔离的DC/DC变换电路理论和PWM控制技术来实现的。具有输入、输出隔离的PWM开关电源工作原理框图,如图2所示。

50Hz单相交流220V电压或三相交流220V/380V电压经EMI防电磁干扰电源滤波器,直接整流滤波;然后再将滤波后的直流电压经变换电路变换为数十千赫或数百千赫的高频方波或准方波电压,通过高频变压器隔离并降压(或升压)后,再经高频整流、滤波电路;最后输出直流电压。通过取样、比较、放大及控制、驱动电路,控制变换器中功率开关管的占空比,便能得到稳定的输出电压。在直流斩波控制中,有定频调宽、定宽调频和调频调宽3种控制方式。定频调宽是保持开关频率(开关周期T)不变,波形如图3所示。

通过改变导通时间高。而定宽调频则是保持导通时间T on不变,通过改变开关频率,来达到改变占空比的一种控制方式。由于调频控制方式的工作频率是不固定的,造成滤波器设计困难,因此,目前绝大部分的开关电源均采用PWM控制。

2.2 开关电源的主要性能指标

开关电源的质量好坏主要由其性能指标来体现。因此,对于设计者或使用者来讲,都必须对其内容有一个较全面的了解。一般性能指标包括电气指标、机械特性、适用环境、可靠性、安全性以及生产成本等。这里仅介绍常见的电气指标。

2.2.1 输入参数

输入参数包括输入电压、交流或直流、频率、相数、输入电流、功率因数以及谐波含量等。

1)输入电压:国内应用的民用交流电源电压三相为380V,单相为220V;国外的电源需要参出口国电压标准。目前开关电源流行采用国际通用电压范围,即单相交流85~265V,这一范围覆盖了全球各种民用电源标准所限定的电压,但对电源的设计提出了较高的要求。输入电压范围的下限影响变压器设计时电压比的计算,而上限决定了主电路元器件的电压等级。输入电压变化范围过宽,使设计中必须留过大裕量而造成浪费,因此变化范围应在满足实际要求的前提下尽量小。

2)输入频率:我国民用和工业用电的频率为50Hz,航空、航天及船舶用的电源经常采用交流400Hz输入,这时的输入电压通常为单相或三相115V。

3)输入相数:三相输入的情况下,整流后直流电压约是单相输入时的1.7倍,当开关电源的功为3~5kW时,可以选单相输入,以降低主电路器件的电压等级,从而可以降低成本;当功率大于5kW时,应选三相输入,以避免引起电网三相间的不平衡,同时也可以减小主电路中的电流,以降低损耗。

4)输入电流:输入电流通常包含额定输入电流和最大电流2项,是输入开关、接线端子、熔断器和整流桥等元器件的设计依据。

5)输入功率因数和谐波:目前,对保护电网环境、降低谐波污染的要求越来越高,许多国家和地区都已出台相应的标准,对用电装置的输入谐波电流和功率因数做出较严格的规定,因此开关电源的输入谐波电流和功率因数成为重要指标,也是设计中的一个重点之一。目前,单相有源功率因数校正(FPC)技术已经基本成熟,附加的成本也较低,可以很容易地使输入功率因数达到0.99以上,输入总谐波电流小于5%。

2.2.2 输出参数

输出参数包括输出功率、输出电压、输出电流、纹波、稳压精度、稳流精度、输出特性以及效率等。

1)输出电压:通常给出额定值和调节范围2项内容。输出电压上限关系到变压器设计中电压比的计算,过高的上限要求会导致过大的设计裕量和额定点特性变差,因此在满足实际要求的前提下,上限应尽量靠近额定点。相比之下,下限的限制较宽松。

2)输出电流:通常给出额定值和一定条件下的过载倍数,有稳流要求的电源还会指定调节范围。有的电源不允许空载,此时应指定电流下限。

3)稳压、稳流精度:通常以正负误差带的形式给出。影响电源稳压、稳流精度的因素很多,主要有输入电压变化、输出负载变化、温度变化及器件老化等。通常精度可以分成。3项考核:① 输入电压调整率;② 负载调整率;③ 时效偏差。同精度密切相关的因素是基准源精度、检测元件精度、控制电路中运算放大器精度等。④ 电源的输出特性:与应用领域的工艺要求有关,相互之间的差别很大。设计中必须根据输出特性的要求,来确定主电路和控制电路的形式。⑤ 纹波:开关电源的输出电压纹波成分较为复杂,通常按频带可以分为3类: 高频噪声,即远高于开关频率 的尖刺;开关频率纹波,指开关频率 附近的频率成分; 低频纹波,频率低于的 成分,即低频波动。

对纹波有多种量化方法,常用的有纹波系数、峰峰电压值、按3种频率成分分别计量幅值以及衡重法。⑥ 效率:是电源的重要指标,它通常定义为η=Po/Pi×100%。式中,Pi为输入有功功率;Po为输出功率。通常给出在额定输入电压和额定输出电压、额定输出电流条件下的效率。对于开关电源来说,效率提高就意味着损耗功率的下降,从而降低电源温升,提高可靠性,节能的效果明显,所以应尽量提高效率。一般来说,输出电压较高的电源的效率比输出低电压的电源高。

2.2.3 电磁兼容性能指标

电磁兼容也是近年来备受关注的问题。电子装置的大量使用,带来了相互干扰的问题,有时可能导致致命的后果,如在飞行的飞机机舱内使用无线电话或便携式电脑,就有可能干扰机载电子设备而造成飞机失事。电磁兼容性包含2方面的内容:

电磁敏感性、电磁干扰分别指电子装置抵抗外来干扰的能力和自身产生的干扰强度。通过制定标准,使每个装置能够抵抗干扰的强度远远大于各自发出的干扰强度,则这些装置在一起工作时,相互干扰导致工作不正常的可能性就比较小,从而实现电磁兼容。

因此,标准化对电磁兼容问题来说十分重要。各国有关电磁兼容的标准很多,并且都形成了一定的体系,在开关电源设计时应考虑相关标准。

3 开关电源的设计步骤

开关电源的设计一般采用模块化的设计思想,其设计步骤是:

1)首先从明确设计性能指标开始,然后根据常规的设计要求选择一种开关电源的拓扑结构、开关工作频率确定设计的难点,依据输出功率的要求选择半导体器件的型号;

2)变压器和电感线圈的参数计算,磁性材料设计是一个优质的开关电源设计的关键,合理的设计对开关电源的性能指标以及工作可靠性影响极大;

3)设计选择输出整流器和滤波电容;

4)选择功率开关的驱动控制方式,最好选用能实现PWM控制的集成电路芯片,也可利用单片机实现PWM控制;

5)设计反馈调节电路;

6)根据设计要求设计过电压、过电流和紧急保护电路;

7)根据热分析设计散热器;

8)设计实验电路的PCB板和电源的结构,组装、调试,测试所有的性能指标;

第4篇:直流稳压电源设计思路范文

    论文首先介绍了电力电子技术及器件的发展和应用,具体阐明了国内外开关电源的发展和现状,研究了开关电源的基本原理,拓扑结构以及开关电源在电力直流操作电源系统中的应用,介绍了连续可调开关电源的设计思路、硬件选型以及TL494在输出电压调节、过流保护等方面的工作原理和具体电路,设计出一种实用于电力系统的开关电源,以替代传统的相控电源。该系统以MOSFET作为功率开关器件,构成半桥式Buck开关变换器,采用脉宽调制(PWM)技术,PWM控制信号由集成控制TL494产生,从输出实时采样电压反馈信号,以控制输出电压的变化,控制电路和主电路之间通过变压器进行隔离,并设计了软启动和过流保护电路。该电源在输出大电流条件下,能做到输出直流电压大范围连续可调,同时保持良好的PWM稳压调节运行。    开关电源结构

    以开关方式工作的直流稳压电源以其体积小、重量轻、效率高、稳压效果好的特点,正逐步取代传统电源的位置,成为电源行业的主流形式。可调直流电源领域也同样深受开关电源技术影响,并已广泛地应用于系统之中。

    开关电源中应用的电力电子器件主要为二极管、IGBT和MOSFET。

    SCR在开关电源输入整流电路及软启动电路中有少量应用, GTR驱动困难,开关频率低,逐渐被IGBT和MOSFET取代。在本论文中选用的开关器件为功率MOSFET管。

    开关电源的三个条件:

    1. 开关:电力电子器件工作在开关状态而不是线性状态;

    2. 高频:电力电子器件工作在高频而不是接近工频的低频;

    3. 直流:开关电源输出的是直流而不是交流。

    根据上面所述,本文的大体结构如下:

    第一章,为整个论文的概述,大致介绍电力电子技术及器件的发展,简单说明直流电源的基本情况,介绍国内外开关电源的发展现状和研究方向,阐述本论文工作的重点;

    第二章,主要从理论上讨论开关电源的工作原理及电路拓扑结构;

    第三章,主要将介绍系统主电路的设计;

    第四章,介绍系统控制电路各个部分的设计;

第5篇:直流稳压电源设计思路范文

【关键词】可靠;电源;防雷击;不间断

1.概述

提升机作为煤矿生产的重要大型设备,要满足安全、可靠、高效、长时运行的要求。在影响提升机安全可靠运行的诸多因素中,提升机电控系统电源部分的可靠性是因素之一。在目前生产的电控系统中,如果进线交流电网电压受到了干扰,就会对电控系统的交、直流电源部分造成影响,严重时可能会损坏控制模块。本设计较好地提高了交、直流电源系统的可靠性,从而使电控系统整体的可靠性得到了进一步完善。

2.配电系统的可靠性设计

2.1 设计思路

可靠性的含义即为稳定性高,故障率低。从此角度出发,按以下思路进行:

(1)尽量避免故障的发生:设计本身要合理,符合电气工程及现场实际的需要;设计配备的各种元器件及耗材质量要过硬,容量要足够大;设计要配备合理的保护,包括过压保护、电压暂降及暂时断电等;设计要满足各项试验等级要求,尤其是耐压、绝缘等试验。

(2)故障一旦发生的处理措施:故障一旦发生,要考虑设计出快速查找故障的方法,在重要用电设备和容易出现故障的地方增加故障监测装置,以便尽量快速找到故障点;还要设计出快速排除故障的方法,增加备用回路,一旦本回路出现故障,可以迅速切换到备用回路中。

(3)使故障对设备及生产的影响达到最小化:这个思路除了快速查出及解决故障外,还要注意增设适当的保护措施,使由于交流电源故障引起的电控系统本身及设备的损坏率降到最低。

2.2 低压配电系统交流进线的设计

(1)设备选型

①双回路隔离开关:选用大容量隔离开关,容量为400A,两路380V交流进线,手动切换,一用一备。

②断路器:选用大容量配电保护塑壳断路器,容量为400A,具有过载保护、短路保护及漏电保护等功能,具有电子式脱扣器。

③母排配电:选用高质量镀锌铜排,截面积50*5m?,构成低压分配电源的母线。

④电压分配:选用至少是负载容量2倍以上的小型空气断路器,分别给控制柜、传动柜以及其它设备供电。

⑤防雷击设计:选用高质量防雷击产品,短时耐受冲击电流60kA以上,可有效对低压供配电系统与用电设备的雷电或其它瞬时过电压的浪涌进行保护。

(2)设计原理

设计原理图如图1所示。图中-G为隔离开关;-Q为断路器;-P为显示表;-FL为防雷击模块。

防雷击原理图如图2所示。

2.3 主控系统交流电源部分的设计

(1)设备选型

①变压器:主控及继电控制电源的下级选用一个高质量控制变压器,变比380V/220V,容量2kVA,其作用是对交流进线部分进行电气隔离,减少由于供电网的波动或谐波引起的电压干扰。

②交流净化稳压电源:在控制变压器的输出端,设计安装一个交流净化电源,容量2kVA,用于对输入电压跌落或电压渐变时产生的电压变化进行稳压。

③不间断电源:在交流净化稳压器的输出端,设计安装一个不间断电源,容量2kVA,延续时间3600S,用于对输入电压暂时或长时断电进行不间断处理。

④交流电源分配:选用高质量小型空气断路器、滤波器、熔断器和变压器,组成可靠性高的配电回路。

(2)设计原理

设计原理图如图3所示。图中-T为变压器;-UPS为不间断电源;-Q为断路器;-B为滤波器;-F为熔断器;-A为直流电源。

3.可靠性能试验

3.1 防雷击试验

(1)试验方法

差模试验:在防雷器的L-N线间,施加冲击电流(8/20μs):±6.0kA、±12.0kA、±30.0kA、±60.0kA,检测试品的残压Ur。

共模试验:在防雷器的L-PE线间,施加冲击电流(8/20μs):±60.0kA、120.0kA检测试品的残压Ur。

(2)试验结果

由试验结果(如表1所示)可见,本设计具有较高的可靠性,能够抗击一定程度的雷击。

3.2 电压跌落、暂时中断与电压渐变

(1)试验方法

试验仪器接入变压器-T1的一次侧,测量不间断电源-UPS的输出电压及电流。

仪器选择主要取决于负载电流、峰值启动电流的能力。输出电压精度为±5%。

根据产品标准的电压跌落或中断要求进行试验。试验一般做3次,每次间隔10s。

试验要在电源系统正常工作的状态下进行。

(2)试验结果

由试验结果(如表2所示)可见,本设计具有较高的可靠性和稳定性,能够适应一定程度的电压跌落、电压中断和电压渐变。

4.总结

本文提出了提升机电控电源系统的优化设计方案,为提升机电控系统的可靠运行创造了必备条件。本系统已在现场投入使用近一年,未出现过任何问题,使由于停电引起的提升机运行故障率大大降低,达到了煤矿安全生产的标准,取得了良好的效果,保证了煤矿提升的效率。

参考文献

[1]徐政.配电可靠性与电能质量[M].机械工业出版社, 2008.

[2]刘常生.低压成套开关设备[M].中国水利水电出版社,2008.

[3]陈家斌.接地技术与接地装置[M].中国电力出版社, 2003.

[4]王兆安,黄俊.电力电子技术[M].机械工业出版社, 2002.

