公务员期刊网 精选范文 煤化工技术范文

煤化工技术精选(九篇)

煤化工技术

第1篇:煤化工技术范文

【关键字】煤化工技术;发展;新型煤化工技术

1.前言

世界上储存最丰富的化石能源是煤炭,但是随着经济全球化发展,煤炭的消耗越来越大。因此在倡导节能减排保护环境的号召之下,发展新型煤化、调整能源化工结构日趋重要。探究煤化工技术以及新型煤化工技术具备实际意义。

2.煤化工技术的发展

煤化工即是以煤作为原料,在化学加工下将煤炭转换成固体、液体以及气体燃料及其他各种化学品,最终产出各种各样的化工产品。依据生产工艺和产品差异分成了煤焦化、煤气化、煤电石以及煤液化几条生产链。

1)煤焦化

煤焦化也称之为煤干馏,是把煤与空气隔绝加上强热分解的过程。煤化工包括了一次、二次和深度化化学加工过程,煤化工的产品有焦化产品、气化产品、液化产品还有合成气化工产品,焦油化工产品,电石乙炔等。这些化工产品广泛在应用在工业,农业,医药,化工染料,炭素等行业之中,许多煤化工产品是石化工产品都无法取代的。

2)煤气化

煤通过热化过程,在高温下借助化学药剂进行化学反应把固体的炭转化为气体混合物的过程。用气化剂包括(水蒸气,空气,二氧化碳)与煤炭的碳发生均相反应。此外,煤通过热分解之后的气态物(二氧化碳、水蒸气、烃类)等也能和热碳发生均相反应。根据气化的方法,气化的外在条件以及煤的性质不一样,气化的气体的组成也大不相同。依据煤气炉内开成气体的过程特点,可以把煤层从上到下的分为(干燥、干馏、还带、氢化)带与灰层,在干燥与干馏带之中,煤是返到高温的加热而失放出的水分并蒸发。余下的是焦炭在还原带中发生的氧化反应。经过气化后的煤是粗煤气,通过净化加工之后,就生成各种化学品。

3)煤液化

煤液化是指将煤中有机质进行转化为流质产物,最终达到利用液态的碳氢化合物代替石油及其相关制品的目的。液化包括真接跟间接技术两部分,具大的产品市场,发展工艺及工程技术并提升到一定高度,是世界新型煤化工技术和相关产业的重要战略方向。

①直接液化煤;早在1913年德国科学家就发明了直接液化。就是在高温下在溶剂作用,将煤炭和气态氢进行反应,增加了煤炭中的氢含量,最终成为液体过程。到了1927年研究者又使用了硫化铜与硫化钨做催化剂,把液化分成了气相加氢与糊相加氢两个阶段,有效解决工程化的问题,并且建设处规模巨大的煤直接液化的企业。随着发展,如今各种规模的煤直接液化企业林林总总,各式各样的。

②间接液化;1923年德国皇家煤炭研究生的化学家提出了间接液化煤炭。这种方式就是将煤炭作为了原材料,经过气化合成了CO2+H2的气,再将这种气作为原料,通过催化剂催化,采用F-T合成为液态的烃类产品。

在几次石油危机影响下,德国、美国等各个国家都比较重视开发煤炭的直接液化新技术,组织出大批的科研开发机构以及各种研发工作,经过大力开发之后出现了多种工艺,其中具备代表性工艺有SRC(溶剂精制煤工艺)、EDS(供氢溶剂法)、H-Coal(氢煤法)等等。

3.新型煤化工技术

随着现代化技术高速发展,煤化工技术也在不断前进,在这种形式下就出现了新型煤化工技术。而新型煤化工技术并不是单一的,而是涉及到几个方面的技术。本文就从三个方面探讨煤化工技术。

3.1 煤气化技术

这种技术主要是以德士古、鲁奇以及壳牌等各种炉型比较常见,在我国都引入过上面几种炉型作为生产合成气以及化工的产品。这种技术主要是使用了多组分的催化剂,通过化学合成出含有异丁醇(60%)与甲醇(40%)混合物,并将异丁醇经过脱水之后就成为了异丁烯,这样就能够将合成气制取成为甲基叔丁基醚,这种技术就是由煤炭和天然气作为原料,进而制取出高辛烷值的添加剂。

3.2 用煤作为原材料产出甲醇以及各种化工产品

如今生产甲醇主要是用天然气作为主要材料。因为相比之下我国储存煤炭量远远超过了天然气以及石油的储量,故此在较长一段时间中生产甲醇主要还是依靠煤炭作为主要原料。而甲醇同样还是重要化工原料,经过了羰基化之后还能够制取出醋酸酐、醋酸、草酸以及甲酸等各种重要化工产品。经过开发研制后,西南化工研究院成功从甲醇羧基化中成功制取出了醋酸酐与醋酸工艺的软件包,如今正在进一步扩展出整个系列产品,实现的生产产业化。在Pd的催化之下,甲醇和亚硝酸能够进行反应生成了草酸,成为了合成草酸新的途径。而且一些公司将甲醇与CO通过叔二胺和乙烷作用下,通过加压发生羰基化反应,就能够得到了甲酸甲酯(HCOOCH3),其中的转化率是80.7%,选择性达到了99.4%。

3.3 用煤作为原材料合成烃类

经过相关专家多年的研究之后,实现了将甲醇进行裂解而制取出烯烃。中科院设置在大连的化物所在该方面研究领先世界,其转化率的成功达到了100%,而烯烃选择性居然达到了85%~90%;但是在研究转化过程之中有一些核心问题还没有被解决,还影响着整个转化过程,所以要想将这项技术实际化还需要进一步开发和实践。而且对于甲烷不按照造气的工序,而是直接经过氧化脱氢产生出乙烯逐渐被研究者所重视,经过多年努力甲烷的转化率达到了25%~35%,而C2选择性也达到了70%~80%,成为了新型煤化工技术中比较重要的项目之一。

4.结束语

总而言之,新型的煤化工产品成为了国内规模大、前景较好产品,同时也是解决石化产品不足的重要途径之一。但是要生产出产品就必须要依据煤化工技术,这是最基本的保障。因此就要清楚煤化工技术发展,进而探究新型煤化工技术才具有实际价值。

参考文献

[1]李丽.煤化工产业发展之我见——煤化工产业发展面对的机遇和挑战[J].煤2009,18(11)

[2]李华民.王永刚.初议煤化工产业现状及技术发展趋势[J].煤炭工程2009(11)

[3]华炜.关于煤化工产业发展的几点思考[J].2008

[4]陈元春.金小娟.我国煤化工产业发展状况评述[J].煤炭工程2009(5)

第2篇:煤化工技术范文

关键词:中国石化 煤炭化工技术 研究进展

中图分类号:TQ54 文献标识码:A 文章编号:1003-9082(2017)02-0301-01

国际油价的持续走低和徘徊不前并未阻碍中国企业在煤炭化工领域,尤其是在煤制油、煤制烯烃等新兴煤化工领域的探索。我国煤炭资源储量较大,但是面临着开发不合理,资源浪费严重和煤炭产能过剩的局面,利用全新的科学技术探索煤炭资源的全新用途是当前我们需要重点解决的难题。煤化工分为传统煤化工和新型煤化工,传统的煤炭化工技术是将煤炭资源制成化肥、煤炭焦化后做成电石和乙炔,而新型的煤炭化工技术是利用煤炭作为生产材料生产出多种清洁能源和基础化工原料。目前我国在煤炭化工技术方面做了大量的研究,并取得很大的突破,在新型煤化工技术和装置方面已经获得国际领先地位。

