公务员期刊网 精选范文 卫星通信作用范文

卫星通信作用精选(九篇)

卫星通信作用

第1篇:卫星通信作用范文

关键词:GMDSS卫星通信系统;航海安全;发展前景

GMDSS卫星通信系统,中文翻译为全球海上遇险和安全系统,开发于1992年,该系统开发目的在于保护海上人民及财产安全。随着现代科学技术的发展,GMDSS系统产生了日新月异的变化。但也因为现代科技发展迅速,GMDSS也面临着更大的挑战。由此,科学研究者、GMDSS系统操作员,作为GMDSS接触最密切的成员,使GMDSS系统的革新与发展跟上时代的需求与脚步,是他们最大的使命之一。

1 GMDSS系统概述

1979年由联合国提出的国际海上搜救条约是建立GMDSS卫星通信系统的最初动力。其目的在于建立起最全球性的现代通讯系统,涵盖面广。在系统范围内无论什么类型的海上行驶工具出现任何故障,距离较近的各个搜救点得到求救信号后,由可以提供支援的、可在最短时间内进行搜救与各项协助的搜救点提供最直接的帮助。若事故范围较大,可由较多个搜救点通力合作,一同处理海上事故。在平时,GMDSS系统还可以为各个海上行驶中的船只提供日常安全信息[1]。

2 GM DSS的功能概述

GMDSS最主要的功能是全球范围内的海上救助。当有船只发生事故,附近搜救点与海上船只可迅速获取其求救信息,并在第一时间内提供海上救援。其次,GMDSS还提供日常的海上信息,如天气警报,保障海上船只的安全行驶。为了GMDSS系统可以更好的发挥作用进行第一时间内的海上救援行动,它要求进行海上行驶的船只,不论行驶在哪个地方,都须具有以下5大功能:一、船上有至少两个报警系统,且必须相互独立;二、可以接收到其余船只的事故报警;三、可以发送并且接收协助救援的船只信号;四、可以发送并且接收GPS定位信号;五、可以发送并且接收日常的安全信息,如天气警报等。自1992年起GMDSS系统存在,利用它的遇险警报可以发射出第一时间需要救助的求救信号。GMDSS系统的主要功能是在船只发生各种事故时向RCC发出求助警报,RCC可以在第一时间内规划出搜救行动,并立即执行[2]。由联合国的海上救助公约规定,救助附近发生事故的船只是海上行驶的所有船只的义务。但此公约在真正实行中的结果是在船只较少的区域中,海上救援活动并不是时时都能在第一时间开展。

3 GMDSS卫星通信系统对航海安全的作用

报警信息可以准确无误地从遇险船只处发射、迅速地被附近搜救点接收,这是一个救援行动最重要的开始。GMDSS系统正是为此而生的。它可以提供各种各样不同情况下的求救方式,让遇险的船只在各种遇险情况下准确无误、快速地发射出求救信号变成现实。GMDSS系统提供的是一键式得求救报警系统,在任何紧急情况下,只要遇险船只上的工作人员按下此键,就可以完成快速的求救报警。求救报警可以告诉搜救点遇险船只具体的遇险位置、船只类型、遇险类型等有助于救助行动的的一切相关信息[3]。若遇险情况有缓和的现象,遇险船只可通过具体的求助信号补充一些遇险信息,来帮助搜救船队的救援行动。当岸上的搜救点接收到遇险警报后,可以通过派遣救援队伍、发射相关信息给遇险船只附近船只等方式进行救援行动的开展。具体救援行动从实际情况考虑出发,一切以生命安全为先作为考虑因素。

3.1 卫星系统报警

首先,可以通过INMARSAT系统进行报警。设置于A、B、C、F77船站上的报警按钮或报警菜单,便于相关人员在事故第一时间内进行报警,通过GPS技术与其他船舶相连接,可以将本船的位置、航线等信息发至别船来进行相救。

其次可以通过COSPAS-SARSAT系统卫星示进行位置的标定,并通过(EP IRB)系统自发报备。EP IRB的报警操作方式是手持方法,在遇到紧急情况下会自动发放卫星示位标,使其在海面上漂浮。另外, EP IRB的工作环境温度在-30~+70度的范围之间,从 20m的高度落入水中也不会有丝毫损伤,能在水下10m狗狗正常工作,保持5min以上的密闭性,无论怎样的倾斜或是摇晃,都能够保证准确无误的想求救信号发出。

3.2 地面系统报警

地面系统的报警工作原理是带有DSC功能的甚高频、中高频、高频技术。能够在频率为VHFCH70、2187.5KHz、及4、6、8、12、16MHz频段的频道上完成报警。在A1海区中的船只,主要通过DSC在VHF的70频道上进行报警,同时也可以使用MF(2187.5KHz)的频道进行报警。在A2海区中的船只,主要在2187.5KHz频道上进行报警,也可以通过VHF的70频道进行报警,以上两种方法都是可行的。在A3、A4海区中的船只,主要以HF(4、6、8、12、16MHz频段)的频道进行报警,也可以通过VHF的70频道、MF(2187.5kHZ)报警进行报警,以上两种方法都是可行的。由此可见,无论船舶处于1、2、3、4海域,都可以通过两种以上的方式进行预先报警[4]。此外,GMDSS针对每个报警频道都有专门的后续通信频率,有助于下一步的救援开展。

通过GMDSS,可在船到岸、船到船、岸到船这三个方向上进行遇险报警。系统对于报警的灵敏度极高,因此失误率极低,使得船只的预先救援成功率大大增加。但是,只有在100米之内的船到船的报警才会有效,因此如果遇险船只的周围100内没有其他船只,GMDSS就可利用卫星通信或高频(HF)通信,向海岸救援站援助。救助协调中心(RCC)一单接受到这样的营救援助信号后,就会向其他船只发信遇险船舶的相关信息进行海上援助。RCC可利用卫星通信系统将船舶的遇险信息发送的其他电台,便于获得更加宽广的救援力量。在接收到遇险报警的转发后,在遇险船只附近的船舶可以在第一实践与岸上与海上相关人员建立建立通信,以便协调援助。

4 GMDSS卫星通信系统的发展前景

4.1 拓宽卫星通信系统辐射范围

GMDSS卫星通信系统由各种服务板块组成,其中一块是国际移动卫星。随着现代技术的发展,国际移动卫星也在被不停地修改与完善。但是,该系统的覆盖面较小,只有南纬700到北纬700的范围,这就是它最大的局限所在。近年来新开发的北极附近的航线就无法在此范围之内。经过科学研究者不断的努力,第四代国际移动卫星已经冲上云霄在天上建立了区域网,但由于之后太空中未知因素的影响,并不确保它不会遇到各种挑战,若GMDSS系统对于国际移动卫星的依赖性过强,将会导致GMDSS也受到未知的挑战。根据GMDSS系统改革工作规划,在未来的十年中,GMDSS卫星通信系统将完成质的飞跃。多元化是GMDSS系统改革的最终目标。届时,只要是符合IMO决议及相关文件要求的,都可以成为GMDSS系统的服务商,打破IMSO“独权”的现象[5]。目前,中国北斗系统正在加紧系统改善的步伐,争取早日可以符合IMO决议及相关文件,成为GMDSS系统的服务商之一。

与此同时,电话与电传也不将再是求助报警的唯一方式,GMDSS卫星通信系统的业务将得大大幅度的扩张,E-MAIL等新型的报警方式正在研究试行中。随着科技日新月异的发展、数字网络方式的传输,海上的救援方式和救援行动将会开展得更加高效。

4.2 巩固地面通信系统成果

4.2.1 引入E-MAIL新设备

传统的NBDO由于存在电台数少、操作不简便等缺点,E-MAIL等新媒体下的网络产物已经有取代NBDO的趋势。目前,E-MAIL已经被国际移动卫星系统下的某些船站接收,并得到了大力支持。尤其是国际移动卫星系统中的F船站,已经可以实行E-MAIL通信,该方式下的通信支持图片、音频都新型格式,方便船只与船只、船只与船岸的信息交流,从而增强了对于海上船只的安全、有效管理。传统的NBDP相较于E-MAIL而言,虽然成本较低,但是它的功能有限、操作方式复杂,且在海上通讯中容易造成信号不稳定,有被E-MAIL替代的风险。

4.2.2 简化数字选择性呼叫系统(DSC)操作

地面信息通讯系统中承担发射求救报警任务的设备是数字选择性呼叫系统,可根据近年来IMO的调查结果显示,地面数字选择性呼叫系统的误报率很高,这就使人们开始质疑数字选择性呼叫系统存在的意义。为解决此问题,IMO与各个签名国家联手大力治理,可还是无法大幅度降低数字选择性呼叫系统的误报率。目前,IMO制定了标准,让数字选择性呼叫系统在简便操作的同时降低误报率。