第6篇:直流稳压电源设计思路范文

第1章

概述

任何电子设备都离不开可靠的电源,它们对电源的要求也越来越高。电子设备的小型化和低成本化使电源以轻、薄、小和高效率为发展方向。传统的晶体管串联调整正弦波逆变电源是连续控制的线性正弦波逆变电源

。这种传统正弦波逆变电源技术比较成熟,并且已有大量集成化的线性正弦波逆变电源模块,具有稳定性能好、输出纹波电压小、使用可靠等优点、但其通常都需要体积大且笨重的工频变压器与体积和重量都不得和很大的滤波器。由于调整管工作在线性放大状态,为了保证输出电压稳定,其集电极与发射极之间必须承受较大的电压差,导致调整管功耗较大,电源效率很低,一般只有45%左右。另外,由于调整管上消耗较大的功率,所以需要采用大功率调节器整管并装有体积很大的散热器,很难满足现代电子设备发展的要求。在近半个多世纪的发展过程中,正弦波逆变电源因具有体积小、重量轻、效率高、发热量低、性能稳定等优点而逐渐取代传统技术制造的连续工作电源,并广泛的应用,正弦波逆变电源技术进入快速发展期。

正弦波逆变电源采用功率半导体器件作为开关,通过控制开关的占空比调整输出电压。它的功耗小,效率高,正弦波逆变电源直接对电网电压进行整流、滤波、调整,然后由开关调整管进行稳压,不需要电源变压器,此外,开关工作频率为几十千赫,滤波电容器、电感器数值较小。因此正弦波逆变电源具有重量轻、体积小等优点。另外,于功耗小,机内温升低,提高了整机的稳定性和可靠性。而且其对电网的适应能力也有较大的提高,一般串联稳压电源允许电网波动范围为220V±10%,而正弦波逆变电源在电网电压在110~260V范围变化时,都可获得稳定的输出阻抗电压。正弦波逆变电源的高频化是电源技术发展的创新技术,高频化带来的效益是使正弦波逆变电源装置空前的小型化,并使正弦波逆变电源进入更广泛的领域,特别是在高新技术领域的应用,扒动了高新技术产品的小型化、轻便化。另外正弦波逆变电源的发展与应用在节约资源及保护环境方面都具有深远的意义。

目前市场上正弦波逆变电源中功率管多采用双极型晶体管,开关频率可达几十千赫;采用MOSFET的正弦波逆变电源转抽象频率可达几百千赫。为提高开关频率,必须采用高速开关器件。在一定范围内,开关频率的提高,不仅能有效地减小电容、电感及变压器的尺寸,而且还能够抑制干扰,改善系统的动态性能。因此,高频化是正弦波逆变电源的主要发展方向。高可靠性——正弦波逆变电源的使用的元器件比连续工作电源少数十倍,因此提高的可靠性。从寿命角度出发,电解电容、光耦合器及排风扇等器件的寿命决定着电源的寿命。所以,要从设计方面着眼,尽可能使较少的器件,提高集成度。这样不但解决了电路复杂、可靠性差的问题,也增加了保护等功能,简化了电路,提高了平均无故障时间。正弦波逆变电源的发展从来都是与半导体器件及磁性元件等的发展休戚相关的。高频化的实现,需要相应的高速半导体器件和性能优良的高频电磁元件。发展功率MOSFET、IGBT等新型高速器件,开发高频用的低损磁性材料,改进磁元件的结构及设计方法,提高滤波电容的介电常数及降低其等串联电阻等,对于正弦波逆变电源小型化始终产生着巨大的推动作用。

总之,人们在正弦波逆变电源技术领域里,边研究低损耗回路技术,边开发新型元器件,两者相互促进并推动着正弦波逆变电源以每年过两位数的市场增长率向小型、薄型、高频、低噪声以及高可靠性方向发展。

第2章

设计总思路

2.1总体框架图

滤波电路

逆变电路

输入315V直流电

驱动电路

UC3842脉宽调制电路

输出220V交流电

误差比较

图1

总体框图

此次课程设计要求输入315V直流,输出220V交流,主电路采用单相桥式逆变电路,对高频开关器件常用PWM波控制,要产生正弦波可采用SPWM控制方法,通过控制电力电子器件MOSFET的关断来控制产生交变正弦波电压。控制电路主要实现产生SPWM波,设计要求选用UC3842电流控制型PWM控制器产生控制脉冲。而UC3842实质上是通过输入的两路波进行比较,输出比较后形成的脉冲波,鉴于UC3842的这一特征,可以通过输入正弦漫头波和锯齿波进行比较得到所需的正弦波控制脉冲。正弦波产生器的设计有多种方法,本次课程设计采用555定时器多谐振电路产生方波经过滤波产生正弦波的方法作为正弦波产生器,再经过整流,使之成为正弦漫头波。锯齿波的产生电路比较简单,可以直接利用UC3842内部提供的谐振器加入电阻电容产生。此外电路要求输出的正弦波幅度可调,此时就需要使加入的正弦波漫头波幅值可调,此可以通过一加法器使之与设置电压相叠加产生电压可变的正弦电压。

主电路和控制电路的一些中间环节都是需要滤波的,由于产用SPWM控制,主电路的谐波成分较少,可以通过简单的RC无源滤波。控制电路中的方波要变成较为标准的正弦波,要滤去的谐波成分就要多得多,可以采用有源滤波,且可以通过积分环节使方波变成比较好的正弦波。

由于设计出来的电路是作为电源用的,对电源电流、电压检测就显得非常有必要了,可以通过从电源负载取出电流信号作为UC3842的关断信号,从而实现主电路的限流作用。要实现电流、电压的稳定,则可以通过取出的电流、电压信号与控制电路构成闭环控制来实现。为了不至使电路结构过于复杂,只设计了简单的电压反馈环使电压基本能跟随给定维持恒定。

2.2设计的原理和思路

图2

正弦波逆变电源的组成框图

该电路采用他励式,2管双推动输出脉宽调制方式输出电压为220V,输出电流2A,有欠压、过压和过流等多重保护功能。

第3章

主电路设计

3.1

SPWM波的实现

3.1.1

PWM固定频率的产生

PWM波形产生原理图如图3.1.1所示

图3.1.1

PWM波的产生电路图

PWM固定频率是由SG3525芯片产生。SG3525芯片的资料见如下:

管脚说明:

引脚1:误差放大反向输入

脚9:PWM比较补偿信号输入端

引脚2:误差放大同向输入

引脚10:外关断信号输入端

引脚3:振荡器外接同步信号输入端

引脚11:输出A

引脚4:振荡器输出端

引脚12:信号地

引脚5:振荡器定时电容接入端

引脚13:输出级偏置电压接入端

引脚6:振荡器定时电祖接入端

引脚14:输出端B

引脚7:振荡器放电端

引脚15:偏置电源输入端

引脚8:软启动电容接入端

引脚16:基准电源输出端

图中11与14脚输出两路互补的PWM波,其频率由与5、6管脚所连的R、C决定。PWM频率计算式如下:f=1/[C5(0.7R15+3R16)],调节6端的电阻即可改变PWM输出频率。同时,芯片内部16脚的基准电压为5.1V采用了温度补偿,设有过流保护电路,5.1V反馈到2端同向输入端,当反向输入端也为5.1V时,芯片稳定,正常工作。若两端电压不相等,芯片内部结构自动调整将其保持稳定。

在脉宽比较起的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化,由于结构上有电压环河电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,目前比较理想的新型控制器。R和C设定了PWM芯片的工作频率,计算公式为T=(0.67*RT+1.3*RD)*CT

。再通过R13和C3反馈回路。构成频率补偿网络。C6为软启动时间设定电容。

3.1.2

SPWM波的原理

在进行脉宽调制时,使脉冲系列的占空比按正弦规律来安排。当正弦值为最大值时,脉冲宽度也最大,脉冲间隔最小,反之正弦值较小时,脉冲宽度也小,脉冲间的间隔较大。这样的电压脉冲系列可以使负载电流中的高次谐波成分大为减少,成为正弦波脉宽调制。

3.1.3

SPWM调制信号的产生

要得到正弦电压的输出,就要使逆变电路的控制信号以SPWM方式控制功率管的开关,所得到的脉冲方波输出再经过滤波就可以得到正弦输出电压。通过SG3525来实现输出正弦电压,首先要得到SPWM的调制信号,而要得到SPWM调制信号,必须得有一个幅值在l~3

5V,按正弦规律变化的馒头波,将它加到SG3525脚2,并与锯齿波比较,就可得到正弦脉宽调制波实现SPWM的控制电路框图如图3.1.3(a)所示,实际电路各点的波形如图3.1.3(b)所示。

误差信号

基准电压

加法器

整流电路

滤波电路

调制电路

基准方

SG3525

时序电路

图3.1.3(a)

SPWM波控制电路框图

图3.1.3(b)

SPWM电路主要节点波形

由图3.1.3(a)

图3.1.3(b)可知,基准50Hz的方波是由555芯片生成的,用来控制输出电压有效值和基准值比较产生的误差信号,使其转换成50Hz的方波,经过低频滤波,得到正弦的控制信号。

3.2

保护电路模块

该系统是由直流边交流,弱点变为强电。故对系统进行必要的安全保护是必须的,在对系统进行调试时必须要注意安全。系统除了芯片本身具有的保护措施外,还对系统进行了专门的保护,具体如下。

3.2.1过电流保护

过电流保护采用电流互感器作为电流检测元件,其具有足够快的响应速度,能够在IGBT允许的过流时间内将其关断,起到保护作用。

如图3.2.1所示,过流保护信号取自CT2,经分压、滤波后加至电压比较器的同相输入端,如图2.4所示。当同相输入端过电流检测信号比反相输入端参考电平高时,比较器输出高电平,使D2从原来的反向偏置状态转变为正向导通,并把同相端电位提升为高电平,使电压比较器一直稳定输出高电平。同时,该过电流信号还送到SG3525的脚10。当SG3525的脚10为高电平时,其脚11及脚14上输出的脉宽调制脉冲就会立即消失而成为零。

图3.2.1

过电流保护电路

3.2.2空载保护电路的设计

空载检测电路如图3.2.2所示。是用电流互感器检测电流输出,当没有电流输出时,使三极管Q8截止,从而使RS-CK为高电平,停止输出SPWM波。8s后,再输出一组SPWM波,若仍为空载,则继续上述过程。若有电流输出则Q8导通,使得RS-CK为低电平,连续输出SPWM波形,逆变电路正常工作。

图3.2.2

空载检测电路图

3.2.3浪涌短路保护电路的设计

浪涌电路保护电路原理图如图3.2.3。此电路图是短路保护,用0.1欧的电阻对电压进行采样,通过470千欧电阻得到电流,并使这电流通过光电耦合器,当电流过高时使得SPWM波不输出,关闭IGBT形成保护。故障排除后光电耦合器输出关断,逆变器正常工作。

图3.2.3

浪涌短路保护电路原理图

第4章

单元控制电路设计

4.1

DC-AC电路设计

由前面论证已经明确采用全控桥式逆变电路。其中各桥臂通断由SPWM波控制的IGBT完成。

系统采用SG3525来实现SPWM控制信号的输出,该芯片其引脚及内部框图如图4.1所示。

图4.1

SG3525引脚及内部框图

直流电源Vs从脚15接入后分两路,一路加到或非门;另一路送到基准电压稳压器的输入端,产生稳定的+5

V基准电压。+5

V再送到内部(或外部)电路的其它元器件作为电源。

振荡器脚5须外接电容GT脚6须外接电阻RTo振荡器频率f由外接电阻RT和电容CT决定,f=1.1

8/RCTo逆变桥开关频率定为l0kHz,取GT=O.22μF,RT=5

kΩ。振荡器的输出分为两路,一路以时钟脉冲形式送至双稳态触发器及两个或非门;另一路以锯齿波形式送至比较器的同相输入端,比较器的反向输入端接误差放大器的输出。误差放大器的输出与锯齿波电压在比较器中进行比较,输出一个随误差放大器输出电压高低而改变宽度的方波脉冲,再将此方波脉冲送到或非门的一个输入端。或非门的另两个输入端分别为双稳态触发器和振荡器锯齿波。双稳态触发器的两个输出互补,交替输出高低电平,将PWM脉冲送至三极管V1及V2的基极,锯齿波的作用是加入死区时间,保证V1及V2不同时导通。最后,V1及V2分别输出相位相差180°的PWM波。

4.2

PWM驱动模块

4.2.1

驱动电路的设计

驱动电路的设计既要考虑在功率管需要导通时,能迅速地建立起驱动电压,又要考虑在需要关断时,能迅速地泄放功率管栅极电容上的电荷,拉低驱动电压。具体驱动电路如图2.7所示。

图4.2.1

驱动电路

其工作原理是:

(1)当光耦原边有控制电路的驱动脉冲电流流过时,光耦导通,使Q1的基极电位迅速上升,导致D2导通,功率管的栅极电压上升,使功率管导通;

(2)当光耦原边无控制电路的驱动脉冲电流流过时,光耦不导通,使Q1的基极电位拉低,而功率管栅极上的电压还为高,所以导致Q1导通,功率管的栅极电荷通过Q1及电阻R3速泄放,使功率管迅速可靠地关断。

当然,对于功率管的保护同样重要,所以在功率管源极和漏极之间要加一个缓冲电路避免功率管被过高的正、反向电压所损坏。

4.2.2

TDS2285产生PWN波

SPWM的核心部分采用了张工的TDS2285单片机芯片,用其产生为功率主板产生占空比变化的矩形波,通过H桥产生所需的正弦波。U3,U4组成时序和死区电路,末级输出用了4个250光藕,H桥的二个上管用了自举式供电方式,这样做的目的是简化电路,可以不用隔离电源,该模块原理图如图4.2.2(a)所示:

图2-2-1

2.2.1

PWN波的产生

(1)、该模块中是由TDS2285芯片产生PWM波,TDS2285的芯片各管脚资料如图2-2-2:

图4.2.2(a)

PWM驱动电路图

1.该模块所采用的是TDS2285芯片,其管脚如图4.2.2(b)所示

图4.2.2(b)

TDS2285管脚图

2.该模块中TDS2285芯片的工作原理图4.2.2(c)如:

图4.2.2(c)

TDS2285产生PWM波

该芯片的6、7管脚生成交流电正、负半周调制波输出引脚,输出SPWM脉冲,其频率有接在2、3管脚间的晶振来决定。9脚为故障报警输出端,通常驱动一蜂鸣器,同时配合5脚LED的状态,当蓄电池电压输入出现过压或低压时,该蜂鸣器随LED指示灯每隔1秒报警一次,当出现交流过流或者短路时,该蜂鸣器随LED指示灯每隔0.5秒报警一次。13脚为检测蓄电池电压,当13脚的电压超过3V或低于1V时,逆变停止工作,并进入欠压或过压故障状态。通过外接蓄电池上分压来实现。10脚为交流电压稳压反馈输入,实时检测功率主板输出的交流正弦波输出电压变动范围,并作调整输出达到稳定输出电压的目的。

第5章

系统调试

5.1

测试使用的仪器

序号

名称、型号、规格

数量

1

数字示波器

1

2

UT70A数字万用表

1

3

函数信号发生器

1

5.2

输出功率与效率的测试

输出功率的定义:即为电源把其输入功率转换为有效输出功率的能力。

测试框图如下图所示。

先如图布置好测试电路后,进行如下步骤调试:

1.各电路输出电压、电流测量同时进行。

2.开启所有设备、记录输入功率数值及各点输出电压,电流值。

3.计算输入功率Pi=Ui*Ii,输出功率值Po=Uo*Io.

4.效率n=Po/Pi*100%,Pi为输入。

5.3

过流保护的测试

定义:当输出电流大于设定保护值时,系统自动关闭输出,形成过流保护。当输出电流小于设定保护值时,系统自动恢复正常工作状态。

测试方法:如图18所示。在输出端接入3个串联10欧电阻作为负载,通过短路其中的一个或两个来模拟过流情况发生。观察系统是否进行过流保护。

图18

过流保护测试框图

测试结果与分析:逆变过程中,过流保护装置在电流大于设定保护值时关闭输出,并在恢复正常时又打开输出。所以过流保护装置正常工作。

5.4

空载待机功能测试

(1)

定义:当无负载接入时,系统关闭输出进入待机模式。当有负载接入时,系统进入正常工作状态。

(2)

测试方法:接入负载后断开负载,观察系统输出状态。

(3)

结果与分析:输出端负载断开5s后系统进入待机状态,此时无输出。再次接入负载,系统就开始进入逆变工作状态。

5.5

输出电压范围测试

(1)

定义输出电压的最大值最小值。

(2)

测试方法:调节电压反馈贿赂的参数,观察输出电压大小。

(3)

测试结果:接入300欧的电阻调节Rp3,输出电压在8~12V之间。

结果分析

经过测试以后题目的基本要求都已经完成,各项性能指标都较好的实现在输出功率稳定时效率达到了93%。同时该电路还具有短路保护,空载保护,过流保护的功能。

第6章

总结

刚刚拿到课程设计的题目时真不知道从哪里开始动手,课题名称里的芯片根本就没听说过。通过上网查找资料,弄清楚了它的功能,才真正开始了设计。但这个东西包括了几个部分,所以一定要把握好它的整体设计思路,在其框架之下,对各部分的单元电路进行分析和设计,最后经过电路的修改,参数的确定,将各个部分连接起来,形成总的电路图。

课程设计虽然大家的课题不是完全一样的,但是大家之间的团队合作还是很重要的,有些地方自己一个人看不明白,通过和同学之间的讨论最终弄明白,这是一个很有趣的过程,我相信通过这次的课程设计我们大家之间对于电力电子的学习取得了更加大的进步。

这次实习我学到了很多。在摸索该如何设计电路使之实现所需功能的过程中,培养了我的设计思维,增加了实际操作能力。在体会设计的艰辛的同时,更让我体会到成功的喜悦和快乐。

通过这两个星期的课程设计,从开始任务到查找资料,到设计电路图,到最后的实际接线过程中,我学到了课堂上学习不到的知识。上课时总觉得所学的知识太抽象,没什么用途,现在终于认识到了它的重要性。平时上课老师讲的内容感觉都听明白了,但真正到了用的时候却不怎么会用了,经过这次课程设计才知道,要真正学好一门课程,并不是把每一章的内容搞懂就行了,而是要将每一章的内容联系起来,融会贯通,并能够应用到实践中去.通过这次课程设计,我学到了不少新知识、新方法、新观点。这次设计不但锻炼了我的学习能力、分析问题与解决问题的能力,同时也锻炼了我克服困难的勇气和决心。