一、中国石化煤炭化工技术最新研究进展

1.S-MTO技术实现工业转化应用

S-MTO技术是以煤炭、天然气等作为石油代替资源生产化工产品的一条新型的工艺路线,目前,该项技术已经成为新能源资源技术研究开发热点和难点之一。进入新世纪以来,中国石化的很多企业不断开展S-MTO技术试验,相继完成了甲醇进料规模为每年1.67万吨的DMTO工业试验。同时在连续多年的实践过程中,在SAPO-34分子筛选催化材料合成技术,流化床催化剂制备技术和反应再生工艺研究方面获得了全新的创新成果。通过对这项技术的研究,在抑制SAPO-34分子筛硅岛的形成、分子筛形貌控制等关键技术方面取重大突破。此外,通过对分子筛模板剂和合成工艺进行创新,能够更好的对分子的形貌进行控制,能够极大的促进反应物的扩散速率。随着分子筛晶粒的减小,反应物分子的扩散速度逐渐加快。降低催化剂晶体颗粒直径,能够显著推升乙烯和丙烯的选择性。2007年中国石化在实验室充分研究的基础上,开展当时世界规模最大的每年3.6万吨的S-MTO技术中试研究,研究结果显示S-MTO催化剂具有催化效率高、活性强、选择性好、高热稳定性等特点,甲醇转化率、乙烯和丙烯选择性分别高达100%和80%以上,为今后的深入研究奠定坚实的基础。

2.S-MTP催化剂以及工艺技术的研究开发

S-MTP技术是甲醇生产低碳烯烃产品的另外一项具有核心竞争力的技术路线。最近几年,中石化高度重视S-MPT技术的研究,强化技术研究和装置建设。在S-MTP技术开发研究过程中,核心问题就是加快高选择性、高水热稳定性的ZSM-5分子筛选催化剂材料的研究。中石化在这方面研究过程中解决了两个关键性的技术。一个是对酸性的调节。在S-MTP催化剂中如果酸量过多,所生成的产物如果控制不好很可能会产生第二次化学反应,从而影响到整个反应体系的反应速率,生成过多的多碳高分子化合物,如汽油、烷烃等副产品,并且目的产物丙烯的选择性不高。如果催化剂中酸量不足,就不能保证甲醇全部转化,催化剂再生周期就会变短。我们通过对分子筛硅铝比进行适当的调整,就可以很好的控制分子筛催化剂的酸量。另一个就是提高了催化剂中的扩散性能。在反应体系中,丙烯能否在较短的时间内扩散的相应的孔道就成为影响丙烯吸收率和催化剂稳定性的一个重要原因。分子筛的孔道越短,直径越大,催化剂扩散也就越容易,因此,研究合成小分子筛技术是S-MTP催化剂应用的关键。此外,采用温和手段的碱处理方法对高硅ZSM-5沸石进行介孔化处理,保证沸石表面能够形成规则性的孔穴Y构,从而进一步缩短扩散通道的长度,提高反应物和产物的扩散性能。通过试验表明在整个反应体系内添加了软模板剂合成的样品,已经存在明显的介孔,而经过碱处理之后,在样品的将介孔结构更加明显。因此通过温和的碱处理所得到的样品在MTP反应体系具有优异的丙烯选择性,丙烯和乙烯质量比能够到达10:1。

二、新型煤化工技术创新能力提高

煤炭行业要想实现可持续发展,首先要提高煤化工技术的创新能力,为煤炭行业的长远发展奠定坚实的物质基础。最近几年,通过不断努力,我国在煤化工技术创新方面的能力进一步得到提升,改变了过去轻视理论、重视试验操作的研究模式,在兼顾理论研究的同时,将理论付诸实践。上述两种技术的发展和应用是煤化工技术创新能力提升的主要体现。我国的煤化工技术经过多年的努力已经形成了一套自主研发的科学体系,并做着眼于煤炭行业的发展趋势和发展要求,追求经济效益和环境效益的协同发展。但是我们应该清除的认识到,煤化工技术是一项长远发展过程,我国煤化工技术研究存在很多不足之处,在今后的研究过程中需要我们继续借鉴国外先进的理论经验和技术手段,不断更新研究理念和方法,采用先进煤气化技术,利用劣质煤造气,通过电、气、化工产品优化组合,即多联产方案是煤炭高效、洁净利用的最佳途径。

总之,当前我国煤化工发展已呈现出过热状态。低水平重复建设,不考虑环境承载力、生态平衡、二氧化碳排放、资源消耗,盲目扩大各类煤化工产品的产能,不是煤化工产业的发展方向。需要我们进一步大力发展煤制油、煤制甲醇对缓解我国石油对外依存度过高的现状,促进煤炭领域真正实现可持续发展。

参考文献

[1]曹劲松,张军民,许磊,刘中民. 甲苯甲醇烷基化制对二甲苯反应器的选择[J].石油化工技术与经济. 2010(06)

[2]李剑锋,陶跃武,周晓峰,陈庆龄,袁渭康. 负载型铁基催化剂上合成气制低碳烯烃[J]. 化学反应工程与工艺. 2010(06)

[3]邹薇,杨德琴,朱志荣,孔德金,陈庆龄,高滋. 金属氧化物改性的HZSM-5上甲苯与甲醇的烷基化反应[J]. 催化学报. 2005(06)

第3篇:煤化工技术范文

关键词:煤化工产业 技术 多联产

我国传统的煤化工产业主要是煤炭焦化和煤炭气化,分别用于冶金和合成氨工业。由于社会经济和科学技术的不断前进,煤化工产业的利用方式也不断的发展,我国煤炭储量相对较多,加工出的焦炭是重要的出口产品,成为全球最大的焦炭出口国,而且出口量逐年增加。但是我国的煤化工产业结构不均衡,技术水平落后,像新一代的煤炭液化、煤气化发电等能源技术已成为现代煤化工产业的发展方向,但是我国的技术水平相比发达国家仍然非常落后。

一、我国煤化工产业发展现状

1.我国传统的煤化工产业优势项目主要是煤炭焦化和煤气化。

1.1煤炭焦化项目

据中国炼焦行业协会初步统计,2011年,我国又新增80多家焦化企业,至此我国焦化企业达到330多家,焦炭的年产量可以达到3.77亿吨,2011年焦炭产量达到了4.28亿吨,比去年同期增长11.78%。全国大中型企业新增48座焦炉,预计焦炭产能2622万吨,其中炭化室高5.5米捣固、6米顶装及以上焦炉42座、焦炭产能2424万吨 。各种设备、焦化技术也达到世界较高的水平,出产的焦炭质量也在逐年提高。

1.2煤气化技术项目

煤气化技术是煤化工产业发展的标志性技术。在我国化工机械、冶金建材等行业广泛应用。在我国气化炉大多为固定床气化炉。而且 逐步引进加压鲁奇炉、德士古水煤奖气化炉,用于氨的合成、生产甲醇和城市煤气。其中“九五”期间,兖矿集团与一些高校和科研机构进行合作,在先进气化技术上取得了突破性的成果,成功开发出了能每日处理22吨的多喷嘴水煤浆气化炉中试装置,在考核试验中,其性能优于德士古。标志着我国拥有了达到国际先进水平、与我国能源结构相适应的、具备自主知识产权的煤气化技术,填补了国内空白。

2.煤化工产业整体水平低

同世界发达国家的技术水平相比,我国煤化工产业规模小、整体水平落后,主要表现在设备技术水平低,导致能耗高、加工能力小、产品品种少、而且对环境污染过于严重。因此国家在上海等一些地方筹建高水平的煤化工产业装置,来提升煤化工产业的技术水平与生产能力。

二、我国煤化工产业发展战略分析

我国煤化工产业产品结构非常的不均衡,很多低水平的产品产能过剩,因此必须对煤化工产业进行改造,加大企业改制力度,加大优势技术的研究与使用,调整产能过剩产品和淘汰劣势产品,加快开发新型的煤产业技术,使企业做大做强,同时提高生存能力,增强其国际竞争力,为我国煤产业拓宽国际发展空间。煤化工产业的主要投资方向是:

1.加大以煤气化技术和煤产品综合利用为主体的多联产技术系统的投资,实现煤的综合利用和能源有效利用。这样可以使一些单一煤化工产品生产系统能重新组合,达到工艺互补、企业联合的效果,从而提高煤的利用效率,并最终降低煤产品的成本,形成包含煤炭、能源、化工等生产技术的一体化综合产业体系。

