公务员期刊网 精选范文 直流稳压电源的设计范文

直流稳压电源的设计精选(九篇)

直流稳压电源的设计

第1篇:直流稳压电源的设计范文

关键词:直流,稳压电源,设计

Abstract: power supply is designed in this paper is composed of two parts, respectively, step voltage output power group and the positive and negative double power group. AT89S52 microcontroller as the core of the design of the control device, with the help of DAC series of digital-analog conversion chip, LM317 and LM337 regulator and CD4051 as the transform of the output voltage. DC regulated power supply design has certain protective function, and can be conveniently on the voltage display, each with 0.1V step increasing or decreasing voltage, enough to satisfy many experimental situations.

Keywords: DC, DC power supply, design

中图分类号:S611 文献标识码:A文章编号:

一、引言

直流稳压电源是电子及电气中常用的设备之一。传统的直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通直流稳压电源品种很多,但均存在以下问题:当输出电压需要精确输出,困难较大。另外,常常通过硬件对过载进行限流或截流型保护,电路构成复杂,稳压精度也不高。现设计精度简易直流电源,克服了传统直流电压源的缺点,具有较高的应用价值。

二、本系统功能特点

(1)一组电源最大输出电流可达2.5A,输出电压从0.0V~+12.0V以0.1V步进连续可调(递增或递减),在输出电压在小于+3V时,短路保护;当输出电压为+3V~+12V时输出电流超过2.5A时保护。另一组电源最大输出电流为1A,输出电压为:0.0V、±3.0V、±4.5V、±5.0V、±6.0V、±12.0V、±15.0V、±24.0V八种电压依次可调。

(2)输出端无论是过流还是短路,保护电路的动作都是以切断输出回路的方式工作,且当输出短路不再存在或负载足够轻时电路会自动恢复正常工作状态。保护动作时兼有声光报警信号。

(3)电路能够将两组电源的输出电压幅值实时直观地显示出来。

本文以AT89S52单片机为本设计的核心控制器件,借助于DAC系列数模转换芯片将数字量转换成模拟量,并通过I/U的转换以电压的形式输出;运用LM317与LM337结合的方式作为稳压器,用CD4051作为输出电压的变换。

三、系统硬件的设计与实现

系统硬件的结构框图如下图所示。主要由单片机、两组电源、显示、检测与保护电路、报警电路及键盘输入电路组成。

3.1、步进电压输出电源组工作原理

在这部分电路中主要的器件有单片机AT89S52、D/A转换器DAC0832、运放OP07和电流放大所用三极管。其电路原理框图如下图所示。

工作原理:首先给各芯片正常工作的条件,先利用单片机产生一组8位二进制代码并从P0口输出,可以通过按键来调整单片机输出二进制代码的加1和减1。8位二进制范围在00000000~11111111有效,再用此组二进制码送到DAC0832的数据输入端(DI0~DI7),本系统是因D/A转换简单,故采用直通方式工作。与单片机电路连接如下图所示。

在电流/电压转换之后用运算放大电路进行了4倍的电压放大电路。电路连接如下图所示。

3.2、常用正负双电源组工作原理

该电源组输出正负对称的直流电压,电压值为8组实验最为常用的电源:0.0V、±3.0V、±4.5V、±5.0V、±6.0V、±12.0V、±15.0V、±24.0V。为了确保用电安全,电路在开机状态下必须能有0V的输出功能。电路原理图如下图所示。

图中二极管D1、D3的作用是输入开路时,防止C13、C23通过LM317、LM337放电。D2、D4的作用是输出端短路时,防止C12、C22向稳压器的调整端放电。在LM317稳压电路中,它的基准电压为+1.25V,输出电流可达1.5A。图中R1、R2为泄放电阻,其输出电压的改变通变换调整端的电阻予以实现。

3.3、保护电路工作原理

保护环节的硬件电路主要由取样电路、A/D转换电路、单片机、保护控制与报警电路四部分构成。构成框图如下图所示。

它能在输出端短路或是负载过重导致的过流现象存在时动作,以切断输出回路保护电源本身不致损坏。其取样电路采用阻值极小的大功率电阻,这里取值为0.1Ω,如下图所示。

串联电阻R2、R3的作用为了防止输出端短路是的高电压反馈到A/D转换器的模拟量输入端而导致其损坏。当输出端连接上负载时,在取样电阻就会有电流流过,并产生一定的压降,并作为取样信号送到A/D转换电路进行模数转换。

3.4、显示电路工作原理

显示电路运用了最为常用的1/3位A/D转换集成电路ICL7107,由于该芯片要求正负双电源供电。以ICL7107本身38脚产生振荡信号作为资源,用一个六非门集成电路CD4069(或74LS04)与电阻电容构成负压产生电路。而芯片参考电压(36脚)仍用TL431提供。如下图所示。

3.5、数控部分

数控部分是稳压电源实现数字化控制的核心。以AT89S51单片机为控制核,采用DAC模块实现稳压电路的输出控制,并由ADC模块实现输出电压的测量,利用键盘和显示模块实现人机交互。键盘模块采用4×4 矩阵键盘,实现输出电压的数字化设定和步进调整。而DAC模块和ADC模块都采用串行控制芯片,减少了单片机IO口的使用。

四、系统软件设计

本系统的软件用C语言编写而成。包含主程序、D/A转换程序、A/D转换程序、保护动作程序几个模块组成。主程序流程图如下图所示。

由于设计使用的51系列单片机没有SPI接口,故采用软件模拟SPI的操作方法实现串行控制。在ADC采样时,对输出电压进行多次采样(如100次),取其平均值作为采样结果,否则采样过于频繁,测量不准确。而预设DAC输出时,根据设定值预设一个DAC控制字,使输出接近设定值。在微调DAC输出时,只需对DAC控制字进行增1或减1操作即可。在键盘扫描时,如果按下的是数字键,则储存数字; 如果按下的是单位键,则组合之前按下的各数字键,使之成为一个数值,作为新的设定值; 如果按下的是步长键,则可设置步长值; 如果按下的是步进键,则对DAC设定值按所设置的步长增或减,使输出电压步进变化。

五、结果分析

(1)由于选择A/D与D/A转换器精度远高过指标要求的精度,且电路中所用的电阻均采用精密电阻,所以可以保证设定值和实际测量值的精度要求经过测试,误差最大为0.06V。

(2)输出端并联大容量的电容滤波与优质高频吸收电容(突波电容),进一步降低输出电压的纹波系数。

六、结束语

本文介绍的电源以AT89S52单片机为核心控制器件,此电源不仅拥有完善的过流保护功能、直观的电压显示、良好的稳定性和较大的输出电流,而且能同时输出常用正负双电源和以0.1V步进递增或递减电压,足以满足众多实验场合的需求。

参考文献

[1] 王春梅.实验室简易数控直流稳压电源的设计[J].化工自动化及仪表.2011(01)

[2] 刘楚湘,杜勇,尤双枫.基于单片机的数控直流稳压电源设计[J].新疆师范大学学报(自然科学版).2007(01)