还有本次课程设计最重要的是加强了我的动手能力,平时学习的时候只是片面的认识和照搬书本上的知识,书本知识在实际应用的时候会出现很大的偏差,理论联系实际才是真正的学习之道。要在实际运用的时候结合实际的环境,具体的分析,解决问题,这才是这次课程设计对于我最重要的意义。

第7篇:直流稳压电源设计思路范文

1、本课程教学目的:

本课程是电气信息类专业的主要技术基础课。其目的与任务是使学生掌握常用半导体器件和典型集成运放的特性与参数,掌握基本放大、负反馈放大、集成运放应用等低频电子线路的组成、工作原理、性能特点、基本分析方法和工程计算方法;使学生具有一定的实践技能和应用能力;培养学生分析问题和解决问题的能力,为后续课程和深入学习这方面的内容打好基础。

2、本课程教学要求:

1.掌握半导体器件的工作原理、外部特性、主要参数、等效电路、分析方法及应用原理。

2.掌握共射、共集、共基、差分、电流源、互补输出级六种基本电路的组成、工作原理、特点及分析,熟悉改进放大电路,理解多级放大电路的耦合方式及分析方法,理解场效应管放大电路的工作原理及分析方法,理解放大电路的频率特性概念及分析。

3.掌握反馈的基本概念和反馈类型的判断方法,理解负反馈对放大电路性能的影响,熟练掌握深度负反馈条件下闭环增益的近似估算,了解负反馈放大电路产生自激振荡的条件及其消除原则。

4.了解集成运算放大器的组成和典型电路,理解理想运放的概念,熟练掌握集成运放的线性和非线性应用原理及典型电路;掌握一般直流电源的组成,理解整流、滤波、稳压的工作原理,了解电路主要指标的估算。

3、使用的教材:

杨栓科编,《模拟电子技术基础》,高教出版社

主要参考书目:

康华光编,《电子技术基础》(模拟部分)第四版,高教出版社

童诗白编,《模拟电子技术基础》,高等教育出版社,

张凤言编,《电子电路基础》第二版,高教出版社,

谢嘉奎编,《电子线路》(线性部分)第四版,高教出版社,

陈大钦编,《模拟电子技术基础

问答、例题、试题》,华中理工大学出版社,

唐竞新编,《模拟电子技术基础解题指南》,清华大学出版社,

孙肖子编,《电子线路辅导》,西安电子科技大学出版社,

谢自美编,《电子线路

设计、实验、测试》(二),华中理工大学出版社,

绪论

本章的教学目标和要求:

要求学生了解放大电路的基本知识;要求了解放大电路的分类及主要性能指标。

本章总体教学内容和学时安排:(采用多媒体教学)

§1-1 电子系统与信号

0.5

§1-2

放大电路的基本知识

0.5

本章重点:

放大电路的基本认识;放大电路的分类及主要性能指标。

本章教学方式:

课堂讲授

本章课时安排:

1

本章的具体内容:

1节

介绍本课程目的,教学参考书,本课程的特点以及在学习中应该注意的事项和学习方法;

介绍放大电路的基本认识;放大电路的分类及主要性能指标。

重点:

放大电路的分类及主要性能指标。

第1章

半导体二极管及其基本电路

本章的教学目标和要求:

要求学生了解半导体基础知识;理解PN结的结构与形成;熟练掌握普通二极管和稳压管的V-I特性曲线及其主要参数,熟练掌握普通二极管正向V-I特性的四种建模。

本章总体教学内容和学时安排:(采用多媒体教学)

§1-1 PN结

§1-2

半导体二极管

§1-3 半导体二极管的应用

§1-4 特殊二极管

本章重点:

PN结内部载流子的运动,PN结的特性,二极管的单向导电性、二极管的特性、参数、应用电路分析及稳压管的特性、参数及其特点。

本章难点:

PN结的形成原理,二极管的非线性伏安特性方程和曲线及其电路分析。

本章主要的切入点:

“管为路用”

从PN结是半导体器件的基础结构,PN结的形成原理入手,通过对器件的非线性伏安特性的描述,在分析电路时说明存在的问题,引出非线性问题线性化的必要性和可行性。

本章教学方式:

课堂讲授

本章课时安排:3

本章习题:

P26

1.1、1.2、1.7、1.9、1.12、1.13。

本章的具体内容:

2、3节

1、介绍本课程目的,教学参考书,本课程的特点以及在学习中应该注意的事项和学习方法;

2、讲解半导体基础知识,半导体,杂质半导体;

3、讲解PN结的特点,PN结的几个特性:单向导电性、伏安特性、温度特性、电容特性。

重点:

PN结的形成过程、PN结的单向导电性、伏安特性曲线的意义,伏安方程的应用。

4节

1、讲解半导体二极管结构和电路符号,基本特点,等效电路;

2、讲解稳压二极管工作原理,电路符号和特点,等效电路;

3、讲解典型限幅电路和稳压电路的分析。

重点:两种管子的电路符号和特点。

讲解课后习题,让学生更好地了解二极管基本电路及其分析方法。

【例1】电路如图(a)所示,已知,二极管导通电压。试画出uI与uO的波形,并标出幅值。

图(a)

【相关知识】

二极管的伏安特性及其工作状态的判定。

【解题思路】

首先根据电路中直流电源与交流信号的幅值关系判断二极管工作状态;当二极管的截止时,uO=uI;当二极管的导通时,。

【解题过程】

由已知条件可知二极管的伏安特性如图所示,即开启电压Uon和导通电压均为0.7V。

由于二极管D1的阴极电位为+3V,而输入动态电压uI作用于D1的阳极,故只有当uI高于+3.7V时

D1才导通,且一旦D1导通,其阳极电位为3.7V,输出电压uO=+3.7V。由于D2的阳极电位为-3V,

而uI作用于二极管D2的阴极,故只有当uI低于-3.7V时D2才导通,且一旦D2导通,其阴极电位即为-3.7V,输出电压uO=-3.7V。当uI在-3.7V到+3.7V之间时,两只管子均截止,故uO=uI。

uI和uO的波形如图(b)所示。

图(b)

【例1-8】

设本题图所示各电路中的二极管性能均为理想。试判断各电路中的二极管是导通还是截止,并求出A、B两点之间的电压UAB值。

【相关知识】

二极管的工作状态的判断方法。

【解题思路】

(1)首先分析二极管开路时,管子两端的电位差,从而判断二极管两端加的是正向电压还是反向电压。若是反向电压,则说明二极管处于截止状态;若是正向电压,但正向电压小于二极管的死区电压,则说明二极管仍然处于截止状态;只有当正向电压大于死区电压时,二极管才能导通。

(2)在用上述方法判断的过程中,若出现两个以上二极管承受大小不等的正向电压,则应判定承受正向电压较大者优先导通,其两端电压为正向导通电压,然后再用上述方法判断其它二极管的工作状态。

【解题过程】

在图电路中,当二极管开路时,由图可知二极管D1、D2两端的正向电压分别为

10V和25V。二极管D2两端的正向电压高于D1两端的正向电压,二极管D2优先导通。当二极管D2导通后,UAB=-15V,二极管

D1两端又为反向电压。故D1截止、D2导通。U

AB

=

-15V。

【例1-9】

硅稳压管稳压电路如图所示。其中硅稳压管DZ的稳定电压UZ=8V、动态电阻rZ可以忽略,UI=20V。试求:

(1)

UO、IO、I及IZ的值;

(2)

当UI降低为15V时的UO、IO、I及IZ值。

【相关知识】

稳压管稳压电路。

【解题思路】

根据题目给定条件判断稳压管的工作状态,计算输出电压及各支路电流值。

【解题过程】

(1)

由于

>UZ

稳压管工作于反向电击穿状态,电路具有稳压功能。故

UO

=

UZ

=

8V

IZ=

I-IO=6-4=2

mA

(2)

由于这时的

<UZ

稳压管没有被击穿,稳压管处于截止状态。故

IZ

=

【例1-10】电路如图(a)所示。其中未经稳定的直流输入电压UI值可变,稳压管DZ采用2CW58型硅稳压二极管,在管子的稳压范围内,当IZ为5mA时,其端电压UZ为10V、为20Ω,且该管的IZM为26mA。

(1)

试求当该稳压管用图(b)所示模型等效时的UZ0值;

(2)

当UO

=10V时,UI

应为多大?

(3)

若UI在上面求得的数值基础上变化±10%,即从0.9UI变到1.1UI,问UO

将从多少变化到多少?相对于原来的10V,输出电压变化了百分之几?在这种条件下,IZ变化范围为多大?

(4)

若UI值上升到使IZ=IZM,而rZ值始终为20Ω,这时的UI和UO分别为多少?

(5)

若UI值在6~9V间可调,UO将怎样变化?

(a)

(b)

【相关知识】

稳压管的工作原理、参数及等效模型。

【解题思路】

根据稳压管的等效模型,画出等效电路,即可对电路进行分析。

【解题过程】

(1)

由稳压管等效电路知,

(2)

(3)

设不变。当时

当时

(4)

(5)

由于U

I<UZ0,稳压管DZ没有被击穿,处于截止状态

故UO将随U

I在6~9

V之间变化

第2章

半导体三极管及放大电路基础

本章的教学目标和要求:

要求学生正确理解放大器的一些基本概念,掌握BJT的简化模型及其模型参数的求解方法,掌握BJT的偏置电路,及静态工作点的估算方法;掌握BJT的三种基本组态放大电路的组成,指标,特点及分析方法;理解放大器的频率响应的概念和描述,掌握放大器的低频、高频截止频率的估算,单管放大器的频率响应的分析,波特图的折线画法。

本章总体教学内容和学时安排:(采用多媒体与板书相结合的教学方式)

§2-1

半导体BJT

§2-2

共射极放大电路

§2-3

图解分析法

§2-4

小信号模型分析法

§2-5

放大电路的工作点稳定问题

§2-6

共集电极电路和共基极电路

§2-7

多级放大电路

§2-8

放大电路的频率响应

习题课

本章重点:

以共射极放大电路为例介绍基本放大电路的组成、工作原理、静态工作点的计算、性能指标计算。

频率响应的概述,波特图的定义;BJT的简化混合高频等效模型,单管共射放大器中频段、低频段、高频段的频率响应的分析和波特图的画法。

本章难点:

对放大概念的理解;等效模型的应用;对电路近似分析的把握。

本章主要的切入点:

通过易于理解的物理概念、作图的方法理解放大的概念;通过数学推导与物理意义的结合,加强对器件等效模型的理解;通过CB、CC、CS等基本电路的分析,强化工程分析的意识和分析问题的能力。

本章教学方式:

课堂讲授+仿真分析演示

本章课时安排:

14

本章习题:

P84

2.3、2.4、2.7、2.8、2.11、2.12、2.13、2.14、2.15、2.16、2.18、2.19、2.20。

本章的具体内容:

5、6、7节:

介绍半导体BJT的结构、工作原理、特性曲线和主要参数。

重点:BJT内部载流子的移动、电流的分配关系和特性曲线。

8、9、10节:

介绍共射放大器组成原则,电路各元件的作用,介绍Q点定义及其合理设置的重要性,放大电路的工作原理,信号在放大电路各点的传输波形变化;放大电路组成原则。

重点:

强调对于各个基本概念的理解和掌握。

11、12、13、14节:

对放大电路进行分析,介绍直流、交流通路的画法原则,并例举几个电路示范;

采用图解法对放大电路的Q点、电压放大倍数和失真情况进行分析,强调交、直流负载线的区别。

再对一个典型共射放大电路进行完整的动态参数分析,并对其分析结果进行详细分析和讨论,从而作为此部分的一个小结。

重点:

直流、交流通路的画法原则,典型共射放大电路进行完整的动态参数分析。

15、16节:

介绍三极管的小信号等效模型、并用小信号模型法分析基本放大电路的主要性能指标Av,Ri,Ro。

重点:建立小信号电路模型,将非线性问题线性化。

讲解课后习题,使学生熟悉用图解法和小信号模型法分析放大电路的方式方法。

讨论放大电路Q点的稳定性。从影响Q点稳定的因素入手,在固定偏流电路的基础上介绍分压偏置电路,并对其稳定静态工作点的原理进行详细分析。

对典型分压偏置共射放大器进行直流分析,强调直流分析中VCC的分割,工程近似法计算Q点;

重点:

对典型分压偏置共射放大器进行交直流分析。

17、18节:

简要介绍有稳Q能力的其它电路结构形式,

介绍共集放大器(CC)的原理图、直流通路、交流通路、交直流分析,介绍其特点和典型应用;给出一个典型CC放大器和其分析结论由学生课外完成分析;

介绍共基放大器(CB),原理图,直流通路,交流通路,交直流分析,介绍其特点和典型应用;

给出一个典型CB放大器和其分析结论由学生课外完成分析。

结合一个简单综合性例题小结三组态的特点。

给出一个CE,CC,CB放大器比较对照表由学生课外完成分析。

重点:

共集放大器(CC)的交直流分析,共基放大器(CB)的交直流分析。

频率响应的概述,基本概念,三个频段的划分,引入RC高通电路模拟低频响应,RC低通电路模拟高频响应,它们的幅频响应,相频响应;的频率响应;波特图的定义;BJT的完整混合模型,简化高频等效模型,主要参数的推导;单管共射放大器中频段、低频段、高频段的频率响应的分析和波特图的画法。放大器增益带宽积的概念,影响因素,多级放大器的频率响应。以一个单管共射放大电路的分析为例题对以上内容做一个小结。

重点:

频率响应的基本概念,简化高频等效模型,主要参数的推导;单管共射放大器频率响应的分析。

讲解课后习题,并对本章内容作个简单的小结。

【例2-1】电路如图所示,晶体管的β=100,UBE=0.7

V,饱和管压降UCES=0.4

V;稳压管的稳定电压UZ=4V,正向导通电压UD=0.7

V,稳定电流IZ=5

mA,最大稳定电流IZM=25

mA。试问:

(1)当uI为0

V、1.5

V、25

V时uO各为多少?

(2)若Rc短路,将产生什么现象?

