公务员期刊网 精选范文 地球化学范文

地球化学精选(九篇)

地球化学

第1篇:地球化学范文

1.(1)观测图绘制。该图的绘制主要针对城市环境中某些特定参数,例如化学元素种类,在该图中应当有相关的标示,且每种元素的检测值应当与分布地理位置进行对应。这继承了传统地球化学观测图的绘制方法。

(2)化学系统分布图绘制。该图需要针对区域进行,通过特定的观测手段与数据统计,将区域内地球化学的相关参数以空间分布形式展现出来。

(3)化学系统关系图绘制。有了化学系统的数据分布,要想获得更多的信息,还需要将这些信息有条理的建立联系。例如水文观测与地球环境化学转移,运用模拟迁移对地球化学的运动规律进行分析。景观地球学则更有利于展示地球化学的系统概览,对于化学转移的过程有更加直观的理解,相关化学控制因素也更加突出。这样的关系图能够有效的模拟真实环境系统的各项化学行为,并且在加入评价体系后,人类主观的参与可以将该图作为环境规划的主要参考内容。

(4)预测图绘制。更接近实际的地理图,通过分布图和关系图的分析,在预测图上针对区域进行环境污染的分析,预测污染的过程和涉及范围,在联系实际情况规划污染治理策略,是主要的环境治理参考图。

2.城市环境地球化学中人为因素人类生产生活活动向自然环境中释放了多种有害元素,这些元素一是生产活动释放,例如化肥农药的使用,向自然环境中释放了打破原有平衡的元素,还改变了土壤的主要结构,破坏了土壤化学平衡,相应的土壤受到污染还会将这些有害元素通过循环作用释放到更大的环境中;二是生活废物的排放,这些有害废物不经处理直接进入环境中,例如生活废水和垃圾,因为食物变质产生的有害元素因此进入土壤或者水环境,城市垃圾的主要处理方法填埋等几种处理方法又将这些有害元素富集起来,加重了城市水环境和土壤环境的污染。

二、城市环境地球化学治理工程学

城市环境出现了严重污染,就需要人为进行治理和帮助环境进行自我恢复,地球环境治理工程学的相关技术和原理就发挥着至关重要的作用。治理学是工程学新生分支学科,对环境发展有着至关重要的作用,从其根本目标和基本科学思想来看,有着巨大的环境经济效益,应当受到国家相关部门和社会各界的关注。地球环境治理工程学也可以称作是地球化学改造应用科学,利用地球自然资源和基础化学特性,尽量降低人类对自然环境的干扰,按照原有化学环境进行人为的平衡。地球环境治理工程学与人类生存的环境有着至关重要的作用,从地球环境化学基本原理入手,研究地球上各大生态体系及生态体系之间的关系,更关注了交互关系的研究,将污染原理、规律和环境效应直观的表达出来,所以地球环境治理工程学应当用做与环境发展,合理治理和修复以破坏的城市生态坏境。

第2篇:地球化学范文

1天宝山和大梁子铅锌矿床的地球化学差异

1.1微量元素特征差异大梁子铅锌矿的赋矿围岩为龙王庙组砂页岩.天宝山铅锌矿的围岩为白果湾组砂岩、泥岩、炭质页岩.矿区岩浆活动较弱,辉绿岩侵入为铅锌成矿提供热能和部分矿质.矿床矿石及围岩的微量元素分析表明(表1),天宝山矿床块状矿石和大梁子矿床矿石的微量元素组成基本一致,具有相同的Ni/Co或Co/Ni比值,并与辉绿岩的比值接近.但天宝山矿床的黄铁矿型矿石和角砾状矿石与块状矿石及大梁子矿床矿石的微量元素组成存在明显差异.黄铁矿型矿石贫Co,显示与龙王庙组砂页岩和白果湾组存在亲缘性.角砾状矿石贫Ni,与矿区地层及脉岩的微量元素组成很难比对,这可能与角砾状矿石形成过程的复杂性有关.单矿物的电子探针分析结果(表1)显示,天宝山和大梁子矿床差异明显.就Co、Ni含量及Ni/Co比值而论,在闪锌矿中,大梁子矿床的对应值均较天宝山矿床高;在方铅矿中,大梁子矿床虽Co、Ni含量低于天宝山矿床,但Ni/Co值为天宝山矿床的2倍左右;在黄铁矿中,两矿床Co含量相当,但大梁子矿床Ni含量和Ni/Co值是天宝山矿床的3倍左右.总体而言,就Ni、Co元素的分异看,大梁子矿床成矿热液中相对富Ni贫Co.在热液状态下,Co、Ni、Zn、Pb均以络合物形式存在,其不稳定系数递减,Co、Ni的分异状况在一定程度反映成矿溶液的演化.天宝山矿床闪锌矿、方铅矿的Ni/Co比值接近,显示和酸性岩浆衍生物有某种联系;大梁子矿床闪锌矿的Ni/Co比与天宝山矿床接近,而2个矿床方铅矿的Ni/Co比值相差两倍多,似乎说明,大梁子矿床形成闪锌矿时矿液的性质与天宝山矿床形成闪锌矿与方铅矿时的热液性质相似,而形成方铅矿时的矿液性质发生了较大的改变.2个矿床闪锌矿中Co、Ni含量接近,而方铅矿中Co、Ni含量相差甚远似乎佐证了这一看法.2个矿床黄铁矿Ni/Co比表面上合乎上述矿液演化趋势,但就其中Co、Ni含量而论,天宝山矿床的黄铁矿明显富Co,而大梁子矿床Co、Ni并无明显分异,似乎说明形成黄铁矿的溶液与形成闪锌矿和方铅矿的溶液在本质上有所不同.同时,由于黄铁矿形成的条件要比形成闪锌矿、方铅矿(尤其是闪锌矿)的条件宽泛得多,上述结果还可能受到黄铁矿多期性的影响.2个矿床主要矿石矿物闪锌矿的微量元素含量(表1)显示,4个稀散元素在2个矿床间存在明显差异.大梁子矿床的Cd、In、Ga含量比天宝山矿床相应元素高近一倍,而Ge则偏低;除Ga外,其他元素均介于碳酸盐岩沉积改造矿床与碳酸盐岩中的岩浆期后热液矿床之间,似乎暗示上述2个矿床成因上也介于其间,即有岩浆的成分介入.Ga、Ge、In、Cd、均倾向于在酸性岩浆的热液中富集,其富集度与氧分压密切相关,富集于低氧或不强的氧化环境,在碱性环境中很难迁移[19-22],这也从另一个侧面反映,形成这些稀散元素的富集,不可能是溶液自容矿地层萃取那么简单,应有深源物质的加入.上述元素在天宝山、大梁子矿床中的富集,似乎从另一个侧面反映了成矿物质来源的多样性.综上所述,天宝山和大梁子矿床存在微量元素地球化学特征差异,既显示它们具有多期成矿,成矿溶液有多期演化,成矿物质具有深源等特征,又反映两者之间存在明显差异.天宝山矿床成矿物质有更多岩浆源成分,大梁子矿床在后期可能有源于地层的低温热液混入.

1.2稀土元素特征差异天宝山和大梁子矿床的稀土矿床的稀土元素总量较低,配分曲线均为右倾型(图2),具有程度不同的Pr、Tb、Tm正异常.但两者的差异是明显的:大梁子矿床矿石的∑REE=6.934×10-6,天宝山矿床矿石的∑REE=12.420×10-6~22.349×10-6,后者约为前者的2~3倍;大梁子矿床具有很明显的富铕异常,天宝山矿床富铕异常十分微弱.2个矿床的围岩的稀土元素总量均较矿石高得多,配分曲线显示内部分异强度也明显较弱(图3),但2个矿床的近矿围岩样品(天宝山:Bp95;大梁子:PDL-2)的配分曲线则和矿床的矿石样品的分异趋势呈趋同态势(图2).2个矿床的稀土配分曲线的分异很难用萃取溶液的特征加以解释.如,富铕异常解释为还原环境所致,则无法回答Tm的正异常;又如,Pr、Tb的正异常解释为氧化所致,则难以回答负铕异常和正Tm异常的同时存在.同时,碳酸盐岩中溶液至少不可能长期保持酸性,而REE为弱碱性,在碱性溶液中将被活化,如此,作为容矿的碳酸盐围岩中的REE应大量转入成矿溶液才对,然而,2个矿床矿石的REE均低于围岩,而不是相反.既然不能从元素的地球化学特征来解释上述现象,那么最可能的答案就是成矿溶液是外来的,即是深部的.矿床矿体的宏观筒柱状产状支持这种判断.而2个矿床的差异既可能是源区的差异所致,也可能是矿液运移的路径的差异所致.

1.3硫同位素差异天宝山和大梁子矿床的稳定同位素,前人作过大量研究,但以硫、铅同位素最为系统.硫同位素样品分别为闪锌矿、方铅矿、黄铁矿(图4).其中,黄铁矿的δ34S(‰)值较分散,这是因为黄铁矿形成的条件非常宽泛,可能在不同时期形成于不同环境,对成矿的硫源指示意义不强,故不宜在讨论成矿物源时引用.除去黄铁矿的分析值,2个矿床硫同位素的共同特征是,方铅矿的δ34S(‰)总体比闪锌矿的δ34S(‰)小,似反映了成矿溶液的演化.2个矿床矿物的生成顺序研究[23]发现,闪锌矿比方铅矿晶出范围宽的结论,佐证了上述判断.从图4可见,2个矿床的硫同位素特征的差异十分明显.天宝山矿床(30件)δ34S(‰)=-2.20~+7.50,平均为3.20.其中闪锌矿(18件)δ34S(‰)=3.89~7.50,平均为4.60;方铅矿(12件)δ34S(‰)=-2.20~+3.40,平均为1.06.大梁子矿床(28件)δ34S(‰)=7.56~14.99,平均为11.60.其中闪锌矿(18件)δ34S(‰)=9.86~14.99,平均为12.70;方铅矿(10件)δ34S(‰)=6.72~11.10,平均为9.70.两个矿床的δ34S(‰)值具有首尾相接特征,总平均值相差8.40,闪锌矿的δ34S(‰)平均值相差8.10,方铅矿的δ34S(‰)平均值相差8.64.2个矿床各自的δ34S(‰)变化范围均不大.天宝山为9.90,其中,闪锌矿为3.61,方铅矿为5.60.大梁子为7.33,其中,闪锌矿为5.16,方铅矿为4.38.硫同位素的这种变化特征,与δ34S变化范围宽泛的石油、煤、沉积硫化物[19,24]明显不同,与火成岩或火山成因硫具有很强的相似性.如果考虑成矿热液的供给时段性,其前锋和尾流受到环境的影响将大于中间时段的流体.结合矿物的生成顺序,方铅矿的硫同位素特征更能代表成矿流体的硫同位素特点.这样,2个矿床的硫同位素特点,与火成硫完全吻合.上述表明,2个矿床的硫同位素特征有差异,但均应是与岩浆活动有关的深源硫.

1.4铅同位素特征差异不同的研究者先后分析了39件同位素样品,其中天宝山20件(闪锌矿5件,方铅矿14件,黄铜矿1件),大梁子19件(闪锌矿5件,方铅矿14件),均为普通铅.在207Pb/204Pb-206Pb/204Pb图解(图5)上,2个矿床的铅都具有多储库特征,但差异也较明显:上部地壳储库,大梁子矿床投点较多;下部地壳储库,天宝山投点稍多.造山带储库,大梁子矿床投点占主体.地幔储库,只有大梁子矿床的一个投点.在反映成矿物质来源及其与地球各构造圈各种岩石相互关系的γ-β图解[27](图6)上,2个矿床的差异十分明显.天宝山矿床的投点主体集中于造山带,极个别落在中深变质作用区.大梁子矿床的投点,主体落在上地壳与地幔混合俯冲带区,少数投点落在地幔源区和深变质下地壳区.铅同位素的特征参数μ值亦常用来判断铅源区.经计算,天宝山矿床平均μ=9.73,大梁子矿床平均μ=9.62,两者均介于造山带μ(10.80)与地幔μ(8.92)之间,但大梁子矿床平均μ值偏小,显示稍强的地幔铅特征.单阶段铅模式年龄,过去多用来说明成矿的年代,后来的研究发现,铅模式年龄其实反映的是铅源区的年龄.天宝山矿床的铅模式年龄为193~774Ma,大梁子矿床的铅模式年龄为91~597Ma,反映它们在铅源区时代上也存在差异.上述铅同位素的特征表明,2个矿床成矿溶液的铅具有深、浅源多源复成特征.天宝山矿床具有浓郁的造山带源区特征,与大梁子矿床差异明显.2个矿床铅源区年龄跨度都比较大,均大于500Ma(天宝山为581Ma,大梁子为506Ma);天宝山矿床铅源区年龄较大梁子矿床老100Ma(上限为177Ma,下限为102Ma),显示两者铅源区的时代也存在明显差异.2个矿床铅源区的年龄都达燕山期,说明其成矿可能在晚燕山—喜马拉雅期.