第2篇:直流稳压电源的设计范文

【关键词】单片机;直流稳压电源;数控

电源技术是一种应用功率半导体器体,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术,而直流稳压电源更是电子领域重要的设备之一。从20世纪90年代末起,随着对系统更高效率和更低功耗的需求,直流电源转换器向着更高灵活性和智能化方向发展。本文设计一种输出电压在0.0V到9.9V之间并且可以任意设定输出电压的电压精准调整的数控直流稳压电源电路,该稳压电源不仅能克服传统电源输出电压难以精确调整的缺陷,而且还对系统的性能方面、系统的升级方面以及系统的可靠性方面进行了改善。

1.系统功能

本文设计的直流稳压电源输出电压在在0.0V到9.9V之间并且可以任意设定输出电压,主要由STC89C52RC单片机、LCD1602显示电压模块、D/A转换模块、稳压输出电路模块、电压模块和数据采集模块等部分组成。其中在电源模块方面采用键盘设定的输入方式,可用快点慢点的方式对报警和电压输出的阈值进行设置,其各种工作状态都可由LCD1602来显示,同时用STC89C52RC对输出的电压进行采样并与先前设置的目标值进行比较,一旦出现偏差可立即进行调整或发出报警信号。

2.系统的整体设计

使用STC89C52单片机最小系统为控制单元,通过DAC0832芯片的数据采样和LM324的电压放大调整可以改变系统输出电压的大小,然后进行数据处理及送LCD1602显示;使用运算放大器对电压的比较放大,这样不仅可以输出直流电平,而且只要预先生成产生波形的量化数据,便可以输出多种波形;采用LCD1602,它具有两行显示,每行显示16个字符,采用单+5V供电,系统模块的整体设计如图1所示。

图1 系统模块的整体设计图

3.系统硬件设计

3.1 稳定电压输出模块

稳定电压输出控制模块采用的是有14引脚的 LM324芯片,其作用是将通过前面的数模转换模块后出来的电压给转换成用户所需的指定的稳定电压。该模块的工作原理是将所需的输出电压以下面图2中的DAC0832芯片的第11引脚的输出为参考做出一个比值,并采用串联式反馈的电路使得输出始终为所需的稳定输出电压,其具体的电路图如图2所示,在图2中U5A―LM324为比较放大器,U5B―LM324为运算放大器,D/A转换电路的输出电压OUT2接到U5A―LM324的同向端(LM324的第2脚),U5A―LM324运放的输出端(LM324的第5脚)输出的电压一边送到运放U6A―LM324的同向端(LM324的第1脚),一边反馈回DAC0832的RFE1基准电压。变位器R5作为U6A―LM324反馈电路中的反馈电阻。经数模转换模块后出来的电压在这里经过了DAC0832和LM324的比较运算放大后再经过LM324第1引脚的调整,使得输出的电压始终和LED显示器上显示的一致。

图2 电压输出原理图

3.2 按键控制模块

按键控制模块的电路图如图3所示。在该电路图中,K1-K9分别对应着0-9,且每个按键都是一脚接地一脚接在STC89C52RC的各个引脚上,K00是位数选择键(按下为十位),K11则是为选定所需电压无误后需按下的确认键。

图3 键盘控制电路图

3.3 D/A转换控制部分

在该设计中,采用DAC0832来进行模数转换,并将经过该模数转换后出来的电压作为后面稳压输出反馈回路的参考电压。8位的D/A数据口分别与单片机的P0口相连,DAC0832的片选信号和写信号分别由单片机的P32脚和P36脚控制,8位字长的D/A转换器具有256种状态。

4.系统的软件部分的设计

此设计中需用到核心单片机STC89C52RC的功能包括:键盘的扩展,程序的中断,I/O的控制。系统软件包括一个主程序、四个中断服务程序、电压处理子程序、调用写电压子程序、DAC0832处理子程序。主程序在初始化过程中,首先对单片机进行复位,然后读入数据,控制开关电路进行显示.初始化完成以后开中断,如果有外部中断请求,则首先响应中断,进入中断服务程序,如果没有中断请求,则要调用键盘扫描程序进行数据采集和处理,同时,利用对按键进行消抖。主程序流程图如图3所示。

图3 主程序流程图

5.结束语

本文设计并实现了一个基于STC89C52RC单片机的数控直流稳压电源,它具备输入方便、输出精确度高、结构紧凑、电路简化等优点,经过测试,用此单片机来控制设备的电压时,输出的响应良好,LED能正确清晰地显示,误差小,输出的范围为0到9.9v。

参考文献

[1]宋开军,杨国渝.智能稳压电源设计[J].电子技术,2003(10):

48-49.

[2]冯泽虎,朱相磊,滕春梅.基于单片机的可编程直流稳压电源设计[J].中国高新技术企业,2009(21):36-37.

第3篇:直流稳压电源的设计范文

【关键词】Multisim 双电源 仿真分析

LM117/LM317 是美国国家半导体公司的三端可调正稳压器集成电路,LM117/LM317 的输出电压范围是1.2V至37V,负载电流最大为1.5A。它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性调整率和负载调整率也比标准的固定稳压器好。LM117/LM317 内置有过载保护、安全区保护等多种保护电路。通常LM117/LM317 不需要外接电容,使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。利用LM117/LM317设计出正负连续可调的双电源,通过实验测试和软件仿真,基本上可以满足绝大多数运算放大器所需要的电压幅度。

一、MultiSim仿真软件简介

MultiSim是一款将电子电路设计及其测试分析相集成的电路设计仿真软件。它具备信号源、基本元器件、模拟数字集成电路、指示器件、控制部件、机电部件等各类元器件,可以对各类电路进行仿真,并且提供十多种虚拟仪器(如示波器、万用表、信号发生器、波特图图示仪、功率表等),以及18种仿真分析功能(如直流工作点分析、交流分析、瞬态分析、傅里叶分析、噪声分析、直流扫描分析等)。由于元件库中有若干个与实际元件相对应的现实性仿真元件模型,配合强大的仿真分析,使结果更精确、更可靠。

二、直流稳压电源的理论基础与电路设计原理分析

(一)直流稳压电源的理论基础

电子设备都需要稳定的直流电源供电,如基本放大电路中的集电极电源、运算放大器的双电源等。这样,就需要将市电电网的交流电,变换为直流电。对于小功率的直流电源,它一般由电源变压、整流电路、滤波电路和稳压电路组成。如图1所示:

(二)直流稳压电源电路设计的基本原理

电源变压器的作用时将220V的电网电压变换成所需要的交流电压值。

整流电路的作用是将交流降压电路输出的大小、方向都变化的电压较低的交流电转换成单向脉动直流电。单相整流电路的类型有半波整流、桥式全波整流、中心抽头全波整流等。

滤波电路的主要任务是将整流后的单向脉动直流电压中的纹波(单向脉动直流电中含的交流成分)滤除掉,使单向脉动电压变成平滑的直流电压。滤波电路的主要元件是电容和电感,以电容滤波电路最常用,其特点是电路简单,输出脉动较小,输出电压平均值增大,但输出电压随负载变化较大。采用电容滤波时,输出电压的脉动程度与电容器的放电时间常数τ有关系,τ大一些,脉动就小一些,多采用大容量的电解电容。电容的耐压值应大于它实际工作时所承受的最大电压,耐压值一般取所接工作电路电压的1.5-2倍。为了降低输出直流电压的纹波系数(输出电压中交流分量占额定输出直流电压的百分比),正、负电源的滤波电路均采用一个1000μF/50V的电解电容。