2.加大以煤矿和大中型煤化工产业企业为主体的投资力度,引进和开发先进的煤化工技术,开发具有自主知识产权的煤化工产品,建设一批竞争力强的、世界级的煤化工产业集团。

三、我国煤化工产业技术路线

煤炭在我国能源资源和化工原料中占非常重要的地位,但还处于简单的冶金和化肥工业中,煤炭的深度化学转化还没有形成规模。随着社会经济的发展,环境保护也被人们重新认识,开发洁净的能源成为新的要求,煤炭的深加工已经越来越迫切,煤炭的可持续发展已经成为人们的共识。

1.科学规划,合理布局

现代煤化工产业是一个复杂的工业系统,涉及面大、建设难度高、区域性要求强,现代煤化工企业必须积极改革,根据本地区的资源特点和交通运输条件,采取有利于自身发展的建设方式,在保护好生态保护的条件下,合理布局煤化工产业链,将煤炭、电力和化工等产业联合布局。通过这种方式也可以最大程度的应用高新技术,形成资源优化、技术集成、能源高效利用综合性产业集团。

2.走集约化发展的路子

现代煤化工产业已经走向密集型发展产业,无论是投资,还是技术,其规模越来越大,精细化程度越来越高,有效提高了经济效益。由于煤化工产业本身的特性,生产过程流程长、环节多,生产技术水平要求高、技术开发难度大等,因此我国要发展先进的煤化工产业技术,就必须以传统的煤化工为基础,以煤气化技术为核心,加大改造力度,充分结合先进的催化合成、分离、节能减排、生物化工、环境保护技术和大型的工业装备技术,进行技术改造和创新,形成多联产式的一体化系统。

3.加大新技术的开发力度,积极引进先进技术

煤化工产业属于技术要求难度大、密集型的产业,在生产过程中,为了降低能耗和提高生产效率必须采用新技术。积极鼓励企业采用我国拥有自主知识产权的煤化工技术,如煤氧化、甲醇和醋酸合成、煤制烯烃等,大力推广我国拥有自主知识产权的核心技术在煤化工产业中的应用。同时改善引进国外煤化工产业技术的方向,积极引进具有世界先进水平的煤化工技术,限制盲目引进国内已经具有相当水平的生产技术。

四、结束语

我国的煤化工产业相对世界煤化工产业强国来说,无论是从投资力度上还是技术水平上还相对薄弱,但现在所处的时期既有挑战,更有机遇,只要进行合理改革,积极学习世界先进的经验和技术,适应市场需要,开发多元化产品和名牌产品,增强产业竞争能力。

参考文献

[1]中国产业咨询在线.2011年我国焦化行业经济运行及2012年前景展望.2012-2-29.

[2]高晋生、张德祥.煤液化技术[M].北京:化学工业出版社,2005.

[3]宗言恭.油价回落煤制烯烃项目有竞争力[J].中国化工信息.2009(3):6-7.

[4]张殿奎.煤化工发展方向-煤制烯烃[J].化学工业.2009,27(1-2):18-22.

[5]2011年我国焦化行业经济运行及2012年前景展望.

第4篇:煤化工技术范文

1新型洁净煤化工技术分析

随着我国政府对于环保工作的宣传,人们的环保理念开始增强,随着新型洁净煤化工技术的研发成功,受到社会各界的一致认可。所谓的新型洁净煤化工技术主要是针对的煤炭资源开发过程,要加强对煤炭资源的充分开发,尽量减少对环境的破坏,提高煤炭资源的利用效率,严格按照国家相关标准进行气体的排放,要做好经济与环保协调发展。目前我国政府大力提倡的新型煤化工技术路线主要有三种:第一,煤气化技术,主要是利用特殊工艺将煤炭资源进行处理,采用先进的设备将煤炭合成气体或者化工产品,这样就可以实现煤炭资源的充分利用。第二,以煤炭作为原料,加工成甲醇。这是一种新型生产工艺,传统工艺中主要是将天然气作为甲醇的主要生产原料。第三,以煤炭作为原料,加工成烃类化工产品。近些年各国都在加强对烃类化工产品的研发,主要是将甲醇作为原料。目前我国大连化学物理研究所在此方面取得了骄人的成绩,使甲醇转化率达到了100%。

2新型煤化工的核心技术分析

2.1煤液化技术

2.1.1技术简介早在上世纪20年代初期,就有人提出了煤直接液化技术,在30年代时,德国政府开始将煤直接液化技术应用到工业生产中,后来国际上许多国家都开始加强对煤直接液化技术的研究,对煤直接液化技术进行了改进,使得煤炭资源得到充分利用。该技术的原材料主要是煤炭,将煤炭进行加工处理,制成油煤浆,并且要在特殊环境下对油煤浆进行加氢处理,这样就会使油煤浆发生化学变化,最终得到液化油,这就是汽油和柴油的前身。目前这种煤直接液化技术并没有得到大范围的推广,我国神华集团与国外企业进行合作,加强对此核心技术的引进。而我国政府也在加强对煤直接液化技术的研究,相信在不久的将来,煤直接液化技术生产的产品将会出现在市场上。2.1.2煤间接液化技术目前市场上较为先进的能源转化技术还有煤间接液化技术,主要原材料是气化煤,通过加工处理合成化学气体,再经过F-T合成,这样就可以得到煤化工产品。早在上世纪50年代时,南非就开始了煤间接液化技术的工业生产应用,建立了大型化工厂,每年都会有大量的化工产品被销往世界各地。目前我国政府也认识到煤间接液化技术的优势,开始调整研究方向,开发煤间接液化技术,希望能合成一些化工产品,服务于社会。

2.2煤气化技术

煤气化技术对于煤炭行业的发展至关重要,可以有效促进经济发展。我国政府积极学习国外发达国家的煤气化技术,根据我国实际情况,加以改进,研发出了新型煤气化技术,也生产了许多自主性煤化工产品。目前我国政府加大了对煤气化技术的研究,尤其是水煤浆气化技术和碎煤加压气化技术的研发,加大资金投入,有效提升了煤气化技术水平,也加强了煤炭资源的合理利用,减少了环境污染。

2.3一步法合成二甲醚技术

为了应对不可再生资源的减少,各国都在积极研发新型能源燃料,而二甲醚就是可以替代柴油的新型能源燃料之一,二甲醚制取方法较为简单,最为成功的就是一步法。这种新型制取方法要比传统制取方法简便,而且主要是将合成气作为原材料,不再单纯依靠甲醉,具有生产成本低、工艺简单的优势。

2.4煤化工联产系统

在新型煤化工核心技术中煤化工联产系统占据着重要地位,也是我国化工行业发展的新方向。煤化工联产系统的研发成功,有效弥补了传统化工生产技术中的缺陷,可以将多种化工技术结合到一起,实现化工资源的合理利用,也可以降低生产成本,减少废物和废气的排放,对环境保护十分有利。例如,F-T合成与甲醉合成联产、煤焦化与直接液化联产等。这在一定程度上同新型洁净煤化工的技术所提倡的目标交相辉映。

2.5以煤气化技术为核心的多联产系统

在该系统中主要是将煤炭作为主要原材料,经过特殊处理,煤炭将变为气化原料,然后将其合成液体嫩料或化工产品,实现所有生产材料的综合利用,有效提升了生产效率。

3结语

第5篇:煤化工技术范文

【关键词】综采工作面 智能化采煤技术 存在问题

随着社会的不断发展,自动化、智能化、网络化已经成为当前时展的主要方向,实现采煤技术与智能化技术的有效结合,对于我国煤矿业的快速发展有着十分重要的作用。综采工作面的智能化,能够有效减少采煤环节中的成本支出,降低相关工作人员的工作强度,全面实现采煤工作的自动化,为我国采煤技术的有效性提供更好地保障。由于我国对这一技术的应用时间较短,在实际操作过程中不可避免的就会出现这样那样的问题,为了推进智能化技术在采煤工作中的应用,本文将针对这一技术在应用过程中存在的问题,提出切实可行的解决方案。

1 智能化采煤技术在综采工作面中应用时存在的问题

1.1 综采工作面无法达到工作要求

要想实现智能化采煤技术在综采工作面中的有效应用,就必须要保证综采工作面的平整,避免由于工作面建设的不达标,而造成施工过程中出现输送机上下滑动的问题,增大施工的风险性,降低工作效率。不论是在自动化采煤中,还是在人工采煤的过程中,综采工作面的平整与否都将直接影响到采煤工作面开展的高效与否。为了避免在煤矿开采工作中,由于综采工作面地质环境的变化而引发安全事故,在应用智能化采煤技术前就必须要在工作面周围设置相应的监控系统。