4.3 集成化海上安全信息(MSI)新系统

随着近年来航海战略的数字化,海上最主要的安全信息收发系统NAVTEX也正接受新的挑战。首先,改变NAVTEX广播式播发,试验NAVDAT的新系统。2008年,法国科学研究者开始试验一个新系统,名为NAVDAT。该系统的工作信号为四百九十五到五百零五赫兹,相较于传统的NAVTEX,它具有安全高效的特点。最大的区别在于它类似于EGC系统,可以进行有选择性的寻找地址。其次,集成化NAVTEX和EGC数据,降低GMDSS操作员工作负担[6]。根据如今在实行的MSI系统方案,海区A1、A2主要由NAVTEX负责,海区A3和NAVTEX无法顾及到的海区主要由EGC系统负责。美国就此现象提案,通过现代技术将MSI接收到的数字信息在ECDIS中现实,国际电工技术委员会根据该提案制定了相关接口的标准,这一系列举动意味着MSI的信息将集成化,方便船只工作人员查看NAVTEX、EGC上的数据,大大减轻了工作负担。

GMDSS卫星通信系统,中文翻译为全球海上遇险和安全系统,开发于1992年,该系统开发目的在于保护海上人民及财产安全。通过卫星系统报警和地面系统报警,GMDSS卫星通信系统对航海安全有着重要作用。随着科学技术的迅猛发展,GMDSS卫星通信系统也面临着更新和变革,通过拓宽卫星通信系统辐射范围,巩固地面通信系统成果,集成化海上安全信息(MSI)新系统使得GMDSS有着更广阔的发展前景。

参考文献

[1]彭晓星.GMDSS系统存在问题及应对措施[J].上海海事大学学报.2011(01).

[2]邸彦强,朱元昌,孟宪国,冯少冲,刘颖,梁冠辉.基于网格技术的多用户多任务模拟训练系统[J].系统仿真学报.2010(03).

[3]张治国.软件测试简介及其常见认识误区[J].乐山师范学院学报.2012(05).

[4]林长川,洪爰助,林鸿,黄丽卿,符强,陈智辉.网络型GMDSS模拟器开发研制[J].中国航海.2009(04).

第2篇:卫星通信作用范文

【关键词】 VAST 卫星通信 通信信道 检测调试

卫星通信技术作为一种先进的数据通信与信息传输应用技术,近年来随着我国信息技术与通信技术的应用发展,在实际数据信息的通信传输中应用实现越来越多,并且应用范围也越来越广,对于促进我国信息通信与传输技术的发展提升有着积极作用和意义。某VAST卫星站的VAST卫星通信信道是该地区为实现地震预测管理而建设信息采集与通信传输信道,属于该地区防震减灾信息系统建设的重要一部分,主要进行防震减灾数据信息的收集传输,在该地区的地震预防与监测中发挥着重要的作用和影响,目前已经建设完成并投入应用。下文将结合该VAST卫星通信信道的设计建设实例,在对于VAST卫星通信结构以及安装使用技术参数分析介绍基础上,对其通信信道的调试应用进行研究分析,以促进在实际数据监测与通信传输中的推广应用。

1 VAST卫星通信结构以及安装参数的分析介绍

在数据信息的通信传输技术领域中,VAST卫星通信是一种以交互式星形结构为主,并且能够实现一点向多点传输通信的卫星通信与数据信息传输系统,在数据信息的分析处理以及批量数据信息传送中具有较为突出的作用优势和适用性。通常情况下,VAST卫星通信系统主要是由一个完全实现冗余备份的主通信站和多个小通信站共同构成,该通信系统的主要结构设备包括小型的卫星天线以及室内单元IDU、室外单元ODU等。在实际工作运行中,VAST卫星通信系统的室内单元IDU主要通过网络接口和数据信息用户端进行连接实现,同时借助室外单元ODU以及卫星链路和VAST卫星通信系统中的远程终端和主通信站进行通信连接。

在VAST卫星通信系统中,室内单元IDU中的输入以及输出接口部分分别使用两根具有数据信息收发同轴功能作用的75Ω电缆和VAST卫星通信系统的室外ODU结构进行相互连接,以保证在VAST卫星通信系统工作运行过程中,室内单元IDU对于室外单元ODU的工作运行进行供电支持。此外,在VAST卫星通信系统中,室外单元ODU结构模块主要包含有上变频功率放大器以及正交变换单元、低噪声变换结构模块、天线等结构设备,其中,VAST卫星通信系统室外单元ODU结构中正交变换结构单元能够结合系统发射以及接收的信号频率和极化情况的不同,对于系统中发射以及接收的信号进行区别分离,用于系统数据信息的分析处理支持。如下图1所示,为VAST卫星通信站的结构组成示意图。

上述的某VAST卫星通信站在进行卫星通信连接设置中,主要将VAST卫星通信系统中的室内单元IDU设置在该卫星通信站的微波机房中,同时将卫星天线安装设置在微波机房所在办公楼的楼顶,此外,为了保证VAST卫星通信系统的数据信息通信传输质量和效果,还将卫星天线通过接近两米高的基座设置在楼层的顶端。最终,通过卫星中心经对于该VAST卫星通信站的卫星天线进行调试测量之后确定,该VAST卫星站的卫星天线方位角约为224.6度,极化角约为54.2度,俯仰角约为34.1度。

2 VAST卫星通信信道的调试测试与应用分析

2.1 VAST卫星通信信道的应用调试与检测

结合上述对于VAST卫星通信系统结构以及安装使用参数分析介绍,在进行VAST卫星通信信道的调试应用中,上文中提到的某VAST卫星通信站在建立与地震预防监测之间的数据通信传输关系中,首先需要对于该VAST卫星站的载波进行激活检测,以实现卫星站数据通信传输应用。其中,对于VAST卫星通信站进行载波激活检测,主要是指在远端的卫星通信站没有仪器以及设备支持情况下,进行卫星天线和卫星信号接收传输之间的对准调试,以保证卫星天线对于远端卫星传递信号的准确接收,它通常需要将VAST卫星通信站设置到载波常发状态条件下,通过VAST卫星通信站的主通信站端使用仪器设备对于卫星通信系统的远程通信站端所发送的载波信号进行监视接收,同时借助电话通信功能对于VAST卫星通信系统的通信远端进行配合,实现对于VAST卫星通信系统天线信号接收情况的调节测试,以保证在实际工作运行中能够对于通信远端所发射信号的准确接收和传输处理。

在进行上述某VAST卫星通信系统的通信站载波激活检测中,主要通过将VAST卫星站室内单元IDU的背板开关进行打开,使VAST卫星通信系统的室内单元的供电运行后连续进行一个载波信号的发射,并保障VAST卫星通信系统进入到这种特定的载波检测模式中。一般情况下,VAST卫星通信系统的室内单元IDU在供电运行后,电源显示灯处于长亮状态,这时通过VAST卫星通信系统室内单元IDU的液晶显示屏进行系统载波激活检测设置,就可以使系统进入到载波激活检测状态。该VAST卫星通信系统在进行载波激活检测设置中,首先通过对于VAST卫星通信站天线的俯仰角进行调整测试,在确定卫星通信站天线的俯仰角位置后,再进行天线方位角的调整设置,进行天线方位角调整中主要借助卫星中心实现位置调整和确定,最后利用罗盘进行VAST卫星通信站天线极化角的测定调试,以完场对于VAST卫星通信站天线信号接收的测试调整,保证其在VAST卫星通信系统工作运行中对于数据信号的接收准确性。在完成上述的VAST卫星通信站天线调整测试后,将系统室内单元IDU开关打开使之处于供电运行状态,也就是保证VAST卫星站与卫星中心处于通信连接连接状态,在信号的发射与通信传输过程中,VAST卫星通信站的信号发射指示灯会进行信号发射或者是接收显示,并在信号接收完成进行提示,这是系统将自动从卫星中心进行配置参数的下载,并通过系统的液晶显示屏进行显示,在通过重复上一动作完成VAST卫星通信系统的载波激活监测后,VAST卫星通信系统会进入正常的工作运行状态。

2.2 VAST卫星通信系统的通信传输应用分析

结合上述对于VAST卫星通信系统的数据通信与信号传输测试调整分析,在完成VAST卫星通信系统的通信传输调整测试后,通过网络接口将VAST卫星通信监测站与数据通信传输用户端进行拦截实现,同时通过一根交叉连接线进行计算机和VAST卫星通信监测站端的连接实现,以做好VAST卫星通信系统的数据信息通信传输连接准备。在实际数据通信传输工作运行应用中国,通过结合卫星中心对于VAST卫星通信站的IP地址分配情况,在进行VAST卫星通信站通信连接地址设置确定后,对于与VAST卫星通信站相连接的计算机IP地址协议进行分配设置,在计算机网络连接正常情况下,即完成VAST卫星通信站与卫星中心、计算机之间的网络通信连接,同时也为VAST卫星通信系统的通信传输做好了准备,在对于该VAST卫星通信系统的通信信道与网络中心服务器的连接进行测试后,即可以通过该通信信道进行数据的通信传输与下载分析,也就是说该通信信道能够进行正常的通信应用。

3 结语

总之,VAST卫星通信作为一种信息通信与处理分析的重要技术,在通信传输中具有较为广泛的应用。进行其通信信道的调试与应用分析,有利于促进在实际通信传输中的推广应用,具有积极作用和价值意义。

参考文献

[1]凌翔,卓永宁,胡剑浩.卫星信道基带残留误码分布特性拟合与模拟[J].电子科技大学学报,2010(2).