滤波电路的输出电压虽已变得平滑,但输出电压随负载变化较大,后面需接稳压电路。稳压电路的作用是当交流电源电压波动、负载及温度变化时,维持输出稳定的直流电压。稳压电路的类型有分立元件稳压和集成稳压器稳压,分立元件稳压时,电路稳定性不好,而集成稳压器稳压具有体积小、电路简单、稳压精度高,可靠性高等优点,被广泛采用。选择集成稳压器时应先确定稳压器的类型,是固定式还是可调式,是正压输出还是负压输出,然后根据其额定电压和额定电流选择具体型号。

三、LM317、LM337正负连续可调的双电源的仿真分析

运行Multisim10,在绘图编辑器中选择变压器、整流二极管、电阻、电容、电位器、三端可调稳压块LM317、LM337等元件,组成LM317、LM337正负连续可调的双电源电路。

调整电位器R5、R6,可以连续调节输出电压的大小。

其仿真的电路用波形如下图所示。

四、结束语

应用Multisim10仿真软件进行仿真教学,设计的双直流稳压电源的电路具有结构简单、电源利用效率高、输出电压噪声小、稳定精度高、可靠性高等特点,可以满足高精度形状测量仪的电感测头信号处理电路中运算放大器的高稳定性的双电源需求,增强整个测量系统的工作稳定性,最大限度地减小电源引起的测量误差,提高测量精度。在课堂上使模拟电子技术教学更形象、灵活,更贴近工程实际,达到帮助学生理解原理,更好地掌握所学的知识的目的。尤其适用于综合设计性实验项目,可有效克服传统实验与实验室开放的局限。通过对双直流稳压电源的分析设计、仿真测试可以看出,利用Multisim的虚拟电子实验平台,能实时直观地反映电路设计的仿真结果,验证电路正确性,可缩短设计周期,提高设计成功率。

学生可据所学知识和能力,自选实验内容,自行设计电路方案,进行电路分析,从而掌握电子电路的设计与仿真分析过程,对提高学生动手能力和分析问题、解决问题的能力、综合设计能力和创新能力,具有重要的意义。

参考文献:

第4篇:直流稳压电源的设计范文

【关键词】开关型;直流稳压电源;探究;电路设计

【中图分类号】G64【文献标识码】A【文章编号】2095-3089(2016)04-0163-02

在电力电子技术的不断发展与技术革新下,开关型直流稳压电源以其自身的工作表现与其可靠性成为我国电力系统中广泛使用的一种设备。在实际应用中,开关型直流稳压电源自重轻,工作内故障低,工作效率高,且其性价比占优势,并具有功耗晓得良好表现。相比于其他开关型电源,开关型稳压电源应用范围广,竞争力强,特别是对于粒子加速器等电源应用范围来说,开关型稳压电源具有着良好的专业性与稳定性。通过对于开关型稳压电源的技术标准研读与相关的影响因素分析,目前此类技术研究区域人员都是采用移相控制桥来对DC/DC变换小信号模式进行开关型稳压电源的电路设计。

1.对于动态小信号模型的相关阐述

对于动态小信号模型来说,不同的模型选取进而得到的设计结果都会存在差异。所以,在模型的选取上,应根据其实际情况进行分析与配置。对于开关电源来说,其本质是作为一个非线性的控制对象在进行工作,如果要对其进行成功的设计与分析,那么在进行指导建模时,应以近似建立在其稳态时的小信号扰动模型为依据。这一思路一方面取决于小信号扰动模式稳态时具有与设计目标相近的工作表现;另一方面也是由于这样的模型对于大范围扰动时的拟态不够精准,会造成相应结论的误差或偏差。基于此,以小信号扰动模型来进行开关型稳压电源的电路设计是保证其最终设计结果满足设计要求的必要条件。

2.开关型稳压电源的相关性能指标

2.1性能指标之稳定性

通过相关数据与实践结果研究表明,在不同的开关型稳压电源系统设计下,会产生不同程度的鲁棒性。而在暂态特性方面,其表现也会相应提高。但对于直流新稳压电源来说,其系统下对于增益余量的要求是大于或等于40dB,对于相位余量的要求则是大于或等于30dB。

2.2性能指标之瞬间响应指标

当开关电源处于非稳定状态下,由于其所受的干扰,输出量会出现相应的抖动现象。且其抖动量会随着其干扰而变化,当干扰停止时,则其最终也会回到稳定值,基于此,在对开关型稳压电源进行这方面的性能指标确定时,是以过冲幅度与动态恢复时间的长短来衡量其系统的动态特性的。在此定义下,瞬态响应指标内容主要是表现为,如果穿越频率越高,则其系统恢复到动态平衡点的时间就越短,另一方面,系统在干扰情况下所表现的过冲幅度与其相位余量呈相关性。

2.3性能指标之电源精度

在电源精度方面,其控制要求严格,一般其最终的电源精度误差需要控制在设计目标的1‰以下,且其纹波不得在1‰以上。考虑到纹波自身的分类有高频与低频两种,而这两种纹波是基于开头频率表现的。如高频纹波就是受到开头频率的影响,必须通过滤波器进行控制。而低频纹波则是受到电网波动的影响,必须通过系统的负反馈来进行控制。

3.关于开关型稳压电源的电路设计

3.1关于系统下的补偿网络与相关相关设计应用

目前来说,对于开关型直流稳压电源系统来说,其补偿网络是通过PI或者PID的算法来设计与制作的。也就是说,PI调节器的主要作用是对抗高频纹波影响,也就是提高系统对于高频干扰能力的抵抗性,但对于PI调节器来说,动态性差的缺点是无法忽视的。目前来说,实际应用中通过引入微分算法后可以有效提高系统的响应速度。但其缺点也显而易见:一方面是由于零点的大量引入直接造成系统对于高频信号的敏感度大幅度提高,放大器在此情况下,很容易产生堵塞现象;另一方面则是当开关纹波的放大倍数得到增大时,放大器也会随之进入非线性区,这结果只会造成整个系统的不稳定。目前来说,对于这些缺陷是以超前滞后的方法来进行补偿的。

3.2关于开关型稳压电源的电路设计原理

3.2.1理想性技术指标如下:(1)输入交流:电压220V(50—60Hz);(2)输出直流:电压5V,输出电流3A;输入交流电压在180—250V区间变化时,输出电压相对变化量应小于2%;(4)输出电阻R0<0.1欧;(5)输出最大纹波电压<10mv。3.2.2关于开关型稳压电源的基本工作原理。当线性自流稳压电源处于低频率工作状态下时,那么调整管的工作由于其体积大,则其效率相应低,但当其调整管工作处于开关状态下时,那么其的工作表现就为体积小,效率高。