【相关知识】

晶体管工作状态的判断,稳压管是否工作在稳压状态的判断以及限流电阻的作用。

【解题思路】

(1)

根据uI的值判断晶体管的工作状态。

(2)

根据稳压管的工作状态判断uO的值。

【解题过程】

(1)当uI=0时,晶体管截止;稳压管的电流

在IZ和IZM之间,故uO=UZ=4

V。

当uI=15V时,晶体管导通,基极电流

假设晶体管工作在放大状态,则集电极电流

由于uO>UCES=0.4

V,说明假设成立,即晶体管工作在放大状态。

值得指出的是,虽然当uI为0

V和1.5

V时uO均为4

V,但是原因不同;前者因晶体管截止、稳压管工作在稳压区,且稳定电压为4

V,使uO=4

V;后者因晶体管工作在放大区使uO=4

V,此时稳压管因电流为零而截止。

当uI=2.5

V时,晶体管导通,基极电流

假设晶体管工作在放大状态,则集电极电流

在正电源供电的情况下,uO不可能小于零,故假设不成立,说明晶体管工作在饱和状态。

实际上,也可以假设晶体管工作在饱和状态,求出临界饱和时的基极电流为

IB=0.18

mA>IBS,说明假设成立,即晶体管工作在饱和状态。

(2)若Rc短路,电源电压将加在稳压管两端,使稳压管损坏。若稳压管烧断,则uO=VCC=12

V。

若稳压管烧成短路,则将电源短路;如果电源没有短路保护措施,则也将因输出电流过大而损坏。

【方法总结】

(1)

晶体管工作状态的判断:对于NPN型管,若uBE>Uon(开启电压),则处于导通状态;若同时满足UC≥UB>UE,则处于放大状态,IC=βIB;若此时基极电流

则处于饱和状态,式中ICS为集电极饱和电流,IBS是使管子临界饱和时的基极电流。 (2)稳压管是否工作在稳压状态的判断:稳压管所流过的反向电流大于稳定电流IZ才工作在稳压区,反向电流小于最大稳定电流IZM才不会因功耗过大而损坏,因而在稳压管电路中限流电阻必不可少。图示电路中Rc既是晶体管的集电极电阻,又是稳压管的限流电阻。

【例2-2】电路如图所示,晶体管导通时UBE=0.7V,β=50。试分析uI为0V、1V、1.5V三种情况下T的工作状态及输出电压uO的值。

【相关知识】

晶体管的伏安特性。

【解题思路】

根据晶体管的管压降与,以及基极电流和集电极电流的特点,直接可以判别出管子的

工作状态,算出输出电压。

【解题过程】

(1)当VBB=0时,T截止,uO=12V。

(2)当VBB=1V时,因为

μA

所以T处于放大状态。

(3)当VBB=3V时,因为

μA

所以T处于饱和状态。

【例2-3】试问图示各电路能否实现电压放大?若不能,请指出电路中的错误。图中各电容对交流可视为短路。

图(a)

图(b)

图(c)

图(d)

【相关知识】

放大电路的组成原理。

【解题思路】

放大电路的作用是把微弱的电信号不失真地放大到负载所需要的数值。即要求放大电路既要有一定的放大能力,又要不产生失真。因此,首先要检查电路中的晶体管(非线性器件)是否有合适的直流偏置,是否工作在放大状态(线性状态),其次检查信号源、放大器和负载之间的信号传递通道是否畅通,并具有电压放大的能力。

【解题过程】

图(a)电路不能实现电压放大。电路缺少集电极电阻,动态时电源相当于短路,输出端没有交流电压信号。

图(b)电路不能实现电压放大。电路中缺少基极偏置电阻,动态时电源相当于短路,输入交流电压信号也被短路。

图(c)

电路也不能实现电压放大。电路中晶体管发射结没有直流偏置电压,静态电流,放大电路工作在截止状态。

图(d)电路能实现小信号电压放大。为了保证输出信号不失真(截止、饱和),当输入信号为正时,应不足以使三极管饱和;当输入信号为负时,应不会使三极管截止。

【例2-4】单级放大电路如图所示,已知Vcc=15V,,,,

此时调到,,,,,,晶体管饱和压降UCES为1V,晶体管的结电容可以忽略。试求:

(1)静态工作点,:

(2)中频电压放大倍数、输出电阻、输入电阻;

(3)估计上限截止频率和下限截止频率;

(4)动态范围=?输入电压最大值Ui

p=?

(5)当输入电压的最大值大于Ui

p时将首先出现什么失真?

【相关知识】

(1)共射极放大电路。

(2)放大电路的频率特性。

【解题思路】

(1)根据直流通路可求得放大电路的静态工作点。

(2)根据交流通路可求得放大电路的、、。

(3)根据高频区、低频区的等效电路可分别求出和。

(4)根据静态工作点及交流负载线的斜率可求得动态范围

,同时可判断电路出现失真的状况。

(5)根据电压放大倍数和动态范围可求出Ui

p。

【解题过程】

(1)采用估算法求解静态工作点。由图可知

(2)利用微变等效电路法,求解放大电路的动态指标。

(3)当电路中只有一个惯性环节时,电路的截止频率可以表示为,其中

为电容

所在回路的等效电阻。

在高频区,根据题意,晶体管的结电容可以忽略,影响电路上限截止频率的电容只有负载等效电容。故电路的上限截止频率为

在低频区,影响下限截止频率的电容有、和。可以分别考虑输入回路电容(、)和输出回路电容()的影响,再综合考虑它们共同作用时对电路下限截止频率的影响。

只考虑输出回路电容时

只考虑输入回路电容和时,为了简化计算,忽略偏置电阻及射极电阻的影响,把射极旁路电容折算到基极回路,则有

由于,所以电路的下限截止频率为

(4)

由于,即电路的最大不失真输出电压受截止失真的限制,故电路的动态范围

输入电压最大值

(5)

由上述分析可知,当输入电压的最大值大于U

ip时,电路将首先出现截止失真。

【例2-5】

图示放大电路为自举式射极输出器。在电路中,设,,,,晶体管的,,各电容的容量足够大。试求:

(1)断开电容,求放大电路的输入电阻和输出电阻。

(2)接上电容,写出的表达式,并求出具体数值,再与(1)中的数值比较。

(3)接上电容,若通过增大来提高,那么的极限值等于多少?

图(a)

【解相关知识】

射极输出器、自举原理、密勒定理。

【解题思路】

根据放大电路的微变等效电路求放大电路的输入电阻。

【解题过程】

在分析电路的指标之前,先对自举式射极输出器的工作原理作一简要说明。在静态时,电容相

当于开路;在动态时,大电容相当于短路,点

E和点A的交流电位相等。由于点E的交流电位跟随输入信号(点B的交流电位)变化,所以两端的交流电位接近相等,流过的交流电流接近

于零。对交流信号来说,相当于一个很大的电阻,从而减小了、对电路输入电阻的影响。由于大电容C的存在,点A的交流电位会随着输入信号而自行举起,所以叫自举式射极输出器。

这种自举作用能够减小直流偏置电阻对电路输入电阻的影响,可以进一步提高射极输出器的输入电阻。

(1)在断开电容C后,电路的微变等效电路如图

(b)所示。图中

图(b)

由图可以求出

可见,射极输出器的原来是很大的,但由于直流偏置电阻的并联,使减小了很多。

(2)接上自举电容后,用密勒定理把等效为两个电阻,一个是接在B点和地之间的

,另一个是接在A(E)点和地之间的,其中是考虑了与、以及并联后的,如图(c)所示。

图(c)

由于,但小于1,所以是一个比大得多的负电阻,它与、、并联后,总的电阻仍为正。由于很大,它的并联效应可以忽略,从而使

此时

所以,自举式射极输出器的输入电阻

由于对的并联影响小得多,所以比没有自举电容时增大了。

(3)

通过增大以增大的极限情况为,即用自举电阻提高的结果,使

只取绝于从管子基极看进去的电阻,与偏置电阻几乎无关。

【例2-6】试判断图示各电路属于何种组态的放大电路,并说明输出电压相对输入电压的相位关系。

(a)

(b)

(c)                                         (d)

【相关知识】

共集-共射,共射-共集,共集-共基组合放大电路。

【解题思路】

根据信号流向分析各个晶体管放大电路的组态及输出电压与输入电压的相位关系。

【解题过程】

图(a)所示电路第一级是共集电极放大电路,输出电压与输入电压同相;第二级是共射极放大电路,输出电压与输入电压反相。因此,整个电路是共集-共射组合电路,输出电压与输入电压反相。

图(b)所示电路第一级是共射极放大电路,输出电压与输入电压反相;第二级是共基极放大电路,输出电压与输入电压同相。因此,整个电路是共射-共基组合电路,输出电压与输入电压反相。

图(c)所示电路第一级是共集电极放大电路,输出电压与输入电压同相;第二级是共基极放大电

路,输出电压与输入电压同相。因此整个电路是共集-共基组合电路,输出电压与输入电压同相。

图(d)所示电路由于T1管集电极具有恒流特性,因而T1管是T2管的有源负载,所以T2管组成了有源负载的共射放大器,输出电压与输入电压反相。

【例2-7】

晶体管组成的共集-共射、共射-共集、共射-共基等几种组合放大电路各有其独特的优点,请你选择合适的组合放大电路,以满足如下所述不同应用场合的需求。

(1)电压测量放大器的输入级电路。

(2)输出电压受负载变化影响小的放大电路。

(3)负载为0.2kΩ,要求电压增益大于60dB的放大电路。

(4)输入信号频率较高的放大电路。

【相关知识】

共集-共射,共射-共集,共射-共基组合放大电路。

【解题思路】

根据三种组合放大电路的特点,选择满足应用需求的组合放大电路。三种组合放大电路的特点如下:

(1)共集-共射组合放大电路,不仅具有共集电极电路输入电阻大的特点,而且具有共射电路电压放大倍数大的特点;

(2)共射-共集组合放大电路,不仅具有共射电路电压放大倍数大的特点,而且具有共集电极电路输出电阻小的特点;

(3)共射-共基组合放大电路,共基极电路本身就有较好的高频特性,同时将输入电阻很小的共基极电路接在共射极电路之后,减小了共射极电路的电压放大倍数,使共射极接法的管子集电结电容效应减小,改善了放大电路的频率特性。因此,共射-共基组合放大电路在高频电路中获得了广泛的应用。该组合电路的电压放大倍数近似等于一般共射电路的电压放大倍数。

【解题过程】

(1)电压测量放大器的输入级既要有较大的输入电阻,又要有一定的电压放大能力,应采用共集-共射组合放大电路。

(2)输出电压受负载变化影响小的放大电路应具有较小的输出电阻,也要有一定的电压放大能力,应采用共射-共集组合放大电路。

(3)负载为0.2kΩ,电压增益大于60dB的放大电路应采用电压放大倍数大、输出电阻小的共射-共集组合电路,最好在输入级再增加一级具有高输入电阻的共集电极电路。

(4)输入信号频率较高时,应采用频率特性好的共射-共基组合放大电路。

第3章

场效应管放大电路

本章的教学目标和要求:

要求学生了解JFET、MOSFET的结构特点,理解其工作原理;掌握JFET、MOSFET的特性曲线及其主要参数,掌握BJT、JFET、MOSFET三者之间的差别;掌握FET的偏置电路,工作点估算方法,掌握FET的小信号跨导模型,掌握FET的共源和共漏电路的分析和特点。

本章总体教学内容和学时安排:(采用多媒体教学方式)

§3-1

结型场效应管

§3-2

金属-氧化物-半导体场效应管

§3-3

场效应管放大电路

习题课

本章重点:

各种场效应管的外特性及参数,场效应管放大电路的偏置电路及特点。

本章难点:

场效应管的工作原理以及静态工作点的计算。

本章教学方式:课堂讲授

本章课时安排:8

本章的具体内容:

19、20节:

介绍结型场效应管的工作原理、结型场效应管的特性曲线以及主要参数。

重点:对结型场效应管的特性曲线的理解。

21、22、23节:

介绍MOS效应管的工作原理、MOS效应管的特性曲线以及主要参数。

重点:对MOS效应管的特性曲线的理解。

24、25、26节:

FET放大电路的分类,Q点设置方法,两种偏置方法的特点,以及用图解法、计算法对电路进行分析。FET的小信号模型,并用它对共源、共漏放大器分析;加一习题课讲解习题并对本章作一小结。

重点:强调分析方法的掌握,以及电路结构、分析过程与BJT放大器的对比。

【例3-1】在图示电路中,已知场效应管的;问在下列三种情况,管子分别工作在那个区?

(1),

(2),

(3),

【相关知识】

场效应管的伏安特性。

【解题思路】

根据管子工作在不同区域的特点,判断管子的工作状态。

【解题过程】

(1)

因为

管子工作在截止区。

(2)

因为

管子工作在放大区。

(3)

因为

管子工作在可变电阻区。

【例3-2】

电路如图(a)示。其中,,,,场效应管的输出特性如图(b)

所示。试求电路的静态工作点、和之值。

图(a)

图(b)

【相关知识】

结型场效应管及其外特性,自给偏压电路,放大电路的直流通路、解析法、图解法。

【解题思路】

根据放大电路的直流通路,利用解析法或图解法可求得电路的静态工作点。

【解题过程】

由场效应管的输出特性可知管子的,

由式

与双极型晶体管放大电路类似,分析场效应管放大电路的静态工作点,也有两种方法,解析法和图解法

【另一种解法】

(1)在输出特性曲线上,根据输出回路直流负载线方程

作直流负载线MN,如图(d)所示。MN与不同

的输出特性曲线有不同的交点。Q点应该在MN上。

图(c)

图(d)

(2)由交点对应的、值在~坐标上作曲线,称为~控制特性,如图

(c)所示。

(3)在控制特性上,根据输入回路直流负载线方程

代入,可作出输入回路直流负载线。该负载线过原点,其斜率为,与控制特性曲线的

交点即为静态工作点。由此可得,

(4)根据,在输出回路直流负载线上可求得工作点,再由点可得

【例3-3】

两个场效应管的转移特性曲线分别如图

(a)、(b)所示,分别确定这两个场效应管的类型,并求其主要参数(开启电压或夹断电压,低频跨导)。测试时电流iD的参考方向为从漏极D到源极S。

(a)

(b)

【相关知识】

(1)场效应管的转移特性。

(2)场效应管的电参数。

【解题思路】

根据场效应管的转移特性确定其开启电压或夹断电压,及在某一工作点处的跨导。

【解题过程】

(a)图曲线所示的是P沟道增强型MOS管的转移特性曲线。其开启电压UGS(th)=-2V,IDQ=

-1mA

在工作点(UGS=-5V,

ID=-2.25mA)处,跨导

(b)图曲线所示的是N沟道耗尽型MOSFET的转移特性曲线,其夹断电压,

在工作点(UGS=-2V,

ID=1mA)处,跨导

第4章

集成运算放大器

本章的教学目标和要求:

要求学生了解差分式放大低电路的基本概念,简单差分式放大电路的组成、工作原理,差分放大电路静态工作点与主要性能指标的计算;了解集成运放电路的组成及特点;了解集成运放的主要参数和性能指标;理解理想运放的概念,掌握理想运放的线性工作区的特点,运放在线性工作区的典型应用;掌握理想运放的非线性工作区的特点,运放在非线性工作区的典型应用。

本章总体教学内容和学时安排:(采用多媒体教学)

§4-1

集成运放概述

§4-2

集成运放中的基本单元电路

§4-3 通用集成运放

§4-4 运放的主要参数几简化低频等效电路

本章重点:

差分式放大电路的组成、工作原理,差分放大电路静态工作点与主要性能指标的计算;零点漂移现象;差动放大器对差模信号的放大作用和对共模信号的抑制作用;半电路分析方法。

电流源电路的结构和工作原理、特点;

直接耦合互补输出级电路的结构原理、特点,交越失真的概念;

本章难点:

对差模信号共模信号的理解,对任意信号单端输入、单端输出差动放大器的分析;多级放大器前后级之间的相互影响。

本章教学方式:课堂讲授

本章课时安排:6

本章习题:

P144

4.1、4.2、4.3、4.5、4.6、4.10、4.11、4.12、4.13、4.19、4.20。

本章的具体内容:

27、28、29节:

介绍集成电路运算放大器中的几种电流源形式;介绍引入直接耦合放大电路的产生零点漂移的原因,零点漂移的抑制方法;直接耦合放大电路的直流分析。任意信号的差模共模分解,典型差分放大器的结构,对共模差模信号的不同响应。

重点:

产生零点漂移的原因,零点漂移的抑制方法;典型差分放大器的原理。

30、31、32节:

差分放大器对差模信号的放大作用的详细分析,共模抑制比的概念。差放的四种典型接法,并对几种结构的交流特性做分析。简要介绍改进型差放的改进原理。

介绍集成电路运算放大器的内部结构、工作原理、主要参数和性能指标。

重点:共模抑制比,差放的四种典型接法和集成运放的工作原理。

【例4-1】三个两级放大电路如下图所示,已知图中所有晶体管的β均为100,rbe均为1

kΩ,所有电容均为10

μF,VCC均相同。

填空:

(1)填入共射放大电路、共基放大电路等电路名称。

图(a)的第一级为_________,第二级为_________;

图(b)的第一级为_________,第二级为_________;

图(c)的第一级为_________,第二级为_________。

(2)三个电路中输入电阻最大的电路是_________,最小的电路是_________;输出电阻最大的电路是_________,最小的电路是_________;电压放大倍数数值最大的电路是_________;低频特性最好的电路是_________;若能调节Q点,则最大不失真输出电压最大的电路是_________;输出电压与输入电压同相的电路是_________。

【相关知识】

晶体管放大电路三种接法的性能特点,多级放大电路不同耦合方式及其特点,多级放大电路动态参数与组成它的各级电路的关系。

【解题思路】

(1)通过信号的流通方向,观察输入信号作用于晶体管和场效应管的哪一极以及从哪一极输出的信号作用于负载,判断多级放大电路中各级电路属于哪种基本放大电路。

(2)根据各种晶体管基本放大电路的参数特点,以及单级放大电路连接成多级后相互间参数的影响,分析各多级放大电路参数的特点。

【解题过程】

(1)在电路(a)中,T1为第一级的放大管,信号作用于其发射极,又从集电极输出,作用于负载(即第二级电路),故第一级是共基放大电路;T2和T3组成的复合管为第二级的放大管,第一级的输出信号作用于T2的基极,又从复合管的发射极输出,故第二级是共集放大电路。