[2]辉,朱立东,吴诗其.LEO卫星通信系统中的一种信道动态预留策略[J].电子科技大学学报,2006(5).

第3篇:卫星通信作用范文

关键词:卫星移动通信;星体设备;体积重量;地面站

中图分类号:TN927 文献标识码:A 文章编号:1009-2374(2014)26-0009-03

1 卫星移动通信应用介绍

随着卫星移动通信技术迅速发展,卫星移动通信的应用范围越来越广泛。对特殊行业(森林防火、海滩和抢险救灾等)进行应急通信;利用卫星移动通信技术,使山村偏远地区的通信问题得以解决;对重点行业(防汛抗旱监测、地震监测和气象水文监测等)进行数据通信。以下重点对卫星移动通信在海洋石油的勘探开发和军事中的应用进行介绍:

1.1 卫星移动通信在海洋石油的勘探开发

海洋石油的开发具有很大的流动性,广泛的作业范围和较强的专业性,这些使海洋石油勘探开发对海上移动通信具有很高的要求。利用传统的单边带无线电话等通信设备不能满足海洋石油勘探开发事业快速发展的需要,于是,在海洋石油勘探开发中,应用卫星移动通信已经成为一种相当理想的通信方式,卫星移动通信及过去采用的那些单边带无线电话和甚高频无线电话等通信方式为海洋船舶作业的通讯需求提供了多元化选择。

1.2 卫星移动通信在军事中的应用

由于现代局部战争的参战力量组成不断变化,作战范围规模日益扩大,作战形式也越来越多样化,再加上传统短波军事通信带宽小,传输信道不稳定,传统短波军事通信已经不能应用在现代作战行动中。当卫星移动通信受到地域条件和天气情况的影响时,还可以真正地使信息进行实时的传输,这就是卫星移动通信在军事作战中最大的优势。与传统的通信方式相比较,卫星移动通信在通信容量、覆盖范围和传输质量等方面有更大的优势。

2 应用中出现的问题

在应用中出现的问题主要表现在以下四个方面:

(1)卫星移动通信的技术规范标准还不健全不完善,管理还不严格不合理。健全完善技术规范标准,不仅使通信设备的制造、安装测试和使用更加规范,还使卫星移动通信更加畅通,更加安全。

(2)卫星移动通信系统以市场为导向进行管理和经营,就是为了赢取最大的商业利润,其实它本身是国际性商业民用通信系统。铱系统、全球星、ICO、ODYSSEY和APMT等卫星通信系统,依次进入全球卫星移动服务的市场,一场高投入高技术的全面市场竞争随之展开,先后淘汰了ODYSSEY和APMT,铱系统、全球星和ICO三大系统留下,但是铱系统破产失败,全球星系统命运未卜。

(3)抗截获与干扰技术有待于提高。卫星移动通信应用在军事中时,因为通信卫星处于空间位置,敌我双方都能看见卫星,所以卫星通信系统有着一些突出的弱点,通信卫星转发器极易遭受到电子攻击是其主要的弱点。具体表现在极易受到敌方强大的电磁波干扰,使通信受到干扰而中断;有利的条件和机会使敌方极易进行定位截获。于是,由于军事通信的迅速发展,军事专家们一直重视敌我双方的通信侦察与反侦察,对抗与反对抗和截获与反截获技术。在频率域与功率域方面,由于移动卫星通信系统空间和信号发射作为现用的平台,因此,在地面信息进入信道传输之前,应该大力做好伪信息识别与抗干扰的工作,积极提高硬件和软件的加密技术,应该改造创新移动终端和关口站。

(4)电磁兼容性和接口技术有待于提高,软件的可移植性有待于增强。应该提高系统接口技术(移动卫星通信系统信息终端、国防数据和关口站、便携式终端间等互联接口技术),以保证信息能够进行无缝传输,使其与另外的军事通信方式一体或者互联。同时,应该改善增强数传软件的纠错功能,以保证在信息化的恶劣战场中,部队能够进行畅通无阻的信息通信。

(5)闭合回路群设置和信道专用设置有待于提高。部队在应用卫星移动通信系统进行通信的过程中,应该重视关口站网管软件的应用,应该对部队特殊用户进行合理的设置,进而形成一个闭合回路群,还要在该群中进行合理的信道专用设置,大力做好信道管理和密钥管理的工作,以避免内部泄密和外界揭秘的现象

出现。

3 卫星移动通信发展概述

在1976年,世界上的第一个专门提供电报与电话服务的卫星移动通信系统建立,海事卫星移动通信系统(Marist)投入商业运营。在1979年,国际海事卫星组织(INMARSAT)成立,从1982年,国际海事卫星组织连续对7颗卫星进行租用,第一代的INMARSAT卫星通信系统随之形成,该系统专门用以船只进行全球卫星移动通信服务。由于通信业务量的增加,在1990年至1994年的过程中,对4颗第二代的INMARSAT卫星进行发射。在1992年,澳大利亚开始运用AUSSAT-B卫星进行国内卫星移动通信的服务。美国与加拿大携手建立北美移动业务卫星通信系统(MAST),用以服务于陆地、海上与空中移动用户,随后在1994年与1995年期间,对2颗MAST卫星进行发射。从1990年开始,许多公司连续提出中轨道和低轨道的多星座卫星移动通信系统方案,铱系统、全球星系统和ICO系统就是其中主要的系统。在1999年,铱系统开始投入商业运营,但是后来由于对该系统进行不合理的经营,导致其破产失败。同时,在2000年,全球星系统也开始投入商业运营。

根据应用环境进行分类,主要分为AMSS(航空卫星移动通信系统)、MMSS(海事卫星移动通信系统)与LMSS(陆地卫星移动通信系统);根据提供的业务类型进行分类,主要分为数据与话音系统;根据轨道类型进行分类,主要分为GEO(对地静止轨道)与非GEO系统,其中LEO(低轨道)、MEO(中轨道)和HEO(高椭圆轨道)就是非GEO系统。在非GEO系统中,根据业务种类对其进行分类,主要分为小LEO、宽带LEO与大LEO。把能够运用LEO卫星提供非实时性业务的系统称之为小LEO系统,Orbcomm系统就是小LEO;把能够运用LEO进行宽带业务的系统称之为宽带LEO,Teledesic系统就是宽带LEO;把能够进行全球实时性个人通信业务的MEO与LEO卫星移动通信系统全部称为大LEO系统,Iridium、Globalstar和ICO系统就是大LEO系统。把能够利用GEO卫星进行宽带多媒体以及移动业务的系统称作宽带GEO系统,Astrolink、Cyberstar和V2stream系统就是宽带GEO系统。

在航空、陆地与海事移动等领域中,Inmarsat系统已经对其进行了AMSS、LMSS与MMSS多种业务的提供。按照不同的技术发展水平、业务要求和使用环境,Inmarsat已经对多种移动站和系统进行了开发研究,都制定了每一种移动站和系统相应的系统规范标准,同时按照此规范标准,对各种移动站进行制造,以保证其在全世界任何地方都能够运用Inmarsat卫星进行及时通信。截止到1998年1月,在Inmarsat系统中,25000多个标准A站、5000多个标准B站、39000多个标准C站和1500多个航空站已经建立,再加上标准E站、寻呼终端和导航终端类型站,Inmarsat系统的总用户数已经达到115000多个。除能够进行全球卫星移动业务的Inmarsat系统,同时还建立了众多的能够提供卫星移动业务的国内和区域性卫星移动通信系统。Optus公司独立经营的MobileSat国内卫星移动通信系统以及美国AMSC公司和加拿大TMI公司携手共同经营的MSAT北美区域卫星移动通信系统就是其典型的代表。

虽然通信GEO卫星的信道条件比较好,同时星体也比较固定,但是其应用在众多领域中时,还有较多的问题出现。因此,提出并采用了低和中轨道非GEO卫星移动通信系统来进行通信,以保证全球无缝覆盖的个人通信系统的实现。