3.3开关型稳压电源的电路设计探究

从以上论述可以看出,开关型直流稳压电源系统其低功耗的特点是由于晶体管位于开关工作状态下时,对于功率调整管的功耗要求低。特别是对于理想状态下的晶体管来说,当其处于一种截止状态时,晶体管所经过的电流为0,相应的功耗也就为0;另一方面,由于开关型稳压电源系统的穿越频率较高,所以对于电路的动态响应速度得以提高,而且整个系统的响应速度不受低通滤波器的影响;另外,相对于直流470V的电压来说,并环穿越频率远未达到这一频率,输出只为48V,特别是其电压稳定性方式,经过测试,其低频纹波稳定率都在0.996以上,完全满足了设计要求。

4.结语

综上所述,在进行开关型稳压电源的电路设计时,小信号的模型选择是关键点。为了进一步提高开关型稳压电源系统的稳定性,超前滞后网络补偿原理有效地弥补了精度电源的纹波限制高的问题。通过实践也表明,开关型稳压电源的适用性非常强,必将为人们生活提供更好的服务。

参考文献:

[1]汤世俊.浅谈高性能开关型直流稳压电源[J].学术探讨,2011,(10).

[2]樊思丝.高性能开关型直流稳压电源的设计探究[J].企业技术开发,2011,(03).

第5篇:直流稳压电源的设计范文

【关键词】双折射测试仪;UC3842;高压逆变;差动输出

1.引言

双折射率是表征各向异性晶体光学特性的一个重要的光学参数,它决定于材料的成分结构以及生成条件等多种因素,并且与波长有关[1]。测量双折射率的方法多样,电光调制法就是其中一种。这里的双折射测试仪便是基于电光调制的原理测量双折射率的一台仪器。

本文对北京大学无线电厂在1982年生产的一台双折射率测试仪的可调直流电压源部分进行了改进,用开关电源代替了原来的高压逆变电路,电路结构简单,成本低、体积小、易实现。

2.双折射率测试仪的原理

该双折射测试仪采用激光—电光调制的方法[2],即:

这里代表待测样品的双折射率,和分别代表半波电压和调制电压,代表样品厚度,对一个电光调制器来说,它的半波电压在温度不变的情况下是一个确定值,而此时光程差和的比值可看做一常数,因此双折射率只和这里的调制电压有关。

双折射率测试仪是一种测量双折射率的仪器。其本身是由氦-氖激光管及电源、光具座、电光调制器等光学部分和光电调制器的交、直流调场电源、调制信号检测、显示及直流电压测试等电路部分组成。其核心器件是电光调制器。经高压电路生成的可调直流电压上加载一个同步载波信号,两者共同输入电光调制器用以对通过电光调制器的入射光的光程差进行控制,如图1所示。

其中可调直流电压电路部分如图中虚线框中所示,主要包括高压逆变、整流滤波、稳流控制、差动输出四部分[3]。高压逆变、整流滤波电路采用晶体管和高频变压器等器件构成单管自激式直流变换器。将稳压电源供给的-18V电压逆变成20KHz左右的方波,经变压器升压,得到建立高压电场所需的+1KV电压,以及信号显示部分示波管所需的+1150V、-400V、-450V,共四组电压,分别经高压硅堆整流、滤波送至各部。稳流控制电路实际上就是一个电压-电流转换器,通过控制震荡管的基极电流,使变换器的输出电压保持稳定。差动输出电路采用高压的差分对,以差分管两个集电极作为输出端,用三极管接成恒流源的形式,电位器W用来调节两支路的平衡对称,使得在输出为零时,两管的工作电流相等。

经分析,原电路的高压逆变电路具有分立元器件过多、输出不稳当等缺点,这里可以对其重新设计。

3.可调直流电压电路设计

新的设计思路主要对高压逆变部分进行设计,其设计方法采用开关电源的思想。

3.1 脉冲宽度调制(PWM)控制芯片UC3842

开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源[4]。开关电源一般由脉冲宽度调制(PWM)控制IC和MOSFET构成。其工作原理框图如图2所示。

UC3842是美国Unitorde公司生产的一种高性能单端输出电流控制型脉宽调制器芯片,可直接驱动双极型晶体管、MOSFEF和IGBT等功率半导体器件,并具有管脚数量少、电路简单、安装调试简便、性能优良等诸多优点,故广泛应用于计算机、显示器、便携式电子产品等系统电路中作开关电源控制芯片[5]。

3.2 高压逆变电路设计

改进后的高压逆变电路如图3所示。220V市电由C1、L1滤除电磁干扰,负温度系数的热敏电阻R1限流,再经VC整流、C2滤波,电阻R1、电位器W1降压后加到UC3842的供电端(7脚),为UC3842提供启动电压,电路启动后变压器的付绕组3、4脚的整流滤波电压一方面为UC3842提供正常工作电压,另一方面经R3、R4分压加到误差放大器的反相输入端2脚,为UC3842提供负反馈电压,其规律是此脚电压越高驱动脉冲的占空比越小,以此稳定输出电压。4脚和8脚外接的R6、C7决定了振荡频率,其振荡频率的最大值可达500KHz。R5、C5用于改善增益和频率特性。6脚输出的方波信号经R8、R10分压后驱动BG1功率管,变压器原边绕组1、2脚的能量传递到付边各绕组,经整流滤波后输出各数值不同的直流电压供负载使用。电阻R11用于电流检测,经R9、C9滤波后送入UC3842的3脚形成电流反馈环。所以由UC3842构成的电源是双闭环控制系统,电压稳定度非常高,当UC3842的3脚电压高于1V时振荡器停振,保护功率管不至于过流而损坏。

3.3 差动输出电路设计

差动输出电路基本上沿用原来的思想.由直流变换器得到的+1KV高压,还不能直接送到电光调制器上,必须将其变成极性可变,电压连续可调的电压源,供给调制器。根据使用要求,这里采用的是高压的差分对,以差分管T5、T9的两个集电极作为输出端,电位器W1用来调节两支路的平衡对称,使得在输出为零时,两管的工作电流相等。输出电压的连续调整由设置在面板上的多圈电位器W2、W3实现。由+12V和-12V稳压电源经过两稳压管D2、D4做二次稳压,分别接到W2、W3的两端,使电位器在整个调节范围内,输出端电压由+1KV至-1KV连续可调。电位器W2做为电压细调,W3做为电压粗调。设计后的电路图如图4所示。

整个电路用到一些常用压值的电压如+12V、-12V。因此电源的设计可以采用传统的变压、整形、滤波、稳压的方法得到。由于这两电源输出的电流都小于1A,所以+12V电压的获得可以利用稳压芯片7812,而单片机所需要的-12V电压同理可采用7912电源模块得到。

4.双折射率测试仪改进后实施与调试

双折射测试仪测量玻片双折射率时,除了必须读取电压表的数值外主要需要观察示波器波形的变化。

先将改进后的直流电压电路连接至原仪器的其他电路,然后调试。

如图5所示。调试时先打开开关,调节面板,使示波器波形呈标准正弦波。然后加上样品,并转动放玻片的转盘450,这时波形发生变化,不再是标准正弦波。最后打开电压输入装置,并调节输入电压,使波形重新变为正弦波。这时用电压表测量出直流电压电路接入电光调制器的电压便可计算出样品的双折射率。经过多次试验表明改进后该仪器效果良好。

5.结束语

经过长时间使用,改造后的可调直流电压源工作稳定、可靠性高、成本低等优点,可在测量仪器中推广使用。

参考文献

[1]周文平.晶体材料折射率的测量方法研究[D].曲阜师范大学,2007.