在电路(b)中,T1和T2为第一级的放大管,构成差分放大电路,信号作用于T1和T2的基极,又从T2的集电极输出,作用于负载(即第二级电路),是双端输入单端输出形式,故第一级是(共射)差分放大电路;T3为第二级的放大管,第一级的输出信号作用于T3的基极,又从其发射极输出,故第二级是共集放大电路。

在电路(c)中,第一级是典型的Q点稳定电路,信号作用于T1的基极,又从集电极输出,作用于负载(即第二级电路),故为共射放大电路;T2为第二级的放大管,第一级的输出信号作用于T

2的基极,又从其集电极输出,故第二级是共射放大电路。

应当特别指出,电路(c)中T3和三个电阻(8.2

kΩ、1.8

kΩ、1

kΩ)组成的电路构成电流源,等效成T2的集电极负载,理想情况下等效电阻趋于无穷大。电流源的特征是其输入回路没有动态信号的作用。要特别注意电路(c)的第二级电路与互补输出级的区别。

(2)比较三个电路的输入回路,电路(a)的输入级为共基电路,它的e−b间等效电阻为rbe/(1+β),Ri小于rbe/(1+β);电路(b)的输入级为差分电路,Ri大于2rbe;电路(c)输入级为共射电路,Ri是rbe与10

kΩ、3.3

kΩ电阻并联,Ri不可能小于rbe/(1+β);因此,输入电阻最小的电路为(a),最大的电路为(b)。

电路(c)的输出端接T2和T3的集电极,对于具有理想输出特性的晶体管,它们对“地”看进去的等效电阻均为无穷大,故电路(c)的输出电阻最大。比较电路(a)和电路(b),虽然它们的输出级均为射极输出器,但前者的信号源内阻为3.3

kΩ,后者的信号源内阻为10

kΩ;且由于前者采用复合管作放大管,从射极回路看进去的等效电阻表达式中有1/(1+β)2,而后者从射极回路看进去的等效电阻表达式中仅为有1/(1+β),故电路(a)的输出电阻最小。

由于电路(c)采用两级共射放大电路,且第二级的电压放大倍数数值趋于无穷大,而电路(a)和(b)均只有第一级有电压放大作用,故电压放大倍数数值最大的电路是(c)。

由于只有电路(b)采用直接耦合方式,故其低频特性最好。

由于只有电路(b)采用±VCC两路电源供电,若Q点可调节,则其最大不失真输出电压的峰值可接近VCC,故最大不失真输出电压最大的电路是(b)。

由于共射电路的输出电压与输入电压反相,共集和共基电路的输出电压与输入电压同相,可以逐级判断相位关系,从而得出各电路输出电压与输入电压的相位关系。电路(a)和(b)中两级电路的输出电压与输入电压均同相,故两个电路的输出电压与输入电压均同相。电路(c)中两级电路的输出电压与输入电压均反相,故整个电路的输出电压与输入电压也同相。

综上所述,答案为(1)共基放大电路,共集放大电路;差分放大电路,共集放大电路;共射放大电路,共射放大电路;(2)(b),(a);(c),(a);(c);(b);(b);(a),(b),(c)。

【例4-2】电路如图所示。已知,,,,,。时,。

(1)试说明和、和、以及分别组成什么电路?

(2)若要求上电压的极性为上正下负,则输入电压的极性如何?

(3)写出差模电压放大倍数的表达式,并求其值。

【相关知识】

(1)差分放大电路。

(2)多级放大电路。

(3)电流源电路。

【解题过程】

根据差分放大电路、多级放大电路的分析方法分析电路。

【解题过程】

(1)、管组成恒流源电路,作和管的漏极有源电阻,、管组成差分放大电路,并且恒流源作源极有源电阻。管组成共射极放大电路,并起到电平转化作用,使整个放大

电路能达到零输入时零输出。管组成射极输出器,降低电路的输出电阻,提高带载能力,这

里恒流源作为管的射极有源电阻。

(2)为了获得题目所要求的输出电压的极性,则必须使基极电压极性为正,基极电压极性为负,也就是管的栅极电压极性应为正,而管的栅极电压极性应为负。

(3)整个放大电路可分输入级(差分放大电路)、中间级(共射放大电路)和输出级(射极输出器)。

对于输入级(差分放大电路),由于恒流源作漏极负载电阻,使单端输出具有与双端输出相同的放大倍数。所以

式中,漏极负载电阻,而

为管的等效电阻。为管组成的共射放大电路的输入电阻。

由于恒流源的。所以:

管组成的共射放大电路的电压放大倍数

由于管组成的射极输出器的输入电阻,所以:

管组成的射极输出器的电压放大倍数

则总的差模电压放大倍数的表达式为

其值为

【例4-3】下图所示为简化的集成运放电路,输入级具有理想对称性。选择正确答案填入空内。

(1)该电路输入级采用了__________。

A.共集−共射接法

B.

共集−共基接法

C.

共射−共基接法

(2)输入级采用上述接法是为了__________。

A.

展宽频带

B.

增大输入电阻

C.

增大电流放大系数

(3)T5和T6作为T3和T4的有源负载是为了__________。

A.

增大输入电阻

B.

抑制温漂

C.

增大差模放大倍数

(4)该电路的中间级采用__________。

A.

共射电路

B.

共基电路

C.

共集电路

(5)中间级的放大管为__________。

A.

T7

B.

T8

C.

T7和T8组成的复合管

(6)该电路的输出级采用__________。

A.

共射电路

B.

共基电路

C.

互补输出级

(7)D1和D2的作用是为了消除输出级的__________。

A.

交越失真

B.

饱和失真

C.

截止失真

(8)输出电压uO与uI1的相位关系为__________。

A.

反相

B.

同相

C.

不可知

【相关知识】

集成运放电路(输入级,中间级,互补输出级),基本放大电路的接法及性能指标,有源负载,差模放大倍数,复合管。

【解题思路】

(1)用基本的读图方法对放大电路进行分块,分析出输入级、中间级和输出级电路。

(2)分析各级电路的基本接法及性能特点。

【解题过程】

(1)输入信号作用于T1和T2管的基极,并从它们的发射极输出分别作用于T3和T4管的发射极,又从T3和T4管的集电极输出作用于第二级,故为共集−共基接法。

(2)上述接法可以展宽频带。

为什么不是增大输入电阻呢?因为共基接法的输入电阻很小,即T1和T2管等效的发射极电阻很小,所以输入电阻的增大很受限。因为共基接法不放大电流,所以不能增大电流放大系数。

(3)T5和T6作为T3和T4的有源负载是为了增大差模放大倍数。利用镜像电流源作有源负载,可使单端输出差分放大电路的差模放大倍数增大到近似等于双端输出时的差模放大倍数。

(4)为了完成“主放大器”的功能,中间级采用共射放大电路。

(5)由于第一级的输出信号作用于T7的基极以及T7和T8的连接方式,说明T7和T8组成的复合管为中间级的放大管。

(6)T9和T10的基极相连作为输入端,发射极相连作为输出端,故输出级为互补输出级。

(7)D1和D2的作用是为了消除输出级的交越失真。

(8)若在输入端uI1加“+”、uI2加“-”的差模信号,则T2的共集接法使其发射极(即T4的发射极)电位为“-”,T4的共基接法使其集电极(即T7的基极)电位也为“-”;以T7、T8构成的复合管为放大管的共射放大电路输出与输入反相,它们的集电极电位为“+”;互补输出级的输出与输入同相,输出电压为“+”;故uI1一端为同相输入端,uI2一端为反相输入端。

综上所述,答案为(1)B,(2)A,(3)C,(4)A,(5)C,(6)C,(7)A,(8)B。

第5章

反馈和负反馈放大电路

本章的教学目标和要求:

要求学生理解反馈的基本概念,掌握四种反馈类型;掌握实际反馈放大器的类型和极性的判断;掌握负反馈对放大电路的影响;掌握在深度负反馈条件下的计算;了解负反馈放大器的稳定性。

本章总体教学内容和学时安排:(采用多媒体教学)

§5-1

反馈的基本概念及类型

§5-2

负反馈对放大电路性能的影响

§5-3 负反馈放大电路的分析及近似计算

§5-4 负反馈放大电路的自激振荡几消除

本章重点:

反馈的基本概念;反馈类型的判断;负反馈对放大器性能的影响;在深度负反馈条件下放大器增益的估算。

本章难点:

反馈的基本概念;反馈类型的判断;自给振荡条件及消除振荡的措施

本章主要的切入点:为改善放大器的性能,引入负反馈的概念,通过方块图理解负反馈放大器的组成;通过方框图理解负反馈放大器的四种组态;定性理解负反馈对放大器的性能的理解;根据深度负反馈条件,估算放大器的增益。

本章教学方式:课堂讲授

本章课时安排:12

本章习题:

P183

5.3、5.4、5.5、5.8、5.9、5.10、5.11、5.13。

本章的具体内容:

33、34、35、36节:

反馈的基本概念,反馈放大器的组成,工作原理,反馈的判断(有无、正负、交流直流),结合对运放和分离元件放大器反馈电路的分析介绍。

四种基本反馈方式的划分,典型结构的分析,结合例题判断反馈组态。

重点:

反馈的基本概念,反馈组态判断。

37、38、39、40、41节:

反馈的引入对放大电路性能的影响,增益带宽积,负反馈引入的原则;

负反馈放大器的结构,特点,一般表达式的分析和推导。

在深度负反馈条件,在深度负反馈条件下负反馈放大器的性能分析,例题2个;

四种基本反馈在深度负反馈条件下放大器不同增益的表达式;

重点:

反馈的引入对放大电路性能的影响,负反馈引入的原则;一般表达式的分析和理解。

42、43、44节:

负反馈放大器的稳定性分析:负反馈放大器自激振荡产生的原因和条件,负反馈放大器的稳定性的定性分析和判断,负反馈放大器自激振荡的消除方法。

重点:

负反馈放大器自激振荡产生的原因和条件,负反馈放大器的稳定性的判断,负反馈放大器自激振荡的消除方法。

【例5-1】在括号内填入“√”或“×”,表明下列说法是否正确。

(1)若从放大电路的输出回路有通路引回其输入回路,则说明电路引入了反馈。

(2)若放大电路的放大倍数为“+”,则引入的反馈一定是正反馈,若放大电路的放大倍数为“−”,则引入的反馈一定是负反馈。

(3)直接耦合放大电路引入的反馈为直流反馈,阻容耦合放大电路引入的反馈为交流反馈。

(4)既然电压负反馈可以稳定输出电压,即负载上的电压,那么它也就稳定了负载电流。

(5)放大电路的净输入电压等于输入电压与反馈电压之差,说明电路引入了串联负反馈;净输入电流等于输入电流与反馈电流之差,说明电路引入了并联负反馈。

(6)将负反馈放大电路的反馈断开,就得到电路方框图中的基本放大电路。

(7)反馈网络是由影响反馈系数的所有的元件组成的网络。

(8)阻容耦合放大电路的耦合电容、旁路电容越多,引入负反馈后,越容易产生低频振荡。

【相关知识】

反馈的有关概念,包括什么是反馈、直流反馈和交流反馈、电压负反馈和电流负反馈、串联负反馈和并联负反馈、负反馈放大电路的方框图、放大电路的稳定性

【解题思路】

正确理解反馈的相关概念,根据这些概念判断各题的正误。

【解题过程】

(1)通常,称将输出量引回并影响净输入量的电流通路为反馈通路。反馈是指输出量通过一定的方式“回授”,影响净输入量。因而只要输出回路与输入回路之间有反馈通路,就说明电路引入了反馈,而反馈通路不一定将放大电路的输出端和输入端相连接。例如,在下图所示反馈放大电路中,R2构成反馈通路,但它并没有把输出端和输入端连接起来。故本题说法正确。

(2)正、负反馈决定于反馈的结果是使放大电路的净输入量或输出量的变化增大了还是减小了,若增大则为正反馈,否则为负反馈;与放大电路放大倍数的极性无关。换言之,无论放大倍数的符号是“+”还是“−”,放大电路均可引入正反馈,也可引入负反馈。故本题说法错误。

(3)直流反馈是放大电路直流通路中的反馈,交流反馈是放大电路交流通路中的反馈,与放大电路的耦合方式无直接关系。本题说法错误。

(4)电压负反馈稳定输出电压,是指在输出端负载变化时输出电压变化很小,因而若负载变化则其电流会随之变化。故本题说法错误。

(5)根据串联负反馈和并联负反馈的定义,本题说法正确。

(6)本题说法错误。负反馈放大电路方框图中的基本放大电路需满足两个条件,一是断开反馈,二是考虑反馈网络对放大电路的负载效应。虽然本课程并不要求利用方框图求解负反馈放大电路,但是应正确理解方框图的组成。

(7)反馈网络包含所有影响反馈系数的元件组成反馈网络。例如,在上图所示电路中,反馈网络由R1、R2和R4组成,而不仅仅是R2。故本题说法正确。

(8)在低频段,阻容耦合负反馈放大电路由于耦合电容、旁路电容的存在而产生附加相移,若满足了自激振荡的条件,则产生低频振荡。根据自激振荡的相位条件,在放大电路中有三个或三个以上耦合电容、旁路电容,引入负反馈后就有可能产生低频振荡,而且电容数量越多越容易产生自激振荡。故本题说法正确。

综上所述,答案为:(1)√,(2)×,(3)×,(4)×,(5)√,(6)×,(7)√,(8)√

【例5-2】

电路如图所示,图中耦合电容器和射极旁路电容器的容量足够大,在中频范围内,它们的容抗近似为零。试判断电路中反馈的极性和类型(说明各电路中的反馈是正、负、直流、交流、电压、电流、串联、并联反馈)。

【相关知识】

反馈放大电路。

【解题思路】

根据反馈的判断方法判断电路中反馈的极性和类型。

【解题过程】

图示放大电路输出与输入之间没有反馈,第一级也没有反馈,第二级放大电路有两条反馈支路。一条反馈支路是,另一条反馈支路是和串联支路。支路有旁路电容,所以它是本级直流反馈,可以稳定第二级电路的静态工作点。和串联支路接在第二级放大电路的输出(集电极)和输入之间(

基极),由于的“隔直”作用,该反馈是交流反馈。

和串联支路交流反馈极性的判断:

当给第二级放大电路加上对地极性为♁的信号时,输出电压极性为㊀,由于电容对交流信号可认为短路,所以反馈信号极性也为㊀,因而反馈信号削弱输入信号的作用,该反馈为负反馈。判断过程如图所示。

负反馈组态的判断:

若令输出电压信号等于零,从输出端返送到输入电路的信号等于零,即反馈信号与输出电压信号成正比,那么该反馈是电压反馈;反馈信号与输入信号以电流的形式在基极叠加,所以它是并联反馈。

总结上述判别可知,图示电路中和串联支路构成交流电压并联负反馈。

【例5-3】试判断图示各电路中是否引入了反馈;若引入了反馈,则判断是正反馈还是负反馈,是直流反馈还是交流反馈;若引入了交流负反馈,则判断是哪种组态的负反馈。设图中所有电容对交流信号均可视为短路。

【相关知识】

分立元件放大电路(双极型管放大电路和单极型管放大电路)各种接法的极性判断,反馈的判断方法,包括判断是否引入了反馈、判断反馈的正负、判断直流反馈和交流反馈、判断交流负反馈的四种组态。

【解题思路】

(1)根据反馈的定义,判断电路中是否存在反馈通路,从而判断是否引入了反馈。

(2)若引入了反馈,利用瞬时极性法判断反馈的正负。

(3)根据直流反馈和交流反馈的定义,判断引入的反馈属于哪种反馈。

(4)根据交流反馈四种组态的判断方法,判断引入的反馈属于哪种组态。

【解题过程】

在图(a)电路中,Rf将输出回路与输入回路连接起来,故电路引入了反馈;且反馈既存在于直流通路又存在于交流通路,故电路引入了直流反馈和交流反馈。利用瞬时极性法,在规定输入电压瞬时极性时,可得到放大管基极、集电极电位的瞬时极性以及输入电流、反馈电流的方向,如图(e)所示。晶体管的基极电流等于输入电流与反馈电流之差,故电路引入了负反馈,且为并联负反馈。当输出电压为零(即输出端短路)时,Rf将并联在T的b−e之间,如图(e)中虚线所示;此时尽管Rf中有电流,但这个电流是uI作用的结果,输出电压作用所得的反馈电流为零,故电路引入了电压负反馈。综上所述,电路引入了直流负反馈和交流电压并联负反馈。