4 卫星移动通信的发展趋势

(1)卫星移动通信系统和另外通信系统的结合将越来越紧密。由低和中轨道星座组成的卫星移动通信系统应该与地面网络、地面蜂窝系统和静止轨道卫星通信系统等另外通信系统紧密结合,以使用户费用降低,保证适合实际的使用需求。

(2)宽带卫星系统及其发展。在现代的各种业务中,宽带业务处于重要的地位,无线通信中的移动,广播与远程特性都有助于宽带卫星系统的发展。因为卫星系统属于天基系统,同时它的成本很高,与传统卫星系统成本相比较,发展宽带卫星系统投入的成本达到其成本的215倍,这些预示着在缺乏地面宽带系统的市场中,宽带卫星系统和卫星移动通信系统一样极其发展。

(3)降低信道的误码率技术更高。相关的专家不断对信道的误码率技术进行研究发展,利用更加先进更加高超的调制纠错与调制编码技术降低信道的误码率,以保证卫星信道的传输质量能够增加到光纤传输信道的水平。在卫星移动通信链路中,对TCP/IP协议进行应用时,还存在令人不满意的问题,但是这些问题并不说明卫星链路不能应用TCP/IP,通过实验可以证明,在卫星链路中,应用TCP/IP协议不仅能使卫星网和地面网互连,还能使其与因特网进行互连,实现了天和地之间的互通。

(4)卫星移动通信系统的通信频段向更加高端扩展。对低端频段的应用,呈现过于拥挤的状态,因此,卫星移动通信系统的通信频段向更加高端扩展是相当必要的,同时,不断地对频率复用技术进行利用和创新,使原有通信频带上的潜力得以更深层的发挥。

(5)卫星移动通信系统的优势不仅表现在现代各种应用对卫星移动通信系统日益渐增的要求上,还表现在能够支持大量的和大范围的移动用户的数据通信方面。再加上人们对能便携的卫星通信用户机和可搬动的小型卫星通信地面站的状态不完全满足,因此,建立实现拥有实用价值的卫星全球个人移动通信系统便成为了卫星移动通信发展的新目标。

5 结语

随着卫星通信技术不断迅速发展,尤其是卫星移动通信技术的发展,各种各样的问题也随之出现,不仅要重视卫星移动通信应用过程中出现的问题,还要积极发展创新卫星移动通信技术。

参考文献

[1] 徐超忠.全球移动卫星通信系统的竟争[J].卫星通信广播电视,1997,(3).

[2] 李指行.全球卫星移动通信系统概述[J].微波与卫星通信.

第4篇:卫星通信作用范文

【关键词】卫星通信;移动卫星通信;星上处理;星上交换;多波束天线;蜂窝网卫星系统

1引言

自1965年美国发射第一颗商用通信卫星以来,卫星通信技术及其应用取得了令人瞩目的巨大成就。它实现了覆盖全球丰富多彩的通信服务,不仅在军事中发挥了关键性作用,也对人类的生产、生活方式产生了巨大影响。与微波中继通信及其他通信方式相比,卫星通信主要具有以下特点。

通信覆盖区域大,通信距离远:地球同步轨道(GEO)卫星距地面高度35 860 km,只需一个卫星中继转发,就能实现1万多公里的远距离通信;每一颗卫星可覆盖全球表面的42.4%,用3颗GEO卫星就可以覆盖除两极纬度76°以上地区以外的全球表面及临地空间;

可将其广播性与各种多址连接技术相结合构成庞大的通信网:在一颗卫星所覆盖的区域内,不必依赖显式的交换,只需利用卫星中继传输和多址/复用技术就能构成拥有许多地面用户的大型通信网。

机动灵活:卫星通信的建立不受地理条件的限制,无论是大城市还是边远山区、岛屿,随地可建;通信终端也可由飞机、汽车、舰船搭载,甚至个人随身携带;建站迅速,组网灵活。

通信频带宽、通信容量大:卫星通信信道处于微波频率范围,频率资源相当丰富,并可不断发展。

信道质量好、传输性能稳定:卫星通信链路一般都是自由空间传播的视距通信,传输损耗很稳定而可准确预算,多径效应一般都可忽略不计,除非是采用很低增益天线的移动通信或个人通信终端。

通信设备的成本不随通信距离增加而增加,因而特别适于远距离以及人类活动稀少地区的通信。卫星通信也存在一些缺点和一些应该而且可以逐步改进的方面主要有卫星发射和星上通信载荷的成本高;卫星链路传输衰减很大;卫星链路传输时延大。

基于卫星通信的特点及其重要作用,本文将从卫星通信的可用频率资源、卫星平台、主要关键技术、典型的卫星通信系统、卫星通信应用和产业化发展等方面进行介绍,综述发展现状,展望发展前景。

2通信卫星平台与信道资源的发展

2.1卫星通信的频率资源

早期GEO卫星转发器主要是C和Ku频段,各有500 MHz带宽,其上行分别位于6 GHz、14 GHz附近,下行分别位于4 GHz、12 GHz附近;每个转发器的带宽有33 MHz、36 MHz、54 MHz等;Ku后来扩展到800 MHz。采用天线正交极化、多波束卫星天线、低轨道卫星群等技术,可使上述频率重复使用许多次,可用频率资源扩大许多倍。此外采用空间激光通信技术扩展信道资源,特别是星际激光通信链路,其容量可与光纤通信相比拟,而抗干扰抗截获能力更强。

2.2通信卫星平台的发展

卫星平台技术是推动卫星通信应用和增强市场竞争力的重要因素。目前,世界上最大的通信卫星平台重达7吨、太阳能电池功率达30 kW。

3卫星通信相关技术及其发展现状与前景

3.1调制解调技术

卫星通信中最常用的调制方式是QPSK、OQPSK和π/4DQPSK等,近年来,高速数据传输的需求与转发器资源紧缺推动了8PSK、16APSK、16QAM等高阶调制方式的研究与应用。其中APSK调制因其星座中所含幅度和相位信息是变量可分离的,可以采用简单的预失真法进行幅度非线性矫正而不影响相位特性,使之在透明转发这种高阶调制信号时的功率效率不明显降低。因此,APSK调制在卫星电视广播中得到应用,在卫星宽带移动通信中也有很好的应用前景。

3.2扩频通信技术

卫星通信信道开放性的特点带来的隐蔽性差、抗干扰能力弱等缺点,可采用扩频技术克服,因此扩频通信主要用于隐蔽通信和抗干扰军事通信。扩频主要有直接序列扩频、跳变频率、跳变时间和线性调频等4种基本工作方式。

3.3多址和复用技术

所谓多址(multiple access)是指某个站从它接收到的多路信号中区分各路信号来自哪个站点,并根据需要选择其中一路或几路进行接收处理;也可以是某一站以某种信道复用方式广播地发送多路信号,让其他各站能按需选择其中一路或几路信号进行接收处理。所谓复用即多路复用,是指多个数据流的数字调制信号共享一条信道进行传输时的信道共享方法。

3.4星上信号处理和交换技术

3.4.1星上信号处理

早期基于GEO卫星的通信都是采用透明转发器实现中继传输,这样提供的信道资源应用灵活性最大,转发器可以分频带出租给各个用户随意应用。

3.4.2星上交换

OBP最重要的作用在于支持星上交换。再生式OBP可在星上获得各路信号所传输的数据流,因此能支持任何方式的交换,如ATM交换、IP交换或程控电路交换等。若在星上实现了IP交换,则卫星网与地面因特网的互联就变得非常简单而方便。

3.5空间激光通信技术

空间激光通信技术是指用激光束作为信息载体在自由空间进行通信,既可作为卫星间的高速传输链路,也可作为卫星与地面站之间的通信链路。不过后者可传输的信息速率不太高,而且当存在较浓的云雾或降雨时无法通信。携带信息的电信号调制到光束上发送,通信的双端通过初定位和调整再经过光束的捕获、瞄准和跟踪建立起光链路进行信息传输。

第5篇:卫星通信作用范文

国际通信卫星组织是目前世界上最大的卫星组织,于1964年8月在美国创立,总部设在美国华盛顿特区。该组织一直致力于通过全球商业通信卫星系统的空间段维护和营运全球卫星系统来为国际公共电信业务服务。这个空间段包括分布在地球同步轨道的卫星,它通过大西洋、太平洋和印度洋地区上空的V、V―A和V1号卫星,以及在大西洋上空的K卫星联合提供全球服务。国际通信卫星组织的服务工作主要有:国际电话服务、国际电视服务、国内通信服务、国际通信卫星组织商业服务、国际互联网服务、VISTA服务和线路修复服务等。

国际通信卫星组织每两年举行一次参加国大会,每年举行一次缔约国会议。它由缔约方大会(国际通信卫星组织协定缔约国组成)、签字者会议(工作协议签字者组成)、董事会和执行机关构成。该组织现已有成员国 140多个,使用者近 200个,为200多个国家和地区的电信广播机构提供卫星通信服务,是全球最大的国际卫星通信网。