1.2 通信平台不统一

以太网的建立是保证智能化采煤技术在综采工作面有效应用的关键。就当前这一技术在实际采煤工作中的应用现状来看,不仅应用范围具有一定的局限性,而且对于系统的建立也不够完善。以太网主要是用来传递各类信息的,它在采煤工作中更侧重于对实时监控信息的传递,并没有真正的发挥出它应有的作用。由于在建立这一系统时,对网络协议的标准并没有进行统一的规定,进而导致在信息传输过程中容易出现信息交换延时、信息传递出错等问题,为综采平面的煤矿开采工作带来不便。

1.3 无法自动实现工作面的找直操作

智能化采煤技术在综采工作面中应用的主要目的是,实现煤矿开采的自动化,提高出煤率以及产煤的优质率。虽然相关工作人员在研究工作面找直功能上已经做出了较大的努力,但是仍然无法保证自动找直工作面时的精确度。为了真正实现智能化采煤技术在综采工作面应用时的自动化,就必须要加大对这一技术的开发力度。

1.4 工作人员的专业素质水平有待提高

从我国煤矿行业的发展现状来看,大多数煤矿开采人员都是农民,他们自身的文化素质水平有限,而智能化采煤技术在综采工作面中的应用,又需要工作人员具有较高的专业知识水平,以此来保证智能化采煤技术的有效应用。在进行煤矿开采作业时,需要专业的技术人员做好对综采工作面的实时监控,并能采取有效的应对措施,来防止问题的进一步扩大。因此,如何提高从业人员的专业技术水平已经成为当前煤炭开采行业中一个亟待解决的问题。

2 综采工作面智能化采煤技术的应用

智能化采煤技术在综采工作面中的应用时间较短,在工作过程中不可避免的会出现许多问题,下文中将针对智能化技术在采煤工作中的应用展开讨论。

2.1 综采工作面的监控技术及自动找直

由于综采工作面所处的环境比较复杂,具有一定的可变性,所以在进行采煤工作时就一定要注重对综采工作面的实时监控,降低安全事故发生的可能性。在综采工作面中,分布着各种类型的设备,加之其工作面较为狭窄,更是对综采工作面监控时的精确度以及实时性提出了更高的要求。

首先,在对综采工作面进行监控时一定要敢于打破传统监控的思维模式,通过使用一些新技术、精密仪器设备等,来尽可能的缩小监测时各输送机间的距离误差,提高监测工作的精_度,做好风险预估工作;其次,减小环境因素对综采工作面的影响,由于综采工作面在进行作业时很容易受到外力的影响,进而造成工作面的变形,对采煤工作的高效开展造成不利影响。在进行传输操作时,输送机工作的稳定与否将直接影响到输送机的使用时间和工作效率,所以加大对综采工作面的监控,完善工作面的自动找直系统,不仅能够及时调整工作面的倾斜度使之保持平整,而且能够最大程度的实现自动化,为采煤工作的稳定开展奠定基础。

2.2 实现对工作面的交互式监控

在综采工作面中,采煤机、传输机、液压式支架是采煤操作中的重要组成部分,实现对它们的交互式监控,能够极大的保证采煤工作的有效性,降低采煤工作中发生安全事故的可能性。在交互式监控中常用到的技术为,全景监控技术以及坐标式测量技术。

全景监控技术,就是通过对综采工作面各监控点画面的切换以及拼接,实现对整个工作面的全面布控,及时调整工作部署。坐标式测量技术主要应用于对巷道的测量以及对采煤机、传输机、液压式支架的位置测量,保证各设备安装的准确性,提高工作效率。其中在巷道测量中应用到的测量方法是经纬度测量,即通过激光点对被测量物体进行标记,然后利用相应的摄像设备来追踪激光点的位置,从而实现对巷道的精确测量。

2.3 提高从业人员的专业水平

提高从业人员的专业素质水平,是保证采煤工作有序进行的有效途径。首先,企业应该提高对从业人员的招聘标准,保证人才的优质率;其次,企业应该定期地对相关工作人员进行培训,确保他们能够及时了解到行业的发展动态,掌握最新的采煤技术,不断提高自身的技术水平。

3 结语

随着科学技术的不断进步,智能化采煤技术在综采工作面中的应用范围已经越来越广泛。为了使这一技术得到更加高效的应用,就一定要提高从业人员的专业水平,加大对这一技术的研究力度,为我国煤矿业的稳定发展提供保障。

参考文献:

[1]马宝.自动化综采工作面设备选型及参数优化研究[J].煤矿现代化,2015(6):93-94,95.

第6篇:煤化工技术范文

[关键词]煤化工;高盐废水;结晶盐;综合利用;产品标准

现代煤化工产业正发展成为我国煤炭清洁高效利用的重要新生力量,对保障我国能源安全、优化能源结构、改善环境质量形成有力补充。然而水资源与水环境容量的双重匮乏一直困扰着现代煤化工产业的发展[1]。高盐废水及结晶盐处理利用是煤化工废水处理的主要难点[2-3]。2015年国家环境保护部印发《现代煤化工建设项目环境准入条件》指出,“缺乏纳污水体的新建现代煤化工项目需采取高盐废水有效处置措施,无法资源化利用的盐泥暂按危险废物管理,作为副产品外售应满足适用的产品质量标准要求[4]。”2016年获得环评批复的煤化工项目多数都承担了高盐废水处置和结晶盐综合利用环保示范任务。目前高盐废水处理利用已成为煤化工产业持续健康发展的自身需求和外在要求[5]。本文梳理了煤化工高盐废水处理利用技术进展,剖析问题,提出对策建议,为煤化工高盐废水处理利用技术研究与应用提供参考。

1、高盐废水处理现状

现阶段煤化工废水回用处理多采用经高效反渗透[6-7]、震动膜[8]、电渗析[9-10]、正渗透[11]等工艺,回用过程产生的高盐废水具有有机物、盐浓度高,处理难度大的特点。国内大唐克旗、新疆庆华、中煤图克、伊犁新天等煤化工项目多采用自然蒸发[12-13]、机械压缩蒸发、多效蒸发工艺[11,14]进一步处理高盐废水,产生的混合结晶盐组成复杂难以利用。2016年获得环评批复的煤化工项目多数选择分步结晶技术路线(见表1)。但目前煤化工高盐废水分步结晶技术处于中试研究阶段,尚需验证经济性和工业实施的可操作性。受国家政策引导,煤化工高盐废水处理利用技术成为研究热点。2014—2017年国内共申请了相关专利50余项,主要申请单位是深圳能源资源综合开发有限公司、倍杰特国际环境技术股份有限公司,详见表2。专利内容主要涵盖高盐废水净化预处理、膜浓缩、分质结晶工艺及设备,但描述概念性流程较多,说明实施及应用效果的数据较少。结合文献报道对专利进一步分析,梳理出主要的煤化工高盐废水及结晶盐处理利用工艺特征、处理效果、技术进展(见表3)。从表3看出,不同工艺区别在于前端净化预处理、浓缩以及分盐工艺,但目标都是围绕结晶盐资源化。预处理单元主要采取化学沉淀、物理截留、吸附分离以及氧化降解等方式来脱除钙镁结垢离子、难降解有机物;浓缩工艺主要采用反渗透、纳滤、电驱动离子膜、正渗透等工艺回收水资源,提高废水TDS浓度,减少蒸发结晶单元处理水量。分盐工艺主要有热法和冷法,依据高盐废水盐溶液相图,结合纳滤膜、结晶器特殊结构,如淘洗装置等辅助措施,实现NaCl、Na2SO4等可资源化结晶盐与有机污染物等杂质分离开,得到纯化结晶盐。目前煤化工高盐废水结晶分盐技术处于中试或工业示范阶段,技术评价缺乏长周期运行数据支撑。