在图(b)电路中,R1将输出回路与输入回路连接起来,故电路引入了反馈;且反馈既存在于直流通路又存在于交流通路,故电路引入了直流反馈和交流反馈。利用瞬时极性法,在规定输入电压瞬时极性时,可得到放大管各极电位的瞬时极性以及输入电流、反馈电流方向,如图(f)所示。由于反馈减小了T1管的射极电流,故电路引入了并联负反馈。令输出电压为零,由于T2管的集电极电流(为输出电流)仅受控于它的基极电流,且R1、R2对其分流关系没变,反馈电流依然存在,故电路引入了电流负反馈。综上所述,该电路引入了直流负反馈和交流电流并联负反馈。

在图(c)电路中,R4在直流通路和交流通路中均将输出回路与输入回路连接起来,故电路引入了直流反馈和交流反馈。按u

I的假设方向,可得电路中各点的瞬时极性,如图(g)所示。输出电压uO作用于R4、R1,在R1上产生的电压就是反馈电压uF,它使得差分管的净输入电压减小,故电路引入了串联负反馈。由于uF取自于uO,电路引入了电压负反馈。综上所述,电路引入了直流负反馈和交流电压串联负反馈。

根据上述分析方法,图(d)电路的瞬时极性如图(h)所示。电路引入了直流负反馈和交流电流串联负反馈。

从图(c)和(d)电路可知,它们的输出电流均为输出级放大管的集电极电流,而不是负载电流。

【方法总结】

分立元件放大电路反馈的判断与集成运放负反馈放大电路相比有其特殊性。电路的净输入电压往往指输入级放大管输入回路所加的电压(如晶体管的b−e或e−b间的电压、场效应管的g−s或s−g间的电压),净输入电流往往指输入级放大管的基极电流或射极电流。在电流负反馈放大电路中,输出电流往往指输出级晶体管的集电极电流、发射极电流或场效应管的漏极电流、源极电流。

【常见错误】

在分立元件电流负反馈放大电路中,认为输出电流是负载RL上的电流。

【例5-4】某一负反馈放大电路的开环电压放大倍数,反馈系数。试问:

(1)闭环电压放大倍数为多少?

(2)如果发生20%的变化,则的相对变化为多少?

【相关知识】

(1)相对变化率

(2)闭环增益的一般表示式

【解题思路】

当已知的相对变化率来计算的相对变化率时,应根据的相对变化率的大小采用不同的方法。当的相对变化率较小时,可对求导推出与的关系式后再计算。当的相对变化率较大时,应通过计算出后再计算。

【解题过程】

(1)闭环电压放大倍数

(2)当变化20%,那么,

则的相对变化为

当变化-20%,那么

则的相对变化为

【常见错误】

本例中已有20%的变化,

的相对变化率较大,应通过计算出后再计算。

【例5-5】电路如图所示,试合理连线,引入合适组态的反馈,分别满足下列要求。

(1)减小放大电路从信号源索取的电流,并增强带负载能力;

(2)减小放大电路从信号源索取的电流,稳定输出电流。

【相关知识】

双极型管放大电路和单极型管放大电路各种接法的分析及其极性分析,反馈的基本概念,负反馈对放大电路性能的影响,放大电路中引入负反馈的一般原则。

【解题思路】

(1)分析图中两个放大电路的基本接法。

(2)设定两个放大电路输入端的极性为正,分别判断两个放大电路其它输入端和输出端的极性。

(3)根据要求引入合适的负反馈。

【解题过程】

图示电路的第一级为差分放大电路,输入电压uI对“地”为“+”时差分管T1的集电极(即④)电位为“−”,T2的集电极(即⑤)电位为“+”。第二级为共射放大电路,若T3管基极(即⑥)的瞬时极性为“+”,则其集电极(即⑧)电位为“−”,发射极(即⑦)电位为“+”;若反之,则⑧的电位为“+”,⑦的电位为“−”。

(1)减小放大电路从信号源索取的电流,即增大输入电阻;增强带负载能力,即减小输出电阻;故应引入电压串联负反馈。

因为要引入电压负反馈,所以应从⑧引出反馈;因为要引入串联负反馈,以减小差分管的净输入电压,所以应将反馈引回到③,故而应把电阻Rf接在③、⑧之间。Rb2上获得的电压为反馈电压,极性应为上“+”下“−”,即③的电位为“+”。因而要求在输入电压对“地”为“+”时⑧的电位为“+”,由此可推导出⑥的电位为“−”,需将⑥接到④。

结论是,需将③接⑨、⑩接⑧、⑥接④。

(2)减小放大电路从信号源索取的电流,即增大输入电阻;稳定输出电流,即增大输出电阻;故应引入电流串联负反馈。

根据上述分析,Rf的一端应接在③上;由于需引入电流负反馈,Rf的另一端应接在⑦上。为了引入负反馈,要求⑦的电位为“+”,由此可推导出⑥的电位为“+”,需将⑥接到⑤。

结论是,需将③接⑨、⑩接⑦、⑥接⑤。

【方法总结】

(1)减小放大电路从信号源索取的电流,即增大输入电阻,应引入串联负反馈。

(2)增强带负载能力,即减小输出电阻,应引入电压负反馈;稳定输出电压,即减小输出电阻,应引入电压负反馈。

(3)稳定输出电流,即增大输出电阻,应引入电流负反馈。

【常见错误】

在引入反馈时只注意保证引入的反馈组态正确,但没有保证引入的反馈为负反馈。

第6、7章

信号的运算与处理电路

本章的教学目标和要求:

要求学生理解掌握理想运放的虚短与虚断的特点,熟练掌握比例、加法、减法、微分、积分等几种基本理想运算电路的工作原理及应用;掌握实际运放的误差分析;理解对数和反对数运算电路以及模拟乘法器的基本概念及应用,有源滤波器的基本概念及一阶、二阶有源滤波器电路分析,单门限、双门限电压比较器电路分析。

本章的总体教学内容:(采用多媒体教学)

§6-1

基本运算电路

§6-2

对数和反对数运算电路

§6-3

模拟乘法器及其应用

§6-4

集成运放使用中的几个问题

§7-1

电子系统概述

§7-2

信号检测系统中的放大电路

§7-3

有源滤波电路

§7-4

电压比较器

习题课

本章重点:

理想运放线性应用的规律分析、基本运算电路分析、模拟乘法器的基本概念及应用、有源滤波器、电压比较器的基本概念、双门限电压比较器电路分析。

本章难点:

正确判断运放的工作区,并灵活运用所在区的特点分析电路的功能。

本章主要的切入点:

通过引入理想运放的概念,建立虚短与虚断的概念和零子模型电路;围绕理想运放的两个工作区各自的特点,分析比例、求和、,从而掌握运放应用电路的一般分析方法。

本章教学方式:课堂讲授

本章课时安排:8

本章习题:P203

P233

6.1、6.9、6.10、6.11、6.13、6.14、6.16、7.3、7.13、7.20、7.21、7.22。

45、46节:

运用虚短与虚断概念分析反相比例、同相比例、加法、减法、积分和微分运算电路的工作原理;对实际运算电路的误差进行分析。

重点:基本运算电路的工作原理。

47、48、49节:

运用虚短与虚断概念分析对数和反对数运算电路的工作原理。介绍模拟乘法器的工作原理及应用。

重点:

模拟乘法器的工作原理。

习题课:应用基本运算放大电路进行电路分析及计算。

50、51、52节:

滤波器的概念,分类,频带特性,对用运放构成的简单高通、低通滤波器电路进行分析。电压比较器的概念,分类,应用

重点:

有源高通、低通滤波器电路的分析;电压比较器的分析方法、原理及应用。

【例6-1】如图所示的理想运放电路,可输出对“地”对称的输出电压和。设,。

(1)试求/。

(2)若电源电压用15V,,电路能否正常工作?

【相关知识】

(1)运放特性。

(2)反相输入比例运算电路。

【解题思路】

分析各运放组成哪种单元电路,根据各单元电路输出与输入关系,推导出总的输出电压的关系式。

【解题过程】

(1)由图可知,运放A1和A2分别组成反相输入比例运算电路。故

(2)

若电源电压用15V,那么,运放的最大输出电压,当时,,。运放A1和A2的输出电压均小于电源电压,这说明两个运放都工作在线性区,故电路能正常工作。

【例6-2】电路如图所示,设运放均有理想的特性,写出输出电压与输入电压、的关系式。

【相关知识】

运放组成的运算电路。

【解题思路】

分析各运放组成哪种单元电路,根据各单元电路输出与输入关系,推导出总的输出电压的关系式。

【解题过程】

由图可知,运放A1、A2组成电压跟随器。

运放A4组成反相输入比例运算电路

运放A3组成差分比例运算电路

运放A3组成差分比例运算电路

以上各式联立求解得:

【例6-3】理想运放电路如图所示,试求输出电压与输入电压的关系式。

【相关知识】

加法器、减法器。

【解题思路】

由图可知,本电路为多输入的减法运算电路,利用叠加原理求解比较方便。

【解题过程】

当时

当时

利用叠加原理可求得上式中,运放同相输入端电压

于是得输出电压

【例7-1】现有有源滤波电路如下:

A、高通滤波器

B、低通滤波器

C、带通滤波器

D、带阻滤波器

选择合适答案填入空内。

(1)为避免50Hz电网电压的干扰进入放大器,应选用。

(2)已知输入信号的频率为1~2kHz,为了防止干扰信号的混入,应选用。

(3)为获得输入电压中的低频信号,应选用。

(4)为获得输入电压中的低频信号,应选用。

(5)输入信号频率趋于零时输出电压幅值趋于零的电路为。

(6)输入信号频率趋于无穷大时输出电压幅值趋于零的电路为。

(7)输入信号频率趋于零和无穷大时输出电压幅值趋于零的电路为。

(8)输入信号频率趋于零和无穷大时电压放大倍数为通带放大倍数的电路为。

【相关知识】

四种有源滤波电路的基本特性及其用途。

【解题思路】

根据四种有源滤波电路的基本特性及其用途来选择填入。

【解题过程】

根据表7.1.3可知

答案为(1)D,(2)C,(3)B,(4)A,(5)A、C,(6)B、C,(7)C,(8)D。

【例7-2】已知由理想运放组成的三个电路的电压传输特性及它们的输入电压uI的波形如图所示。

(1)分别说明三个电路的名称;

(2)画出uO1~uO3的波形。

【相关知识】

单限比较器、滞回比较器和窗口比较器电压传输特性的特征。

【解题思路】

(1)根据电压传输特性判断所对应的电压比较器的类型。

(2)电压传输特性及电压比较器的类型画出输出电压的波形。

【解题过程】

(1)图(a)说明电路只有一个阈值电压UT(=2

V),且uI<UT时uO1

=

UOL

=-0.7

V,uI>UT时uO1

=UOH=6

V;故该电路为单限比较器。

图(b)所示电压传输特性的两个阈值电压UT1=2

V、UT2=4

V,有回差。uI<UT1时uO2=

UOH

=+6

V,

uI>UT2时uO2=

UOL

=-6

V,

UT1<uI<UT2时uO决定于uI从哪儿变化而来;说明电路为滞回比较器。

图(c)所示电压传输特性的两个阈值电压UT1=1

V、UT2=3

V,由于uI<UT1和uI>UT2时uO3=

UOL=-6

V,UT1<uI<UT2时uO1=

UOH

=+6

V,故该电路为窗口比较器。

答案是具有如图(a)、(b)、(c)所示电压传输特性的三个电路分别为单限比较器、滞回比较器和窗口比较器。

(2)根据题目给出的电压传输特性和上述分析,可画出uO1~uO3的波形,如图(e)所示。

应当特别提醒的是,在uI<4

V之前的任何变化,滞回比较器的输出电压uO2

都保持不变,且在uI=4

V时uO2从高电平跃变为低电平,直至uI=2

V时uO2才从低电平跃变为高电平。

【方法总结】

根据滞回比较器电压传输特性画输出电压波形时,当输入电压单方向变化(即从小逐渐变大,或从大逐渐变小)经过两个阈值时,输出电压只跳变一次。例如本题中,当uI从小逐渐变大时,只有经过阈值电压UT2=4

V时输出电压才跳变;而当uI从大逐渐变小时,只有经过阈值电压UT1=2

V时输出电压才跳变。

【常见错误】

认为只要uI变化经过阈值电压UT1=2

V或UT2=4

V时输出电压就跳变。

图(e)

第8章

信号发生器

本章的教学目标和要求:

要求学生理解掌握正弦波信号产生电路的基本概念,RC串联、LC并联正弦信号产生电路的组成、振荡条件判断、振荡频率计算;掌握理想运放非线性应用的分析规律,方波产生电路组成及工作原理。

本章的总体教学内容:(采用多媒体教学)

§8-1

正弦波信号发生器

§8-2

非正弦波信号发生器

本章重点:

正弦波振荡电路的振荡条件及比较器的基本原理。

本章难点:

振荡条件的判别

本章教学方式:课堂讲授

本章课时安排:4

本章习题:

P259

8.1、8.2、9.2.3、8.4、8.5、8.7、8.8、8.9、8.10、8.12

53、54节:

介绍正弦波发生器的工作原理,组成结构,产生正弦波振荡的条件;

重点:

正弦波发生器的工作原理。

55、56节:

典型的RC桥式电路的结构及其工作原理;电容三点式、电感三点式振荡电路的结构及工作原理,振荡条件的判别;石英晶体振荡电路的工作原来。

重点:

RC、LC振荡电路的工作原理。

方波、锯齿波产生电路的工作原理。

【例8-1】图(a)所示电路是没有画完整的正弦波振荡器。

(1)完成各节点的连接;

(2)选择电阻的阻值;

(3)计算电路的振荡频率;

(4)若用热敏电阻(的特性如图(b)所示)代替反馈电阻,当(有效值)多大时该电路出现稳定的正弦波振荡?此时输出电压有多大?