2000年11月,国际通信卫星组织通过了私有化决议,目的是在日益激烈的竞争中增强公司的适应性和竞争力,并致力于客户的因特网服务和宽带业务。2001年7月18日,全球第一个商业通信卫星技工者――国际通信卫星组织宣布它已完成由一个条约组织到一个私有公司的历史性变革。新成立的国际通信卫星有限公司拥有200多个股东,包括来自145个国家的公司,代表了大多数世界著名通信公司的经营者。

国际通信卫星组织的全球销售力量集中在澳大利亚、巴西、中国香港特别行政区、德国、印度、挪威、新加坡、南非、英国和美国。今天,它已拥有由20颗地球静止轨道卫星组成的网络,为超过200个国家及地区的客户提供因特网、广播、电话以及网络合作方案。

早在1977年8月,中国就加入了国际通信卫星组织。中国从1985年开始租用属于国际通信卫星组织的印度洋上空卫星的半球波束转发器,以进行卫星电视传送和对边远地区的电报电话通信业务。20世纪90年代,除租用国际卫星转发器外,中国还租用了“亚洲” 1号卫星转发器,与中国的卫星一起组成国内卫星通信网。中国正在努力,以实现以国产卫星为主,租用国际卫星和区域卫星转发器为辅的格局来组织国内卫星通信网。

国际通信卫星组织出版有

《业务通信》(季刊)。

国际通信卫星组织网址:

第6篇:卫星通信作用范文

本文在分析现有技术的基础上总结了现有宽带卫星网络的发展基础,发展中遇到的问题,以及发展前景。

【关键词】卫星通信;宽带;通信系统

通信基础设施建设的日臻完善和Internet的商业化兴起,以及交互式多媒体业务的迅速增加,都推动了宽带卫星通信的发展。目前,国际上许多国家都对宽带卫星通信技术进行了研究,并已着手设计和开发宽带卫星通信系统。发展宽带卫星系统己成为当前通信的新热点之一。宽带卫星通信系统既能够在远距离通信传输上充分发挥卫星通信的作用,又能够进一步向用户提供从话音到数据、从低速到高速、从单一通信到多媒体通信、从固定到移动等各种通信方式。宽带卫星通信不仅要面向企业集团、多媒体提供商,也要在图像传输、卫星数字电视直播、多媒体信息广播、宽带接入、交互式远程教育、远程医疗等方面逐步向个人服务方面发展。时至今日,卫星原有的许多优势己无法与地面光纤通信相比,卫星仅存的优势只剩下广播、建设周期短以及建设成本与通信距离无关的特性。但在未来相当长的一段时间里,卫星在宽带业务上还将有所作为。对于时延要求低以及具有广播/组播性质的高速数据业务(如大容量数据传输、多媒体广播、因特网宽带接入、卫星远程应用、多媒体双向互动等业务)来说,卫星具有极大的优越性。

上世纪90年代以来,商业网络逐渐向基于TCP/IP因特网协议的分组交换型网络发展。与此同时利用卫星通信系统提供大容量数据传输和组播广泛地引起了人们的关注,使人们开始考虑使用卫星传输IP业务的可能性。卫星IP技术就是将卫星业务搭载在EP网络层上营运的技术。这种技术有利于吸收采纳目前蓬勃发展的IP技术,降低技术成本。国际电联的ITU-T SGB是多协议和IP网络及其互通研究组,负责网络体系结构和长期网络演进的研究。SGB将开展有关卫星IP体系结构的研究,第一步研究的对象是高级卫星体系结构,研究目标是构筑卫星IP网络的体系结构框架,阐述不同类型卫星系统特有的能力,描绘现有卫星网络的体系结构。

基于IP的因特网业务是宽带业务的重要组成部分,而IP技术的QOS的问题一直困扰业内人士,卫星要提供具有竞争力的宽带业务能力就要建设满足QOS的宽带系统。面对各种系统的竞争,如何在技术上保证提供业务的低价优质,以及占领市场,是宽带多媒体卫星通信系统得以生存和发展的关键。目前,宽带卫星系统已采用Ka波段,而Ka波段传播特性受降雨衰耗的影响较大,这一点为人们所普遍关注。目前约有20个Ka(Ku)波段LEO/MEO/GEO宽带卫星通信系统,这些系统主要用于多信道广播、Internet和Intranet的远程传送以及作为地面多媒体通信系统的接入手段,成为实现全球无缝个人通信、Internet空中高速通道必不可少的手段。主要的宽带卫星通信系统II一总结如图1。

一、宽带多媒体卫星通信发展的基础

(一)Internet迅速发展的需求

二十世纪九十年代互联网商用化以来,互联网已经发展成为全球最大的信息基础设施。互联网己成为全球最大的多媒体网络,几乎所有的通信系统都成为了互联网的组成部分,如先后出现了基于SDH/DWDM的光纤互联网、基于WAP/GPRS的移动互联网、基于Cable Modem的有线电视互联网。同样,基于VSAT,出现了卫星互联网。Internet是当今发展最快的业务,各种网络技术都在向提供高质量IP业务的方向发展,在大范围覆盖和长距离传输方面具有优势的卫星通信与Internet的结合无疑是通信发展的一个重要方向,因为卫星通信和Internet所具有的地域国际性,新的卫星系统将加强全球通信基础设施,使普遍接入Internet成为可能。同时由于Internet的爆炸性增长,不断推出许多新业务,对这些业务的需求为这种新系统创造了市场机会。宽带卫星通信市场前景可观,其原因就在于Internet的发展和广泛应用。

由于卫星通信具有空间跨越、远程通信和广播等独特的功能,因而成为互联网摆脱目前困境的一个重要途径。可见,卫星通信与互联网的结合是一种必然的趋势。事实上,针对互联网存在的问题,比较有效的解决方案是内容投递网(CDN-Contents Delivery Network)。CDN工作的基本原理是服务提供商在各地设立自己的、主要由缓存服务器构成的服务点,通过自己的专用网络将内容向网络的边缘分布,即尽可能地将内容本地化,以有效地解决了骨干阻塞、接入困难、内容分发效率低等诸多问题,从而起到对互联网进行加速的作用,并进一步改善QoS aCDN的实现途径主要有地面网络和卫星网络两种[6],这两种内容投递CDN各有千秋,实际使用中的CDN有不少是由两者混合而成的,但是基于卫星通信的CDN在数量上更多。

(二)未来业务的庞大潜在需求

据Andersen咨询公司的研究预测,2002年前,整个世界传输业务的宽带市场价值650亿美元,大约12%即80亿美元由卫星通信分享,2005年之前,卫星通信分享的市场份额将达到160亿美元

(三)宽带多媒体卫星通信技术基础

卫星通信的可用频谱资源很有限,C波段和Ku波段的应用已非常拥挤,建设宽带网必然导致采用更高频率。目前设计中的宽带卫星通信网基本都采用Ka频段,通过GEO, MEO, L'EO或混合分层卫星群系统提供多媒体交互式业务和广播业务。采用此方案一方面是业务的要求,另一方面也因为有着技术基础。

(四)频率资源支持

宽带网的出现必然导致可用频谱资源的缺乏,解决的办法之一就是采用更高频率。非同步轨道全球宽带卫星系统推出不久就受到重视,WRC295大会为工作于19-29GHz频段的非同频轨道卫星固定业务系统分配了400MHz带宽,WRC297又新分配了100MHz带宽。

二、宽带卫星通信发展面临的问题

(一)卫星网络时延和时延抖动

经由卫星网络传输的数据分组经历的全部端到端时延由以下各时延总和构成:传输时延(一个站点从开始发送数据帧到数据帧发送完毕所需要的全部时间);上、下行无线链路传播时延;星际链路(ISL-Inter-Satellite Link)传播时延;星上交换和处理时延及缓存时延。尽管与GEO网络相比,LEO网络的传播时延相对较小,但是LEO系统的ISL时延会因卫星移动、切换、缓存和处理以及自适应路由技术而频繁发生变化。因此,在实际应用中我们应对GEO和LEO系统的时延和时延抖动特性进行综合折衷考虑。

(二)星上处理

星上处理(OBP-On Board Pro-

cessing)概念是由欧洲空17局(European SpaceAgenc刃提出的。OBP技术不仅适用于多波束卫星也适用于单波束卫星,但在后一种情况下,仅包括解调、判别、整形和再调制等处理,没有解码编码和路由交换的能力,故通常称其为星上再生处理。因此,OBP方式主要用在多波束星上交换的场合。