[2]马玲,沈小丰,王杰.电光调制系统设计[J].电子工程师,2007,33(3):38-39.

[3]北京大学无线电厂.SZY-1型双折射测试仪说明书[S].

[4]路秋生.开关电源技术与典型应用[M].北京:电子工业出版社,2009:1-2.

第6篇:直流稳压电源的设计范文

关键词:LM317;可调;稳压电源

直流稳压电源一般由电源变压器,整流,滤波电路及稳压电路所组成。变压器把市电交流电压变为所需要的低压交流电。整流器把交流电变为直流电。经滤波后,稳压器再把不稳定的直流电压变为稳定的直流电压输出。

1 LM317 简介

LM317是应用最为广泛的电源集成电路之一,它不仅具有固定式三端稳压电路的最简单形式,又具备输出电压可调的特点。此外,还具有调压范围宽、稳压性能好、噪声低、纹波抑制比高等优点。其主要性能参数如下。

输出电压:1.25~37VDC;输出电流:5mA~1.5A;芯片内部具有过热、过流、短路保护电路;最大输入-输出电压差:40V DC,最小输入-输出电压差:3V DC; 使用环境温度:-10~+85℃ 。

2 性能指标要求

(1)输出电压可调:UO=+3V~+9V。

(2)最大输出电流:I0max=800mA。

(3)输出电压变化量:Vop_p5mV。

(4)稳压系数:Sv3×10-3。

3 电路图如下

元件清单如下:二极管都是IN4007,电阻22KΩ一个,200Ω一个,2KΩ可调一个,LED灯一个,LM317稳压模块一个,电解电容1000U一个,220U一个,瓷片电容103一个,鳄鱼夹二个,电源线一根,PCB万能板一块,变压器一个。

4 总体设计思路

本设计主要采用直流稳压构成集成稳压电路,通过变压,整流,滤波,稳压过程将220V交流电,变为稳定的直流电,并实现电压可在3-9V之间可调。LM317可调式三端稳压器电源能够连续输出可调的直流电压. 它能连续可调正负电压,稳压器内部含有过流,过热保护电路。

(1)电源变压器:电源变压器是降压变压器,它的作用是将220V的交流电压变换成整流滤波电路的需要的交流电压。

(2)整流电路:整流采用桥式整流电路,用4个IN4007二极管对交流电进行整流,使之成为脉冲直流电。其构成原则就是保证在变压器副边电压u2的整个周期内,负载上的电压和电流方向始终不变。为达到这一目的,就要在u2的正、负半周内正确引导流向负载电流。设压器副边两端分别为A和B,则A为“+”、B为“-”时应有电流流出。A为“-”、B为“+”时应有电流流入A点;相反A为“+”、B为“-”时应有电流流入B点,A为“-”、B为“+”时应有电流流出B点;因而A和B点应分别接两只二极管的阴极和阳极,以引导电流;当U2为正半周期时,电流由A点流出,经D1、RL、D3流入B点,因而负载电阻RL上的电压等于变压器的副边电压,即UO= U2, D2和D4管承受的反向电压为-U2。当U2为负半周时,电流由B点流入,经D2、RL、D4流入A点,负载电阻上的电压等于-U2,即UO=-U2,D1、D3承受的反向电压为U2。

这样,由于D1、D3和D2、D4两对二极管交替导通,使得负载电阻RL上在U2的整个周期内都有电流通过,而且方向不变,输出电压为UO=|√2U2sinωt |。

(3)滤波电路:滤波电路可以将整流电路输出电压中的交流波纹成分大部分滤除,输出波纹较小的直流电压。当变压器副边电压U2 处于正半周并且数值大于电容两端电压Uc时,二极管D1、D3导通,电流一路经负载电阻RL,另一路对电容C充电。因为在理想情况下,变压器副边无损耗,二极管导通电压为零,所以电容两端电压Uc与U2相等。当U2上升到峰值以后开始下降,电容通过负载电阻RL,其电压Uc也开始下降,趋势与U2基本相同。但是由于电容按指数规律放电,所以当U2下降到一定数值以后,Uc的下降速度小于U2的下降速度,使Uc大于U2从而导致D1、D3反向偏置而变为截止。此后电容C继续通过RL放电,Uc按指数规律缓慢下降。

当U2的负半周幅值变化到恰好大于Uc时,D2、D4因加正向电压变为导通状态,U2再次对C充电,Uc上升到U2的峰值后又开始下降,下降到一定值时D2、D4变为截止,C对RL放电,Uc按指数规律缓慢下降;放电到一定值时D1、D3变为导通,重复上述过程

(4)稳压电路:这里是选用LM317稳压模块对电路进行稳压。它是利用稳压管两端的电压稍有变化,会引起其电流有较大变化这一特点,通过调节与稳压管串联的限流电阻上的压降来达到稳定输出电压的目的。

5 产品的安装与调试

根据电路图进行安装与调试,接入220V市电,用万用表对电源各波段的电压进行测试,通过对电压的测试检测产品是否合格。

参考文献

1 中国计量出版社组编.新编电子电路大全[M].北京:中国计量出版社,2001

2 童诗白,华成英主编.模拟电子基础[M].北京:高等教育出版社,2006

第7篇:直流稳压电源的设计范文

关键词:S3C2440; 测试系统; 稳压电源; ARM

中图分类号:TN919-34 文献标识码:A 文章编号:1004-373X(2011)24-0011-03

Design of Digital Stabilized Voltage Supply for Testing System Based on S3C2440

ZHANG Ran, FU Zhi-zhong, ZHANG Han-jin, ZHANG Zhong-liang

(Shanghai University of Science and Technology, Shanghai 200093, China)

Abstract: A solution of the digital stabilized voltage supply for testing systems is proposed in combination with the analysis result of the demanded power supply and the embedded control technology. The method to realize the solution is offered. The data sampling is conducted by the aid of ARM control technique. The regulation of voltage and the protection of circuit are controlled with appropriate algorithm to achieve the purpose of providing a stabilized voltage supply for testing systems. The power supply designed with the method can provide stable power for testing systems and satisfy the requirement of the chip testing. The hardware architecture and software flow chart are given in this paper.