2高盐废水及结晶盐综合利用探讨

分质结晶是煤化工高盐废水资源化利用研究热点,但缺乏工程长周期运行验证,而且存在处理流程长、运行成本高等问题。为此国内一些单位积极探索开发技术经济更合理的煤化工高盐废水资源化利用新途径。

2.1高盐废水洗煤

国内富煤地区常面临水资源匮乏,非常规水洗煤逐渐得到选煤厂的重视[23]。传统洗煤厂煤泥水处理需要投加无机电解质凝聚剂,如氯化钙、硫酸铝等,中和或降低煤泥表面的负电,提高煤泥水沉降速度,降低循环水浓度,实现清水洗煤[24]。而煤化工高盐废水盐分组成与洗煤厂常用无机凝聚剂组分相近,这对开展浓盐水洗煤有利。邰阳等[25]提出新建煤化工园区与煤矿、洗煤厂统一布局,可利用高盐废水作为煤矿、洗煤厂生产水源,实现高盐废水综合利用。荣用巧等[26]研究指出,煤化工浓盐水可作为洗煤厂洗煤补充水,浓盐水中Ca2+、Mg2+等阳离子改善煤泥水沉降性能。熊亮等[27]进行浓盐水选煤试验,表明一定浓度的煤化工浓盐水促进煤泥水自由沉降。目前尚无煤化工高盐废水洗煤中试或工程应用报道,工程实施需针对具体煤质与高盐废水水质开展适应性研究,评估高盐废水盐分、有机污染物等对洗煤厂及周围环境的影响[28]。

2.2高盐废水、结晶盐固化处置

国内研究指出,含盐废液掺煤循环流化床焚烧处理技术上可行[29]。新疆准东燃煤电厂高盐煤与高灰熔点煤掺配,实现电厂稳定运行[30]。熊亮等[31]以气化灰渣、锅炉粉煤灰为原料,掺入煤化工高盐废水,研究膏体充填开采技术固化处置浓盐水的效果。试验表明膏体充填开采固化处置煤化工高盐废水技术可行,并具有良好的经济性和安全性。这对配套煤矿绿色开采、煤化工园区灰渣等固废综合利用、煤化工高盐废水安全处置,以及减轻煤化工项目环保压力,提供了新的技术路线。结合含盐废液循环流化床焚烧处置技术和高盐煤配煤发电工程经验,乔英存等[32]提出煤化工高盐废水及结晶盐循环流化床锅炉掺烧固化处置新思路,并针对煤制气废水结晶盐和原料煤煤灰硅、铝含量高的特点进行了烧结实验。研究表明,煤灰样对钠盐有明显的固化作用,这为煤化工项目实现废水零排放和结晶盐危废安全处置提供了新的解决途径。从工程应用考虑,高盐废水及结晶盐掺烧固化技术仍需开展系统研究与工业试验,同时结合具体煤化工项目废水结晶盐性质,配套电厂原料煤煤质及动力锅炉型号进行模拟计算,为产业化实施提供保障。

2.3结晶盐作为制碱原料盐

国内环保技术商和煤化工企业进行了高盐废水分质结晶中试及工业示范,产出NaCl和Na2SO4结晶盐纯度分别达到98%以上[33],这为煤化工废水结晶盐作为氯碱行业、纯碱行业粗原料提供了有利条件。现阶段国内氯碱厂主要采用离子膜法生产烧碱,对进厂原盐品质要求高,特别是Ca2+、Mg2+、SO42-、总有机碳(TOC)、氨氮等杂质含量控制严格[34-35]。为此煤化工高盐废水分质结晶盐产品指标控制需参照制碱行业原料要求,这也是煤化工结晶盐能否用于下游制碱行业的关键所在。这就需要强化高盐废水净化预处理,以及上游废水生化处理的效果。未来煤化工高盐废水结晶盐产品用作制碱原料盐,仍需开展大量试验研究。

3、对策与建议

煤化工高含盐废水处理利用,以下游用户需求为导向,工艺开发与优化满足潜在用户技术指标要求为原则,是实现煤化工高含盐废水资源化的关键。

3.1加快高盐废水分质结晶技术开发与应用

分质结晶是高盐废水资源化利用的重要路径,但目前缺乏工程验证。结合国内煤化工高盐废水运行情况和技术瓶颈,未来实现高盐废水分质结晶仍需开展以下技术攻关:分子层面研究高盐废水污染物及污染源分析;高盐废水净化预处理技术研究,主要是TOC强化脱除技术、钙镁离子高效除硬新技术;多元高盐废水体系相平衡研究,重点是热力学平衡相图、结晶动力学、结晶干扰因素及控制措施;盐、硝分质结晶技术研究;结晶母液无害化处理技术研究。

3.2加强煤化工高盐废水副产结晶盐产品标准研究

产品标准缺失是煤化工废水结晶盐产品实现市场流通的重要瓶颈。现有GB/T5462—2015《工业盐》标准,仅限定NaCl、水分、水不溶物、钙镁离子总量、SO42-含量等指标,未涉及氨氮、有机物、重金属等煤化工高盐废水存在的污染物,并不适用于煤化工废水制盐。现阶段煤化工废水副产结晶盐外售制碱厂作原料可能会影响制碱厂稳定运行或存在潜在环境风险。建议采用先进分析检测技术解析高盐废水特征污染物,结合下游盐化工用户工艺要求,开展工艺开发优化以及煤化工废水副产结晶盐产品标准研究。

4结语

高含盐废水处理是现阶段煤化工产业发展面临的重大环保问题。综合利用是解决高含盐废水出路的重要路径。高含盐废水综合利用需要从技术选择、设计优化、工艺应用、现场运行管理等方面系统考虑。国内正开展中试或工业示范的电渗析、正渗透、纳滤等膜法分离浓缩工艺以及热法、冷法分质结晶技术仍需加强论证,同时尽快建立高含盐废水副产结晶盐产品标准。借助新建煤化工项目鼓励企业承担环保示范任务,积极开展高含盐废水综合利用新技术研究与推广应用。

参考文献

[1]黄开东,李强,汪炎.煤化工污水“零排放”技术及工程应用现状分析[J].工业用水与污水,2012,43(5):1-6.

[2]曲风臣.煤化工废水“零排放”技术要点及存在问题[J].化学工业,2013,31(2-3):18-24.

第7篇:煤化工技术范文

关键词:含油废弃物;处理技术;资源化利用;多元料浆;气化处置

随着煤化工行业的快速发展,化工产品生产能力扩大,煤化工生产中含油废弃物的产生量也随之大量增加。含油废弃物按形态可分为固体含油废弃物和液体含油废弃物两类。含油废弃物主要含有大量的芳香类化合物和挥发类气体,直接排放会对环境造成严重的污染和危害[1],已被列为《国家危险废物名录》规定的危险固体废物。本文简述了煤化工生产中含油废弃物的来源、特征及其危害,综述了目前含油废弃物的处理技术及研究现状。针对目前处理技术存在的不足,开发了通过多元料浆气化实现含油废弃物污染消减和资源化利用技术,介绍了该技术的工艺流程、技术特点及工业应用情况,为实现煤化工含油废弃物处理绿色化发展目标提供一条新的技术途径,对于推进煤化工行业绿色清洁高效发展具有重要的意义。

1含油废弃物的来源、特征

1.1固体含油废弃物的来源、特征

1.1.1煤焦油渣煤焦油渣主要产生于煤气化和煤焦化过程中。煤气化焦油渣(CGTR)是一种复杂的副产物,也是一种工业固体废物,主要在固定床煤气化中大量产生[2]。该焦油渣是黑色黏稠固体物料,有刺激性气味;主要由高沸点有机化合物、未转化的粉煤和煤中夹带的其他固体颗粒组成;具有高的含碳量、热值及有机成分,可用作有机原料或燃料[3]。焦化生产过程中产生的煤焦油渣主要来源于机械化焦油氨水澄清槽和自然沉降后的焦油。该焦油渣是炼焦工业的废渣,呈黑色泥砂状,含有苯、酚、焦油、半焦等多种对环境有害的有机物质[4]和很多挥发性的有机物,多环芳烃含量比较高,具有较强的毒性和致癌性,对生态环境造成一定的污染。1.1.2煤油共炼残渣煤油共炼残渣是煤炭与重劣质油经过加氢裂解后副产的一定量劣质油渣,由煤油共炼装置中减压塔塔底排出,约占原料煤总质量的30%[5]。该油渣组分复杂,其中含有大量残留的重油、沥青质及胶质,芳香烃含量高,此外还含有灰分及重金属成分,所以有较高的环境风险[6]。劣质油渣中大量残留的石油烃类化合物具有碳氢元素含量较高、热值高的特点,因此需要更科学、更高效、更清洁的方式来利用煤油共炼残渣[7]。1.1.3煤液化残渣煤液化残渣(CLR)是煤炭加氢反应液化后产生的一些固体混合物,约占原煤质量的30%[8],主要由未液化的煤、煤中无机矿物质、煤液化过程中生成的缩合物和聚合物等中间物质、沥青类物质、加入的催化剂及残渣中残留的重质油等组成。该残渣具有高碳含量、高发热量、富氢、低水分、高灰分及高硫含量等特性。