(三)频率需求和衰减影响

通信卫星当初刚开始运作大型业务时,多运行在4^-6 GHz的C频段,当C频段变得过分拥挤时,11 ^-14GHz Ku频段开始投入使用。而当Ku频段拥塞时,更多的采用全Ka频段的卫星转发器,同时还有一些采用混合Ku/Ka频段的卫星。由于天气原因,卫星传输会发生路径损耗,如雨水、水汽汇集凝聚、液态水状云都会影响信号传输。尤其在远东,天气情况常常会对Ka频段信号造成严重衰减。在这种情况下,为了使用Ka频段,必须对传输信号提供足够多的功率裕度(powermargin)。其它的一些频段可能也有利用价值,包括V频段(40-50GHz)及毫米波频段(如60 GHz)。

(四)QoS问题

当经由WAN(广域网)和MAN(城域网)提供数据服务时,来自不同LAN(局域网)的数据业务必须经过基于帧中继、卫星、ATM, IP, ISDN或由这些组合而成的骨干网。为此,需要将QoS机制扩展到卫星网络上,以便在未来经由IP网络传输话音、视频和数据服务时这些骨干网不致成为支持QOS的瓶颈。对于ATM网络,为解决IPIATM无缝集成而引出的多协议标签交换(MPLS-Multiple Protocol Label Switching)协议,已成为两网融合的先锋。对于卫星网络,仍在进行有关交叉层的设计研究,目的是打开未来IP经由卫星网络传输的畅通之路。

三、宽带卫星通信的发展前景

卫星应用产业是直接为消费者服务的产业,必将成为市场的主体,并朝着个性化、多样化方向发展。其中卫星宽带网与互联网的融合正在扩展卫星通信应用的新领域,卫星宽带多媒体业务正在兴起,将成为市场繁荣的新动力。

卫星宽带数据接入将出现重大发展。Ka频段卫星将得到发展,在未来10年,地球同步轨道上Ka频段卫星转发器的数量将增加10倍以上,总数将达到2700多台,非同步轨道上Ka频段卫星转发器的数量近400台。Internet接入和企业内部网的发展是推动宽带卫星业务迅速发展的主要因素,商用卫星业务、直播卫星业务、VSAT以及分组数据传输、专用网络通信和移动通信的应用都已取得成功,未来的宽带卫星通信系统将进一步提供一系列先进的信息服务。宽带卫星网络将提供一种运行在空中的Internet,它不同于地面网络的显著特点是用户可按需使用网络带宽,且能提供高速接入能力,它通过固定和移动终端,以兆比特以上的速率为用户提供高速话音、数据等各种新的业务。

宽带卫星通信系统通过采用最新的卫星数据广播技术,可以提供宽带数据广播业务。广播的内容可有两种,一种是数据文件广播;另一种是多媒体流式文件的广播。在向用户提供单向高速的广播服务时,可以一次将声音、图像、文字和数据文件同时发送给多个地点,如大文件的传输、公共信息的、实时MPEG图像和数据的传输、多媒体数据广播;也可根据实际需求分组播出,灵活多样的数据和视频服务可以满足用户的不同需求,可在网上购物、网上书房,远程医疗、视频点播、远程教育、站点镜像等多领域提供服务。

宽带卫星通信技术可以应用在各个领域中,如宽带智能社区建设、远程教育、银行、证券等金融行业以及大企业集团(全国、跨国)专用网建设,等等。无论是从个人,还是从商业利益的角度或者是其它方面来考虑,各国都应抓紧时机加速发展宽带卫星通信。采用全新技术设计的宽带卫星通信系统,其潜在的应用和市场需求都很大,而且随着研究的进一步深入,宽带卫星通信将在全球信息基础设施建设中发挥更大的作用,其前景是十分广阔的。

参考文献

[1]Abbas Jamalipour,Tracy Tung.The Role of Satellites in Gobal IT:Trends and Implications[J].IEEE Personal Communications,2001,6:5-11.

[2]刘剑,黄国策,宋爱民.宽带卫星通信概[J].数据通信,2003,1(1):22-24.

第7篇:卫星通信作用范文

关键词:卫星通信;通信技术;发展趋势

Abstract: Satellite communication is developed in the scientific and technological progress, driven by new means of communication, has a pivotal role in the development of information technology for communication. This article focuses on the characteristics of satellite communication systems, technology and the future development trend, referred to the guiding role of satellite communications, and the whole communications industry!Key words: satellite communications; communications technology; development trends

中图分类号:TN927+.2文献标识码:A

引言

卫星通信系统实际上也是一种微波通信,它以卫星作为中继站(中转站)转发微波信号,在多个地面站之间通信,具有通信距离远、覆盖范围广、不受地面条件的约束、建站成本与通信距离无关、灵活机动、能多址连接且通信容量较大等优点,在全球许多领域应用效果很好,尤其在军事上具有重要的应用价值。卫星通信的主要目的是实现对地面的“无缝隙”覆盖,由于卫星工作于几百、几千、甚至上万公里的轨道上,因此覆盖范围远大于一般的移动通信系统。

卫星通信系统由卫星、地面站、用户设备三部分组成。卫星在空中起中转信号的作用,即把地面站发上来的电磁波放大后再返送回另一地面站,卫星星体又包括两大子系统:星载设备和卫星母体。地面站则是卫星系统与地面公众网的接口,地面用户也可以通过地面站出入卫星系统形成链路,地面站还包括地面卫星控制中心,及其跟踪、遥测和指令站。用户设备即是各种用户终端,包括收发器、显示器、电子地图等。

1.卫星通信系统的特点

1.1 下行广播,覆盖范围广:对地面的情况如高山海洋等不敏感,适用于在业务量比较稀少的地区提供大范围的覆盖,在覆盖区内的任意点均可以进行通信,而且成本与距离无关;

1.2 工作频带宽:可用频段从150MHz~30GHz。目前已经开始开发0、v波段(40~50GHz)。ka波段甚至可以支持l55Mb可s的数据业务;

1.3 通信质量好:卫星通信中电磁波主要在大气层以外传播,电波传播非常稳定。虽然在大气层内的传播会受到天气的影响,但仍然是一种可靠性很高的通信系统;

1.4 网络建设速度快、成本低:除建地面站外,无需地面施工。运行维护费用低;

1.5 信号传输时延大:高轨道卫星的双向传输时延达到秒级,用于话音业务时会有非常明显的中断;

1.6 控制复杂:由于卫星通信系统中所有链路均是无线链路,而且卫星的位置还可能处于不断变化中,因此控制系统也较为复杂。控制方式有星间协商和地面集中控制两种。

2. 卫星通信中的主要技术

2.1 CDMA技术。CDMA(码分多址)系统通过采用话音激活技术、前向纠错(FEC)技术、功率控制技术、频率复用技术、扇区技术等技术手段,可使CDMA系统容量大幅扩大,同时,它还具有抗多径干扰能力、更好的话音质量和更低的功耗以及软区切换等优点。CDMA以其本身所具有的特点及优越性而广泛应用于数字卫星通信系统中。特别是近年来,小卫星技术的发展为实现全球移动通信和卫星通信提供了条件,利用分布在中、低轨道的许多小卫星实现全球个人通信,已在国际上逐渐形成完善的体系。

CDMA移动卫星通信系统根据导频信号的幅度实现功率控制, 减少用户对星上功率的要求从而增加系统的容量,减少多址干扰;CDMA移动卫星通信系统可利用多个卫星分集接收,大大降低多径衰落的影响,改善传输的可靠性。此外,由于CDMA多址方式具有优越的抗干扰性能、很好的保密性和隐蔽性、连接灵活方便所等特点,决定了它在军事卫星通信上具有重要的意义。

2.2 抗干扰技术。卫星通信抗干扰主要通过传输链路抗干扰、软硬件设备抗干扰以及建立综合智能抗干扰体系等措施实现。

传输链路抗干扰主要有DS/FH混合扩频、自适应选频、自适应频域滤波、猝发通信、时域适应干扰消除、基于多用户检测的抗干扰、跳时(TH)、自适应信号功率管理、自适应调零天线、多波束天线、星上SmartAGC、分集抗干扰、变换域干扰消除、纠错编码和交织编码抗干扰技术等。软硬件设备抗干扰主要有光电隔离、硬件滤波、屏蔽、数字滤波、指令冗余、程序运行监视等技术。建立综合智能抗干扰体系可以通过建立软件化抗干扰硬件平台、建立智能化抗干扰软件应用系统,如:智能抗干扰系统、网络监测控制系统、专家策略支持系统等措施实现。

2.3 基于MPLS的移动卫星通信网络体系构架。MPLS(多协议标签交换)技术由于可将IP路由的控制和第二层交换无缝地集成起来,具有IP的许多优点(如扩展性、兼容性好),又可很好地支持QoS和流量工程,是目前最有前途的网络通信技术之一。近年来,在地面固定网MPLS技术逐渐成熟后,该技术已向光通信、无线通信和卫星通信等领域扩展。现有的宽带卫星系统设计主要采用卫星ATM 技术,研究表明该技术可给不同的业务提供很好的QoS保证,并可利用面向连接的虚通路设计以及流量分类等方法为网络提供有效的流量工程设计。