Keywords: S3C2440; testing system; digital stabilized voltage supply; ARM

0 引 言

直流稳压电源是一种比较常见的电子设备,一直被广泛地应用在电子电路、实验教学、科学研究等诸多领域。近年来,嵌入式技术发展极为迅速,出现了以单片机、嵌入式ARM为核心的高集成度处理器,并在自动化、通信等领域得到了广泛应用。电源行业也开始采用内部集成资源丰富的嵌入式控制器来实现数字稳压电源的控制系统。数字稳压电源是用脉宽调制波(PWM)来控制MOS管等开关器件的开通和关闭,从而实现电压电流的稳定输出。数字稳压电源还具备自诊断功能,能实现过压过流保护、故障警告等。

相比之前的模拟电源,数字稳压电源大大减少了在模拟电源中常见的误差、老化、温度漂移、非线性不易补偿等诸多问题,提高了电源的灵活性和适应性。将SAMSUNG公司的嵌入式ARM处理器S3C2440芯片应用到实验室测试系统数字稳压电源的设计中,采用C语言和汇编语言,实现一种以嵌入式ARM处理器为核心,具备PID控制器以及触摸屏等功能的测试系统数字稳压电源控制系统。

1 测试系统数字稳压电源组成及工作原理

数字稳压电源由主控制器、PWM稳压电路、电压电流取样电路、PID控制器、触摸屏组成,系统原理框图如图1所示。

图1 系统原理框图本电源对输出的电压电流信号进行采样,进行PID控制,最后输出PWM驱动波形调节输出电压。输出电压提供给芯片测试平台,供其测试芯片时使用。

前端交流电源输入到整流模块,经整流滤波后输出平稳的直流电压。该直流电压直接输出至IGBT模块。高精度A/D转换器将后端输出的电压电流信号由模拟信号量变为数字量供给S3C2440进行数字PID运算,经过PID控制器运算后,由S3C2440输出PWM至IGBT,从而构成一个闭环控制系统,控制电压电流稳定输出,从而实现数字稳压电源设计,提供给芯片测试系统使用。ARM控制器通过触摸屏实现人机交互界面,在触摸屏上设置参数和显示信息。

2 硬件设计

2.1 ARM控制系统组成

鉴于PID运算和PWM波输出模块要求高,通过考查,选择SAMSUNG公司的S3C2440,这是一款32位基于ARM920T内核的CPU,拥有高达400 MHz的频率,完全能满足PID控制器运算的实时性要求;16位的定时器,可实现精度高达0.03 μs的PWM脉冲波,并且有防死区功能;24个外部中断源,完全可以满足对系统外部故障信息进行实时响应;内部嵌入LCD控制器,并拥有DMA通道,使得电压电流值能够实时显示在LCD上,还可以通过触摸屏设计一些所需的参数;多达140个通用I/O口,可以方便地扩展外部接口和设备;拥有8通道多路复用ADC,10位的数字编码,高达500 kSPS转换率,满足了测试系统所需的A/D转换精度。

2.2 PWM稳压电路设计

脉冲宽度调制(Pulse Width Modulation,PWM)原理是PWM调制信号对半导体功率开关器件的导通和关断进行控制,使输出端得到一些列幅值相等而宽度不相等的脉冲,经过处理后得到稳定的直流电压输出。PWM调制信号由ARM主控制器根据设定的电压值,按一定的规则对各脉冲宽度进行调制后给出脉冲信号。PWM稳压电路如图2所示。

图2 PWM稳压电路半导体功率开关器件其开关转换速度的快慢直接影响电源的转换效率和负载能力,本系统PWM稳压电路中,驱动电路由电阻、电容、晶体管和场效应管组成,MOSFET是电压单极性金属氧化硅场效应晶体管,所需驱动功率很小,容易驱动。MOSFET的输入阻抗很高,其导通和关断就相当于输入电容充放电过程。根据所选器件的参数,计算出满足的条件,保证驱动电路提供足够大的过充电流,实现MOSFET快速、可靠的开关。

3 软件设计

采用S3C2440为核心处理器,其丰富的片上资源和优秀的运算速度,保证了系统的实时性,编写软件主要以C语言进行驱动和应用程序的开发,其大容量存储器,完全能满足系统程序的数据存储。

该测试系统中ARM处理器所要实现的主要功能和软件实现方法如下。

3.1 PWM波产生

PWM用于对电路中IGBT的驱动。根据输出采样,设定和调整定时器配置寄存器TCFGn和定时器n计数缓存寄存器TCNTBn中的值来改变输出PWM波的周期和脉冲宽度。修改TCNTBn的值可以控制PWM波的占空比增加或减少1,PWM输出占空比增加或者减少千分之一,可以达到千分之一的控制精度。

3.2 监控和保护系统

为了使数字稳压电源能够可靠、安全地为测试系统提供电压,该系统设置了监控和保护系统,主要用于过流保护和过压保护等,ARM处理器对电压和电流采用双重检测,当电压电流超出所设定的危险值范围时,声光报警,并启动保护电路。

3.3 PID控制算法

PID控制器由比例、积分、微分控制器组合,将测量的受控对象(在本系统中为电压电流值)与设定值相比较,用这个误差来调节系统的响应,以达到动态实时的控制过程。

在数字稳压电源PID控制系统中,使用比例环节控制电压电流的输出与输入误差信号成比例改变,但是这里会存在一个稳态误差,即实际值与给定值间存在的偏差,因此需要引入积分环节来消除稳态误差以提高系统精度。但由于电源系统在导通、关断时,产生积分积累,会引起电压电流超调,甚至会出现震荡。为了减小这方面的影响,设定给定一个误差值范围,当电压电流与设定工作值的误差小于这一给定值时,采用积分环节去消除系统比例环节产生的稳态误差。PID控制算法设定阈值ε,当|e(k)|>ε时,采用PD控制环节,减少超调量,使系统有较快的响应;当|e(k)|< ε时,采用PID控制,以保证电压电流精度和稳定度。在电压达到千分之一精度范围后,需要加入积分环节,以完成电源开机时迅速稳定的输出。PID算法流程图如图3所示。

PID控制算法程序采用结构体定义:

struct PID {

unsigned int SetPoint;

//设定目标 Desired Value

unsigned int Proportion;

//比例常数 Proportional Const

unsigned int Integral;

//积分常数 Integral Const

unsigned int Derivative;

//微分常数 Derivative Const

unsigned int LastError;

//Error[-1]

unsigned int PrevError;

//Error[-2]

unsigned int SumError;

//Sums of Errors

} spid;

在PID控制算法中,经过不断与给定值进行比较,动态控制电压电流输出的稳定,同时确保电压电流输出的精度。

图3 PID控制算法流程图PID控制算法程序如下:

unsigned int PIDCalc( struct PID *pp, unsigned int NextPoint )

{

unsigned int dError,Error;

Error = pp->SetPoint -NextPoint;

//偏差

pp->SumError += Error;

//积分

dError = pp->LastError -pp->PrevError;

//当前微分

pp->PrevError = pp->LastError;

pp->LastError = Error;

return (pp->Proportion * Error

//比例

+ pp->Integral * pp->SumError

//积分项

+ pp->Derivative * dError);

//微分项

}

3.4 系统程序

测试系统的整体程序流程图如图4所示。

本文所设计的测试系统数字稳压电源能够满足芯片测试所需的电源要求。图5为输出的一路电压。由图可知,所输出的电压稳定。

4 结 语

本文设计的稳压电源提供的电压稳定可靠,系统运行也非常稳定。由于可扩展的I/O非常多,可以同时为多个芯片提供各种所需的稳压电源电压值。该系统不仅能够用在实验室芯片测试工作中,而且可以通过软件编程的方法,修改一些控制程序,使所设计的稳压电源作为智能电子产品性能测试的电源电压,这样提高了设备的使用效率,有着不错的应用前景。

参 考 文 献

[1] Samsung. S3C2440 datasheet \[EB/OL\]. \[2010-12-23\]. wenku.省略

[2] 白林绪,申利飞,王聪.基于51单片机控制的数字可调高效开关电源设计[J].电源世界,2010(9):21-24.