1.2液体含油废弃物的来源、特征

1.2.1煤气化含油废水煤气化含油废水含有大量酚类、油、烷烃、氨氮、硫化物等污染物,导致其具有成分复杂、污染物浓度高、毒性大、浊度和色度高等特点,增加了其处理成本及难度,被认为是世界难处理的工业废水之一[9]。1.2.2焦化含油废水在炼焦或生产炼焦化产品过程中会产生大量的含油废水,废水中有机物浓度高且难于降解,其组成主要为高浓度的氨氮,酚类,氰、焦油及联苯(C12H10)、异喹啉(C9H7N)等多种芳香族化合物。由于含有大量的有色基团,导致其色度很高,另外由于焦油的存在,水体容易乳化[10]。1.2.3煤液化含油废水煤液化含油废水是煤液化转化成各种油分过程中产生的含油废水,主要来自油品合成、油品加工、冲洗排水以及机泵填料函排水等,其成分复杂,主要由重油、酚、硫、多环芳香烃和苯系物等物质组成,其中油类物质很难被降解,且具有很高的COD值[11]。

2含油废弃物的常规处理技术

2.1固体含油废弃物处理技术

2.1.1燃烧技术化工行业产生的固体含油废弃物通常采用燃烧处理,通过高温燃烧将固体含油废弃物分解,但在燃烧过程中会排放污染物,这将造成周围的环境和生态系统严重的污染。煤气化和炼焦过程中都会产生煤焦油渣,煤焦油渣经常直接作为锅炉燃料使用,燃烧时产生大量的多环芳烃,排放有毒物质和刺激性气味气体[12]。J.SHEN等[2]的研究表明,煤焦油渣在预燃烧过程中释放较多的有毒物质,分别为烷基取代酚、长链烷烃、酰胺和PAHs,这些成分堆积或直接燃烧时,会产生刺鼻的气味。董子平等[6]开展了将煤与煤液化残渣掺烧的技术研究,研究表明,在煤和液化残渣掺烧过程中,两种物料的相互作用对燃烧过程中苯系物的排放量产生较大的影响。另外,当液化残渣燃烧时,由于其高硫的特性,烟气必须做脱硫处理才能排放,这样就增加了装置投资及操作费用[12]。2.1.2热解技术煤在气化和焦化过程中,在高温条件下生成煤焦油渣。一般将煤焦油渣在无氧条件下高温热解,使有机物分解成小分子的可燃气体。D.X.ZHANG等[13]在管式炉中对淮南煤和煤焦油渣进行共热解,明显提高了热解焦油收率和轻油产率。黄传峰等[14]进行了煤油共炼残渣与煤共热解的相关研究,结果表明,煤油共炼残渣能够促进煤热解过程中挥发分的热解逸出速度,使起始失重温度和最终失重温度向低温区移动,有利于共热解反应的发生,提高焦油的产率。2.1.3制取衍生炭材料由于煤焦油渣具有比表面积大、多孔性结构、富含芳烃类化合物等特点,常被用作生产吸附性能较好的活性炭的原材料。L.GAO等[15]利用H3PO4作为活化剂,在800℃~1000℃下制备出了吸附性能较好的活性炭,并用动力学模型拟合揭示了H3PO4如何提高有效的反应碰撞率并降低热解反应的活化能。J.B.ZHANG等[16]通过KOH活化将煤直接液化残渣制备成介孔碳(MCs),结果表明,所得到的MCs在甲烷分解反应中的活性比市场销售的煤基活性炭和炭黑催化剂效果更好、更稳定。2.1.4溶剂萃取分离技术Q.X.ZHENG等[17]利用3种不同溶剂[液化二甲醚(DME)、丙酮和己烷]萃取煤直接液化残渣,结果表明3种不同溶剂萃取煤直接液化残渣的提取物都是制备高附加值炭材料的潜在原料,但此技术处于实验室研究阶段。Y.X.NIU等[18]以乙酸乙酯作为溶剂,萃取碎煤加压气化炉产生的煤气化焦油残渣,结果表明,煤气化焦油残渣中含有的多环芳香族化合物很容易被乙酸乙酯萃取,提取的残留物中包含极少芳香烃,并且性质相对稳定,几乎没有环境威胁,因此使用适当的溶剂将煤气化焦油残渣分离为残渣和焦油是一种有前途的处理方法,对经济和环境更加地友好。

2.2液体含油废弃物处理技术

2.2.1气浮法技术煤化工行业液体含油废弃物的处理目前较简单的方法就是气浮法技术。气浮法是在液体含油废弃物中通入空气或使水中产生气泡,水中的乳化油或悬浮颗粒黏附在气泡上,随气泡一起上浮到水面,从而达到从液体含油废弃物中去除油和悬浮物的目的。加压气浮法是一种设备简单、液体含油废弃物去除效果好的方法,目前处于试验阶段,未实现工业化应用[12]。2.2.2破乳技术由于液体含油废弃物乳化严重,导致处理难度加大。其乳化的原因主要是液体含油废弃物中含有大量的硫醇、酚、环烷酸、磺酸类盐等物质。经过破乳技术处理后,油和水可以自然分层,达到回收油的目的。徐玲枝等[19]选择合适的温度、破乳剂及用量,通过物理化学方法处理含油废水,油的回收率平均达到99%以上。2.2.3生化处理技术油类是一种烃类有机物,通过在水中加入厌氧微生物,可以将液体含油废弃物中的油分解氧化成为二氧化碳和水。神华煤直接液化示范项目有机废液处理工艺流程为:两级气浮—调节罐—生化池(3T-AF)—生化池(3T-BAF)—混凝沉淀—过滤,处理后的废液含油质量浓度≤3mg/L。

3含油废弃物气化处置技术的开发应用

笔者所在研发团队近年来在多元料浆气化技术上进行了创新和发展,开发了多元料浆含油废弃物污染消减和资源化利用技术,并在多家企业实现了工业化应用。

3.1技术开发思路

多元料浆含油废弃物气化处置技术利用含油废弃物中有机质富含碳、氢元素以及高热值的特点,经预处理后,将含油废弃物与煤共磨制取气化料浆或单独直接通入气化炉气化制合成气,实现含油废弃物污染消减和资源化利用。

3.2工艺流程

多元料浆含油废弃物污染消减和资源化利用技术工艺流程示意图见图1。该技术主要有多元料浆制备、气化、灰水处理3大系统。料浆制备系统:煤与固态含油废弃物或(和)低浓度、低黏度液态含油废弃物,按照一定的比例共磨制浆,由料浆输送系统送入气化炉。气化系统:含油废弃物料浆(或高浓、高黏液态含油废弃物)与氧气喷入气化炉,迅速反应,生成CO和H2为主的合成气,供后续生产使用,料浆中的灰分及少量未反应的碳在高温作用下成为熔融态,经快速激冷后降温,成为无毒无害的黑色玻璃态炉渣,通过锁斗排出,合成气进入后续气体洗涤系统。灰水处理系统:激冷黑水和洗涤黑水进入换热器,热回收器顶部不凝气及饱和水汽视情况回收处理或送火炬。经闪蒸后底部的灰水和渣池的灰水一起进入沉降澄清单元,顶部澄清水进入灰水循环系统,再由灰水循环系统送回气化系统循环使用。