卫星MPLS体系结构分为用户层、接入层、核心层三部分,其中,用户层包括卫星手持移动终端(直接接入移动卫星网)、小型专用局域网用户(通过小型地面移动终端接入卫星网)、其他网络用户(通过地面网关站接入卫星网络)等。接入层由标签边缘交换路由器(LER)组成,完成卫星MPLS网同其他网络以及卫星手持移动终端的连接,其主要功能包括实现对业务的分类、建立FEC和标签之间的绑定、约束LSP的计算、分发标签、剥去标签以及用户QoS接纳管理和相应的接入流量工程控制等。核心层由标签交换路由器(LSR)组成,完成信息按MPLS标签进行交换转发,其上主要运行MPLS控制协议和第三层路由协议,并负责与其他标签交换路由器交换路由信息来建立路由表、分发标签绑定信息、建立和维护标签转发表等工作。

3.卫星通信的发展趋势

在目前的通信卫星中,已采用许多代表当今世界通信卫星的先进技术,如氙粒子发动机、高能太阳电池和蓄电池、大天线和多点波束(如:THURYU、ASES、TORSS、GALILEO等卫星天线)、卫星星上处理器(如:窄带信道化器、数字波束成形网络和BUTLER矩阵放大器)以及射频功率动态按需分配等技术,这些技术的发展,对通信卫星和卫星通信的发展产生了深刻的影响。

3.1通信卫星向大、小两极发展。现代卫星通信的发展趋势之一就是卫星星体本身正在向大型化和微型化两个方向发展。一方面,各国为了提高卫星的灵敏度和星上处理能力,以及实现卫星的一星多能,把卫星星体造得越来越大,重量也越来越重。卫星大了也有弱点,易受电磁干扰和敌方反卫星武器的破坏,而小卫星、微小卫星却能克服这种弱点。如果用多颗小卫星组网来代替单颗大卫星,就可以提高卫星系统的生存能力。

3.2 卫星通信向卫星移动通信方向演进。卫星移动通信是指利用卫星实现移动用户间或移动用户与固定用户间的相互通信。随着技术的发展,卫星的功能逐渐增强,许多原来由地球站执行的功能被转移到卫星上去完成,从而使地面设备变得越来越简单,天线尺寸也随之大幅度减小。随着频谱扩展、数字无线接入、智能网络技术的不断发展,卫星移动通信在向卫星个人通信方向演进,用手持机可实现在任何地点、任何时间与世界任何地方接入卫星移动通信网的用户进行双向通信。

3.3 卫星通信与互联网技术相结合。由于卫星通信和计算机技术的飞速发展,产生了卫星互联网技术。目前卫星互联网的连接方式主要有两种:一种是利用宽带卫星的双向传输;另一种则是利用卫星的高速下载和地面网络反馈的外交互通信方式,即将卫星链路作为下行数据链路,而将电话拨号、局域网等其他通信链路作为上行数据链路,这种方式是基于当前互联网信息流量的非对称性提出来的,它是卫星通信的一个热点。

3.4 卫星通信宽带化。为了满足卫星通信系统用户对带宽的需求,卫星通信技术已向Ka、Q等波段发展。一些国家卫星系统已拓展直EHF频段。采用EHF频段有很多现有其他频段无可比拟的优点,一是扩大EHF频段的容量,大大减轻现有频谱拥挤现象;二是EHF的波束窄,可减少受核爆炸影响出现的信号闪烁和衰落,抗干扰和抗截收能力强。三是EHF 频段系统使用的部件尺寸和重量都可大大缩小和减轻。

参考文献:

[1] 储钟圻.数字卫星通信.北京:机械工业出版社,2006

[2] 孙学康.微波与卫星通信.北京:人民邮电出版社,2007

第8篇:卫星通信作用范文

关键词:小卫星;通信系统;作用;研究;意义

卫星通信技术在军事、政治、工业、生活等方面均具发挥着重要作用,而相比之下,小卫星则更具有大型同步卫星所无法实现的众多优势而受到国内外研究学者的重视,同时,卫星向小型化趋势发展也是全球卫星产业的主要发展方向。我国从21世纪初期开始着手小卫星的相关研制和发射工作。

1 小卫星的技术优势

第一,荷载较少小卫星在每次的任务中一般仅需要装载一种特殊设备,进而很好地避免了大型卫星中出现的荷载间复杂配比问题。

第二,研制时间短、费用低小卫星的研制一般只需经过一到两年,同时相关的研究经费也相比大型卫星明显降低,因此更具有经济性,更体现其实践意义。

第三,重量轻小卫星的重量一般较小,就当前国际情况来看,最微型的小卫星的质量仅有几百克,体积也很小,因此功能密度大,模块可多次利用。

第四,信号覆盖范围广,由于小卫星具有较强的组网能力,因此能够形成精度较高,功能强大而且信号覆盖范围广的星座系统,进而易于补网和星座功能稳定的优势。

第五,减缓频率压力小卫星的星座中包括多颗卫星,可以频率复用,因此具有减小空间任务所具有的频率压力。

2 小卫星通信系统主要技术简介

卫星在通信中起着中转作用,即将地球站传送来的信号经过变频和放大转送到另一端的地球站,地球站是卫星与地面信息系统的链接点,用户通过地球站途径进入卫星通信系统中,形成链接的电路信号链;为了确保系统的运行正常,卫星通信系统必须和地面的监测管理系统和测控系统想链接,测控系统能够对通信卫星运行的轨道进行检测和控制,以保证地面检测系统能够对卫星所传送的通信信息进行有效的监控,保证系统安全与稳定的运行。小卫星通信的关键技术主要有通信系统的链路预算以及接收机参数估计技术和同步技术等,其中链路预算技术是设计小卫星通信系统的主要计算方法和参考依据,精确的链路预算能够确保通信系统的稳定运行。近年来,通信系统接收技术和相应的算法逐渐由信号模拟技术向数字化转变;由于卫星通信整体码速率有所提升因此对接收机的信息处理速度以及算法的复杂度、同步速度和稳定性也提出了更高的要求;信息传输量的大幅增加使得遥测领域中逐渐采用比特传输速率更高的调制方式;由于卫星通信系统在数字通信过程中的发射机和接收机的晶振不同,以及移动平台引起的多普勒效应,造成发射机和接收机之问会产生相位和频率的偏移,这种多普勒频移一般较高,即便在频偏较大时,接受同步技术也应能够正常工作,即捕获带宽较大。

3 小卫星通信系统关键技术简介

3.1 链路预算技术

链路预算,即对一通信系统中发射设备,传送信道以及接收设备的通信链路的变化情况进行的全面核算,是对小卫星通信系统性能的评价,具体而言是从发射端的信源起始,通过编码、调制、变频等多项操作,将信号通过天线发射出去,再由信道进行传输,最后到达接收天线处由接收机进行信息处理,解调所需信息。其重要性在于:

第一,可确定系统工作是否满足系统实际需要。

第二,通过计算链路余量检查系统能否满足设计要求。

第三,验证在部分设备具有硬件限制的情况下链路其他部分能否进行弥补。对于模拟电路来说,该性能指标是基带信道的信噪比;对于数字电路来说,其性能指标是基带信道上测得的误码率;卫星链路分为两种信号路径:由地面站到卫星的上行链路和从卫星到地面站的下行链路,其中上行链路的信号发射过程包括编码调频上变频放大功率等操作,信号从天线传送到小卫星的接收端,而下行链路则包括低噪声放大下变频解调解码等操作,是地面站对接收信号的处理操作。与通信系统链路预算有关的数据因素有天线特性,传输距离最大值,信号发射/接受功率,热噪声,信噪比以及接收系统的质量。

3.2 同步算法

无论是接受哪种形式的调制信号,接收机同发射机都必须保持同步,对于数字调频技术而言,有载波同步和码元同步两种基本同步模式,前者是对载波频率以及相位进行估计,后者则是对定时抽样时钟进行估计。由于发射信号在卫星通信的传输过程中必然存在一定延迟,因此产生了载波相位的偏移,同时由于其在传播过程中受到噪声干扰和多普勒效应影响,还会产生频率偏移,因此同步技术是数字通信中的关键技术,研究调制信号的载波同步和码元同步技术能够保障卫星通信系统可靠、有效、快速的运行。由于载波同步算法利用的是判决反馈环路的模型,是在时钟已同步的基础之上才能进行,因此载波同步应位于码元同步滞后才可工作。以先码元同步再载波同步的模式为例,模拟信号被天线接收后,由ADC转换为数字信号,再将频带信号通过下变频转变为基带信号,之后通过码元同步和载波同步对有载波偏差以及时钟偏差的信号进行估计,最后解调输出,码元同步位于载波同步前,以码元时间为基本数据处理周期,对相关硬件的要求较低,同步性能较好。

3.3 型号参数

估计卫星通信信号的参数估计是重要的非合作通信接收技术,因为对信号的频率和调制方法等重要数据进行检查和估测是保证解调准确和达到监视、截获信息的目的的重要方法,以便为侦察系统的工作打好基础。小卫星通信系统的常用解调方式有BPSK解调、QPSK解调、CPM解调、SOQPSK解调等。一般情况下,欲通过卫星通信捕捉信号,接收系统的带宽需远大于信号带宽,应使用宽带接收机。

4 结语

小卫星通信系统具有的多重优势使其在当今世界范围内的卫星通信领域得到广泛的应用,吸引了众多研究学者,本文针对其中的几项关键性技术进行了简单说明。卫星通信的作用范围广,涉及的技术种类众多而且较为复杂,需要我们不断进行深入研究和实践,进而推进卫星通信向小型化方向发展。

参考文献:

[1] 杨猛.卫星通信系统技术及其未来发展分析[J].中国科技纵横,2014(14):52-53.