图(a)

图(b)

【相关知识】

RC正弦波振荡器。

【解题思路】

根据RC正弦波振荡器的组成和工作原理对题目分析、求解。

【解题过程】

(1)在本题图中,当时,RC串—并联选频网络的相移为零,为了满足相位条件,放大器的相移也应为零,所以结点应与相连接;为了减少非线性失真,放大电路引入负反馈,结点

应与相连接。

(2)为了满足电路自行起振的条件,由于正反馈网络(选频网络)的反馈系数等于1/3(时),所以电路放大倍数应大于等于3,即。故应选则大于的电阻。

(3)电路的振荡频率

(4)由图(b)可知,当,即当电路出现稳定的正弦波振荡时,,此时输出电压的有效值

【例8-2】试判断图(a)所示电路是否有可能产生振荡。若不可能产生振荡,请指出电路中的错误,画出一种正确的电路,写出电路振荡频率表达式。

【相关知识】

LC型正弦波振荡器。

【解题思路】

(1)

从相位平衡条件分析电路能否产生振荡。

(2)

LC电路的振荡频率,L、C分别为谐振电路的等效电感和电容。

【解题过程】

图(a)电路中的选频网络由电容C和电感L(变压器的等效电感)组成;晶体管T及其直流偏置电路构成基本放大电路;变压器副边电压反馈到晶体管的基极,构成闭环系统统;本电路利用晶体管的非线性特性稳幅。静态时,电容开路、电感短路,从电路结构来看,本电路可使晶体管工作在放大状态,若参数选择合理,可使本电路有合适的静态工作点。动态时,射极旁路电容和基极耦合电容短路,集电极的LC并联网络谐振,其等效阻抗呈阻性,构成共射极放大电路。利用瞬时极性法判断相位条件:首先断开反馈信号(变压器副边与晶体管基极之间),给晶体管基极接入对地极性为的输入信号,则集电极对地的输出信号极性为㊀,即变压器同名端极性为㊀,反馈信号对地极性也为㊀。反馈信号输入信号极性相反,不可能产生振荡。若要电路满足相位平衡条件,只要对调变压器副边绕组接线,使反馈信号对地极性为即可。改正后的电路如图(c)所示。本电路振荡频率的表达式为

图(c)

(d)

图(b)电路中的选频网络由电容C1、C2和电感L组成;晶体管T是放大元件,但直流偏置不合适;电容C1两端电压可作为反馈信号,但放大电路的输出信号(晶体管集电极信号)没有传递到选频网络。本电路不可能产生振荡。首先修改放大电路的直流偏置电路:为了设置合理的偏置电路,选频网络与晶体管的基极连接时要加隔直电容,晶体管的偏置电路有两种选择,一种是固定基极偏置电阻的共射电路,另一种是分压式偏置的共射电路。选用静态工作点比较稳定的电路(分压式偏置电路)比较合理。修改交流信号通路:把选频网络的接地点移到C1和C2之间,并把原电路图中的节点2连接到晶体管T的集电极。修改后的电路如图(d)所示。然后再判断相位条件:在图(d)电路中,断开反馈信号(选频网络与晶体管基极之间),给晶体管基极接入对地极性为的输入信号,集电极输出信号对地极性为㊀(共射放大电路),当LC选频网络发生并联谐振时,LC网络的等效阻抗呈阻性,反馈信号(电容C1两端电压)对地极性为。反馈信号与输入信号极性相同,表明,修改后的电路能满足相位平衡条件,电路有可能产生振荡。本电路振荡频率的表达式为

第9章

功率放大电路

本章的教学目标和要求:

要求学生了解功率放大电路的基本概念和特点;掌握乙类双电源互补对称功率放大电路的组成、工作原理及性能指标的计算;掌握甲乙类互补对称功率放大电路OCL和OTL的组成、工作原理及性能指标的计算。

本章总体教学内容和学时安排:(采用多媒体教学方式)

§9-1

功率放大电路的特点及分类

§9-2

互补推挽功率放大电路

本章重点:

乙类、甲乙类互补对称功率放大电路的输出功率和效率的计算。

本章难点:

功率放大电路的工作原理及计算分析。

本章教学方式:课堂讲授

本章课时安排:4

本章的具体内容:

57、58节:

介绍结型场效应管的工作原理、结型场效应管的特性曲线以及主要参数。

重点:对结型场效应管的特性曲线的理解。

59、60节:

介绍MOS效应管的工作原理、MOS效应管的特性曲线以及主要参数。

重点:对MOS效应管的特性曲线的理解。

FET放大电路的分类,Q点设置方法,两种偏置方法的特点,以及用图解法、计算法对电路进行分析。FET的小信号模型,并用它对共源、共漏放大器分析;加一习题课讲解习题并对本章作一小结。

重点:强调分析方法的掌握,以及电路结构、分析过程与BJT放大器的对比。

【例9-1】单电源互补功率放大电路如图所示。设功率管、的特性完全对称,

管子的饱和压降,发射结正向压降,,,,并且电容器和的容量足够大。

(1)静态时,A点的电位、电容器C两端压降和输入端信号中的直流分量分别为多大?

(2)动态时,若输出电压仍有交越失真,应该增大还是减小?

(3)试确定电路的最大输出功率

、能量转换效率,及此时需要的输入激励电流的值;

(4)如果二极管D开路,将会出现什么后果?

【相关知识】

甲乙类互补推挽功放电路的工作原理。

【解题思路】

(1)为了使单电源互补推挽功放电路输出信号正负两个半周的幅值对称,静态时,A点的电位应等于电源电压的一半,由此可推算电容器C两端压降和输入端信号中的直流分量的大小。

(2)分析产生交越失真的原因,讨论的作用。

(3)确定输出电压最大值,求解最大输出功率、能量转换效率及此时需要的输入激励电流的值。

(4)断开二极管,分析电路可能出现的状况。

【解题过程】

(1)

静态时,调整电阻、和,保证功率管和处于微导通状态,使A点电位等于电源电压的一半,即。此时耦合电容C被充电,电容C两端的电压;输入信号中的直流分量的大小,应保证输入信号接通后不影响放大电路的直流工作点,即。

(2)

电路中设置电位器和二极管D的目的是为功率管提供合适的静态偏置,从而减小互补推挽电路的交越失真。若接通交流信号后输出电压仍有交越失真,说明偏置电压不够大,适当增大电位器的值之后,交越失真将会减小。

(3)

功率管饱和时,输出电压的幅值达到最大值,则电路的最大输出功率

此功放电路的能量转换效率最大

当输出电压的幅值达最大值时,功率管基极电流的瞬时值应为

(4)当D开路时,原电路中由电位器和二极管D给功率管和提供微导通的作用消失。、、和的发射结及将构成直流通路,有可能使和管完全导通。若和的值较小时,将会出现,从而使功放管烧坏。

【例9-2】在图示的电路中,已知运放性能理想,其最大的输出电流、电压幅值分别为15mA和15V。设晶体管和的性能完全相同,=60,

。试问:

(1)该电路采用什么方法来减小交越失真?请简述理由。

(2)如负载分别为20、10时,其最大不失真输出功率分别为多大?

【相关知识】

(1)乙类互补推挽功放。

(2)运算放大器。

(3)电压并联负反馈。

【解题思路】

(1)推导晶体管和即将导通时,管子发射结两端电压与输入电压关系,并由此分析电路减小交越失真的措施。

(2)根据运放输出电流和输出电压的最大值,确定功放电路输出电流和输出电压的最大值。在不同负载条件下,分析电路最大不失真输出功率是受输出电流的限制还是受输出电压的限制,从而可求出其最大不失真输出功率。

【解题过程】

(1)当输入信号小到还不足以使晶体管和导通时,电路中还没有形成负反馈。此时由电路图可列出以下关系式

和死区电压的关系为

当时,和未导通;

当时,

和导通。

由于运放的

很大,即使非常小时,

或也会导通,与未加运放的乙类推挽功放电路相比,输入电压的不灵敏区减小了,从而减小了电路的交越失真。

(2)由图可知,功放电路最大的输出电流幅值为

最大的输出电压幅值为

当时,因为,那么,受输出电压的限制,电路的最大输出功率为

当时,因为,受输出电流的限制,电路的最大输出功率为

【例9-3】图示为三种功率放大电路。已知图中所有晶体管的电流放大系数、饱和管压降的数值等参数完全相同,导通时b-e间电压可忽略不计;电源电压VCC和负载电阻RL均相等。填空:

(1)分别将各电路的名称(OCL、OTL或BTL)填入空内,图(a)所示为_______电路,图(b)所示为_______电路,图(c)所示为_______电路。

(2)静态时,晶体管发射极电位uE为零的电路为有_______。

(3)在输入正弦波信号的正半周,图(a)中导通的晶体管是_______,图(b)中导通的晶体管是_______,图(c)中导通的晶体管是_______。

(4)负载电阻RL获得的最大输出功率最大的电路为_______。

(5)效率最低的电路为_______。

【相关知识】

常用功率放大电路(OCL、OTL或BTL)。

【解题思路】

(1)根据三种功率放大电路(OCL、OTL或BTL)的结构特点来选择相应的电路填空。

(2)功率放大电路采用双电源供电时,其晶体管发射极电位uE为零。

(3)根据三种功率放大电路(OCL、OTL或BTL)的基本工作原理来选择相应的晶体管填空。

(4)分析三种功率放大电路的最大不失真输出电压,从而选出输出功率最大的电路。

(5)根据三种功率放大电路的最大输出功率以及功放管消耗的能量大小来确定效率最低的电路。

【解题过程】

(1)答案为OTL、OCL、BTL。

(2)由于图(a)和(c)所示电路是单电源供电,为使电路的最大不失真输出电压最大,静态应设置晶体管发射极电位为VCC/2。因此,只有图(b)所示的OCL电路在静态时晶体管发射极电位为零。因此答案为OCL。

(3)根据电路的工作原理,图(a)和(b)所示电路中的两只管子在输入为正弦波信号时应交替导通,图(c)所示电路中的四只管子在输入为正弦波信号时应两对管子(T1和T4、T2和T3)交替导通。

因此答案为T1,T1,T1和T4。

(4)在三个电路中,哪个电路的最大不失真输出电压最大,哪个电路的负载电阻RL获得的最大输出功率就最大。三个电路最大不失真输出电压的峰值分别为

,,

(5)根据(3)、(4)中的分析可知,三个电路中只有BTL电路在正弦波信号的正、负半周均有两只功放管的消耗能量,损耗最大,故转换效率最低。因而答案为(c)。

第10章

直流稳压电源

本章的教学目标和要求:

要求学生掌握直流电源的组成,各部分的作用,了解稳压电源的发展趋势和典型的元件。

本章总体教学内容和学时安排:(采用多媒体教学)

§10-1 概述

§10-2 单相整流及电容滤波电路

§10-3 串联反馈型线性稳压电路

习题课,复习

本章重点:

直流电源的组成及各部分的作用;单相桥式整流电路、电容滤波、稳压管稳压的工作原理。

本章难点:

滤波电路的定量计算。

本章主要的切入点:

从前几章电子电路对直流电源的要求,简略说明直流电源的任务,进而说明直流电源的组成。

本章教学方式:课堂讲授

本章课时安排:4

本章习题:

P299

10.1、10.3、10.6、10.13、10.10、10.17

61、62节:

直流电源的组成框图,各个部分的作用,主要参数,对器件的选择的要求。介绍半波整流电路,分析典型的单相桥式整流电路。介绍滤波、稳压部分的典型结构。重点:

单相桥式整流电路的工作原理。

63、64节

典型稳压电源电路的工作原理:简介串联反馈式稳压电路和串联开关式稳压电路的工作原理;介绍常用的三端集成稳压器件78XX和79XX系列。

重点:

串联反馈式稳压电路的工作原理。

习题课,讲解本章节的重难点习题,传授解题技巧;对本课程做总结性回顾。

【例10-1】在某一具有电容滤波的桥式整流电路中,设交流电源的频率为1000HZ,整流二极管正向压降为0.7V,变压器的内阻为2。要求直流输出电流IO=100mA,输出直流电压UO=12V,试计算:

(1)估算变压器副边电压有效值U2。

(2)选择整流二极管的参数值。

(3)选择滤波电容器的电容值。

【相关知识】

电容滤波的桥式整流电路。

【解题思路】

(1)根据估算变压器副边电压有效值U2。

(2)根据电路中流过二极管的电流及二极管承受的最高反压电压选择整流二极管。

(3)根据及电容器的耐压选择滤波电容器。

【解题过程】

(1)

由可得

(2)

流过二极管的电流

二极管承受的反压为

选2CP33型二极管,其参数为URM=25V,IDM=500mA。

(3)

由,,可得

取,那么

选C=22μF,耐压25V的电解电容。

【例10-2】串联型稳压电路如图所示。已知稳压管的稳定电压,负载。

(1)

标出运算放大器A的同相和反相输入端。

(2)

试求输出电压的调整范围。

(3)

为了使调整管的,试求输入电压的值。

【相关知识】

串联型稳压电路。

【解题思路】

(1)

运算放大器的同相和反相输入端的连接要保证电路引入电压负反馈。

(2)

根据确定输出电压的调整范围。

(3)

由,并考虑到电网电压有波动,确定输入电压的值。

【解题过程】

(1)

由于串联型稳压电路实际上是电压串联负反馈电路。为了实现负反馈,取样网络(反馈网络)应接到运放的反相输入端,基准电压应接到运放的同相输入端。所以,运放A的上端为反相输入端(–),下端为同相端(+)。

(2)

根据串联型稳压电路的稳压原理,由图可知

式中,为可变电阻滑动触头以下部分的电阻,。

当时,最小

当时,最大

因此,输出电压的可调范围为。

(3)由于

当时,为保证,输入电压

若考虑到电网电压有波动时,也能保证,那么,实际应用中,输入电压应取。

【常见的错误】

容易忽视电网电压有波动。

【例10-3】图中画出了两个用三端集成稳压器组成的电路,已知静态电流IQ=2mA。

(1)写出图(a)中电流IO的表达式,并算出其具体数值;

(2)写出图(b)中电压UO的表达式,并算出当R2=0.51k时的具体数值;

(3)说明这两个电路分别具有什么功能?

图(a)

图(b)

【相关知识】

三端集成稳压器。

【解题思路】

(4)

写出图(a)电路输出电流与稳压器输出电压的表达式。

(5)写出图(b)电路输出电压与稳压器输出电压的表达式。

(6)由表达式分析各电路的功能。

【解题过程】

(1)

第8篇:直流稳压电源设计思路范文

关键词:零火线;组容降压;开关电源;继电器;驱动

中图分类号:TN710.1文献标识码:A文章编号:10053824(2014)06004103

0引言

智能开关的应用包括单火线和零火线场景,分别使用单火线开关和零火线开关做为前端设备,实现物联网控制链路终端。相对于单火线开关,零火线开关的设计便于实现,外接的灯具负载与开关采用并联与市电火零线之间,开关的取电和控制部分分开,不会产生电路连接干扰。零火线开关电路在于控制电路、电源电路和射频电路的设计,尽管不会与外接灯具负载直接串联,设计难度不高,但是考虑到作为开关应用,安全性、稳定性、可靠性和低功耗必须保证。现行技术应用较多的是高频变压器加功率晶体管,利用光耦器件的反馈做开关电源。此种方式无法有效调节电源的工作参数,且晶体管节间电容对以电感量传输能力的开关电源有影响,在电源效率和输出精度不高的应用中使用广泛,但是无法满足以低功耗为主的智能开关应用。本文主要分析零火线智能开关电路设计技术,详细分析市电到低压直流电的电压转换电路以及继电器驱动电路。在关键硬件电路增加稳定性并降低功耗。

1零火线智能开关概述

220 V交流电转换为低压直流电的方式有2种:一,变压器降压,将220 V交流降为12 V或其他任意低压值交流电压,经过整流、滤波得到低压直流电源;二,在火线和零线之间应用模拟或数字器件降压、整流和稳压,直接实现交转直,然后再进行降压处理。第1种方式在大型电器产品使用比较多,性能稳定,安全可靠,带负载能力强。不足处在于,电源电路需要使用大体积和粗线径的交流变压器。第2种方式是小型家电和智能产品中常见的使用方法,这种方法对取电电路的设计能力要求比较高,驱动能力和安全性较第1种方式差,但是,该方式取电电路体积小,稳定性高,功耗低,得到广泛应用。智能家居系统中,智能开关受限于开关线盒体积,加之作为低功耗的典型应用其设计一般选用第2种方式。

零火线智能开关的取电电路因设计不同,实现方式种类较多,常见的一般有2种:第1种,RC组容降压;第2种,RCC开关电源。

2RC组容降压电路

组容降压型零火线智能开关取电电路图如图1所示。

取电电路利用CBB电容或者法拉电容作为降压电容,实现交流降压和低压负载限流,R1为限流电阻,R2为压敏电阻,用于防止高压击穿。

通电后,电容两端电压不能突变,此时两端电压实为0 V,电容处于充电状态,容量决定其充电速率,由于电阻R1限流电阻的存在,不会存在上电瞬间大电流对电容C1的冲击,当交流电处于正半周时给电容充电,当负半周时,电容积蓄一定电荷,充到一定的电压值,此时经过并联的R3泄放电阻放电,电容C1两端电荷泄放掉,电压下降,如此在交流电的正负半周不停的充电放电。电容C1的容值和R1限流电阻的大小决定充电速率,电容C1的大小决定了电容能积蓄的电荷大小,也就决定了由电容积蓄的电荷形成电压的带负载能力,也即对后续电路的驱动能力。R3的阻值决定了C1放电的时间常数,要选取适当,以期在半个交流周期内能有效的泄放掉电容C1内的电荷。降压电容C1和R3泄放电阻的对应大小一般按下表1取值即可。表1降压电容值和泄放电阻值关系