2双会地区区域构造演化特征研究发现

在中—新元古代,扬子大陆西部为龙门山-安宁河洋的被动陆缘,在此被动陆缘上存在与龙门山-安宁河洋近于垂直的以会理-东川拗拉槽为代表的拗拉槽裂谷系(见图1).会理-东川拗拉槽北界为天宝山-巧家断裂带,南界为宝台厂-九龙断裂,自洋向东伸入扬子陆内数百千米,并可能延伸至水城一带.拗拉槽的发育始于中元古代长城纪河口期,止于新元古代晋宁期,经历了始晋宁(河口期)火山地堑阶段早晋宁(东川期)火山地堑向岩石圈挠曲拗陷过渡阶段中晋宁(会理期)岩石圈拗陷阶段晚晋宁(天宝山期)撞击-封闭阶段.在拗拉槽发育过程中,沿拗拉槽延伸方向,自洋向陆,地壳类型由近大洋一带的洋壳—准洋壳型陆壳型变化,沉积组合由活动型次活动型稳定型变化(在纵向上也有类似变化).晚晋宁(新元古代天宝山期)龙门山-安宁河洋的关闭,导致扬子西部广泛的地体增生、碰撞造山作用,沿拗拉槽轴部发育撞击性岩浆活动,扬子大陆迅速扩大,进入显生宙演化阶段.在显生宙,扬子大陆西部经历古生代被动陆缘裂谷系和晚古生代—中生代陆内裂谷两个阶段的演化.在古生代,双会地区作为昆明-宜良陆架裂陷的一个凹陷中心,堆积了厚度巨大的冰碛磨拉石建造(南沱组)、细屑岩-碳酸盐岩建造(陡山沱组)和镁硅质碳酸盐岩建造(灯影组)、页岩建造(梅树村组、筇竹寺组).中寒武世后,随着昆明-宜良陆架裂陷萎缩,于晚奥陶世后隆升为陆.中志留世后,裂陷作用主要沿小江断裂带及其以东地区发育,会东地区受到较强影响.晚古生代—中生代,以晚二叠世裂前峨眉玄武岩喷发为标志的陆内裂谷活动,遍及整个扬子西南部,双会地区受到了较强影响,近南北向的断块活动强烈,导致部分地区上叠了中生代陆内裂谷层系.新生代,欧亚-印度板块的碰撞及其后的持续作用,诱发了西南地区广泛而强烈的陆内造山活动,双会地区理应不可避免地受到不可忽视的影响.

3天宝山和大梁子矿床地球化学特征差异的构造含义

双会地区中、晚元古代的拗拉槽演化,造就了天宝山矿床所在的紧邻安宁河一带洋壳—准洋壳型地壳类型和相关的活动型火山-沉积组合以及大梁子矿床所在的远安宁河带的准陆壳型地壳类型及相关的次稳定—稳定型沉积组合.新元古代安宁河洋关闭碰撞,造就了天宝山一带的造山带基底和大梁子一带的亲板(陆)内基底属性.古生代被动陆缘裂谷作用,一方面形成了2个矿床的容矿地层,另一方面使天宝山和大梁子地区基底受到程度不同的裂谷作用改造.晚古生代—中生代陆内裂谷作用,一方面对双会地区基底和盖层进一步改造,在局部形成陆内裂谷层系盖层,另一方面使其深部和浅部得以进一步沟通.其间,印支期末,受三江地区中小洋盆关闭碰撞影响,沿先存断裂(安宁河等)发生沿边叠缩造山[4],使天宝山一带地壳的造山带特征得以加强.燕山晚期—喜马拉雅期,印度河-雅鲁藏布江洋关闭,印度-欧亚板块碰撞及其后的持续作用,使扬子板块的地幔岩石圈沿先存缝合带向青藏岩石圈俯冲,地幔软流圈沿扬子板块岩石圈拆离带上涌侧侵,在双会地区形成近东西向鼻状地幔隆起带.相应地,表壳发生广泛褶皱、断裂和逆冲推覆,相伴深源煌斑岩侵位和构造-岩浆-热液成矿作用.构造-岩浆-成矿热液,实质是构造导入、驱动,含深源岩浆因子,广泛吸纳了路径附近的各种物质成分,富含矿质的复合热液.其具体的物质成分既受到深源岩浆热液的影响,也受到所经路径物质成分的影响.这种复合热液在浅表具有储、蔽条件的构造-岩性空间改造,最终形成工业矿床.综上所述,天宝山、大梁子矿床地球化学特征差异的构造含义可表述为:晚燕山期—喜马拉雅期,与陆内俯冲-造山导致的地幔上涌、侧侵有关的构造-岩浆-热液,在构造的驱动下,沿构造通道上侵,在发生过多次造山作用、基底和下部盖层具有明显造山带特征、地壳多次加厚的双会地区西部,形成天宝山矿床.在基底和下部盖层受造山作用影响较弱的双会东部地区,形成大梁子矿床.2个矿床的地球化学特征差异,本质上是由中元古代以来长期地质演化形成的两地的构造地质背景差异决定的,也即,构造-岩浆-热液运移路径所在的物质组成差异决定的.构造-岩浆-成矿热液,使得2个矿床微量元素特征既不同于沉积-改造型,也不同于岩浆热液型.西部造山带特征明显的基底-盖层,一方面使天宝山矿床打上造山带烙印,另一方面加厚的地壳使得构造-岩浆-热液能较充分吸纳路径上的稀土元素,导致天宝山矿床具有比大梁子矿床高的稀土总量,同时,Ni、Co等反应深部信息的元素浓度被稀释.曾经为洋壳—准洋壳的近造山带的基底和盖层中比重较大的火成岩,致使天宝山矿床的硫同位素组成变化较小,更接近火成硫特征.曾经为准陆壳的远造山带基底和盖层中火成岩比例较小,致使大梁子矿床硫同位素向富重硫方向发展.

4结论

第3篇:地球化学范文

[关键词]潮水盆地 铀水文地球化学环境 补给

[中图分类号] P941.75 [文献码] B [文章编号] 1000-405X(2014)-2-94-1

潮水盆地铀矿地质工作始于20世纪50年代末,先后有原182大队7队对盆地北部大红山地区开展过普查及部分勘探工作;1990年代,原西北地勘局212大队对碱泉矿床、大红山矿床和唐家沟矿床进行了地浸可行性论征和区域层间氧化带铀成矿条件研究。这些工作的开展为本区砂岩型铀矿的进一步勘察提供了较为丰富的资料。

1自然地理与地质背景

1.1自然地理

潮水盆地长年降雨量少、蒸发量大、气候较为干旱,为典型内陆干旱气候区。据阿拉善右旗气象资料统计显示,潮水盆地年温差较大。8月份历年气温最高,平均32 ℃;1月份历年气温最低,平均-9.50℃。潮水盆地区全年降水主要集中在6~8月,年平均降水量为115.8mm。盆地三面环山,可将其划分为基岩剥蚀区、山前冲洪积平原和沙漠戈壁等地貌单元[1]。

1.2地质背景

潮水盆地东部为鄂尔多斯地块,南部与河西走廊过渡带相接,西部为塔里木板块,北部与内蒙―天山褶皱带相邻。蚀源区地层及盆地基底主要由古生界泥盆系、北大山群、以及古元古界龙首山群等组成。侵入岩分布于盆地南北两侧蚀源区,形成大小不等的岩基、岩株和岩墙等中深成相侵入体。

2盆地水文地质简况

地下水根据含水层岩性及水动力条件划分为松散岩类孔隙水、碎屑岩类裂隙孔隙水以及基岩裂隙水这三种类型。在阿右旗坳陷北部唐家沟一带,砂岩含水性较好,钻孔(井)平均涌水量49m3/d,最大62m3/d,单位涌水量0.013~0.097 L/(s.m),渗透系数0.026~0.070m/d,水化学类型为SO4°Cl-Na,Cl°SO4-Na 型,矿化度1.0~5.0g/L,为承压含水层。

3铀水文地球化学特征

现场对56个水源点进行了系统调查和取样测试,根据含水层埋深可分为排泄方式主要以机井、自流井为主的深层地下水排泄方式和主要以泉、民井为主的浅层地下水排泄方式。由于前者与矿有着密切的关系,以下进一步阐述了深层地下水铀水文地球化学特征。

3.1铀水文地球化学环境

在天然水中铀被溶解、迁移、沉淀及富集后的环境就是铀水文地球化学环境,在对砂岩型铀矿勘探过程中,不仅要研究地下水化学成份和含矿含水层地下水迳、排、补,还应进一步研究铀水文地球化学环境。据下表1从氧化还原电位和溶解氧看,浅层地下水的Eh值一般介于200~500mv之间,溶解氧值位于3~9mg/L之间。地下水的Eh和溶解氧平均值在平易至照壁山地区分别为335mv和7.13mg/L;在碱泉地区为254mv和4.58mg/L;在白芨芨―红柳园地区为432mv和6.1mg/L,均属于氧化的水文地球化学环境。

3.1.1 潮水盆地北缘照壁山―白芨芨地区

潮水盆地北缘照壁山―白芨芨地区为北西西走向的长条形斜坡地带,由南到北依次为盆地中心、山前斜坡地带以及基岩山区。在补给区及靠近蚀源区山前地带采取的9个水样中,水的pH值为 8.1~9.3(平均为8.6),Eh值为209~483mv,水中溶解氧为2.9~7.2 mg/L(平均为5.9mg/L),属弱碱性氧化环境。这种环境对岩石中铀的氧化十分有利[2]。

3.1.2平易―平山湖地区

平易―平山湖地区主要位于下白垩统庙沟组中,在潮水盆地西南部。补给区泉发育,在所取的7个水样中(表1),其pH值为 8.0~9.1,Eh值为221~367 mv,水中溶解氧为7.2~8.8mg/L。此外,还发现有氡的异常.沿地下水流向,水中铀含量具有逐渐减少的规律,由补给区的35×10-6g/L降低到平易―平山湖一带的20×10-6~25×10-6g/L,表明地下水中的铀可能发生了还原沉淀,即存在铀还原的水文地球化学环境。

3.2 铀迁移、沉淀条件分析

本文分析铀的迁移与沉淀条件,主要是以潮水盆地北缘照壁山―白芨芨地区为例,以沥青铀矿饱和指数来确定铀在水中的迁移与沉淀条件。

计算结果表明,在地下水补给区,沥青铀矿饱和指数位于-13~-17之间,过渡带(Eh=-75mv)饱和指数为-1.0~1.1,当水的Eh值为-200mv时,其相应的SI值位于24~29之间,水中沥青铀矿处于沉淀状态,铀具备沉淀的条件。

4总结

综上所述,通过对潮水盆地铀成矿水文地质条件分析,潮水盆地北缘,从补给区到排泄区地下水由氧化环境到氧化-还原过渡环境再到还原环境,具有明显的水文地球化学分特征,其中最为明显的是层间氧化带的前锋线。此外,潮水盆地北部白芨芨地区地下水和照壁山从补给区向排泄区迳流过程中,在地下水作用下,铀经历了由溶滤迁移到还原沉淀的矿化过程。

参考文献

第4篇:地球化学范文

关键词:锆石;年代学;地球化学特征;地质应用

随着能够显示矿物内部复杂化学分区的成像技术和高分辨率的微区原位测试技术的发展和广泛应用,研究颗粒锆石等副矿物微区的化学成分、年龄、同位素组成及其地质应用等已成为国际地质学界研究的热点[1]。锆石U2Pb法是目前应用最广泛的同位素地质年代学方法,锆石的化学成分、Hf和O同位素组成广泛应用于岩石成因、壳幔相互作用、区域地壳演化的研究等,对地球上古老锆石的化学成分和同位素的研究是追朔地球早期历史的有效工具。笔者着重综述锆石的化学成分、同位素组成特征及其在地质学中的应用。

1微区原位测试技术

锆石等副矿物在地质学中的广泛应用与近年来原位分析测试技术的快速发展密不可分。写作论文目前已广泛应用的微区原位测试技术主要有离子探针、激光探针和电子探针等。

1.1离子探针

离子探针(sensitivehighresolutionionmicro-probe,简称SHRIMP)可用于矿物稀土元素、同位素的微区原位测试。在目前所有的微区原位测试技术中,SHRIMP的灵敏度、空间分辨率最高(对U、Th含量较高的锆石测年,束斑直径可达到8μm),且对样品破坏小(束斑直径10~50μm,剥蚀深度<5μm)[2-3],是最先进、精确度最高的微区原位测年方法。其不足之处是仪器成本高,测试费用昂贵,测试时间较长(每测点约需20min)。

2000年,CamecaNanoSIMS50二次离子质谱开始用于对颗粒大小为1~2μm的副矿物进行U-Th-Pb年代学研究。写作毕业论文NanoSIMS对粒度极细小的副矿物进行定年要以降低精度为代价,且用于U-Th-Pb定年还没有进行试验,还未完全估算出其准确度和分析精度,有可能在西澳大利亚大学获得初步的成功[2,4]。

1.2激光探针

激光剥蚀微探针2感应耦合等离子体质谱仪(la-serablationmicro2probe2inductivelycoupledplas-mamassspectrometry,简称LAM2ICPMS),即激光探针技术可实现对固体样品微区点常量元素、微量元素和同位素成分的原位测定[5]。近年研制成功的多接收等离子质谱(MC-ICPMS)可同时测定同位素比值,该仪器现今已经成为Hf同位素测定的常规仪器[6]。近年来激光探针技术在原位测定含U和含Th副矿物的U-Pb、Pb-Pb年龄或Th-Pb年龄方面进展极快,在一定的条件下可获得与SHRIMP技术相媲美的准确度和精确度,且经济、快速(每个测点费时<4min,可以直接在电子探针片内进行分析[5,7-8]);但与SHRIMP相比,激光探针要求样品数量较大,对样品破坏大(分析束斑大小一般为30~60μm,剥蚀深度为10~20μm),其空间分辨率和分析精度一般低于SIMS、SHRIMP[1,9210]。