3.3技术特点

原料适应性广。石油焦、煤油共炼残渣、焦化残渣、有机废液等含油废弃物均可采用该方法处理。气化炉原料消耗降低。含油废弃物的加入,提高了气化料浆的热值,实现了废弃物中碳氢资源化利用,有效降低了原料煤及氧气消耗。绿色环保。气化灰分经激冷后为黑色玻璃态,无毒无害。气化灰水经灰水系统处理,循环使用;含油废弃物作为原料配制料浆,减少原煤和工业水使用量,实现含油废弃物资源化利用,降低成本,节约资源,符合国家绿色发展,节能减排的要求。

3.4工业应用

3.4.1陕西榆林某年产60万t甲醇装置,以裂解重油为原料进行废弃物资源化利用,改造后装置产能比原装置提高了约6%,有效气体积分数达84%以上,年处理渣油2.9万t,可节约原煤5.22万t,产生直接经济效益3538万元。3.4.2陕西延长某年产30万t醋酸装置,以煤油共炼残渣为部分原料进行气化料浆制备,工业运行时,对气化料浆品质、气化炉运行状况、有效气含量和产量、硫回收系统运行状况均无明显影响,全系统运行稳定,不仅节省了原料煤,还节省了共炼残渣的危废处理费用,开创了一条“变废为宝”的新路子。

4结语

第8篇:煤化工技术范文

关键词:采煤机;自动化综采技术;实际应用;推广价值

作为稀缺性资源的一种,煤炭资源在当下无节制的开采趋势下,其现存数量相较以往有了大幅度下降,这使得煤矿企业面临着极大的矿产开采压力。而为实现社会经济发展目标,对煤炭资源需求与现存量之间的矛盾愈发尖锐。为最大限度地消除此类矛盾所带来的后果,就需要将煤矿资源开采效率予以提升,以达到降低资源损耗与技术应用成本的目的。采煤机自动化综采技术的出现,使得这一难题迎刃而解,在提高开采效率、降低成本损耗的同时,同样为实现当下煤矿行业的安全、高效发展目标奠定了坚实基础。

1采煤机自动化综采技术结构及工作面分析

1.1结构

在采煤机自动化综采技术应用优势逐渐突显的背景下,诸多煤矿企业在加大该技术应用力度的同时,引入了更多先进采矿机械,构建了一套全自动的采煤产业线。该系统主要包括主体机械设备(如采煤机、液压支架、刮板输送机等)、辅助机械设备(如破碎机、输送机等)。此技术在原本的人工采集技术基础上增添了多种功能,例如记忆采煤、全自动运输等,且能够对所获取到的数据予以自动化储存与分析,为后续制订妥善技术应用方案提供了基础条件。在实现数据传输与精准定位的视角下,可实现自动化运行与控制。具体操作流程如图1所示。

1.2工作面

首先是断层现象。断层现象作为煤矿开采工作面地质结构中经常出现的现象,虽然会对开采进程造成一定阻碍,但整体来看并不会对整体进度造成较大影响。其次是水文地质。由于煤矿地层水文地质情况具有复杂性,且地层多为含水层(通常处于上部),一旦有突水情况出现必然会对开采进程造成难以估量的严重影响。最后是矩形巷道断面。为达到巷道支护目的,需要制订配合锚索与锚梁网的支护方案,并确保所应用锚杆之间保持0.8m间距,以满足对巷道结构稳定性的实际开采需求。

2采煤机自动化综采工艺关键技术的实际应用分析

2.1煤矿机械自动化技术

2.1.1自动化机械定位煤矿机械化开采过程中,通过应用自动化综采技术能够自动对矿井实际情况予以全面分析,而其中自动化定位技术的作用简单来说就是为切割机提供准确的切割坐标。该系统包含多种控制机械结构,例如PLC控制器、多端化控制中心及组合传感器等[1]。采煤机探测位置,由于安装了带有红外线感应的统筹发射装置,因此其能够通过应用机械综合定位方案帮助采煤机检测实际运行位置,继而达到控制采煤机做多煤矿层的多功能切割目的。煤矿采煤环节,在具有防爆特性的通信电缆支持下,所获得的信息均能够在接收器帮助下传输至远程操作系统,继而方便地面人员远程操作切割臂,并保证开采位置修正的及时性。2.1.2自动规划机械定姿由于煤矿井下条件较为复杂,在开采过程中有可能遭遇到不确定状况,而此时自动化切割装置则能够在定姿技术支持下对装置行进方向、转速及启动停止等作准确控制处理。多类机械硬件组合背景下,该系统能够依照操作规范推进机械行进进程,并保证各类功能的应用有效性。例如,对遥感装置进行控制、不同应用条件下的滚筒操作及机械切割运行状态分析等。想要充分发挥硬件与软件的系统应用优势,关键在于能否提供完备的定姿技术条件支持。对于采煤机来说,想要达到灵活控制运行状态的目的,关键在于保证导航系统的良好性,继而达到对采煤机械作自动化运行控制的目的。

2.2自动性质切割技术

2.2.1机械自动设定记忆切割路线不同煤层截面预备处均能在采煤机自动控制条件下实现切割效率,从而突显其示范效果,并在长期示范下形成系统控制记忆。随后,即可在信号处理机械的配合应用下,针对煤层具体切割位置与高度作深度信息处理,从而实现信息系统的自主化存储目标。在煤矿切割过程中,存在于控制中心的记录仪器能够执行示范性操作任务,并识别煤层具体情况,以定位具体切割坐标,实现对机械设备采煤速度的循环控制[2]。煤矿开采环节,多类装置在参数化控制原理支持下,一旦识别到煤层异常情况,即可通过记忆示范操作经验对路线予以自动化修正,继而保证滚筒调整及时性,确保机械设备工作进程推进的顺利效果。2.2.2预设性质切割轨迹依照不同煤层自身解析情况、煤层硬度等条件,能够在将此类信息输入至机械控制中心后定位具体的切割轨迹与关键点坐标。并在技术扫描、统筹监测等技术支持下,对其具体变化作深层次解析,联合存储信息技术支持下将能够自动对煤层状态与结构作自主分析,并明确实际切割路线中的设备整体行进效果。依托于综合化控制中心,同样能够对煤层基准高度作全面控制,继而方便对设备予以准确调控。在控制器支持下,设备的行进轨迹获得了联合把控条件,尤其是在面对不同地层条件时,更能够提高对基准状态的把控效果,从而保证切割质量与效率。

3采煤机自动化综采工艺关键技术的推广价值

3.1高机械化水平取代人工开采

伴随综采自动化采煤技术应用频率的逐步提升,成熟技术使用状态支持下使得人工开采工作获得了全面替换条件,继而将工人数量缩减,并同时将其工作强度大幅度降低。处于自动化作业状态,工人能够保证开采工作的监控实时性,为后续方案落实环节的及时调整提供基础条件,保证开采环节的准确性。若发现在设备运行环节存在不正常运行现象,则能够保证终止工作的及时性,以免对设备与人员造成损伤[3]。再加上现代化控制系统的应用,对各类数据予以计算的速度极快,并自动化存储相应数据,为后续工作推进提供基础条件。相较于人工开采环节,无论是管理效果还是进度把控效果,均有明显提升,即使在面对复杂煤矿开采条件时,也能够在高精尖技术与设备的支持下实现预期开采目标,从根本上提高资源利用率。

3.2整体煤矿开采效率较高

从综采工艺的实际应用效果来看,无论是开采质量还是效率,相较于传统开采技术均有明显提升,使得煤炭整体产量有了飞跃式的提升。以电液控制系统为例,将其与自动化采煤设备配合应用,最大限度地消除由于人为误操作对开采效率带来的不良影响。配套使用的数据采集设备,则突显了其实时性应用优势,保证了开采环节所遭遇到问题的发现及时性,为制订科学合理的开采方案,以确保问题的解决效果奠定基础。自动化开采设备的应用大大提高了开采作业安全性,远程控制功能的增加,使得设备在接收到命令后即可自动推进开采进程,智能性又有效提高了煤炭开采效率。不仅如此,在系统接收到不同信号后,即可对不同质地的煤层作针对性的自动化切割处理,根据实际情况调整切割速度,以消除过往人为开采控制误差,大大提升了资源整体利用效率。若在其开采环节出现问题,自动化设备将对内部功能情况予以判断,并发出设备报警信号,继而保证应用进程干预的及时性,消除安全风险。

3结论

科学技术的更新为综合自动化采煤技术应用熟练度的提升注入了新的动力,其也是促进煤矿开采工作持续性发展的关键因素。但从该技术的实际运用状态来看,部分技术应用细节仍然处于未能完善状态,这就需要通过积累长期实践经验,以丰富自动化系统功能,逐步将采矿效率提升,为消除人工作业安全风险奠定坚实的基础。

参考文献

[1]郭俊兵.马兰矿采煤机自动化综采工艺关键技术研究[J].煤炭与化工,2019,42(4):72-74;77.