降压电容/uF10.4710.681111.512泄放电阻/kΩ11 0001750151013301220

在交流的正半周,电容C1充电,负半周时电容C1放电,经过桥堆BD整流转变成为直流低压电压,再由12 V稳压二极管D1稳压,电容C3_2滤波和储能得到稳定的直流12 V电压,供后续电路工作,如直流转压电路、继电器驱动电路、控制IC。12 V电压经过直流转压芯片得到更低压值的工作电压。两端的电解电容为滤波和之用,贴片陶瓷电容抑制高频干扰。

此电路的设计需注意,必须根据低压负载决定电容的大小,通常降压电容C1的容量C与负载电流Io的关系可近似认为:C=14.5 I,其中C的容量单位是μF,Io的单位是A。泄放电阻的选取一般要考虑其耐压,这里选择不小于1/4 W的碳膜电阻可耐压500 V。这种电路的优点主要在于生产考虑,器件成本低,电路结构简单,生产批量应用方便。但是这个电路的缺点比较明显,不适用于大功率及动态负载条件,同样不适合容性和感性负载,带负载由双向可控硅和单向可控硅多个器件决定,容易出现不稳定问题,而且阻容降压是一种非隔离取电方式,在外碰触容易触电,安全性不好。

3RCC开关电源电路

取电电路此电路的设计思想是先整流后降压,R6为限流电阻,起保险丝作用,利用NTC热敏电阻或者线绕电阻能很好地抑制上电高脉冲电流。电路正常工作期间,在交流电正负半周都能提供电流,经全波整流LCCπ型滤波后得到形成约270 V的高压直流电压,提供给高频变压器T1做能量存储和电源芯片U4的工作电压。光耦U3为反馈通路,U5及其周围电阻电容为输出端电压调节电路,D5二极管及Cp7电解电容为低压直流电源输出端,C0为Y电容。

电路中高频变压器的参数是决定电路稳定性和带负载能力的关键。涉及到初次级线圈线径和匝数、骨架和磁介质、电感量等[12]。感量越大储能越多,但是在U4开启的时候初级线圈产生的反向感应电压很大,可能存在烧毁U4的情况,对此可以在初级线圈两端加RCD箝位电路,以消除此感应电压。如果感量太小就会储能不够,实际应用中应根据负载决定高频变压器参数,常见值如电感量3 mH,线径0.35 mm/0.12 mm。U4为电源管理芯片,做电压比较和变压器线圈回路通断作用。U3是光耦,常见如PC817,起反馈作用[3]。C0选用Y电容串在初次级的两地端,能有效地减小共模干扰[4]。

此电路较复杂,关键参数多,容易受器件和使用环境的影响,对设计能力要求比较高,而且成本相对RC组容降压电路高。但是此电路驱动能力高且可调,负载要求低,可以做到体积小,稳定性高,电源效率高,而且功耗低,高低压充分隔离,安全稳定。

4继电器驱动电路

智能家居应用中,智能开关选用继电器的选型一般遵循大负载、小体积和低功耗的原则,继电器常用的有6脚/5脚C型继电器,该类继电器带负载能力强,可达10 A,体积较大,触点面积大,寿命长。另外一种是4脚A型继电器,这种继电器体积较小,负载能力不如C型继电器大,常见为5 A,使用寿命较长[5]。选型继电器的时候,主要考虑以下几个因素:

1)体积:选择能接受的体积,一般的,对于A型继电器的使用环境,要求体积不大于19 mm×11 mm×16 mm。

2)负载能力:为了可靠地工作以及增加使用寿命,继电器的最大切换电流选取适用,如8 A,5 A。继电器的实际负载能力有2种评估方法,一种是70%原则,另一种是50%原则,在智能家居应用中,一般常用70%原则,所以8 A标称切换电流的负载能力实际使用时不大于6A。

3)功耗:常见有0.2 W,0.36 W,0.45 W,0.8 W等,考虑低功耗的要求,选用低线圈功率继电器,智能开关中0.2 W使用广泛。

图3为常见继电器驱动电路。

一般继电器的工作电压依据设计可以选择不同,以12 V工作电压为例:驱动电路以12 V电源供电,如图3所示,电阻R1_1为晶体管的集电极电阻,起限流作用,降低晶体管Q2功耗。Q2为控制开关,一般选取VCBO/VCEO≥24 V,放大倍数β一般选择在120―240之间,如S8050。电阻R1_2和R1_3的作用是在没有正向偏置电压的情况下,保证基极的电压为零,防止三极管受外部的干扰而误导通,同时保证晶体管Q2可靠截止。阻值可大可小,不过取值应当适中,以保证基极电流在安全范围,并且三极管能完全饱合。二极管D1_1反向续流,在继电器闭合瞬间能抑制线圈的反激电流,一般选用高频开关二极管,如1N4148。

设计继电器电路时,需要考虑所在电路的工作电压,一般电路的工作电压可以是继电器额定工作电压的0.86。在保证驱动功率下,考虑减小继电器功驱动电流,在继电器的正常工作电压范围内,使用较高的驱动电压[6]。

实例描述。使用12 V工作电压、线圈功率0.2 W的继电器进行分析,由精密直流电源供电,分别对图3和图4中驱动电路进行测试。调试电阻R1_1,R1_2,R1_3的阻值,得到如图3驱动电路的最小消耗电流,继电器闭合的工作电流是11.6 mA。

图4中电路,在电阻R1_1上并联了1个电解电容,容值取220 uF。在晶体管导通瞬间,电容两端电压不能突变为0 V,电阻R1_1被短路,继电器线圈通过较大的电流,触点迅速吸合。之后电容充电,通过电阻R1_1的配合,实现限流作用,又由电容C1_1的充放电,起第二电源作用,能有效地减小继电器的驱动电流。经过精密仪器测试,此电路的驱动电流可以减小为7.8 mA。

5结束语

智能开关的设计包括单火线和零火线以及多种控制方式。本文对零火线开关的部分常见取电电源电路和智能开关中使用继电器外接负载的继电器驱动电路进行了初步研究和分析。虽然,电路实现方式不同,但是原理不离其中,主要使用的仍是带反馈的开关电源式电路。

参考文献:

[1]俞阿龙.TOPSwitch器件及其在开关电源功率因数校正电路的应用[J] .电视技术,2003(4):4243.

[2]郝琦玮,李树华.开关电源的原理与设计[J] .内蒙古大学学报:自然科学版,2003(4):440444.

[3]华伟.通信开关电源的五种PWM反馈控制模式研究[J] .通信电源技术,2001(2):812.

[4]李可.开关电源的PCB设计[J] .民营科技,2010(4):37.

[5]周峻峰.继电器及其技术发展态势[J] .机电元件,2003(2):6164.

[6]陆宁懿.继电器电寿命试验方法[J] .电气时代,2004(5):7375.

第9篇:直流稳压电源设计思路范文

【关键词】半导体激光器;驱动器;PID控制;STM32

半导体激光器是实用中最重要的一类激光器。半导体激光器具有转换效率高、体积小、重量轻、可靠性高,能直接调制等优点。由于半导体激光器的这些优良特性,因而越来越广泛地被用于国防、科研、医疗、光通信等领域[1]。由于半导体激光器的输出光强主要受电流和温度两个物理量影响,因此实现半导体激光器驱动电流和温度的精密控制十分重要[2-3]。

本文设计了一套完善的半导体激光器驱动控制系统。系统采用的微控制器是基于Cortex-M3内核的ARM微控制器STM32F103VCT6,其具有低成本、低功耗等特点[4],并以TEC驱动器MAX1968为执行器件,MAX1968能高效率工作以减小热量,而且体积小,系统外部元件少,因此设计的驱动器具有高性价比和高集成度等优势。

1.硬件系统设计

采用激光器为内带背光检测器,半导体热电制冷器(TEC)和热敏电阻集成的半导体激光器,而半导体激光器激励方式为电注入[5],半导体激光驱动器系统的原理如图1所示。STM32F103VCT6通过ADC采集热敏电阻、MAX1968和背向光二极管信号的电压信号。为了保证所采集电压的真实性和准确性,在ADC转换前必须对所要采集的信号进行滤波和放大处理。然后STM32F103VCT6对采集到的电压信号进行处理、计算得到当前半导体激光器的实际工作温度和电流。最后根据当前半导体激光器工作的温度、电流进行PID算法的运算,产生控制信号通过DAC来控制TEC控制器MAX1968,让其去驱动半导体激光器的TEC,从而控制半导体激光器的电流和温度。同时,STM32F103VCT6和计算机之间通过串口MAX3232进行通信,这样既可以将半导体激光器的工作状态数据发给计算机进行实时显示和记录,也可以通过计算机发送控制指令,很方便的调节目标温度、目标光强等参数,满足不同的实际需要。系统框图如图1所示。

1.1 主控单元

本文使用ST(意法半导体)公司生产的STM32F103VCT6作为核心控制模块,它比单片机功能更强,它是基于Cortex-M3内核的32位高速ARM微处理器,拥有3个12位精度采样的ADC,每个ADC共用多达21个外部通道,ADC的时钟频率最高为14MHz,即它的采样时间最短为1us;2个12位的DAC;4个中断源;16内核68个外部;16级可编程中断优先级,实时响应外部中断,映射至几乎所有IO口,完全满足设计的要求。根据其典型电路设计的中控单元电路如图2所示。图2中,STM32F103VCT6采用ADC通过PININ、RT1IN和ITECN三个接口分别采集背向光检测器、热敏电阻和MAX1968的数据信息;采用DAC通过ICONTROL和TCONTROL1口控制MAX1968来实现温度和电流的反馈控制;同时,利用RX103和TX103与上位机进行串口通信。

1.2 温控控制模块

采用MAX1968芯片来实现整个系统的温度控制。MAX1968是一款适用于Peltier TEC模块的开关型驱动芯片,工作于单电源,能够提供±3A双极性输出,激光器控制电路利用热敏电阻反馈激光器管芯温度,控制电路将其与给定电压比较,进行相应硬件或算法处理后,输出一定电压给热电制冷器(TEC),TEC根据流过电流的方向,对激光器进行制冷或加热,使激光器温度稳定在所要求的值。激光器的温控系统必须满足控制精度高、温度稳定性好的要求,而且它必须是双向控制的,以适应外界温度变化和激光功率的变化。

MAX1968主要由两个开关型同步降压稳压器组成,在两个同步降压稳压器输出端配有高效MOSFET,由LX1、LX2引出,经过LC滤波驱动TEC。两个稳压器同时工作产生一个差动电压,直接控制TEC电流,实现TEC电流的双向控制,双极性工作避免了线性驱动所存在的“死区”问题,以及轻载电流时的非线性题目,能够实现无“死区”温度控制。外部控制电路的输出电压加在TEC电流控制输进端CTL1,直接设置TEC电流。一般TEC+接OS2,TEC-接OS1,OS1和OS2不是功率输出,而是用来感测通过TEC的电流,流过TEC的电流由下式确定:

式中:RSENSE为TEC电流的感应电阻;VCTL1为外部控制电路的输出电压;VREF为参考电压(1.5V)。

假设正向电流为加热,则VCTL1>1.5V为加热,电流的流向从OS2到OS1,OS1、OS2、CS这3个引脚的电压关系为:VOS2>VOS1>VCS,反之则制冷。开关稳压器是按周期运作的,以把功率传输到一个输出端,这种转换方法会在基频及谐波上产生很大的噪声分量,但是在MAX1968中是相位转换并提供互补同相工作周期,所以纹波波形大大减小,抑制了纹波电流和电气噪声进进TEC模块,进而影响LD工作性能。FREQ用来设置内部振荡器的开关频率,当FREQ接地频率为500kHz时,FREQ接电源频率为1MHz。MAX1968片内带有的MOSFET驱动器,减少了外部元件,芯片工作在较高的开关频率下,可以用更小的电感和电容,从而减少PCB(印制电路板)的面积、降低本钱,对于实现激光器的小型化与智能化具有极其重要的作用[6]。利用MAX1968设计出的温控系统如图3所示:

1.3 电流驱动保护模块

实际操作中,电流难免会出现波动,而这种波动在某种程度上会严重影响半导体激光器的性能,严重时甚至会烧坏半导体激光器。因此在该激光驱动器的电路中设计了一个电流驱动保护模块。如图4所示。这个电流驱动保护模块主要由一个稳压二极管D6,瞬变二极管D7和电阻R29构成。其中D7的主要作用是防止反向瞬变电压的冲击,即当半导体激光器的两端电压发生突变时,半导体激光器两端的电压的变化不会太大。R29的作用是防止半导体激光器的两端出现静电。如果系统中半导体激光器的两端出现静电,那么存在的静电将会流过R29的两端,这样可以保证对于半导体激光器不会产生影响。D6稳压二极管的作用则是稳定半导体激光器两端的电压。由图可知,当电压超出预定电压时,稳压二极管将会被击穿,电流会直接经过稳压管所在的支路直接接地,而不会经过半导体激光器所在的支路,这样可以对半导体激光器起到稳压与保护的作用。

2.软件系统设计

2.1 模糊PID算法设计

一般控制过程存在不同程度地非线性、大滞后、参数时变性和模型不确定性,因而普通的PID控制器难以获得满意的控制效果[7]。系统采用模糊控制与PID控制器相结合构成模糊PID控制器。模糊控制是以人的思维判断方法形成模糊控制规则,在模糊规则的基础上以模糊量作为实际控制的依据。利用模糊控制给PID控制器在线自根据PID参数自整定原则,其结构框图如图5所示。该模糊控制器以采集到真实值与理想值之间的偏差值E和偏差变化率EC为输入变量,以PID的参数、和为输出变量。通过控制参数、和的调节可对控制效果进行调整,最佳的、、值需要根据实验进行选择。

2.2 系统主程序设计

系统软件程序主要包括数据采集和稳定控制。图6是主程序流程图:

系统上电后首先初始化嵌入式微处理器和外设,其次设置中断服务子程序,开中断。主控芯片STM32F103VCT6使用内部集成的ADC模块,采集半导体激光器模块当前的温度、功率的数据,并对数据进行一定的处理。首先,调节半导体激光器的温度,根据实际温度值与基准值的偏差选择相应的操作,如果温度偏差为负,则进行提高反向电流的操作;如果温度偏差为正,则进行提高正向电流的操作。其次,调节驱动电流,根据实际功率值与基准值的偏差选择相应的操作,如果功率偏差为负,则进行增大驱动电流的操作;如果功率偏差为正,则进行减小驱动电流的操作。通过温度与功率的反复循环调节,逐渐使系统输出达到平衡稳定的状态,STM32通过串口把相关的数据信息实时传输到上位机,上位机可以显示半导体激光器的工作状态,并且上位机也可以向STM32发送相应的指令,控制系统的运行状况。

3.系统测试

根据以上思路设计的光源驱动器实物如图7所示。

系统选择光强控制量为3.4mW,温度控制量为0.4℃,计算机上位机以LabVIEW为操作控制界面。图9和图10分别为从LABVIEW显示界面上显示温度和光强检测图。

对比可知,目标量初始改变幅度较大,越接近目标量时,步长越来越小,稳定性很好,系统达到稳定状态的时间也比较短。当进行大幅度调节即输入任意键值改变目标量时,系统可正常运行,达到了温度控制精度±0.03℃,激光输出功率稳定度±0.002dB,可见该驱动器设计正确,且精度高。

4.结论

系统采用低成本、低功耗的ARM微控制器STM32F103VCT6,驱动芯片MAX1968为核心器件,并以模糊PID计算控制量设计与实现了基于STM32的半导体激光光源驱动器。实验结果表明:该半导体激光光源驱动器温度控制精度高,性能稳定,具有易于开发、高性价比和高集成度等优点,满足半导体激光光源驱动器在实际工程上的应用,具有很好的实用性。

参考文献

[1]栖原敏明.半导体激光器基础[M].周南生译.北京:科学出版社,2002.

[2]徐辉,杨昌茂,车振.半导体激光器的温度特性分析与设计思路[J].水雷战与舰船防护,2008,16(4):5l-53.

[3]张书云,孔德超,李书蝶等.带有半导体激光器寿命检测的驱动电源的设计[J].激光杂志,2007,28(5):8l-82.

[4]张勇,董浩斌.基于STM32和LabVIEW的地震数据采集卡的设计[J].电子技术应用,2012,38(10):72-74.

[5]李峻灵.半导体激光器功率稳定性的研究[D].哈尔滨理工大学,2007.