[3] 杜春雷.ARM体系结构与编程[M].北京:清华大学出版社,2003.

[4] 何清平,江建钧,黄振升,等.基于ARM处理器的数控电源设计[J].电脑知识与技术,2006(11):65-67.

[5] 胥静.嵌入式系统设计与开发案例详解:基于ARM的应用[M].北京:北京航空航天大学出版社,2005.

[6] 王晓雷,吴必瑞,蒋群.基于MSP430单片机的开关稳压电源设计[J].现代电子技术,2008,31(13):186-187.

[7] 赵异波,何湘宁.电力电子电路的数字化控制技术[J].电源技术应用,2002(11):557-559.

[8] 白林绪,申利飞,王聪.一种基于DSP控制的数字开关电源设计[J].电源世界,2009(11):32-35.

[9] 卜红霞,胡永杰,王月香,等.基于DSP的开关电源的设计与实现[J].微计算机信息,2008(28):280-281.

第8篇:直流稳压电源的设计范文

【关键词】数控电源;D/A转换;便捷

引言

从日常生活到最尖端的科学都离不开电源技术的参与和支持,而电源技术的发展对提高一个国家劳动生产率的水平,具有举足轻重的作用。在电源种类繁多和技术的多样化中,不断地提出了更多、更高、更先进的要求来迎合当今时代的步伐。电源设备是电子仪器的一个重要组成部分,通常有直流电压源、直流电流源、交流电压源和交流电压源等。随着信息时代的飞速发展,电源设备也逐渐向数字化方向发展,数控电源的已是当今研究的主流[1-3]。

所谓数控电源,就是电源的输出电压受输入数字量的控制。如8位的数字量,当全零时输出为0V,当全1时输出为25.5V,数字量每增加1,输出增加0.1V,只要输入的数字量改变了,就可以得到对应的稳定的输出电压。三位同学在老师的指导的下,学习了模拟电路和数字电路,设计出了简易的纯数字电路控制的数控直流稳压电源,通过仿真和电路制作并调试,实现了功能。具有电路简单,控制灵活,误差小等特点。

1.系统总体设计

数控稳压电源要求输出电压值的设置,一般通过设置按键与输出电压显示结合进行设置。设置电路由按键、脉冲产生电路和计数电路组成。输出电路由D/A转换电路、稳压电路和显示组成,具体框图如图1所示:

图1 总系统硬件框图

2.各部分模块电路设计

2.1 设置电路

设置电路有四个按键,分别是步进、步退、快进和快退,如图2所示。步进按键后连两个施密特反向器和555单稳态消抖电路,既可消抖又可波形整形的作用,如图3所示。

连续脉冲由555多谐振荡电路产生,其振荡频率由总步长与在总步长内预定完成时间决定。

用或门实现快进和步进的的切换。

当按下并释放单脉冲按钮一次时产生一个单脉冲。

当不按多谐振荡按钮时,无振荡脉冲,按下时产生连续的多谐振荡脉冲。

图2 按键设置电路

图3 单稳态消抖电路和555连续脉冲产生电路

2.2 计数电路

脉冲产生电路主要提供单脉冲或连续脉冲作为计数电路的输入计数脉冲。计数电路一般由8位二进制计数器组成。常用的4位二进制计数芯片有74LS161、74LS191、74LS193、40193 等。这里选用2片74LS193组成异步加法计数器,如图4所示。本电路计数从00到FF计数,即256进制。

图4 计数电路

图5 D/A转换电路

2.3 D/A转换电路

D/A转换的基本思想:数字量是用代码按数位组合而成的,对于有权码,每位代码都有一定的权值,将每一位代码按其权的大小转换成相应的模拟量,然后将这些模拟量相加,即可得到与数字量成正比的模拟量,从而实现数字量模拟量的转换。D/A转换采用DAC0832转换芯片,不需两级缓冲,采用两级直通的控制模式,如图5所示。其电压与输入二进制的转换关系公式为:

2.4 参考电压的设置电路

参考电压的准确程度直接影响着D/A转换的精度,所以一般要求参考电压用专用的基准电源芯片供给。这里采用LM317提供基准电压,此基准电压给D/A转换电路提供基准电压用。如图6所示。

图6 LM317电源电路

3.设计流程

如图7所示,为数控电源的设计流程。

图7 数控电源设计流程

D/A芯片参考电压值的确定:

根据输出电压的计算公式可以知道,参考电压的值由数控稳压电源设计的最大输出电压、最大的数字值,以及步进电压值,RF 、R1的值共同决定。

如本电路设计的最大输出电压为12.7V,步进为0.05V, RF=R1,则:

如果VREF太大,可外接RF,若要求参考电压为正,则输出再接一级方向器。

4.电路设计与制作

图8为数控电源仿真总图,图9为简易数控电源的实物制作图。

图8 数控电源仿真总图

图9 数控电源实物图

5.检测和调试

5.1 通电前检测

(1)先用万用表电阻挡,检测各组电源输入端分别是否短路。

(2)按照各集成块的引脚排列图,先用万用表蜂鸣器挡检查各集成块的电源VCC端及接高电平的引脚与电源+5V端或者+15V端(U6,U7)是否通,接地端与电源GND端是否通,U7的VSS端与-15V是否通。

5.2 通电后的检测

5.2.1 脉冲产生电路的检测和调试

先将J5加+5V,J2与J5的GND相连。

(1)将两个555插到U2E、U6E上,检测多谐振荡器的工作情况。用万用表直流电压20V档,测量输出U2E、U6E的3脚的直流电压,测得此处电压在3.5V,故此电路为多谐振荡,工作正常。再插上U2(40106),当对应的按键B3、B1按下时,用万用表直流电压20V档,测量输出U2E、U6E的3脚的直流电压,电压在3-3.5V左右,不按时电压为0V,说明电路在振荡。

(2)再分别检测单步脉冲发生器电路工作情况。

插上CD4016按单步增(B4)或单步减(B2)按键,检测4016的6或10脚,快速按下并释放后电压是否有所增加,有变化说明有单步脉冲产生。

(3)再插上74LS02到U4,在1和4脚重新观测4个按键的单脉冲和连续脉冲是否正确。

参考数值:

测1脚(进):