1.3电子探针、质子探针、X射线荧光探针

电子探针(electronprobeX-raymicroanalysis,简称EPMA)、质子探针(protoninducedX-rayemissionmicro-probe,简称PIXE)和X射线荧光探针(X-rayfluorescenceprobe,简称XRF)均属微区化学测年技术。其优点是可以直接在岩石探针片上进行测定,不破坏样品,保留了岩石的原始结构,样品制备方便,便于实现原地原位分析,与同位素定年相比,价格低廉,分析快速;其缺点是不能估计平行的U-Pb衰变体系的谐和性[1,11],且由于化学定年不需进行普通铅的校正,容易导致过高估计年轻独居石、锆石等矿物的年龄[12]。

电子探针测定锆石的Th-U-全Pb化学等时线年龄方法(chemicalTh2U2totalPbisochronmeth-od,简称CHIME)的优点是空间分辨率高达1~5μm,可进行年龄填图[5,8],可进行锆石和独居石、磷钇矿、斜锆石等富U或富Th副矿物年龄的测定[11,13215];缺点是因对Pb的检出限较低而导致测年精度偏低,不能用于年龄小于100Ma的独居石等矿物的定年。

质子探针是继电子探针之后发展起来的、一种新的微束分析技术,能有效地进行微区微量元素、痕量元素的分析,近年来用于测定独居石的U-Th-Pb年龄,其分析原理与电子探针相似。对EPMA无能为力的、小于100Ma的独居石年龄的测定,PIXE具有明显的优势[5,8]。

此外,近年逐步改进的X射线荧光探针在测定年轻独居石年龄方面具有较大的优势。在分析束斑为40~60μm、使用单频X射线的条件下,Pb的检出限可达10×10-6,对于年龄为数十百万年甚至是15Ma的年轻独居石,可获得与ICP-MS同位素定年相近的结果,XRF化学定年的精度和分辨率大大高于EMPA,但在相同空间分辨率的情况下,XRF化学年龄与同位素年龄测定的比较有待进一步研究。其另一优势是仪器成本较低,装置简单,易于组建和操作。但由于XRF的空间分辨率较低,因此不适于分析内部具有不均一年龄分区的、粒度小的独居石[12,16]。

尽管微区原位测试技术给出了重要的、空间上可分辨的年龄信息,但在精确度、准确度方面仍无法与传统的同位素稀释热电质谱技术(ID-TIMS)相比。写作硕士论文在副矿物不存在继承性(如对幔源岩石、陨石等中的锆石进行定年)的情况下,ID-TIMS仍得到广泛使用。

2锆石U-Th-Pb同位素年代学

2.1锆石U-Th-Pb同位素体系特征及定年进展

由于锆石具有物理、化学性质稳定,普通铅含量低,富含U、Th[w(U)、w(Th)可高达1%以上],离子扩散速率很低[17],封闭温度高等特点,因此锆石已成为U-Pb法定年的最理想对象[1]。

虽然锆石通常能较好地保持同位素体系的封闭,但在某些变质作用或无明显地质作用过程中亦可能丢失放射性成因铅,使得其t(206Pb/238U)和t(207Pb/235U)两组年龄不一致。造成锆石中铅丢失的一个最主要原因是锆石的蜕晶化作用;此外,部分重结晶作用也是导致锆石年龄不一致的又一原因[18-19]。

锆石内部经常出现复杂的分区,每一区域可能都记录了锆石所经历的结晶、变质、热液蚀变等复杂的历史过程[20-21]。因此,在微区分析前,详细研究锆石的形貌和内部结构对解释锆石的U2Pb年龄、微区化学成分和同位素组成的成因至关重要。只有对同一样品直接进行结构和年龄的同步研究,才能得到有地质意义的年龄。利用HF酸蚀刻图像、阴极发光图像(cathodoluminescence,简称CL)和背散射电子图像(back2scatteredelectronimage,简称BSE)技术可观察锆石内部复杂的结构[20]。

近年来,锆石年代学研究实现了对同一锆石颗粒内部不同成因的锆石域进行微区原位年龄分析,提供了矿物内部不同区域的形成时间,使人们能够获得一致的、清楚的、容易解释的地质年龄,目前已经能够对那些记录在锆石内部的岩浆结晶作用、变质作用、热液交代和退变质作用等多期地质事件进行年龄测定,从而建立起地质过程的精细年龄框架。

例如,变质岩中锆石的结构通常非常复杂,对具有复杂结构锆石的定年可以得到锆石不同结构区域的多组年龄,这些年龄可能分别对应于锆石寄主岩石的原岩时代、变质事件时间(一期或多期)及源区残留锆石的年龄等。对这些样品中锆石的多组年龄如何进行合理的地质解释,是目前锆石U-Pb年代学研究的重点和难点[21],而明确不同成因域的锆石与特定p-T条件下生长的、不同世代矿物组合的产状关系是合理解释的关键。吴元保等[21]的研究表明,锆石的显微结构、微量元素特征和矿物包裹体成分等可以对锆石的形成环境进行限定,从而为锆石U-Pb年龄的合理解释提供有效的制约。目前对变质岩中锆石、独居石等矿物定年的主要方法是先从岩石中分选出测年用的单矿物,然后用环氧树脂固定并抛光制成靶,再进行微形貌观察和年龄的原位测定。但这样往往破坏了待测矿物与特定地质事件的原始结构关系。为此,陈能松等[8]提出了原地原位测年的工作思路,即利用各种微区原位测试技术直接测定岩石薄片中与特定温压条件下生长的不同世代矿物组合、产状关系明确的锆石和独居石等富U-Th-Pb的副矿物在不同成因域的年龄,从而将精确的年龄结果与特定的变质事件或变质反应联系起来。

2.2锆石微区定年的示踪作用

火成岩中耐熔的继承锆石可以保持U-Pb同位素体系和稀土元素(REE)的封闭,从而包含了关于深部地壳和花岗岩源区的重要信息[22-23],可用于花岗岩物源和基底组成的示踪。写作职称论文笔者在研究江西九岭花岗岩中的锆石时,发现部分锆石边部发育典型的岩浆成因的环带,其中心具有熔融残余核(图1)。SHRIMP分析表明,这2部分的年龄组成有明显的差别,环带部分的年龄约为830Ma,而核部的年龄集中在1400~1900Ma,核部年龄可能代表花岗岩源岩的锆石组成年龄。

deleRosa等[23]通过研究葡萄牙境内欧洲Variscan造山带缝合线两侧的花岗闪长岩、星云岩中继承锆石的稀土元素和U2Pb同位素特征,发现这2组锆石无论是在年龄谱上还是在REE组成上,均存在明显差异,说明它们来源不同,即这2个地区深部地壳的物质组成(基底)不同。

近年来,随着LA-ICP-MS技术的发展,沉积岩中碎屑锆石的年龄谱分析广泛应用于沉积岩源区物质成分组成和地壳演化的研究[24-27]。通过对比盆地沉积物中锆石的U-Pb年龄谱和盆地毗邻山脉出露岩体的年龄,可以了解某一沉积时期沉积物源区的多样性及盆地不同时期物源性质的变化特征。该方法同时还可估算地层的最大沉积年龄。3锆石化学成分特征及其在岩石成因中的应用

通常,在组成锆石的总氧化物中,w(ZrO2)占67.2%、w(SiO2)占32.8%,w(HfO2)占0.5%~2.0%,P、Th、U、Y、REE常以微量组分的形式出现。由于Y、Th、U、Nb、Ta等离子半径大、价态高,写作留学生论文使得它们不能包含在许多硅酸盐造岩矿物中,趋向于在残余熔体中富集,而锆石的晶体结构可广泛容纳不同比例的稀土元素,因此锆石成为岩石中U、Th、Hf、REE的主要寄主矿物[1,28231]。稀土元素和一些微量元素是限定源岩性质和形成过程最重要的指示剂之一,锆石中的离子扩散慢,因此锆石中的稀土元素分析结果可为它们的形成过程提供重要的地球化学信息。

3.1锆石中的w(Th)、w(U)及w(Th)/w(U)比值

大量的研究[21,28]表明,不同成因的锆石有不同的w(Th)、w(U)及w(Th)/w(U)比值:岩浆锆石的w(Th)、w(U)较高,w(Th)/w(U)比值较大(一般大于014);变质锆石的w(Th)、w(U)低,w(Th)/w(U)比值小(一般小于011)。但也有例外情况,有些岩浆锆石就具有较低的w(Th)/w(U)比值(可以小于0.1),部分碳酸岩样品中的岩浆锆石则具有异常高的w(Th)/w(U)比值(可以高达10000)[21,28],所以,仅凭锆石的w(Th)/w(U)比值有时并不能有效地鉴别岩浆锆石和变质锆石。

3.2锆石微量元素、稀土元素特征及其应用

锆石的稀土元素特征研究主要用于判断其寄主岩石的成因类型,但岩浆锆石的微量元素特征是否能判断寄主岩石的类型目前还存在较大的争议[21]。而一些变质岩(如麻粒岩)中的变质锆石可以具有较高的w(Th)/w(U)比值[21]。

Hoskin等[29-30]认为,虽然幔源岩石中的锆石与壳源岩石中的锆石在REE含量及稀土配分模式上具有明显差别,但并未发现不同成因的壳源岩石中锆石的REE特征存在系统差异,它们具有非常类似的REE含量和稀土配分模式,目前对壳源锆石REE组成如此相似的原因并不清楚。

Belousova等[28,31]的研究结果表明,锆石中的稀土元素丰度对源岩的类型和结晶条件很敏感。从超基性岩基性岩花岗岩,锆石中的稀土元素丰度总体升高。锆石的w(REE)在金伯利岩中一般低于50×10-6,在碳酸盐岩和煌斑岩中可达600×10-6~700×10-6,在基性岩中可达2000×10-6,写作英语论文而在花岗质岩石和伟晶岩中可高达百分之几。这种趋势反映了岩浆的分异程度。

正长岩中锆石具有正Ce异常、负Eu异常和中等富集重稀土元素(HREE);花岗质岩石中锆石明显负Eu异常、无Ce异常,无明显HREE富集;碳酸岩中锆石无明显的Ce、Eu异常,轻、重稀土元素分异程度变化较大;镁铁质火山岩中锆石的轻、重稀土元素分异明显;金伯利岩中锆石无明显的Eu、Ce异常,轻、重稀土元素分异程度不明显[28,31](图2)。大部分地球岩石中锆石的HREE比LREE相对富集,显示明显的正Ce异常、小的负Eu异常;而陨石、月岩等地外岩石中锆石则具强的Eu亏损、无Ce异常[28]。Belousova等[28]建立了通过锆石的微量元素对变化图解和微量元素的质量分数来判别不同类型的岩浆锆石的统计分析树形图解。

与岩浆锆石相比,变质锆石HREE的富集程度相对LREE的变化较大。岩浆锆石具有明显的负Eu异常,形成于有熔体出现的变质锆石具有与岩浆锆石类似的特征:富U、Y、Hf、P,REE配分模式陡,正Ce异常、负Eu异常。但变质锆石的w(Th)/w(U)比值低(<0.1),这是区别于岩浆锆石的惟一的化学特征。在变质过程中,锆石是否发生了重结晶以及结晶过程中是否有流体或熔体的参与,都会显著影响锆石稀土元素组分的变化[32]。

变质增生锆石的稀土元素特征除与各个稀土元素进入锆石晶格的能力大小有关外,还与锆石同时形成的矿物种类有关(如石榴石、长石、金红石等),这些矿物的存在与否对变质作用的条件(如榴辉岩相、麻粒岩相和角闪岩相等)有重要的指示意义,锆石的REE组成可反映锆石母岩的变化,至少在某些情况下反映了锆石与其他矿物如石榴石(稀土元素总量低、亏损HREE)[32-35]或长石(负Eu异常)[32,36-37]、金红石[34]的共生情况。

变质增生锆石的微量元素特征不仅受与锆石同时形成的矿物种类的影响,而且还与其形成时环境是否封闭有关。在“封闭”的榴辉岩相的体系中,REE的供应有限,由于石榴石是榴辉岩中富集HREE的矿物,固相线下石榴石的形成会使熔体亏损HREE;而在开放环境中,石榴石的形成并不能引起局部环境HREE质量分数的改变,这种条件下与石榴石共生的锆石就不会出现HREE的相对亏损。因此,HREE的相对亏损与否并不能直接用来判别变质锆石是否与富集HREE的石榴石同时形成[21]。

锆石微区的稀土元素分析与微区定年、锆石中的包裹体研究相结合能够较好地限定锆石的形成环境,可以将锆石的形成与变质条件联系起来,从而将变质过程中的p-T-t有效地联系在一起,在造山带研究中用于追溯超高压变质岩的形成过程[21,36-38]。4锆石同位素的地质应用

4.1锆石的Lu2Hf同位素

Lu与Hf均为难熔的中等2强不相容性亲石元素,这与Sm-Nd体系类似,因此Hf同位素示踪的基本原理与Nd同位素相同。

Hf与Zr呈类质同象存在于锆石的矿物晶格中,相对其他矿物,锆石中w(Hf)高[w(HfO2)≈1%],这为获取高精度的Hf同位素比值数据提供了保障;同时其w(Lu)/w(Hf)值极低[w(176Lu)/w(177Hf)n0.01][39-40],由176Lu衰变形成的176Hf比例非常低,对锆石形成后的Hf同位素组成的影响甚微,这样锆石的Hf同位素组成基本上代表了锆石结晶时的初始Hf同位素组成。加上锆石化学性质稳定,具有很高的Hf同位素封闭温度,即使经历了麻粒岩相等高级变质作用也能很好地保留初始Hf同位素组成,因此锆石中的Hf非常适合于岩石成因的Hf同位素研究[41-42]。Lu-Hf同位素体系本身所具有的高于Sm-Nd同位素体系的封闭温度及锆石特有的抗风化能力,使得锆石成为研究太古宙早期地壳的理想研究对象。

近年来,一些作者应用锆石的Hf同位素原位测试成功地解决了太古宙早期是否存在超亏损地幔的问题。在太古宙的Sm-Nd同位素研究中,部分太古宙早期岩石(年龄约为3.8Ga)具有较高的ε(Nd)值[ε(Nd)≈+4][43-44],似乎显示当时地球发生过极大规模的壳幔分异作用,并出现地幔的极度亏损。通过锆石Lu2Hf研究发现,高ε(Nd)t值的样品并未显示高的ε(Hf)t值,同一时期不同地质单元的太古宙岩石中的锆石具有十分相近的ε(Hf)t值,这表明由Nd同位素确定的极度亏损地幔,是由于Sm-Nd同位素体系开放造成的假象[45-48]。

沉积岩中碎屑锆石的REE特征及其原位的U-Pb年龄、Hf同位素组成测定已被作为研究沉积物母岩以及地壳演化的强有力工具[25,42,49]。

在岩石由多种组分构成、而其Nd同位素数据只有一个的情况下,可以通过多组锆石的Hf同位素来认识其演化过程。

锆石微区年龄、稀土元素的测定与Hf同位素研究相结合,是示踪壳幔相互作用、研究区域大陆地壳增长的有力工具[50-51]。如郑建平等[51]对玄武岩中麻粒岩捕虏体的锆石进行了年龄、REE、Hf同位素分析,探讨了早元古代华北克拉通的形成和壳幔相互作用。

由于性质不同的岩石的Hf同位素组成可能存在一定的差别,物理条件或结晶途径也可能改变矿物的化学成分,但不会影响Hf同位素组成。如果锆石在生长过程中不仅存在化学成分和晶体形貌上的变化,而且还伴随了Hf同位素组成的变化,则说明有来源明显不同的岩浆发生了化学混合。这为研究岩浆作用过程中不同组分的混入提供了重要途径。写作工作总结对于一个由多种组分构成的岩石样品,岩浆岩中形态不同的锆石晶体及同一锆石内部不同环带均记录了不同组分的岩浆相互作用的过程,因此通过多组锆石和同一锆石颗粒内不同环带的Hf同位素研究,可追踪岩体的结晶历史,获得岩浆演化的信息。

Griffin等[52]通过对华南平潭和桐庐I型花岗岩体中锆石的Hf同位素研究,发现不同生长阶段的锆石的Hf同位素组成不同,且它们的微量元素组成也存在差异[53],揭示这2个I型花岗岩体在形成过程中有多于2种不同来源的岩浆发生了混染。虽然化学混合(mixing)使岩体中不同类型的岩石具有类似的Sr、Nd同位素组成,但锆石却像“录音机”一样记录了不同岩浆产生和相互作用的细节。

汪相等[54]利用锆石中的Hf同位素探讨了幔源岩浆对过铝花岗岩成因的制约。华南过铝花岗岩在岩相学和岩石化学上充分显示了壳源的基本特征,且在这些花岗岩体中很少见到地幔岩浆侵入形成的淬冷包体或基性岩脉,故它们的成因无法与地幔活动联系起来。锆石颗粒内部的多阶段生长的环带,记录了岩浆形成和冷凝过程中的物理化学信息。因此对颗粒内部不同环带的同位素原位分析可以直接揭示中下地壳花岗质岩浆形成过程的复杂性和岩浆性质的演化,这些现象很难在野外观察到,通过全岩同位素分析也难以检测出来,而锆石中的Hf同位素特征却可以有效地揭示幔源岩浆对花岗岩形成的贡献。

由于锆石中的Hf很难与岩石外部的Hf发生交换,因此,除Hf同位素组成本身可以作为地球化学的示踪剂外,还可通过对锆石Hf同位素的研究来解译导致锆石U2Pb年龄不一致的原因。对于重结晶的锆石,如果体系在锆石结晶前后在成分上未发生明显变化,则其锆石的同位素组成符合单体系的线性演化规律;但如果有外来Hf的加入,则会形成年轻的、Hf同位素组成明显不同的增生锆石。基于同样的原因,锆石的Hf同位素组成能够指示锆石的U-Pb体系是否、何时发生了重置,因而在解释下地壳、地幔来源的高级变质岩的锆石年龄时帮助很大[55]。

4.2锆石的氧同位素

由于地壳物质与地幔物质的氧同位素组成存在差异,因此氧同位素可以很好地示踪壳幔的相互作用。此外,氧同位素是一种敏感的、示踪地壳中的流体和固体相互作用的、依赖于温度的示踪剂,岩浆岩的氧同位素比值对那些经历了低温水2岩反应的物质混染尤其敏感,这些物质可能曾经与大气水、沉积物及与那些曾经和大气水发生蚀变的岩石发生了相互作用,因此氧同位素是示踪岩浆来源的最有效的工具之一[56]。

高温下锆石和岩浆的同位素分馏很小,锆石的氧同位素组成基本上反映了锆石形成时岩浆的氧同位素特征[57]。研究表明锆石中的氧同位素扩散很慢,氧扩散的有效封闭温度≥700°C[58-59],其氧同位素组成不像其他矿物那样易受高温变质、热液蚀变的影响而发生变化[59-60],即使岩石经历了麻粒岩相的变质作用,岩浆锆石也能在干的岩石中保留岩浆氧同位素的初始比值[57]。

正常地幔的δ(18O)约为5‰,源于地幔的岩石表现出接近该值的、均一的氧同位素比值(该值被认为是正常地幔火成岩的比值)。在高温条件下锆石与正常地幔岩石达到平衡时的δ(18O)=5.3‰±0.3‰[61]。幔源岩浆分异出的火成岩结晶的锆石δ(18O)接近正常地幔的δ(18O)[61262]。研究表明,锆石的δ(18O)是岩浆物质来源的良好示踪剂。通过锆石氧同位素分析,可以判断结晶出锆石的岩浆是直接来自地幔还是来自经过地壳循环的物质[56,60-63]。

如果岩浆的氧同位素比值低于正常地幔值,通常认为岩浆的产生是与发生了热液蚀变的地壳岩石有关,这些岩石可能是洋壳岩石与高温海水或者陆壳岩石与大气降水发生了高温热液蚀变的结果[64-66]。但如果岩浆锆石的δ(18O)明显高于正常值,则说明岩浆来源于曾经历低温水2岩交换的岩石的部分熔融或岩浆在形成过程中有表壳物质的加入[56,67-68]。

锆石的氧同位素分析为研究花岗质岩石的成因和岩浆系统的演化提供了新的方法[60-61,69]。在岩浆演化过程中,如果体系是封闭的,且同位素分馏达到平衡(此假设在大多数情况下都成立),那么从基性-酸性的岩浆结晶的锆石的δ(18O)应该相同;但如果发生了同化混染,则锆石从内到外的生长区往往记录了岩浆成分的变化。分析各组锆石或同一锆石颗粒不同区域的氧同位素,可为岩浆的同化混染、不同来源的岩浆混合的定量化研究提供信息,也有助于深入认识岩浆的期次问题。

如能对锆石的U-Pb年龄和氧同位素组成以及REE进行同步测定,就有可能把氧同位素组成特征与某阶段年龄相联系,对具有复杂地质历史的岩石的成因环境进行限定。将锆石的氧同位素与U-Pb年龄(必要时进行REE分析)原位测定相结合是锆石的氧同位素研究的发展趋势。

近年来,一些学者对澳洲JackHills地区的古老碎屑锆石进行了微区离子探针U2Pb年龄和氧同位素组成的研究,获得了目前已知的最古老的锆石单颗粒年龄(4.4Ga),其δ(18O)为7.4‰~5.0‰,比地幔值高,暗示着岩浆混染和高δ(18O)物质的重熔,这些高δ(18O)的物质可能是沉积物或低温水2岩反应的热液蚀变岩石,表明有上地壳物质参与的岩浆过程最早可追溯到4.4Ga前。这些锆石的氧同位素组成表明,地球在4.4Ga前就可能存在水圈,地球的表面温度在地核和月球形成后不到100Ma的时间里就已冷却到允许液体水存在的温度[56,67,69]。

陈道公等[65]、郑永飞等[66]分别对大别2苏鲁超高压变质岩中的锆石进行了U-Pb和氧同位素微区原位分析,发现即使在榴辉岩相高级变质作用中,锆石仍基本保存了原岩中锆石的氧同位素特征,其中原岩年龄为0.7~0.8Ga的变质岩中锆石的δ(18O)明显低于地幔平均值,表明其形成时岩浆源区明显有大气降水的加入,这可能与新元古代华南Rodinia超大陆的裂解和全球的雪球事件有关。

5结语

锆石的结构和成分记录了岩石所经历的复杂地质过程。对内部结构复杂的锆石进行同位素和化学成分的微区原位分析,必须在对其内部结构进行详细研究的基础上进行。

由于幔源锆石和壳源岩浆锆石的化学组成存在较明显的区别,因而容易区分,但利用壳源岩浆锆石的微量元素、稀土元素特征识别其寄主岩石的类型还有待于成因明确的锆石微区原位测试数据的积累,因为目前用于建立“判别树”的数据比较有限,且有些数据的来源不太明确。此外,在原始成因产状不清楚的情况下(如碎屑锆石),变质锆石和岩浆锆石的区分除利用w(Th)/w(U)比值外,能否通过其他的微量元素、稀土元素的比值或图解来有效区分,这方面的研究目前报道较少。

分别对锆石颗粒中的不同区域进行年代学、化学组成、Hf或O同位素进行原位分析,可以提供有关岩石成因的丰富信息,而这些信息的提取依赖于分析仪器和分析技术的进步。虽然现在的测试技术已实现了矿物的微区原位测试,但分析仪器的空间分辨率不够高(目前锆石REE、O、Hf同位素微区测定的束斑直径一般为20~40μm),且锆石颗粒一般较小,尤其是变质岩中变质增生或变质重结晶部分的锆石,或者是记录了几个期次岩浆活动的岩浆锆石,每一次地质作用形成的生长区域可能较小(<10μm),致使很多重要的信息无法提取。随着原位测试技术的进一步发展,对锆石内部不同结构域地球化学特征的研究将提供更多、更详细、有关岩石成因的重要信息。参考文献:

[1]PoitrassonF,HancharJM,SchalteggerU.TheCurrentStateofAccessoryMineralResearch[J].ChemicalGeology,2002,191:3-24.

[2]DavisDW,WilliamsIS,KroghTE.HistoricalDevelopmentofZirconGeochronology[J].ReviewsinMineralogy&Geochem-istry,2003,53:145-173.

[3]IrelandTR,WilliamsIS.ConsiderationsinZirconGeochronol-ogybySIMS[J].ReviewsinMineralogy&Geochemistry,2003,53:215-227.

[4]RasmussenB.RadiometricDatingofSedimentaryRocks:TheApplicationofDiageneticXenotimeGeochronology[J].Earth-ScienceReviews,2005,68:197-243.

[5]王勤燕,陈能松,刘嵘.U2Th2Pb副矿物的原地原位测年微束分析方法比较与微区晶体化学研究[J].地质科技情报,2005,24(1):7-13.

[6]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003,32(1):86-90.

[7]梁细荣,李献华,刘永康.激光探针等离子体质谱法(LAM-ICPMS)用于年轻锆石U2Pb定年[J].地球化学,2000,29(1):1-5.

[8]陈能松,孙敏,王勤燕,等.原地原位定年技术工作思路探讨———中深变质岩区精细变质年代学格架的建立[J].地质科

技情报,2003,22(2):1-5.

[9]HornI,RudnickRL,McDonoughWF.PreciseElementalandIsotopeRatioMeasurementbySimultaneousSolutionNebu-lisationandLaserAblation-ICP-MS:ApplicationtoU-PbGeo-chronology[J].ChemicalGeology,2000,164:281-301.

[10]Kos∨lerJ,SylvesterPJ.PresentTrendsandtheFutureofZir-coninGeochronology:LaserAblationICPMS[J].ReviewsinMineralogy&Geochemistry,2003,53:243-275.

[11]CatlosEJ,GilleyLD,HarrisonTM.InterpretationofMona-ziteAgesObtainedviainSituAnalysis[J].ChemicalGeology,2002,188:193-215.

[12]ScherrerNC,EngiM,BergerA,etal.NondestructiveChemi-calDatingofYoungMonaziteUsingXRF-:ContextSensitiveMicroanalysisandComparisonwithTh-PbLaser-AblationMassSpectrometricData[J].ChemicalGeology2002,191:243-255.

[13]GeislerT,SchleicherH.ImprovedU2Th2TotalPbDatingofZirconsbyElectronMicroprobeUsingaSimpleNewBack-groundModelingProcedureandCaasaChemicalCriterionofFluid-in-DucedU-Th-PbDiscordanceinZircon[J].ChemicalGeology,2000,163:269-285.

[14]FrenchJE,HeamanLM,ChackoT.FeasibilityofChemicalU-Th-TotalPbBaddeleyiteDatingbyElectronMicroprobe[J].ChemicalGeology,2002,188:85-104.

[15]AsamiM,SuzukiK,GrewES.ChemicalTh-U-TotalPbDat-ingbyElectronMicroprobeAnalysisofMonazite,XenotimeandZirconfromtheArcheanNapierComplex,EastAntarcti-

ca:EvidenceforUltra-High-TemperatureMetamorphismat2400Ma[J].PrecambrianResearch,2002,114:249-275.

[16]EngiM,CheburkinAK,K¨oppelV.NondestructiveChemicalDatingofYoungMonaziteUsingXRF1:DesignofaMini-Probe,AgeDataforSamplesfromtheCentralAlps,andCom-

parisontoU-Pb(TIMS)Data[J].ChemicalGeology2002,191:225-241.

[17]CherniakDJ,WatsonEB.DiffusioninZircon[J].ReviewsinMineralogy&Geochemistry,2003,53:112-139.

[18]MezgerK,KrogstadEJ.InterpretationofDiscordantU-PbZir-conAges:AnElevation[J].J.Metamorph.Geol.,1997,15:127-140.

[19]陈道公,李彬贤,夏群科,等1变质岩中锆石U2Pb计时问题评述———兼论大别造山带锆石定年[J].岩石学报,2001,17(1):129-138.

[20]CorfuF,HancharJM,HoskinPWO,etal.AtlasofZirconTextures[J].ReviewsinMineralogy&Geochemistry,2003,

53:469-495.

[21]吴元保,郑永飞.锆石成因矿物学研究及其对U-Pb年龄解释的制约[J].科学通报,2004,49(16):1589-1604.

[22]KeayS,SteeleD,CompstonW.IdentifyingGraniteSourcesbySHRIMPU-PbZirconGeochronology:AnApplicationtotheLachlanFoldbelt[J].Contrib.Mineral.Petrol.,1999,137:323-341.

[23]delaRosaJD,JennerGA,CartroA.AStudyofInheritedZir-consinGranitoidRocksfromtheSouthPortugueseandOssa-MorenaZones,IberianMassif:SupportfortheExoticOriginoftheSouthPortugueseZone[J].Tectonophysics,2002,353:245-256.

[24]BruguierO,LanceletJR.U-PbDatingonSingleDetritalZir-conGrainsfromtheTriassicSongpan-GanzeFlysch(CentralChina):ProvenanceandTectonicCorrelations[J].EPSL,

1997,152:217-231.

[25]KnudsenTL,GriffinWL,HartzEH,etal.In2situHafniumandLeadIsotopeAnalysesofDetritalZirconsfromtheDevoni-anSedimentaryBasinofNEGreenland:ARecordofRepeatedCrustalReworking[J].Contrib.Mineral.Petrol.,2001,141:83-94.

[26]FedoCM,SircombeKN,RainbirdRH.DetritalZirconAnaly-sisoftheSedimentaryRecord[J].ReviewsinMineralogy&Geochemistry,2003,53:277-298.

[27]李任伟,万渝生,陈振宇,等.根据碎屑锆石SHRIMPU-Pb测年恢复早侏罗世大别造山带源区特征[J].中国科学:D辑,2004,34(4):320-328.

[28]BelousovaEA,GriffinWL,O’ReillySY,etal.IgneousZir-con:TraceElementCompositionasanIndicatorofSourceRockType[J].Contrib.Mineral.Petrol.,2002,143:602-622.

[29]HoskinPWO,IrelandTR.RareEarthElementChemistryofZirconanditSavesasaProvenanceIndicator[J].Geology,2000,28:627-630.

[30]HoskinPWO,SchalteggerU.TheCompositionofZirconandIgneousandMetamorphicPetrogenesis[J].ReviewsinMiner-alogy&Geochemistry,2003,53:27-62.

[31]BelousovaEA,GriffinWL,PearsonNJ.TraceElementCom-positionandCatholuminescencePropertiesofSouthernAfRicanKimberliticZircons[J].Mineral.Mag.,1998,62:355-366.

[32]RubattoD.ZirconTraceElementGeochemistry:PartitioningwithGarnetandtheLinkBetweenU-PbAgesandMetamor-phism[J].ChemicalGeology,2002,184:123-138.

[33]SchalteggerU,FanningCM,GüntherD,etal.Growth,Annea-lingandRecrystallizationofZirconandPreservationofMona-ziteinHigh-GradeMetamorphism:ConventionalandIn-situU-PbIsotope,CathodoluminescenceandMicrochemicalEvidence[J].ContributionstoMineralogyandPetrology,1999,134:186-201.

[34]吴元保,陈道公,夏群科,等.大别山黄镇榴辉岩锆石的微区微量元素分析:榴辉岩相变质锆石的微量元素特征[J].科学通报,2002,47(11):859-863.

[35]吴元保,陈道公,夏群科,等.大别山黄土岭麻粒岩中锆石LAM-ICP-MS微区微量元素分析和Pb-Pb定年[J].中国科学:D辑,2003,33(1):20-28.

[36]LiatiA,GebauerD.ConstrainingtheProgradeandRetrogradep-T-tofEoceneHPRocksbySHRIMPDatingofDifferentZirconDomains:InferredRatesofHeating,Burial,Coolingand

ExhumationforCentralRhodope,NorthernGreece[J].Contri-butionstoMineralogyandPetrology,1999,135:340-354.

[37]RubattoD,WilliamsIS,BuickIS.ZirconandMonaziteRe-sponsetoProgradeMetamorphismintheReynoldsRange,CentralAustralia[J].ContributionstoMineralogyandPetrol-ogy,2001,140:458-468.

[38]HermannJ,RubatttoD,KorsakovA.MultipleZirconGrowthDuringFastExhumationofDiamondiferous,DeeplySubductedContinentalCrust(KokchetavMassif,Kazakhstan)[J].Contri-butionstoMineralogyandPetrology,2001,141:66-82.

[39]凌文黎,程建萍.Lu2Hf同位素体系对若干基础地质问题的新制约(之一)———地球早期演化[J].地质科技情报,1999,18(1):79-84.

[40]李献华,梁细荣,韦刚健,等.锆石Hf同位素组成的LAM-MC-ICPMS精确测定[J].地球化学,2003,32(1):86-90.

[41]AndersenT,GriffinWL,PearsonNJ.CrustalEvolutionintheSWPartoftheBalticShield:TheHfIsotopeEvidence[J].JournalofPetrology,2002,43(9):1725-1747.

[42]GriffinWL,BelousovaEA,SheeSR,etal.ArcheanCrustalEvolutionintheNorthernYilgarnCraton:U2PbandHfIso-topeEvidencefromDetrialZircons[J].PrecambrianResearch,2004,131:231-282.

[43]BennetVC,NutmanmAP,McCullochMT.NdIsotopicEvi-denceforTransient,HighlyDepletedMantleReservoirsintheEarlyHistoryoftheEarth[J].EarthPlanet.Sci.Lett.,1993,119:299-317.

[44]McCullochMT,BennetVC.ProgressiveGrowthoftheEarth’sContinentalCrustandDepletedMantle:GeochemicalCon-straints[J].Geochim.Cosmochim.Acta,1994,58:4717-4738.

[45]VervoortJD,PatchettPJ,GehrelsGE,etal.ConstraintsontheEarlyEarthDifferentiationfromHafniumandNeodymiumIsotopes[J].Nature,1996,379:624-627.

[46]VervoortJD,Blichert-ToftJ.EvolutionoftheDepletedMan-tle:HfIsotopeEvidencefromJuvenileRocksThroughTime[J].Geochim.Cosmochim.Acta,1999,63:533-556.

[47]AmelinY,LeeDC,HallidayAN,etal.NatureoftheEarth’sEarliestCrustfromHafniumIsotopesinSingleDetrialZircons[J].Nature,1999,399:252-255.

[48]AmelinY,LeeDC,HallidayAN.Early2MiddleArchenCrustalEvolutionDeducedfromLu-HfandU2PbIsotopicStudiesofSingleZirconGrains[J].Geochim.Cosmochim.Acta,2000,64:4205-4225.

[49]BodetF,Sch¨arerU.EvolutionoftheSE2AsianContinentfromU-PbandHfIsotopesinSingleGrainsofZirconandBaddeley-itefromLargeRivers[J].Geochim.Cosmochim.Acta,2000,64:2067-2091.

[50]GriffinWL,PearsonNJ,BelousovaE,etal.TheHfIsotopeCompositionofCratonicMantle:LAM2MC2ICPMSAnalysisofZirconMegacrystsinKimberlites[J].Geochim.Cosmochim.Acta,2000,64:133-147.

[51]郑建平,路凤香,余淳梅,等.汉诺坝玄武岩中麻粒岩捕虏体锆石Hf同位素、U2Pb定年和微量元素研究:华北下地壳早期演化的记录[J].科学通报,2004,49(4):375-383.

[52]GriffinWL,WangX,JacksonSE,etal.ZirconChemistryandMagmaMixing,SEChina:In-situAnalysisofHfIsotopes,TongluandPingtanIgneousComplexes[J].Lithos,2002,61:237-269.

[53]WangX,O’ReillySY,GriffinWL,etal.MorphologyandGeo-chemistryofZirconsfromLateMesozoicIgneousComplexes,SEChina[J].Mineral.Mag.,2002,66:235-251.

[54]汪相,GriffinWL,王志成,等.湖南丫江桥花岗岩中锆石的Hf同位素地球化学[J].科学通报,2003,48(4):379-382.

[55]KinnyPD,MaasR.Lu2HfandSm-NdIsotopeSystemsinZir-con[J].ReviewsinMineralogy&Geochemistry,2003,53:327-341.

[56]PeckWH,ValleyJW,WildeSA,etal.OxygenIsotopeRatiosandRareEarthElementsin3.3to4.4GaZircons:IonMicro-probeEvidenceforHignδ(18O)ContinentalCrustandOceansintheEarlyArchean[J].Geochem.Cosmochim.Acta,2001,65:4215-4229.

[57]KingEM,BarrieCT,ValleyJW.HydrothermalAlterationofOxygenIsotopeRatiosinQuartzPhenocrysts,KiddCreekMine,Ontario:MagmaticValuesarePreservedinZircons[J].

Geology,1997,23:1079-1082.

[58]ValleyJW,ChiarenelliJR,McLellandJM.OxygenIsotopeGeochemistryofZircon[J].EarthPlanet.Sci.Lett.,1994,126:187-206.

[59]WatsonEB,CherniakDJ.OxygenDiffusioninZircon[J].EarthPlanet.Sci.Lett.,1997,148,527-544.

[60]MonaniS,ValleyJE.OxygenIsotopeRatiosofZircon:MagmaGenesisofLowδ(18O)GranitesfromtheBritishTertiaryIg-neousProvince,WesternScotland[J].EarthPlanet.Sci.

Lett.,2001,184:377-392.

[61]ValleyJW,KinnyPD,SchulzeDJ,etal.ZirconMegacrystsFromKimbelites:OxygenIsotopeVariabilityAmongMantleMelts[J].ContributionstoMinerallogyandPetrology.,1998,133:1-11.

[62]KingEM,ValleyJW,DavisDW,etal.OxygenIsotopeRatiosinArcheanPlutonicZirconsfromGranite-GreenstoneBeltsoftheSuperiorProvince:IndicatorofMagmaticSource[J].Pre-cambrianResearch.,1998,92:365-387.

[63]BindemanIN,ValleyJW.FormationofLow2δ(18O)RhyolitesAfterCalderaCollapseatYellowstone,Wyoming,USA[J].Ge-ology,2000,28:719-722.

[64]GilliamCE,ValleyJW.Lowδ(18O)Magma,IsleofSkye,Scotland:EvidencefromZircons[J].Geochem.Cosmochim.Ac-ta,1997,61:4975-4981.

[65]陈道公,DelouleE,程昊,等.大别-苏鲁变质锆石微区氧同位素特征初探:离子探针原位分析[J].科学通报,2003,48(16):1732-1739.

[66]郑永飞,陈福坤,龚冰,等.大别-苏鲁造山带超高压变质岩原岩性质:锆石氧同位素和U-Pb年龄证据[J].科学通报,2003,48(16):110-119.

[67]MonjzsisST,HarrisonTM,PidgenRT.Oxegen-IsotopeEvi-dencefromAncientZirconsforLiquidWaterattheEarth’sSurface4300MyrAgo[J].Nature,2001,409:178-181.

第5篇:地球化学范文

1研究区地质-构造特征

研究区位于内蒙古自治区与黑龙江省接壤部分,呼伦贝尔市阿荣旗北部.地理位置在东经123°00′,北纬48°20′,大兴安岭山地与松嫩平原过渡区,属于大兴安岭中段森林浅覆盖区.该区构造发育,伊尔施早华力西地槽褶皱带与东乌珠穆沁旗晚华力西地槽褶皱带接触部位,而被大兴安岭中生代火山岩带切割,位于兴安地槽褶皱系.大兴安岭火山喷发带东西分别由嫩江-八里罕断裂和乌奴耳断裂隔开,断裂两侧分别为嫩江断陷盆地和海拉尔盆地.研究区位于嫩江断裂带的西侧,发育各个时期的北东向压性-压扭性构造和北北西向脆性断裂.东侧为隆起带与断陷盆地相联结处,为嫩江-八里罕断裂带,沿嫩江河谷延伸.区内古生界、中生界及新生界地层均有分布.古生界为上二叠统林西组(P3l),主要为一套板岩、变质砂岩、变火山灰凝灰岩夹细砾岩.中生界为下三叠统老龙头组(T1l),白垩系下统光华组一段(K1gn1)、光华组二段(K1gn2),白垩系下统甘河组(K1g).老龙头组为一套变安山岩夹(或互层)陆相碎屑岩组合;光华组一段主要岩性为火山碎屑沉积岩为主夹灰黑色油页岩,光华组二段主要岩性为中酸性火山岩-火山碎屑岩.新生界主要为第四系,侵入岩主要为中生代的中酸性岩类,以中深成的花岗岩岩基为主(图1)[13].

2地球化学图推断构造的原理及准则

在相同的大地构造单元或区域地质条件下,成矿地球化学元素无论在成矿能量或在富集程度上都是不均衡的.空间上就造成某些地段某些元素富集,某些元素相对含量较低,即地球化学元素在时空上的叠加性.其体现的是亲和势相同或相近的地球化学元素整体间的关联性,每一种分带呈现相近的元素地球化学分布特征的相似性[4,14].断裂构造对元素背景的变化控制主要表现在以下几个方面[3]:(1)沿断裂带大多数元素含量发生突变,形成地球化学梯度陡变带;(2)沿断裂带常出现具热液特征的元素异常,且呈带状、线状、串珠状分布;(3)沿大多数断裂带,部分元素发生局部、带状贫化,形成带状、线状、串珠状分布的低含量区域.叶天竺等[15]认为反映大断裂或区域性断裂构造的特征线,多数是地球化学异常组的界线,反映控制异常分布规律的特征线,多是地球化学富集区或异常轴线.依据上述特征,在利用地球化学图推断构造时遵循以下准则:(1)不同地球化学场的分界线;(2)地球化学等量线宽窄突变;(3)地球化学等量线发生同步扭曲;(4)地球化学等量线沿一定方向有规律地出现密集带;(5)串珠状排列的局部正、负地球化学场;(6)正、负异常轴、带发生有规律的错断.根据上述原理在研究区推断出断裂构造19条.对研究区铜和砷不同地球化学场分布可以看出,这两个元素的正、负地球化学场分界线明显为地层与侵入岩岩性界线.再对同一地球化学场内的微观地球化学场分布进行研究划分,对本区进行地质体或地球化学分区(图2).

3各推断构造带及地质体地球化学特征

F1断裂位于研究区北西端,呈北东向,为铜的低背景区.F2断裂带呈北西向,断裂分别穿越铜的高背景和低背景,在断裂带北西端铜低背景区形成地球化学梯度陡变带,南东端铜的高背景区沿着断裂出现明显错断,沿着断裂总体上表现为串珠状的背景含量分布.F3断裂带沿查巴奇-七一沟里一带呈北东向延伸,南西端止于阿伦河河谷,北东端止于晚侏罗世粗中粒二长花岗岩,断裂带被F2断裂截断,反映了断裂带之间的新老关系.南西端为不同地球化学场的分界线,北东端分布于地球化学梯度陡变带,该特征尤以砷元素表现明显.F4断裂带北西向分布,由铜的串珠状低背景场组成,砷元素表现为地球化学等量线发生同步扭曲.F5、F6断裂带北东向分布,均由铜的串珠状较高背景组成.F7断裂带由串珠状排列的局部正、负地球化学场组成,分布于阿伦河河谷与岩体接触部位,该断裂带应归属于阿伦河大断裂.F8断裂带北西向分布,地球化学特征与F4断裂带地球化学特征极为相似.F9断裂带北东向分布,由铜和砷的串珠状高背景组成.F10、F11断裂带为铜的串珠状较高背景组成,分别呈北东向和北北东向分布.F12断裂带由一北西突出的弧形带,该弧形带两侧铜和砷元素均为高背景与低背景及较低背景分界线.F13断裂带由铜的串珠状高背景场组成,紧邻断裂带南西侧为铜和砷的不同地球化学场的分界线,且地球化学等量线发生同步扭曲,推测该断裂带应为花岗岩侵入界线.F14—F18断裂带由铜的串珠状低背景场组成,断裂带展布方向不同.F19断裂带由带状的铜和砷的地球化学高背景场组成,断裂带呈北东向分布.划分圈定的地球化学区即地质单元,与结合野外地质调查得到的地质概况一致,铜和砷地球化学低背景区推测为侵入岩区,地球化学低背景和较低背景对应着不同的侵入体.铜和砷地球化学高背景区推测为研究区古生界上二叠统林西组板岩、变质砂岩、变火山灰凝灰岩夹细砾岩和中生界下三叠统老龙头组变安山岩夹(或互层)陆相碎屑岩组合,根据野外调查及变质作用特征,为区域动力热流变质岩和接触热变质岩.地球化学背景区推测为光华组一段火山碎屑沉积岩为主夹灰黑色油页岩及光华组二段中酸性火山岩-火山碎屑岩.

4地球化学推断断裂的可靠性分析

断裂构造对地球化学元素异常空间分布和形态具有明显的控制作用,综合地质、地球物理、遥感信息等对研究区推断的19条断裂带进行对比研究表明,多条断裂带与野外地质调查实测或推测断裂、地球物理方法推测、遥感信息解译得到的断裂一致(见图3).F1断裂带与地质推测F1断裂、遥感解译北东向断裂一致,野外地质观察地表可见明显的断层三角面.F2为研究区较大的一条断裂带,是本区较晚的断裂,切割研究区F3、F5、F6断裂带.F3断裂带被F2断裂带切割,与地质推测断裂F11(查巴奇-柳毛沟韧性剪切带)及遥感解译得到的断裂带吻合.野外地质调查采集石英变形特征表明,该断裂带为右旋推覆剪切性质,即由北西向南东方向推覆,同时还有斜向逆冲特点.F5、F6断裂带北东向平行分布,可能为一条断裂带被北西向F2断裂带切割形成,与地质调查推测F13断裂一致,野外观察显示为一碎裂岩化石英闪长岩带,宽度达数百米,可见该主断裂具有近于水平的阶步,性质为右行走滑断裂.F7断裂位于地质推测断裂F10、地球物理方法推测断裂F1西侧,并与二者同向分布,该断裂带可能为阿伦河断裂带.F8断裂带与地质调查推测断裂F15及遥感解译断裂一致,根据野外观察该断层性质为右行断层,断层切割光华组火山岩.F9断裂带与地质推测断裂带立新六队-黎明村断裂吻合.F10、F11断裂带与地质推测尉家点和黎明村处的两条断裂带一致,与地球物理推测F3深断裂一致.地球物理特征显示断裂倾角较陡,是一条较宽的断裂带,沿断裂带有多处不同时期的岩体侵入,次级断裂和脉岩也较发育.F12弧形断裂带推测为右侧区域为光华组火山盆地界线.F13断裂带位于团结屯,与地质推测断裂重叠.在F14断裂带处地质调查及遥感解译结果显示均存在同向及规模相近的断裂,与地球物理方法推测深断裂F3一致.F15、F18断裂带北西向分布,地质调查及遥感解译结果显示均存在同向及规模相近的断裂.F16、F17断裂带北东向展布,与地质调查推测及遥感解译断裂极为吻合.F19断裂带位于研究区东南端新兴屯处,遥感解译显示该处存在环形构造,地质调查推测该断裂处存在规模相对较小的断裂带.从划分圈定的地球化学区看,多数地球化学场的分界线准确地反映了地层与侵入体的接触带,明显的地球化学高、低背景场分别对应着地层与侵入体.该方法难以解决部分同成分的侵入岩、火山岩和变质岩的进一步识别问题,如研究区火山岩为光华组一段及光华组二段火山岩-火山碎屑岩需进一步填图.

5结论与讨论

第6篇:地球化学范文

[关键词]地球化学 探矿 思考

一、地化探矿几个问题的分析

1.矿床区分和矿化异常,是多年来地球化学探矿工作的首要问题,使用当前世界上各种先进的地球化学测量办法可将金属矿床划归为一种地球化学异常。而寻找金属矿床问题,也就可以归结为寻找这种地球化学异常。用各种地球化学测量方法,可以查明各种地球化学异常。但所发现的异常数却要超过工业矿床数的许多倍,并且由于矿床产出的地质条件和景观地球化学条件的不同,往往会出现小矿异常大或大矿异常小的情况。在个别情况下,那种小(弱)异常还可能被天然的和技术上的干扰所掩盖。这就要求查明由一定规模和产出条件的矿床,在地球化学场中所产生的异常,并从发现的大量异常中,划分出那些与工业矿床有关的少量异常来。这就是地球化学异常评价问题。

地球化学异常评价的内容是:(1)定性,即确定异常性质,鉴别矿体异常与非矿异常。非矿异常中,主要是矿化异常,也就是达不到工业要求的矿化所引起的异常。(2)定位,即判断异常与矿体在空间上的关系。(3)定量,即估计矿体的埋深、规模、产状、形态、矿石组分、成因类型等。这三条中,第一条是异常评价的根本问题,对它有两种认识:一种观点是,认为化探能够区分矿体与矿化异常。理由是,元素集中到一定程度才成为矿体,元素组合和含量的变化与矿化应有本质的差异。据称,苏联就解决了异常评价中的这一关键问题。其准则是:a.矿化晕中组分比矿体简单,且异常孤立零散,没有中心,分带不明显。b.组合(累加或累乘)晕指数值的变化曲线在横交矿化走向方向上,不能形成明显的最大值。c.在相似地质条件下,矿化异常规模小。此外,结合构造、岩性、蚀变情况和其他方法,可以有效地鉴别矿体与矿化异常。地球化学障的研究,也可能有助于这种鉴别工作。另一种观点是,元素集中到什么程度就算是矿体,是根据当前采、选、冶的技术水平由人们确定的,今天属于矿化的,将来也可能算做矿体,即认为矿化与矿体没有本质差异,两者的异常不能区分。例如,斑岩铜矿床,平均Cu含量达0.2的矿化斑岩体,与含铜矿床的斑岩体0.4,根据地球化学资料基本上无法区别开来。如在理论上区分矿体与矿化异常是不可能的,而我们在实际运用中却硬要区分,那是徒劳。但如能区分,而人们不想法区分,那便是保守,因此这是个非常值得探讨的问题。

2.地球化学异常模型与实际运用

探寻地球化学异常通过模型设定并在实际中加以运用,是实现这一目标的有效方法。近年来,国内外通过编写例案,建立了一系列矿床地球化学异常模型,这种模型是矿床成因模型的重要组成部分,是成矿的客观表现。它是从大量实际资料中抽取出来的元素地球化学异常共同特点,概括地表达了元素或化合物在不同地区、不同类型金属矿床上,在周围空间上和时间上的变化规律性。它表达了:(1)地球化学异常的几何形态(异常的几何形态,大体上与矿体或矿化带的形态相一致),直观地反映了形成矿体或矿化带或晕的控制因素。(2)组分及其分带性,即对于各种类型矿床原生晕,晕中组分与矿石组分完全一致,并具有明显的垂直和水平的分带性,客观地反映了矿石的成分及矿物的空间分布规律。(3)元素浓度分带特征,即晕中元素浓度随着远离矿体、矿床、矿田乃至矿带,一般呈现逐渐降低的规律,它反映了元素含量梯度的变化,可用来判断矿化中心,以及鉴别富矿化与分散矿化。

建立地球化学异常模型,对于地球化学资料的综合分析和总结,都是一种较理想的表达方式。它简单、直观、易于理解又便于利用。由于资料的限制,新建立的模型可能会有不少欠缺,这就有待于今后有了更新的资料时,对原来的结论进行修改,这也是科学推理的正常过程。又由于地质情况的复杂性.不同地区,不同类型矿床.地球化学异常并非完全与模型符合不同地区,相同类型矿床,地球化学异常也往往不符合(重现)。因此.在实际运用中,在未知区所获得的异常.只要某些方面与模型符合、复合,就可大胆提出验证意见。因为完全符合、复合,在目前是不可能的。

3.试验测量工作的重要性

何为实验测量就是指在一个地区着手进行生产之前,选定最佳采样方法和分析方案是十分必要的。它是通过选择与所要寻找的矿床类型,地质及地球化学景观条件尽量相似的已知矿床进行试验确定的。这就是试验测量。

对不同的地球化学测量方法,实验测量的内容也不同。归结起来,其内容大体是了解覆盖物的性质、岩石性质、地质构造特点,选择取样介质,确定取样密度、样品粒级、取样层位:确定样品处理方案:选择指示元素:测定未受矿化影响或影响很小的岩层中的金属含量,确定地球化学区域背景值、局部背景值和异常值;研究地球化学异常特点,各种影响因素,提出找矿标志,确定解释评价地球化学异常资料的准则,等等。

试验测量是在以往的资料基础上.借鉴实际经验,有重点地进行。对样品类型、取样介质、指示元素等有效性检验,是实验测量的一个重要部分。

4.化探及应用程序基础工作

通过近二十年的地球化探矿工作的总结,我认为地球化探工作的工作程序是:取样一加工一分析一整理资料一检查异常一验证异常。从中可以看出,“验证异常”之前的工作,都是基础工作:笔者认为,化探基础工作中,最需加强的应为以下几方面。

(1)地球化学理论工作。研究各种地球化学异常的形成机理和影响因素,是最基本的基础工作,它是制定相应地球化学普查方法的依据、这一工作,一方面是积累和总结实际资料,另方面是实验,如进行成矿、成晕的地质和地球化学模拟实验及数学模拟实验。主要研究在各种地质和地球化学作用过程中,元素的迁移方式,集中的环境、条件及存在形式。第三方面是进行温压地球化学研究这些基础工作.能为制定地球化学普查方法、正确确定取样介质、选择合理的分析方法提供理论依据。

(2)地质基础工作。主要包括对构造、岩层、蚀变、矿化现象的观察了解,对矿化及成因类型的认识,并加强对岩石学及矿物学的研究。

(3)实现编录工作的标准化。

(4)分析基础工作。扩大分析元素的范围,今后应争取达到80种增加分析手段,努力研究出高灵敏度、高精确度、高准确度的相态和价态分析以及微区超微量分析方法一建立分析中心,实现基本分析的仪表化和自动化,提高质量。

(5)制定严密的取样、加工、分析、资料整理等一整套的质量监控方案。

(6)实现资料整理的标准化,建立基础资料。其中应包括:我国各种岩石的区域地球化学背景值,各种介质如水、空气、植物、土壤中元素的平均含量:各种岩浆岩的平均化学成分,各种类型矿床矿物的包裹体温度、成分、盐度、同位素测定数据:主要指示元素的存在形式;成矿、成晕的热力学数据:各种地球化学测量的原始数据图、元素地球化学图、地球化学成矿预测图、景观地球化学图等基本图件;报告书:各种地球化学异常模型和数学模型:典型研究例案及找矿例案等。

建立相应的系统。例如组织管理系统,元素的中心测试系统,岩石学和矿物学中心测试系统,地球化学数据处理系统等,是实现、加强基础工作的组织保证。

二、对地球化学探矿工作中几个技术补充说明

1.层控矿床在地层剖面上的岩性特点是:下部通常是一套碎屑岩,上部是碳酸盐岩石,工业矿体一般存在碳酸岩石的中下部。下部碎屑岩(特别是细碎屑岩)具隔水性,上部碳酸岩石是含水岩层,两套含水性不同的接触带有利于地下水活动,为成矿作用提供水源。

2.层控矿床成矿物质来自矿源层,矿源层中可能初步富集了某种成矿元素,但更主要的是分散于矿源层中的物质能否被“解放”出来转入溶液。正如“两次成矿说”所指出的:“物质的玻璃状态(火山玻璃)成混合物状态(如碎屑沉积),各组份之间没有化学平衡关系。这些岩石在扭应力和热力驱动下,容易晶化,在结晶过程中,不易进入晶格的某些金属元素则转入溶液形成矿液,所以在许多情况下,碎屑岩和火山岩通常是层控矿床的矿源层,为成矿作用的来源。

3.层控矿床工业矿体的形成是异地改造富集的控矿层位可分为矿源层和储矿层两部分。其中:矿源层层位稍低,在许多情况下由碎庸岩和火山岩组成;储矿层稍高,常由破酸盐岩石组成。

4.产于厚层状灰岩和厚层状白云岩中的矿体,大都呈不规则脉状,线状,串珠状产出,形态复杂,不易勘探;产于薄层状泥质灰岩和薄层状灰岩接触带(或两种岩性突变带)的矿床,一般顺层发育,形态比较规则,多呈似层状和层间透镜体产出,容易勘探。这种现象可解释为:厚层状灰岩和厚层状白云岩层理不发育,岩性单一,在扭应力牵引下,多产生节理裂隙,不易形成层间剥离,矿液只能沿节理裂隙活动,难于集中,矿体形态复杂,分散;薄层状泥质灰岩与薄层状灰岩接触带(或两种岩性突变带),由于岩性差异大以及层理发育,在扭应力牵引下,不易产生节理裂隙,却容易形成层间剥离,矿液易于集中,常形成顺层发育的大型矿床。可见,岩性时矿床的控制是不容忽视的。

第7篇:地球化学范文

随堂测验设置的必要性

教学的主要目的之一是为了让学生尽量掌握并熟练运用授课过程中所讲授的内容。而“地球化学”的知识结构有着严密的逻辑性,每次课程的组织完整,而几次课程之间紧密相连。例如第五章同位素地球化学第一次课程主要围绕放射性衰变定律和衰变方程展开,而第2~4次课程所讲授的Rb-Sr、Sm-Nd、U-Th-Pb和K-Ar、Ar-Ar体系也以其为基础展开。针对“地球化学”的教学内容,提炼1~2个关键问题,在每节课课堂活动的前5~10分钟设置随堂测验,不仅可以有效地检验上次课程的授课效果,以便本次课程能顺利展开,也可以充分的调动学生的积极性,加深其对课程重点和难点的掌握与理解。

绪论中地球化学思维的备课

地球化学的绪论是“地球化学”的第一次课,是学生对该门课程的第一印象。绪论中需向学生展示的一个重点问题,也是今后日常教学中需重点培养学生的一种思维方式,即地球化学思维—见微知著。见微知著地球化学思维是该学科的魅力所在,其充分展示对学生知识和能力培养具有重要作用,还可以使学生对地球化学保有充分的学习热情。由于大三学生第一次接触见微知著的思想,如果只照本宣科,很便容易使问题浮于表面,难以让学生理解并领会。为此,结合学生的知识结构(已进行过周口店实习),可以从周口店雾迷山组白云岩和房山岩体讲起,具体引入溶解度、岩浆混合作用这些在初高中化学课及大二岩石学课程中已熟悉的知识领域,并从地球化学的角度重点讲解地球化学对这些现象及问题的思维方式及在这些基本科学问题中所发挥的功用。之

后,进一步结合碎屑沉积岩地球化学实例,简明地讲述砂岩中碎屑锆石年龄及Hf同位素特征如何判别区域构造演化特征的方法。并结合锆石阴极发光结构照片,锆石U-Pb年龄谱以及区域构造演化图,形象地展示见微知著的思想及地球化学在解决地质作用过程中的作用。接着,讲解见微知著思想的人文共通性。最后,通过白话点出见微知著的智慧—用智也用力,强调理性思维,尊重自然界的基本规律。

通过上述方法,见微知著的地球化学思维可以得到了充分的展开,在实际教学中收到了较好的授课效果。

晶体场理论的备课

晶体场理论由于涉及部分量子力学的内容,对非物理学专业的本科生的学习和掌握均具有一定的难度。然而,由于过渡族金属元素占地壳元素总量的约50%以上,因此控制其结合规律的晶体场理论的讲解也是该章节的重点内容之一。如果在授课过程中过分强调其为该章的难点,可能会导致学生产生对该理论的畏惧心理,丧失了掌握晶体场理论的信心,从而影响授课效果。针对这一点,建议在授课时,首先从学生在高中物理已具备的库仑定律引入该课程(图2),考虑一个原子填充正八面体(四次配位型),从这个层面考虑斥力对电子云分布情况的影响,进而导入晶体场中s,p,d轨道状态的y2极坐标图,以增强学生的理解。在授课时辅以心理暗示:对晶体场理论的掌握应属于其能力范围内,给学生学习信心。对同学们自信的建立使学生们有了更加积极主动的思考,以便对该部分难点内容的掌握。

第8篇:地球化学范文

【关键词】地球化学模式;成因;原生模式;次生模式

所谓地球化学模式,主要就是指各类矿物成分在地球表层或地下布局形成的某种状态,从当下对地球化学的探索发展状态看,俨然能极其简单地找寻出种各种类型的地球化学模式,却无法精准详实的解释地球化学模式不同种类的现象,这也一直是摆在众多从事地质勘测的化学家们面前的一道难题。

1地球化学模式按照成因的分类

针对形成原因的区别可以说地球化学状态划分成原生模式和次生模式两种。那么,原生模式主要指在旧有的结岩石中已存的某种地球化学形式,而次生模式指的是原生模式在表面被风化后搬运到其他异同地表的载体里某种地球化学形式状态。

1.1原生

因为原生地球化学模式概念和实际应用中存在差异化现象,因此我们常说的原生地球化学模式指的是诸多岩石中的矿物元素,而原生地球化学模式又能被分为同生和后生两种模式。同生模式又指与围岩共同作用产生的一种分散状态,后生模式则指某种矿物以规律的运行陆续侵入至基质岩石中所形成的一种分散状态。而从地球化学模式形成原因看,同生模式是在火成岩浆的组群、堆积作用或是变质作用下完成的。而同生异常一般呈现出大到与整个矿源层相当的地球化学省或地球化学域,微小到和个别局部岩体差不多的小面积不规则。后生模式指的是在热液分散效果下所形成的分散模式。其中该模式与四周延时形式在我国的研究中被统称为散发形式。这种后生模式的无规律和迥异现象通常是转变为部分原生晕。此外渗滤模式在矿体勘察中产生极其关键且重要的效果。这是由于渗滤状态是原生晕组成分带和几何形态建立的基础,所以对渗滤模式的探究能够为研究院们探寻隐藏的矿床提供参考。

1.2次生

次生非常规主要是指岩石中的矿体和原生非常规在风化效果下其含有的各种矿物元素均遭到浸蚀而从原地点扩散出去并侵入到表生环境载体中。与原生地球化学模式一样的是次生分散模式也分为“同生和后生”两种模式。这里的同生模式是指载体同期形成的扩散模式,而后生模式指的是在载体形成之后的扩散模式。在同一种载体内部,同生分散模式和后生分散模式能够长期共生,相互依存。同生模式与后生模式的分类主要是按照时间来划分的,次生模式还能够按照其形成的形式来进行划分,如果依照形成形式的差异化,次生模式在早期的研究中有能够分为水生、碎屑和生物形成的模式三大类,但伴随进行该研究的人与日俱增,大家似乎已经慢慢认识到次生模式的形成有着绝对不是简单单一化的成因,而是一个极其复杂的过程。简单的用早期分类的三种类型已经无法对其进行整体概括,所以气成、物理和化学形式也被人们列入次生模式的形成原因中来了。那么,次生模式中的水生模式又指什么?简单说,它是一种地下水和地面谁对矿物组件的水体搬运中产生的一种非常规的形态。碎屑模式指的则是由水、冰、风的机械搬运和重力功能下所形成的一种模式。生物成因模式就是由植物代谢将矿物元素从土壤中吸收,在植物体内形成的一种特定模式。前面已经简述到次生化学模式的形成原因极其繁琐且困难,那么下面就先简单的叙述一下次生模式形成的过程。通常人们说次生化学模式的形成过程需要在矿物组件散发、重组、同生模式元素搬运和元素锁定这些重要的关键流程。

2地球化学模式的成因过程

在此化学模式形成的早期就是部分矿物释放的过程,某些矿物从原生矿体后者原生晕中被彻底散发出,而这些被释放出来的矿物元素尤为后来的搬运转移的提供了可行性前提,在款物元素彻底释放的或承载的有些可以直接形成次生非常规。一般而言在矿物元素释放过程中物理风化、化学风化的积石会给矿物元素的释放程度带来最为直接的影响。物理风化对于矿物元素释放的影响通常是发生在干燥、极寒或者切割式复杂的区域。各区域温差转变所产生的岩石变小或变大、冰川触碰、河流冲刷和风化侵蚀等都是自然现象形成过程。而化学风化则是一种通过水、生物、气体三种作用下对岩石进行氧化剂融化从而使款物元素彻底释放出来的全过程。而生物风化可以之间通过产生微生物、有机物的方法来对矿物元素进行消融释放又能够借助于植物的根部来加快岩石的物流风化从而完成款物元素的彻底释放。通过矿物元素彻底释放后就直接侵入了元素重组的过程中。那些被释放出来的矿物元素能够直接演变成个体矿物而侵入到款矿物元素搬运的流程中,也可与其他的载体实现有效融合然后在进入搬运流程。在这个流程中,矿物元素结合的方式能够借助于吸附、消融也能够是是全面吸收。这三种状态的最大差异在于吸附属于物理方式,消融属于化学方式而吸收则是属于生物方式。物理方式的矿物元素组合主要是胶体的吸附、粘着吸附和微气泡表面吸附。化学方式的矿物元素组合则是矿物元素借助于地下水、地表水中的消融,再和水中所含的离子等重组成可溶性的溶液。生物形式的矿物元素组合则是凭借植物对矿物元素的完全吸收从而来完成的这一过程。某种矿物被彻底散发出来后能呈现出个体形态,然后还能借助于更为丰富的方式来重组,下一步再进入矿物组件系统的搬运流程,在整个搬运期间矿物组件会被其他大量的物理、化学和生物营力进行大规模搬运。最后,就是所有矿物组件的牢固过程,但是这个牢固也不过短时间内不一种稳定状态而已。矿物组件的稳定能借助于大量多样化的途径来实现,比如常见的有水动力变小、氧化还原条件的改变、氧化物和硫化物等的吸收、有机物融合、生物的沉淀等。当成矿组件和伴生组件在矿体遭遇风化作用后,从矿石散发出到四周载体中,使其在四周载体中的存在数量有不断增长的趋势或形成矿物的组件中在不断累积后残留的热液还在持续向前面的围岩中不断蔓延,造成围岩中矿物元素的保有量也不断长高的走向,这也是勘察地球的专业领域研究人员和专家们齐心协力致力探寻的关键内容。但是,地球化学分散态势就是指矿物组件在某个超大空间范围中的浓度、变化程度、布局的形态以及存在形式与四周的巨大范围内的矿物组件分布存在巨大差异。

3结语

探索、找寻和研究地球化学模式的分类和形成原因,对于探寻非常规的模式和形成过程起着极其重要的直接作用,而地球化学模式根据多种分类标准又被划分为五花八门的种类。因此,化学领域专家们主要探寻的就是根据不同的形成原因划分出的不同的地球化学模式,即原生、次生的主要内容。深入研究地球化学模式能够有利于人们探寻和追逐深藏的矿床,因此具有非常重大的现实意义。

参考文献:

[1]谢学锦.走向21世纪矿产勘查地球化学[M].北京:地质出版社,1999.

第9篇:地球化学范文

关键词: 城市环境; 地球化学调查; 生态评价; 污染指示物

自上世纪60 年代系列公害事件发生后, 环境问题已成为倍受各国关注的国际性的重大问题。作为人口高度密集的城市区域, 其环境状况早已引起世界上许多国家的高度重视, 在过去的几十年里, 一些地球化学研究相继集中在城市区域。目前, 城市环境地球化学调查已在世界各地展开, 如亚洲的香港[1]; 欧洲的伦敦[2]、柏林市[3], 非洲的哈博罗内市[4]。调查的目的在于查明市区的污染水平及郊区的“背景值”, 区分鉴定不同的污染源, 评价城市环境的生态效应, 研究城市环境与人类健康的关系。

1 城市环境地球化学调查的技术路线

1.1 采样点布置方案

目前, 国外的城市环境调查一般在两个区域进行, 即郊区和城区。在郊区的调查一是为了确定城区的背景值, 二是获得城- 郊地理变化区域内元素分布的地球化学变化梯度。如Lind等在瑞典的斯德哥尔摩市调查土壤重金属的含量时, 以城市最繁华地带为中心, 分带布置样点, 带距为0~3km, 3~9km 和>9km[5];Birke 等在德国柏林市的调查中就包括大范围的郊区区域[3]。通过对比城- 郊区的地球化学特征来揭示人类活动对城区地球化学环境状况的影响程度。

为了调查城市不同区域内的环境地球化学状况,研究不同的用地类型对元素分布的影响, 分别在城市的不同功能区域分类取样, 即: 郊区土壤、工业区土壤、居民区土壤、商业区土壤和农业土壤[3- 5]。主要采集表层土壤(0~5cm)。在不同类型区域内选择代表性点位取垂向土壤剖面样品。城区的土壤难以实现均匀的网格化取样, 一般按公园和绿地的分布随机布置取样点。

1.2 采样介质

环境地球化学的采样介质包括土壤、大气、水、水系沉积物、生物样等。但目前城市环境地球化学调查主要集中在土壤、大气颗粒物(或气溶胶)、大气降尘等三种。其中较常用的是采集和分析城市浅层土壤样和降尘样。

在街道两边或高层建筑物顶部收集降尘并结合地面土壤是城市环境地球化学调查的主要方法。如Rasmussen等在渥太华市内取居室内灰尘、附近的街道降尘和公园土壤进行比较来研究该市的环境质量[6]。降尘和土壤对比调查, 即可查明元素在不同介质中的污染水平, 还有助于分析污染物的来源。

2 城市环境地球化学的解释与评价

2.1 城市环境的地球化学解释

城市环境调查结果的地球化学解释是指对城市环境中重金属元素的分布特征、成因及其来源进行解释,毕业论文 研究元素地球化学分布模式、迁移转化规律和机理, 建立城市环境地球化学调查成果解释体系。

2.1.1元素来源判别

对城市环境中污染物的来源及成因进行分析判断是城市环境地球化学调查的重要内容。多元统计方法在研究城市环境的物源判断中具有广泛的应用, 并以聚类分析和因子分析为主[7- 9]。不同来源的元素在因子分析中常常进入不同的主因子或表现为聚类分析中的不同元素组合, 根据元素的组合特征来区分元素的来源。如Manta 等在意大利的城市土壤中发现了Cu、Pb、Zn人为源的因子组合, 而V, Ni, Mn, Co等元素作为自然源进入另一因子, 并在聚类分析中组合在一起[8]。

城市环境物源判断的另一重要方法是富集因子(EF)法, 它是一种能反映不同地质环境的化学元素比率方法, 用代表陆地来源的元素(如Al、Ti、Zr 和稀土元素等)和代表海洋源的元素(Na)作为参考元素对样品中的元素含量进行标准化, 以平抑自然差异对元素含量的影响, 在此情况下出现的较高的富集因子值即意味着人为源的存在, 这种方法在环境地球化学判断

元素来源及富集程度中具有非常广泛的应用[10- 11], 特别是在大气颗粒物或气溶胶介质中的应用效果尤为显著。其计算公式为[11]:

EF 海(X)=( X/Na) 气/( X/Na) 海(1)

EF 壳(X)=( X/Na) 气/( X/Na) 壳(2)

其中, 公式(1)为判断海洋源的计算公式, 以Na为参考元素; 公式(2)为陆地源的计算公式, 以Al 为参考元素。(X/Na)气、(X/Na)海、(X/Na)壳分别代表元素X在大气颗粒物、海水及地壳中的含量。

通常将EF>10 作为大气颗粒物的人为源标志。但在粒径为2.5μm 的大气颗粒物中, EF>5 即为人为源的标志[12]。

2.1.2元素分布类型及成因

在世界范围内的城市土壤中重金属元素含量普遍偏高, 但在不同的城市中变化很大, 这依赖于城市的历史年代、经济发达程度、硕士论文 不同的用地类型、汽油的添加济成分、车辆元件的组成等, 在城市环境元素分布及成因的解释中应综合分析以上各种因素。城市交通是产生重金属元素的重要途径之一, 如Cu 通常是汽车润滑剂的组分, 而Pb 曾一度是汽油的防爆剂, Sb 可以作为闸垫材料。因此, 交通是城市中Cu、Pb、Zn、Sb 等元素的主要来源。Romic 等发现, 燃烧和道路交通, 尤其是轮胎的磨损和消耗是城市区域内Cd 的主要污染源[7];Moller 等在大马士革调查时认为交通是表层土壤中Cu、Pb、Zn 等重金属元素富集的主要原因[9]。与历史久远的工业化城市相比, 相对年轻的城市具有较低的重金属含量, 如非洲的哈博罗内市[4]比悠久的重工业城市伦敦[2]、柏林[3]的表层土壤的重金属含量偏低[9], Li 等发现, 城市公园土壤中Cu, Pb和Zn 的含量与公园的年龄之间具有明显的相关性[1],即城市历史越长, 重金属含量越高。元素在表层土壤中的分布明显依赖于城市用地及工业类型, 如Birke 等[3]在柏林市调查中发现, Al,K, Si, Na, Sc 和Ti 主要是自然源, 即与母质的组成有关; 工业区域倾向于被Cu, Cd, Zn, Pb, Hg 污染; 农业区由于大量使用化肥和污泥, 富集Cd, F, Cr, Hg, Ni,Zn 和P 元素。尽管非洲的哈博罗内市比较年轻, 但它的不同区域仍然受Cr, Co, Ni, Cu, Zn 和Pb 等元素不同程度的污染。如城市中心和工业区的Co, Cu, Pb,Zn 等元素污染, 农业土壤中的Cr,Ni 污染, 居民区及工业区的Zn 污染[4]。

2.2 城市环境地球化学评价

2.2.1污染程度评价

将郊区土壤背景值与城市各功能区含量进行比较是了解城市环境污染水平最常用、最直接的方法。如瑞典斯德哥你摩市Hg 在市中心土壤中的含量是郊区背景值的20 倍, Pb 和Zn 在市区中的含量也远远高于背景值[5]; 在柏林老工业区, Cu 的最大值是背景值的2050 倍, Cd 是1638 倍, Hg 是1780 倍[3]。通过同一城市不同功能区内元素含量的对比以及不同城市之间的对比, 也常用来评价城市环境的污染水平。

农业土壤与城区内土壤不同, 除了农用化学品外,大气沉降、污水灌溉、垃圾填埋场等都会对农田中的重金属积累产生重要影响。对这部分的污染评价, 比较有效的评价方法是地质积累指标法(Igeo)和富集因子法(EF)。对大气污染物的评价, 富集因子法尤为有效。

2.2.2生态效应评价

( 1) 气溶胶的生态效应评价。大气固体悬浮物的粒径大小具有来源特征, 粗粒源于陆地尘埃, 而细粒源于燃料的燃烧[13]。颗粒越细, 危害越大, 极细的颗粒物可通过呼吸进入人体, 粒径小于10μm (PM10), 尤其是小于

( 2) 元素生物有效性评价。研究元素生态效应的常规方法是连续偏提取法, 在城市环境调查中, 也有相关的研究实例, 如Zhai等调查发现, 医学论文 由交通引起的人为源的Pb主要以有机质吸附和铁- 锰氧化物态存在[4]; 香港和伦敦的路尘中, Pb, Zn主要以铁锰氧化物相存在, Cu主要以有机质吸附态存在[15]。影响降尘中元素有效性的重要因素是降雨的pH值。一般情况下,在较低pH条件下元素易于溶解, Alloway等报道其可溶性Cd平均为总量( 降尘量) 的60%[16]; 这可能是由于人类活动输入的硫和氮的氧化物使雨水酸化。因此,在易出现酸雨的城市区域具有较大的生态风险性。

3 城市环境地球化学调查应解决的重点问题

3.1 开展城市环境的立体空间调查

目前城市环境地球化学调查主要集中在土壤和大气, 缺乏系统的地下水及地表水资料。在城市环境的地球化学元素循环过程中, 起源于自然地质作用和人类活动的元素在土壤- 大气- 水- 生物系统内迁移转化, 借风力作用进入大气中的元素通过干湿沉降进入土壤和水体。世界各国所进行的城市环境地球化学调查, 获得了大量土壤和大气颗粒物等方面的资料, 但结合水体和生物样的调查不多。如果采样介质涵盖环境生态系统中的各个环境因子, 将有助于综合分析重金属元素在城市环境系统中的迁移转化规律, 建立元素在城市环境系统中的循环演化模型。

3.2 确定城市环境调查的污染指示物

城市区域内浅层土壤样及农业土壤深、浅层样是目前国际上广泛使用的城市环境调查指示物, 但是,以何种粒度的样品作为指示物尚没有统一。Birke等在柏林市的土壤调查中分析了

其次是大气颗粒物或是气溶胶。由工业排污、燃料燃烧、机动车交通等引起的污染物, 多以气态、颗粒物或气溶胶等形式存在[5]。一般情况下, 污染物含量依赖于粒径大小, 颗粒越细, 越具有毒性效应[16], 因此Fairley等认为, PM2.5适于作为颗粒物质引起的风险评估[17]。

另外, 重金属通过自然作用和人类活动进入大气圈, 它们主要以分子或颗粒物形式通过大气圈进行大规模的迁移[18]。在英国城市区域内Cd 的大气沉降速率为3.9~29.6g/hm2·a, 郊区为2.6~19g/hm2·a[7]。所以,城市区域内的表层土壤和路边尘土是大气沉降污染的有效指示物。

3.3 城市环境质量标准的建立

城市环境质量标准是城市环境污染评价、城市环境监测、保证大众身心健康的重要依据, 环境质量标准的建立, 依赖于大量的调查资料、科学的工作方法和实验结果。上已述及, 城市环境地球化学调查的指示物包括表土、降尘、大气颗粒物等, 不同的指示物应有各自的限度值。2000年, 世界卫生组织制定了大气质量标准, 如Pb, Cd的大气质量标准分别为500, 5ng/m3(WHO, 2000)。作为城市环境污染重要指示物的尘埃及表土等介质中的污染限度值还没有统一的标准。

[参考文献]

[1] Xiangdong Li, Chi - sun Poon, Pui Sum Liu. Heavy metal contamination of urban soils and street dusts in Hong Kong [J]. Applied Geochemistry, 2001,16 : 1361- 1368.

[2] ThorntonI. Soils in the Urban Environment[M]. Blackwell, Bullock P., Gregory P.J. (Eds.), 1991.

[3] Birke M, Rauch U. Urban geochemistry: Investigations in the Berlin Metropolitan area[J]. Environmental Geochemistry and Health, 2000,22: 233- 248.

[4] Zhai M, Kampunzu H A B, Modisi M P, et al. Distribution of heavy metals in Gaborone urban soils (Botswana) and its relationship to soil pollution and bedrock composition [J]. Environmental Geology,2003,45:171- 180.

[5] Lind M, Bengtsson H. Concentrations and pools of heavy metals in urban soils in Stockholm, Sweden[J]. Water, Air and Soil Pollution, 2001,1: 83- 101.

[6] Rasmussen P E, Subramanian K S, Jessiman B J. A multielement profile of housedust in relation to exterior dust and soils in the city of Ottawa, Canada[J]. The Science of the Total Environment,2001, 267: 125- 140.

[7] Romic M, Romic D. Heavy metals distribution in agricultural topsoils in urban area[J]. Environmental Geology,2003,43:795- 805.

[8] Manta D S, Angelone M, Bellanca A, et al. Heavy metals in urban soils: a case study from the city of Palermo(Sicily),Italy [ J ] . The Science of the Total Environment , 2002 :229- 243.

[9] Moller A, Müller H W, Abdullah A, et al. Urban soil pollution in Damascus, Syria: concentrations and patterns of heavy metals in the soils of the Damascus Ghouta[J]. Geoderma,

2005,124: 63- 71.

[10] Mustafa Y, Semra T, Namik K, et al. Atmospheric trace elements in Ankara, Turkey:1. factors affecting chemical composition of fine particles[J]. Atmospheric Environment,

2000, 34: 1305- 1318.

[11] Chabas A, Lefevre R A. Chemistry and microscopy of atmospheric particulates at Delos[J]. Atmospheric Environment,2000, 34: 225- 238.

[12] Gao Y, Nelson E D, Field M P, et al., Characterization of atmospheric trace elements on PM2.5 particulate matter over the New York- New Jersey Harbor estuary[J]. Atmospheric Environment, 2002,36:1077- 1086.

[13] Günter J K, Komarnicki. Lead and cadmium in indoor air and the urban environment[J]. Environmental Pollution, 2005, 136:47- 61.

[14] Dockery D W, Pope C A. Acute respiratory effects of particulate air pollution. Annual Reviews of Public Health[J].Atmospheric Environment ,1994,35:2045- 2051.

[15] Wang W H, Wong M H, Leharne S, et al. Fractionation and Biotoxicity of Heavy Metals in Urban Dusts Collected from Hong Kong and Londonp[J]. Environmental Geochemistry

and Health ,1998, 20:185- 198.

[16] Alloway B J. Atmospheric deposition of heavy metals onto agricultural land in England and Wales[J]. Biogeochemistry of Trace Metals, 1999, 1: 414- 415.