[2] 沈宙,马忠松.高速卫星通信中全数字载波同步算法的研究[J].国外电子测量技术,2014,33(04):36-39.

[3] 朱杰.极轨气象卫星数传链路雨衰影响[J].气象科技,2014,42(01):54-61.

作者简介:王富德(1994―),男,辽宁鞍山人,沈阳理工大学学生。

第9篇:卫星通信作用范文

【关键词】卫星通信技术;应用体会;发展趋势;主要特点

近年来,随着移动通信技术发展,一些新的通信技术不断涌现,如WiMAX、LTE等,显示出了当前我国移动通信业技术水平及实力。卫星通信技术于20世纪发展并兴起,与新通信技术相比,虽然不是新发展起来的,依然具备系统容量大、通信距离远等技术优势,应用价值很大。为了进一步了解卫星通信技术,有必要分析卫星通信技术应用,加深对卫星通信技术应用的体会,为未来技术研究与发展提供有益见解。

1卫星通信技术

卫星通信技术,是一种利用人造地球卫星作为中继站来转发无线电波的通信系统。卫星通信系统结构如图1所示。卫星通信技术具备覆盖范围广、通信容量大、传输质量好、组网方便迅速、便于实现全球无缝链接等优点,但是也有缺点,主要是传输时延大,通信传输及时性较低。从过去应用现状看,卫星通信技术主要应用于卫星移动、卫星遥感、卫星广播、卫星固定通讯及飞机等领域。随着智能手机发展,卫星通信技术在智能手机操作系统中有了应用,形成了以卫星通信技术为基础的卫星定位系统,实现定位、导航、测距、测速等功能,提高了智能手机操作水平。

2卫星通信技术应用体会

2.1主要困境

2.1.1传输时延大卫星通信技术的优势突出,但有一个很大的缺陷,即传输时延大,特别是在宽带通信方面。在宽带上,卫星通信及时性不能与光纤通信技术相比;在移动特性上,卫星通信不能与地面蜂窝移动系统相比。由于以上缺陷存在,受宽带限制,卫星通信技术已经难以满足高速数据业务需求,光纤通信技术渐渐取代卫星通信技术,这是现阶段卫星通信技术应用面临的主要困境。如,基于卫星通信技术建立起来的ATM网络,由于有较大的时延性,要求通信互联时能快速有效的进行转换协议,减少传输时延带来的影响。2.1.2很难保证协议转换方式最佳在卫星通信中采用宽带IP技术,应用难度是较大的,主要在于对不同的协议,卫星通信技术很难保证提供的所有转换方式都最佳。目前,宽带系统传输技术基本以ATM技术为基础,但是ATM技术难以适应卫星通信要求,不能确保准光线质量。特别是ATM技术不同于卫星通信技术,所以想要基于ATM技术建立卫星ATM通信网络难度是较大的,需要对协议及转换进行修改。2.1.3传输安全上的问题卫星通信技术发展时间不长,虽然在覆盖面、传输量等方面有较大的优势,但是与光纤通信技术等相比,其不仅有传输时延大等缺陷,在技术水平上也有一定差异,一定程度上影响了卫星传输安全。为此,应当考虑如何进一步提高卫星传输的安全性。

2.2改进对策

针对卫星通信技术应用中表现出来的问题,提出采用以下技术加以改进与调整,完善卫星通信技术。2.2.1数据压缩技术由于卫星通信技术有传输时延大缺点,为实现高速数据传输业务,可以采用数据压缩技术。数据压缩技术是一种数据处理激激技术,可以对数据进行动态、静态压缩,无论采用哪一种压缩方式,都能提高通信系统传输效率。移动通信领域,数据压缩公认标准有两个:①CCⅡT的H.26;②ISO中的静态图像压缩编码标准,可根据实际情况采用适合的数据压缩标准。2.2.2信息同步技术信息同步主要分为两大类:①连续同步;②时间驱动同步。卫星通信技术应用中,想要实现信息同步,可以采用以上两种信息同步技术,具体方法有反馈法、时间截法等。然后,按照以上方法建立协议转换方式,发展多信息流会话协议等,与当前最常用的分布式协议相适应。2.2.3智能卫星天线技术移动通信采用卫星通信技术时,需要利用卫星通信技术传输大量的多媒体信息,但是受宽带限制,传输效率不高。出于通信传输考虑,要求传输效率最低为2500MHz,一般选择Ku、Q等波段。虽然这些波段可以满足传输效率要求,然而实际传输中存在一定的雨衰现象,影响卫星功率。为改进这一问题,需要研究智能卫星天线技术,扩大波束覆盖面,利用多波束快速跳变降低雨衰现象,保证卫星功率。2.2.4宽带卫星通信技术为使宽带在卫星通信中得到很好的应用,应当积极发展宽带IP卫星通信技术。技术研究方向主要包括两个方面:①继续使用ATM协议;②完全摒弃掉ATM协议,发展新的协议。在继续使用ATM协议情况下,需对ATM协议进行改进。如,将信元和VC级业务量管理结合起来,建立可以控制各种拥塞问题的机制,加快协议转换。在完全摒弃掉ATM协议情况下,可以基于宽带IP建立新的协议,如IP保密安全协议等,建立新型的协议。2.2.5空间激光通信技术空间激光通信技术是一种以激光光波为载波的光通信技术,它以大气作为传输介质,通信传输的高效性、及时性可以光纤通信技术相媲美,且宽带、功率等方面都有极大的技术优势。此外,空间激光通信技术的波段窄、波速小,很难被截获,一定程度上提高了通信传输安全性。所以,如果将空间激光通信技术应用于卫星通信系统中,可以确保卫星通信安全可靠。

3卫星通信技术发展趋势

随着科学技术发展,卫星通信技术也在不断进步,卫星通信系统功能能力得到了大幅度提升。监管如此,与光纤通信技术等相比,技术先进性依然存在一定差异,还需持续加大技术研究投入。卫星通信技术研究有一定的风险,但是不能退缩、胆怯,要勇于科研、敢于探索,促进卫星通信技术发展。从当前及未来卫星通信技术应用需求看,今后工作中可以加大以下几个方面研究:(1)建立独立的卫星通信系统,不需要通过地面电信网,直接利用自身的独立通信网服务于民,减少对地面电信设施的依赖,可提高卫星通信传输效率。(2)加大卫星通信技术与其他行业的融合研究,扩大卫星通信技术的应用范围,充分利用卫星通信技术带动社会建设。(3)综合卫星业务。卫星通信技术广泛应用于卫星移动、卫星遥感、卫星广播等领域,这些业务系统是相互独立的,可以考虑建立综合卫星业务,并构建与之相适应的卫星通信网络。(4)移动卫星通信方面,将其与第四代移动通信技术融合应用,建立更高效、高速的的个人通信网,提高卫星通信技术在移动通信上的服务能力。

4结论

综上所述,卫星通信技术在社会生产很多领域有着应用,如卫星移动、卫星遥感、航空航海、救灾等,极大促进了社会建设与发展。面临卫星通信系统传输延时大等问题,可以采用数据压缩技术、信息同步技术、智能卫星天线技术等,解决当前卫星通信系统应用中的难题,从根本上提高卫星通信技术水平,扩大微信通信技术应用范围。

参考文献

[1]肖跃,秦红祥.国内外卫星通信产业技术应用现状和发展趋势[J].卫星与网络,2010(7):20~25.

[2]黄睿.卫星通信技术的应用体会及未来趋势展望[J].科技创新与应用,2013(20):81.

[3]付强.卫星通信产业技术应用现状分析及其发展趋势[J].工程技术:文摘版,2016(10):00286.

[4]徐明月.卫星通信技术的发展和应用[J].工程技术:引文版,2016(11):00017.