[2]葛世荣.采煤机技术发展历程(六):煤岩界面探测[J].中国煤炭,2020(11):15-29.

第9篇:煤化工技术范文

关键词煤化工污水处理工艺

中图分类号:U664.9+2 文献标识码:A 文章编号:

煤化工企业排放的污水以煤的气化过程产生的污水为主。煤气化污水是高温高压洗涤煤气后的洗涤水经热量回收、絮凝沉淀后排放的部分污水[1],主要污染物为氨氮、硫化物、氰化物、COD、BOD、SS等,其水温、硬度、SS、氰化物和氨氮含量都较高是一种典型的含有难降解的有机化合物的工业废水。废水若未经处理或处理不当随意外排, 将对水体产生严重污染, 因此实现煤化工污水的达标排放有十分重要的意义。

目前国内处理煤化工污水的技术主要采用生化法,生化法对废水中的有机污染物有较好的去除作用[2],但由于污水中所含有的氰化物浓度较高,对后续生物处理系统中的微生物有毒害和抑制作用。因此,首先采用适当的物化法去除氰化物等有毒物质,然后通过生化法去除污水中的有机污染物。煤化工污水经生化处理后一般可满足排放标准,若不能满足,需要进一步降低COD、氨氮、色度和浊度等指标。

1.预处理

对煤气化生产废水中的氰化物可采用碱性氯化法处理,分两级反应:一级反应是先将氰氧化局部氧化为氰酸盐。反应如下:

CN-+ClO-+H2OCNCl+2OH-

CNCl+2OH-CNO-+Cl-+H2O

二级反应是将氰酸盐进一步氧化为二氧化碳和氮。反应如下:

2CNO-+3OCl-+H2O2CO2+N2+3Cl-+2OH-

2.生化处理

对于预处理后的煤化工污水,国内外一般采用缺氧、好氧生物法处理(A/O工艺)。A/O工艺在去除水中碳污染的同时,能有效去处氮和磷的污染。但A/O工艺不足之处为:若沉淀池不及时排泥,易污泥上浮,使出水水质恶化;如需提高脱氮率,需要加大混合液回流比,使运行费用增高,同时可能影响反硝化过程,脱氮率很难达到90%。针对煤化工污水的特点,近年来出现了一些新的处理方法,如HBF工艺、PACT法、BAF工艺、厌氧生物法等:

(1)HBF工艺

HBF工艺是综合活性污泥法与生物膜法的优势,进行COD、氨氮的降解与转化,其实质是连续的前置反硝化+连续好氧硝化+后置反硝化后接两座交替运行的序批反应沉淀池。因此具有两段A/O法的生物脱氮功能和序批反应、分离(SBR)一体化特性。由于在好氧池及序批沉淀池内增加固定式酶浮填料,该方法为各种优势微生物的生长繁殖创造了良好的环境条件和水力条件,使得有机物的降解、氨氮的硝化、反硝化等生化过程保持高效反应状态,有效地提高生化反应传质条件及分离效果,促进了生物降解效率的提升[3]。

(2)PACT法

PACT法是一种向活性污泥系统中投加粉末活性炭,形成复合式生物反应器的新型水处理工艺。其工艺特点是PAC颗粒包裹在活性污泥絮体中,通过活性炭吸附和生物降解的有机结合,强化活性污泥絮体的净化功能,提高系统的处理能力,利用活性炭粉末对有机物和溶解氧的吸附作用,为微生物的生长提供食物,从而加速对有机物的氧化分解能力。既提高了污泥的吸附能力,也提高了COD的降解去除率。此外,PACT法能处理生物难以降解的有毒有害的有机污染物质。

(3)BAF工艺

曝气生物滤池是一种新型的高负荷浸没式固定生物膜反应池,它结合了活性污泥法和生物膜法各自的优点,并将生化反应和物理过滤(即生物降解去除BOD和固液分离去除SS)两种处理过程合并在同一个反应池中完成。因此,该工艺容积负荷可以很高,出水水质好,无需另设二沉池,无污泥膨胀问题。

(4)厌氧生物法

一种被称为升流式厌氧污泥床(UASB)的技术用于处理煤化工污水。该法是在升流式厌氧生物滤池的基础上发展而成的,废水自下而上通过底部带有污泥层的反应器,反应区由生物颗粒污泥层及絮状污泥层组成,大部分的有机物在此被微生物转化为CH4和C02,在反应器的上部设有三相分离器,完成气、液、固三相的分离。

3.深度处理

深度处理一般多采用物理化学方法,主要有混凝沉淀、吸附法、催化氧化法及超滤、反渗透等膜处理技术。

(1)混凝沉淀法

混凝沉淀法是在污水加入混凝剂如铝盐、铁盐等来强化沉淀效果,使废水中的悬浮物质在混凝剂的作用下聚集沉降,以达到固液分离的过程。该方法可有效降低废水中的浊度[4],并可去除污水中的某些溶解性物质。

(2)臭氧-生物活性炭法

臭氧活性炭联用深度处理技术采取先臭氧氧化后活性炭吸附,在活性炭吸附中又继续氧化的方法。其基本原理是在炭层中投加臭氧,使水中的大分子转化为小分子,改变其分子结构形态,提供了有机物进入较小孔隙的可能性,使大孔内活性炭表面的有机物得到氧化分解,从而使活性炭可以充分吸附末被氧化的有机物,达到水质深度净化的目的。该法能有效地降低AOC(生物可同化有机碳)值,使出水的生物稳定性大为提高。

(4)膜分离技术

膜分离技术是以高分子分离膜为代表的一种新型的流体分离单元操作技术。它的最大特点是分离过程中不伴随有相的变化,仅靠一定的压力作为驱动力就能获得很高的分离效果,是一种非常节省能源的分离技术。污水深度处理中常采用超滤+反渗透工艺,超滤可去除废水中大部分浊度和有机物,并能减轻反渗透膜的污染,反渗透用于降低矿化度和去除总溶解固体,对二级出水的脱盐率达到90%以上。

(5)高级氧化技术

由于煤化工污水中的有机物复杂多样,通过生化法处理并不能完全去除难生物降解的有机物,而高级氧化法在反应中产生活性极强的自由基(如•OH等),自由基能够无选择性地将污水中的有机污染物降解为二氧化碳和水,达到无害化目的。

4.总结

由于我国是贫油、少气、多煤的能源结构,决定了现阶段煤仍然是主要的能源[5]。煤化工业可从煤中提取多种产品,这大大提高了煤的综合利用价值,而相关污水工艺技术的使用是提高水资源综合利用率、缓解水资源短缺矛盾、减轻水体污染、实现有限水资源的可持续利用的有效途径之一。因此,煤化工企业应结合自身特点,合理选择水处理工艺,最大限度地减少污水外排,使该产业与生态环境实现共赢。

参考文献:

[1] 关于提高煤化工污水生化系统处理效率的探讨[J].神华科技.2012[4].

[2] 煤化工污水处理的工艺选择[J].工业技术.2011[6].

[3] 氯碱氧化/混凝气浮/HBF-N联合工艺处理煤化工综合废水[J].广东化工.2010[6].

[4] 浅析煤化工企业污水排放治理[J].商品与质量科学论坛.2010[2].

[5] 煤化工企业污水的深度处理[J].科技论坛.2011[21].