按键B3 连续脉冲,电压输出值1.1~1.3V

按键B4 单脉冲,电压5V,0V切换

测4脚(退):按键B1 连续脉冲,电压输出值1.1~1.3V

按键B2 单脉冲,电压0V,5V切换

5.2.2 计数电路的检测和调试

插上两块74LS193(U5B、U4B),测两块的输出Q3~Q0,组成的8位二进制数(U4B为高4位,U5B为低4位),按单步进按键,记录8位二进制数,看是否加1变化。或按单步减按键看8位二进制数是否减1变化。

5.2.3 D/A转换电路的检测和调试

插上DAC0832。J4接入+15V和-15V。

(1)调整DAC0832的参考电压VREF(U6的8#)。调整多圈精密电位器RV1使VREF=12.8V。

(2)调整多圈精密电位器RV2,使S1左端为-0.625V,VREF=12.8V, 再将S1的中间和左边用短路帽短接, S2也盖上短路帽 。

(3)插上LM358(U7)。记录74LS193组成的的8位二进制计数的值,测试转换电压(U7的7#),用公式验证:

5.2.4 稳压电路的检测和调试

将S2、S3短路帽插上,在J1端接入交流12V,用变压器220/12V实现,实际输出13.2V左右,DC POWER SUPPLY也打开,发光二极管亮。

(1)按单步进B4、快进B3(或单步退B2、快退B1),用万用表直流电压20V档,观测输出端J6的电压的变化情况。是否实现数控功能。

(2)用万用表直流电压20V档,测量记录单步进的两次输出电压差,与0.05V的误差。

6.结论

本电路设计的简易数控电源,包括电压设置按键、计数脉冲产生电路、计数电路、D/A转换电路和稳压电路五部分电路组成,本电路电压输出稳定,电压变化范围在0~12.7V,步进为0.05V,输出电压不随负载和环境温度变化。电路实际输出测试结果表明,本系统稳定性好、精度较高、操作简单、人机界面友好。在实验操作和设备生产中,能够广泛应用到这种可靠性高、操作简单的数控电源,不仅能够提高设备的性能,同时能够缩短研发周期,本系统具有较高的实用性。

参考文献

[1]乔国良.数控式直流稳压电源[J].计算机工程与科学, 1980(4):59-63.

[2]陈岩.简述直流稳压电源的设计与研究[J].门窗,2012 (6):140.

[3]李小琴.数控稳压电源的设计[J].电子世界,2014(2):156.

[4]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2003.

[5]詹新生,张江伟.基于AT89C51的数控直流电压源的设计[J].现代电子技术,2008(19):107-109.

作者简介:

朱佳奇,现就读于宁波职业技术学院电子信息工程系应用电子技术专业。

王佳晨,现就读于宁波职业技术学院电子信息工程系应用电子技术专业。

第9篇:直流稳压电源的设计范文

【关键词】广电;专用馈电转换电源装置;设计;使用

中图分类号:TM72文献标识码A文章编号1006-0278(2015)09-146-01

我国的馈电开关保护技术起步于20世纪50年代,经历了模仿苏美、西欧等先进国家的产品到自主开发、非智能化到智能化的发展历程,馈电开关保护装置为井下低压供电提供了有力保障。目前,在广播电视双向网改造过程中,需要在网络节点上安装双向网终端设备,由于户外施工情况复杂,许多最佳改造位置无法取得220V电源供设备使用,重新选择节点增加了改造成本和复杂度。

一、广电专用馈电转换电源装置的结构原理

实用新型广电专用馈电转换装置内部功能模块包括:将同轴电缆输入的30~60VAC电源转换为直流电压的交直流转换模块、通过开关电源将宽电压范围的低压直流转换为稳定的高压直流输出的开关电源模块、将稳定的高压直流通过逆变器转换为稳定的220VAC输出的逆变模块。逆变模块的输出端与EPON+EoC远端设备(如EoC、ONU、小型交换机)的220VAC插座相连。

当同轴电缆馈送输入电压由于线路衰减电压变化范围达30~60VAC时,通过交直流转换模块内部的桥式整流、电容电感滤波扼流以及输入高压保护电路等,转换为高低变化的低压直流。低压直流输入开关电源模块,开关电源通过内部电压检测和反馈电路,自动调节振荡脉宽或频率,达到输出电压稳定的目的,输出稳定的200VDC直流高压。逆变转换模块的功能是将直流高压通过50Hz脉冲震荡电路调制并通过电容电感充放电输出220VAC交流正弦波,最终输出稳定的供设备使用的工频电压。新型馈电转换装置采用高频电子器件,自身能耗低,在空载时功耗低于3W。由于没有笨重的变压器,新型转换装置体积小便于在狭小箱体柜内安装。新型转换装置采用的开关电源和逆变技术,自身辐射小,工作频率远低于传输信号频率,不会对电视信号和数字信号产生辐射干扰。该新型装置工作时,室外工作环境适应性强,当输入电压、负载、环境温度、湿度、气压在一定范围内变化时,可自动检测和矫正并输出稳定的220VAC电压。该转换电源装置的单个成本在200元以内,批量生产成本可大幅度降低。装置内部模块采用的开关电源技术和逆变电源技术是公知的成熟技术。

二、广电专用馈电转换电源装置的设计和使用

(一)广电专用馈电转换电源装置的结构设计

图1是实用新型广电专用馈电转换装置的结构框图,其中馈电设备为远端低压馈电器。馈电转换电源由交直流模块、开关电源模块、逆变转换模块三大功能模块组成。用电设备为ONU、EoC等用户局端设备以及小型交换机。馈电转换装置具有馈电和信号环出功能接口,可继续给下级放大器供给馈电和信号。

(二)广电专用馈电转换电源装置的使用效果

在馈电转换电源装置的实际使用中,输出功率受内部开关晶体管功率、馈送同轴电缆的阻值、馈电器内阻(功率)影响,如远端馈电器距离馈电转换电源装置较远时,馈送入馈电转换装置的电压达不到30VAC,就需要采用内阻较小、功率较大的馈电器,也可将馈电器向前级移动,减少两设备间距离,或者采用更大外径、内阻更小的同轴电缆。我单位在实际使用的新型馈电转换装置自身与负载功率合计小于100W,按照有线电视一台4模块放大器功率一般在100W以上相比较,馈电转换电源对线路影响小,完全可以通过线路调整实现对双向网设备的供电。采用馈电转换电源,还适用于间歇性停电、外电电压不稳易造成用电设备损坏的环境,只要同轴电缆馈电正常,就可以采用远端馈送的低压交流电转换为稳定持续的220VAC输出。馈电转换电源还可以作为有线电视工作者在网络施工检修中应急电源使用,可以为笔记本电脑等设备充电,为光纤熔接机提供电源,为光纤和电缆检修测试仪器提供临时用电。

三、结语

总而言之,根据当前馈电开关保护技术存在的问题,采用馈电转换电源,可以采用远端馈送的低压交流电转换为稳定持续的220VAC输出,并能够进一步作为有线电视工作者在网络施工检修中应急电源使用,为光纤和电缆检修测试仪器提供临时用电,为广电电网安全可靠的运行提供了有力保障。

参考文献: