公务员期刊网 精选范文 防震设计论文范文

防震设计论文精选(九篇)

防震设计论文

第1篇:防震设计论文范文

关键词:建筑结构;抗震效能设计

地震实践表明,破坏性地震引起的人员伤亡和经济损失,主要是由于地震时产生的巨大能量使得建筑物、工程设施发生的破坏和倒塌,以及伴随的次生灾害造成的。要想最大限度地减轻地震灾害,工程建设时必须进行科学合理的抗震设防,这是人类减轻地震灾害对策中最积极和最有效的措施。

1、基于结构性能的抗震设计理论

基于结构性能的抗震设计理论是以结构抗震性能分析为基础,根据设防水准的不同,将结构的抗震性能划分为不同的等级,设计者可根据业主的要求,确定合理的抗震性能目标和合理的结构措施。

1.1结构的基本性能水准

结构的基本性能水准包括适用性、破坏控制和安全性三个方面。安全性是指结构遭受可能发生的最大地震作用时对结构性能的最低要求;适用性是指在常遇地震作用下避免结构发生破坏,从而保证震后尽快恢复使用,也是结构所应具备的基本要求;破坏控制水准是在大震发生时控制财产损失、社会影响在可接受的范围内,该水准可由业主自行选择。

1.2设计理论的基本内容

基于结构性能的抗震设计理论的基本内容应包括地震设防水准、结构抗震性能目标和结构抗震设计方法等三个方面。

1.3地震设防水准

基于结构性能设计理论的实质就是要控制结构在未来可能发生的地震作用下的抗震功能。地震设防水准是指未来可能施加于结构的地震作用的大小。由于地震设防水准直接关系到未来结构的抗震能力,因此地震设防水准的选择在基于结构性能设计的理论中占有重要地位。放眼21世纪委员会(Vision2000)宣称,基于结构性能的设计理沦追求能控制结构可能发生的所有地震波谱的破坏水准。为了实现这一目标,需要根据不同重现期选择所有可能发生的对应于不同等级的地震动参数的波谱,这些具体的地震动参数称为“地震设防水准”。Vision2000在关于结构性能设计的研究报告中,建议设防地震等级如表1所示。

表1vision2000中的设防地及等级的划分

设防地震等级 重复发健时间 超越概率

常遇地震 43年 30年内50%

偶遇地震 72年 50年内50%

罕遇地震 475年 50年内10%

非常地震 970年 100年内10%

结构的抗震性能与结构的地震作用有关。通过对与上表地震等级有关的地震动参数的选择,可将结构在地震中的破坏程度控制在预计的范围内。另外,地震加速度峰值、频谱和持时是反映地震动特征的三要素,也是影响结构地震反应的重要因素。近场地震效应对结构也有较大的影响,而地震动三要素是与震源特征、传播途径、场地条件有关的,采用地震等级为设防标准,从设防地震出发,采用概率一致设定地震和估计近场地震动的其他方法,就可以对不同量级的设防地震的地震参数作出估计。可见,未来的规范应该采用设防地震动和设防地震等级两种参数作为地震设防水准。

1.4结构抗震性能水准

结构抗震性能水准表示结构在特定的某一地震设计水准下预期破坏的最大程度,结构和非结构构件破坏以及因它们破坏引起的后果,主要用结构破坏程度、结构功能性和人员安全性来表达;对于不同等级的抗震性能,都应根据结构类型、整体结构、竖向和横向承载构件、性能水准、结构变形、设备与装修修复使用等方面加以定义,应该表达为量化指标,以便工程设计和评估。

结构抗震设防目标是针对某一地震设防水准而期望达到的抗震性能等级。抗震设防目标的建立需要综合考虑场地特征、结构功能与重要性、投资与效益、震后损失与恢复重建、潜在的历史或文化价值、社会效益及业主的承受能力等诸多因素。美国学者建议将结构抗震性能目标分为三个等级,即基本设防目标、重要设防目标、特别设防目标。基本设防目标是一般建筑设防的最低标准;重要设防目标是医院、公安消防、学校通讯等重要建筑设防的最低标准;特别设防目标是含核材料等特别危险物资的特别重要建筑的最低设防标准。规范提出的抗震设防目标是最低标准,结构抗震性能目标可以根据业主的要求采用比规范的设防目标更高的设防标准。

2、超限高层建筑工程抗震应用示例

2.1大连金广枫景

7度设防的剪力墙结构,Ⅰ类场地,主楼平面为椭圆形且墙体全部落地。结构总高度170m,超过抗震规范适用高度42%,也比高层混凝土规程B级高度超过14%。

该工程的特点是超高较多,但小震的地震力比风力小,常规设计的截面承载力和变形为风力控制。所采用的性能设计要求是:墙体及其连梁的抗震等级采用特一级,比A级高度的剪力墙结构提高二级,而且上部轴压比大于0.2的墙肢设置约束边缘构件。底部加强部位墙体的承载力按中震弹性设计,可基本达到大震不屈服;同时,中震下的截面的平均剪应力为0.4ftk,接近满足大震不出现剪切裂缝的控制条件。总体上基本达到了上述性能目标C的判断准则的要求;考虑地震作用的不确定性,在延性构造上留有余地。

2.2北京兰华大厦

8度设防的框架-剪力墙结构,总高93m。底部五层的楼板偏于一侧,无楼板的一侧为穿层型钢混凝土斜柱,斜柱和斜支撑在五层顶板形成较大的拉力和压力。

针对上述特点,其性能设计的要求是:五层顶板采取加强措施确保静力和地震下的安全;斜柱采取措施减少长细比,并保证在中震下考虑P―效应的承载力按弹性设计,在大震下的变形可得到控制,约为1/450;增加框架部分承担的地震剪力,取20%的总地震剪力,且每个斜柱承担2%的总地震剪力。该结构的剪力墙和在六层以上的结构基本按规范的要求设计,故总体性能仅达到比性能目标E略有提高。

结语

基于性能的抗震设计仍存在一些有待研究和解决的问题,尤其是地震作用大小的不确定性以及计算模型和参数的准确性等问题,可以相信,随着工程的不断应用和研究工作的深入,将会趋于成熟。

参考文献

[1]徐培福等,关于超限高层建筑抗震设防审查的若干讨论[J].土木工程学报,2004,37(1)

第2篇:防震设计论文范文

关键词:高层建筑;抗震;结构设计;探讨

引言

现阶段,土与结构物共同工作理论的研究与发展使建筑抗震分析在概念上进一步走向完善,如果可以在结构与地基的材料特性,动力响应,计算理论,稳定标准诸方面得到符合实际的发展,自然会在建筑结构抗震领域内起到重要的作用。

1 高层建筑发展概况

80年代,是我国高层建筑在设计计算及施工技术各方面迅速发展的阶段。各大中城市普遍兴建高度在100m左右或100m以上的以钢筋为主的建筑,建筑层数和高度不断增加,功能和类型越来越复杂,结构体系日趋多样化。比较有代表性的高层建筑有上海锦江饭店,它是一座现代化的高级宾馆,总高153.52m,全部采用框架一芯墙全钢结构体系,深圳发展中心大厦43层高165.3m,加上天线的高度共185.3m,这是我国第一幢大型高层钢结构建筑。进入90年代我国高层建筑结构的设计与施工技术进入了新的阶段。不仅结构体系及建筑材料出现多样化而且在高度上长幅很大有一个飞跃。深圳于1995年6月封顶的地王大厦,81层高,385.95m为钢结构,它居目前世界建筑的第四位。

2 建筑抗震的理论分析

2.1 建筑结构抗震规范

建筑结构抗震规范实际上是各国建筑抗震经验带有权威性的总结,是指导建筑抗震设计(包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容)的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。它虽然受抗震有关科学理论的引导,向技术经济合理性的方向发展,但它更要有坚定的工程实践基础,把建筑工程的安全性放在首位,容不得半点冒险和不实。正是基于这种认识,现代规范中的条文有的被列为强制性条文,有的条文中用了“严禁,不得,不许,不宜”等体现不同程度限制性和“必须,应该,宜于,可以”等体现不同程度灵活性的用词。

2.2 抗震设计的理论

拟静力理论。拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论。反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。动力理论。动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

3 高层建筑结构抗震设计

3.1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且,强柱弱梁,强剪弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

3.2 高层建筑的抗震设计理念

我国《建筑抗震规范》(GB50011-2010)对建筑的抗震设防提出“三水准、两阶段”的要求,“三水准”即“小震不坏,中震可修,大震不倒”。当遭遇第一设防烈度地震即低于本地区抗震设防烈度的多遇地震时,结构处于弹性变形阶段,建筑物处于正常使用状态。建筑物一般不受损坏或不需修理仍可继续使用。因此,要求建筑结构满足多遇地震作用下的承载力极限状态验算,要求建筑的弹性变形不超过规定的弹性变形限值。当遭遇第二设防烈度地震即相当于本地区抗震设防烈度的基本烈度地震时,结构屈服进入非弹性变形阶段,建筑物可能出现一定程度的破坏。但经一般修理或不需修理仍可继续使用。因此,要求结构具有相当的延性能力(变形能力)不发生不可修复的脆性破坏。当遭遇第三设防烈度地震即高于本地区抗震设防烈度的罕遇地震时,结构虽然破坏较重,但结构的非弹性变形离结构的倒塌尚有一段距离。不致倒塌或者发生危及生命的严重破坏,从而保障了人员的安全。因此,要求建筑具有足够的变形能力,其弹塑性变形不超过规定的弹塑性变形限值。

三个水准烈度的地震作用水平,按三个不同超越概率(或重现期)来区分的:多遇地震:50年超越概率63.2%,重现期50年;设防烈度地震(基本地震):50年超越概率10%,重现期475年;罕遇地震:50年超越概率2%-3%,重现期1641-2475年,平均约为2000年。

对建筑抗震的三个水准设防要求,是通过“两阶段”设计来实现的,其方法步骤如下:第一阶段:第一步采用与第一水准烈度相应的地震动参数,先计算出结构在弹性状态下的地震作用效应,与风、重力荷载效应组合,并引入承载力抗震调整系数,进行构件截面设计,从而满足第一水准的强度要求;第二步是采用同一地震动参数计算出结构的层间位移角,使其不超过抗震规范所规定的限值;同时采用相应的抗震构造措施,保证结构具有足够的延性、变形能力和塑性耗能,从而自动满足第二水准的变形要求。第二阶段:采用与第三水准相对应的地震动参数,计算出结构(特别是柔弱楼层和抗震薄弱环节)的弹塑性层间位移角,使之小于抗震规范的限值。并采用必要的抗震构造措施,从而满足第三水准的防倒塌要求。

第3篇:防震设计论文范文

[关键词] 汶川地震 抗震设计 教学改革 工程结构

2008年5月12日14时28分,四川省发生了新中国成立以来破坏性最大、波及范围最广的里氏8.0级大地震,全国大部分地区有明显震感,震中位于四川阿坝州汶川县,无数房屋、桥梁在地震中垮塌,给人们的生命和财产带来了极大的损失。汶川地震主震过后,东南大学土木工程学院迅速组织科研人员深入绵竹城区进行震害调查和房屋鉴定加固工作,获得了很多宝贵的资料。调查结果表明,砖混、砖木结构破坏严重,框架结构破坏较轻。因此,深入研究建造震害特征,总结经验,如何让工程结构更抗震,是值得工程结构研究、设计、教学人员思索的问题。本文结合汶川地震建筑震害的特点,对工程结构抗震课程的教学改革进行了一些思考和探索。

一、汶川地震建筑震害情况

1.框架结构房屋震害情况。在地震区,框架结构房屋破坏较少,其破坏形式主要有3种:一是框架非受力构件的破坏,;二是房屋破坏严重,但没有倒塌;三是框架结构完全倒塌。

2.砖混结构房屋震害情况。汶川地震中,砖混结构房屋破坏十分严重,砖混结构房屋倒塌数量占总倒塌房屋数量的70%以上,破坏形式多种多样,主要震害现象有:墙体开裂、预制板脱落、楼梯间破坏、局部倒塌、窗间墙破坏等。

3.自建结构房屋震害情况。在偏远的山村,自建的低层住宅大多为砖土结构或砖木结构,我国对“农民自建低层住宅”的设计、施工并没有做出明确的规定。此类结构房屋的抗震性能完全取决于房屋本身的构造情况。如图1所示,有构造柱和圈梁的房屋在地震中完好无损,而图2所示的房屋由于墙体太薄(120mm)而倒塌。

二、《工程结构抗震与防灾》课程的特点及学科定位

工程结构抗震涉及到的学科很多,主要有工程地质学、地球物理学、结构力学、结构动力学等多方面的知识,具有内容多、综合性强、对专业基础知识要求高以及和工程实践结合紧密等特点。讲授这门课的主要目的是使学生了解地震产生机理和抗震设计的基本方法,使学生掌握抗震设计的基本理论和设计方法,并具备独立分析和解决工程抗震问题的能力。

三、《工程结构抗震与防灾》课程教学改革初探

1.将传统板书和现代化多媒体教学方式相结合。对于《工程结构抗震与防灾》这门课,由于课本内容相对较抽象,学生不易掌握,采用多媒体教学方式,充分发挥多媒体生动形象、节省课时、便于学生理解的教学优势,将汶川地震中建筑物的破坏特征总结后制成多媒体课件,结合实际来向学生传授知识,以加深学生对工程抗震重要性的认识,促进学生工程抗震概念及工程抗震意识的形成。

2.重视理论教学与实际震害的结合。教师在讲授《工程结构抗震与防灾》课程中,应该使学生深刻地认识到,某一确定地区的抗震设防烈度是不准确的,加上人们对结构地震破坏和倒塌机理认识的局限,在建筑结构设计中往往概念设计比计算设计更重要。对于工程结构抗震设计而言,大多数理论知识常来源于地震震害的深刻经验教训,然而当今高校的学生对震害认识明显不足。这就需要教师在讲课过程中能够结合地震灾害实例,加深学生对某些抽象概念的理解。

3.考核内容。本课程传统的考核方式主要是闭卷考试,也有人建议采用闭卷考试和开卷考试相结合的方式。无论哪种考核方式,其题型大都包括选择题、填空题、简答题和计算题,力求对本课程考核的更加全面,然而,这样往往导致学生更加注重某些具体问题的细节处理,从而忽视了从整体上去分析和解决实际抗震问题。撇开考试方式不说,如果能将选择题、填空题和简答题柔和成几道综合性较强的论述题,这样既增加了考试内容的综合性,又能做到不减少考试的内容,最重要的是能够考察学生整体运用知识的能力,提高学生的综合水平。

四、《工程结构抗震与防灾》教材优缺点及改进构想

1.教材优点。(1)由通常的“建筑结构抗震设计”拓展至“工程结构抗震与防灾”,新增了钢结构抗震、结构基础隔震和消能减震设计、桥梁结构抗震设计、结构抗风和抗火设计等内容,较大程度的增加了知识的广度和深度,从而更好的满足土木工程本科专业的教学需求。(2)以各类结构抗震为重点,同时介绍结构抗风和抗火等方面的内容。(3)注重基本概念、基本理论和基本方法,注重内容的系统性和先进性,注重理论和工程实践的结合。

2.教材不足。汶川地震中,学校、医院等公共建筑破坏严重,造成的人员伤亡十分惨重。根据这一教训,新一版的《建筑工程抗震设防分类标准》(GB 50223-2008)提高了学校、医院、交通枢纽等人员密集的公共服务设施的抗震设防类别,也出版了《建筑抗震设计规范》(GB 50011-2001,2008年版)。现有教材则是结合《建筑抗震设计规范》(GB 50011-2001)等国家规范进行编制的,而该教材缺乏建筑抗震鉴定及加固这部分的内容。

3.改进措施。针对教材存在的不足,建议结合新一版的《建筑工程抗震设防分类标准》(GB 50223-2008)和《建筑抗震设计规范》(GB 50011-2001,2008年版)对该教材进行修订,并将抗震鉴定及加固部分的内容写进教材。在此之前,教师在讲课的过程中,可以通过网络资源等多种方式,查阅相关资料,在讲课的过程中将这部分内容补充给学生。

五、结束语

汶川地震已逐渐离我们远去,淡出人们的视线,但它给人们生命财产带来的损失却是前所未有的,我们应当从中总结经验教训,学会如何减轻地震灾害,学会与地震共存。随着科学技术的发展,工程结构抗震技术的不断进步,人们对结构地震破坏和倒塌机理有了更深刻的认识。作为一个教学工作者,应结合地震带给人们的深刻教训,积极对《工程结构抗震与防灾》这门课进行改革探索,将地震灾害和工程抗震结合起来,改变传统的教学内容、教学方式和考试内容,从而使学生能更好地理解和掌握这门课程,增强学生综合素质,为社会培养更多的优秀人才。

参考文献:

[1]李爱群,高振世.工程抗震设计与防灾[M].南京:东南大学出版社,2003.

[2]建筑抗震设计规范.GB50011-2001,2008.

[3]周奎,徐前卫,李惠平.土木工程专业“工程结构抗震”教学改革探索[J].土木建筑教育改革理论与实践,2008,(10).

第4篇:防震设计论文范文

关键词:抗震设计;基于性能;性能水准;性能目标

Abstracts: Performance-based seismic design theroy is the new earthquake engineering concept proposed by international earthquake engineering in the 90’s. It’s a revolution in seismic engineering, and was considered as the future direction of seismic design for development. So it was taken attention and studied at home and abroad. This paper describes the background, basic content and the development of the performance-based seismic design theory, and it make a preliminary discussion of the methods and procedures for the current seismic design under the performance-based seismic design theory.

Key words: Seismic design, Based on performance, Performance level, Performance objectives.

引言

现行的各国抗震规范大多采用以地面运动加速度反应谱为基础,按结构延性调整结构反应的设计计算方法。抗震设计的基本目的是保障生命安全,然而近十几年来大震震害却显示,按现行规范设计和建造的建筑物,虽然在地震中没有倒塌保障了生命安全,但其破坏却造成了严重的直接和间接的经济损失,甚至影响到社会的发展,而且这种破坏和损失往往超出了设计者、建造者和业主原先的估计。因此,20世纪90年代初基于结构性能的抗震设计理论由美国科学家和工程师首先提出来,可概括为:基于性能的抗震设计理论以结构抗震性能分析为基础,针对每一种抗震作用水准,将结构的抗震性能划分成不同等级,设计者根据结构的用途,业主、使用者及邻居的特殊要求,采用合理的抗震性能目标和合适的结构抗震措施进行设计,使结构在各种水准地震作用下的破坏损失,能为业主选择和承受,通过对工程项目进行生命周期的费效分析后达到一种安全可靠和经济合理的优化平衡。随后,这一理论引起了日本和欧洲地震工程界学者的极大兴趣,纷纷展开多方面的研究。近年来,我国学者也开始就这一理论展开讨论。

近年来地震震害分析

当前各国抗震设计理论多采用二级或三级设计思想,三级即“小震不坏、中震可修、大震不倒”的设防水准,并据此制定抗震规范和条例。按这种以保障生命安全为基本目标的抗震设计理论所设计的建筑物,在震中基本保证了人员的安全,却不能有效地控制地震破坏所造成的直接和间接的经济损失。例如,2008年发生在四川省汶川县里氏震级8.0级的大地震地震导致69197人遇难,直接经济损失8451亿元人民币。发生在今年四月的震级为里氏7.1级的中国玉树地震造成2698人遇难,20万人受灾,经济损失超过800亿。发生2010年1月的海地地震造成11.3万人丧生,造成的经济损失约为77.5亿美元。上述震害更使我们认识到过去的规范仅以保证人的生命安全为目标的设计理论,在抗震设计理念、适应社会需求等方面都存在一定问题。实际上,社会和公众对结构抗震性能存在多种层次的要求。如何改进现行的抗震设计理念,使结构在未来地震中的抗震性能达到人们的预定目标,这是摆在地震工程学界面前的重要课题。

现行抗震设计方法的缺陷

目前国际上所广泛采用的抗震设计方法主要为反应谱法和时程分析法,这两种方法是在以往的震害经验和当时的理论基础上发展形成的,随着建筑物形式的不断变化,地震震害也出现新的特点,反应谱法和时程分析法已渐渐难以满足现有结构的抗震设防要求了。反应谱给出的是结构体系的周期与最大反应(加速度、相对加速度、相对位移)的关系曲线。目前,反应谱法已在许多国家的工程结构抗震规范中得到应用。但是,目前所广泛才采用的反应谱法仍存在许多不足之处:首先,反应谱法不能有效地考虑强震时结构的非线;其次,不能考虑土与结构之间的动力相互作用;再次,不能考虑地震动持时长短的影响;并且,反应谱理论只能给出结构的最大地震反应,不能给出结构反应的全过程,以及结构各构件的破坏机理;此外,反应谱法对于非比例阻尼结构以及不规则结构的分析效果还不甚理想。

对于结构进行动力时程分析需要考虑的因素有:地震动输入要符合当地场地情况,对复杂结构要给出三个分量的过程及其空间相关性;结构和构件的动力模型要能真实反映实际情况,能包括非线性特性,动力分析要能够考虑积累损伤、土与结构相互作用、地震波的相位差等。时程分析所用的地震波为实际的强震记录或人工地震波,结构对不同的地震波输入的敏感度不同,输入后反应将会有较大的差异,这让设计人员也往往无所适从,难以定论。

我国现行的结构抗震设计是基于承载力或强度的设计方法,即采用弹性方法计算结构在小震作用下的内力和位移,用计算所得的组合内力验算构件截面,使构件具有一定的承载力。同时,为了防止非结构构件发生破坏,还要进行使用阶段的位移验算。对结构的延性和耗能能力大多是通过构造措施获得的。规范采用的“三水准”设防目标和“两阶段”抗震设计方法建立在定义结构的可靠度为结构在规定的时间内,在规定的条件下,完成预定功能的概率的基础上。表1中列出了我国抗震设计规范所采取的地震水准、结构性态水准和性态指标。表2列出了我国建筑抗震设防分类和设防标准的具体要求,体现了建筑按功能分类设计的思想。

表1我国抗震设计规范所采取的地震水准、结构性态水准和性态指标

表2 我国建筑抗震设防分类和设防标准

这里的“功能”指的是正常情况下结构能够承受可能出现的各种作用、保证结构的工作性态和耐久性态及在偶然事件中的整体稳定性。从某种意义上说,中国的抗震设计规范已包含了某些基于结构性态设计的思想,但在结构功能不断细化的今天,现行指导抗震设计的规范仍有不足之处:

(1)设防烈度(地震动)单纯依据地震区划的结果以及部分工程抗震经验来确定,很少或没有考虑设防烈度的取值对经济损失或人员伤亡的定量或半定量的影响,从而难以通过设防列队(地震动)的取值来控制未来地震的经济损失和人员伤亡。

(2)与结构性态有关的设计参数选择不适当。

现行抗震设计是基于承载力或强度的设计方法,但通过对历次地震震害的调查分析发现,在一些地震动的某些区段内,对结构破坏起控制作用的因素不是力而是速度和位移,因此,结构的抗震设计应该不仅仅是基于强度的设计。

(3)业主的要求得不到满足,损失控制不力。

由于主体结构的破坏与人身安全的关系最大,现行设计理念对主体结构破坏所造成的损失是重视的,但对非主体结构的破坏,内部设施的损坏和功能失效等所造成的损失却估计不足。

(4)规范的形态概念不明确,设计透明度小。

现行规范没有把功能或损失从定量的意义上清楚的定义为多级设防的目标。现行抗震设计方法是以规定的地震力来验算结构截面及变形以确认是否达到想象中的抗震性态,而不是以科学的性态评价为基础。业主对设计的结构性态可能完全不清楚,甚至设计人员对多级设计保证的抗震性态也并非真正领悟。规范通常通过经验系数和细部构造把复杂的抗震设计问题简化,设计出的建筑物只是达到了规范或结构工程师认为合理的性态,整个建筑物和地基系统在地震中所表现的性态对设计者越来越模糊。

(5)规范标准缺少灵活性。

设计者在设计过程中为稳妥起见,只按规范条款设计,不大会采取规范没能体现出来的、有利于抗震性态的新技术,使新技术的推广应用受到限制。而且,这些条款在某种程度上已经成为一种性态水平固定的模式和普遍适用的标准,约束了业主和设计者的主动性。

(6)设计方法具有不足之处。

目前结构抗震设计规范采用弹性加速度反应谱,用具有质量m、弹性周期T和阻尼比的单自由度体系来表示结构,这种基于承载力(或强度)的设计方法还有值得商榷之处:(1)、由于结构的基本周期未知,需要根据经验公式对其基本周期进行估算,影响因素众多,通常使得结构的设计偏于保守;(2)、规范采用的是设计地震对应的多遇地震弹性反应谱,由于结构在设计地震作用下很可能已进入非线性状态,所应用的弹性反应谱计算的地震作用需要进行折减,而折减系数需要考虑多种因素的综合作用;(3)、对结构的位移,虽然很多规范都给出了结构对应的位移限值,但只是将位移作为设计的第二步来验算,这导致设计者不能有效把握结构在地震特别是大震作用下变形行为。

基于性能的抗震设计理论研究的内容

基于性能的抗震设计理论是以结构抗震性能分析为基础,根据设防水准的不同,将结构的抗震性能划分为不同的等级,设计者可根据业主的要求,确定合理的抗震性能指标和合理的结构措施。

我国“三水准,两阶段”具有基于性态设计的雏形,但是两者又有巨大的区别。基于性态的抗震设计要求结构在不同水平地震作用下具有明确的性态水平,而目前抗震方法尽管也提出三个水准,但是并没有被明确具体量化,建筑功能很难在实际设计中得到保证。在基于性态的抗震设计中,目标性态水平的确定要综合考虑社会的经济水平、建筑物的重要性以及建筑物的造价、保养、维修以及可能遭受地震作用下的直接和间接损失来优化确定,这里的性态水平是针对整个结构体系的,而目前的抗震设计规范只针对结构构件和非结构构件,并没有对整个结构提出明确的性态水平。基于性态抗震设计方法可以满足不同业主提出的不同设计要求,发挥设计者的创造性,同时也有利于新材料和新技术的应用。

1995年,美国加州结构工程师协会在Vision2000文件中首次正式阐明了针对建筑结构的基于性态的抗震设计思想。基于性态的抗震设计思想主要包括结构抗震性态等级的定义、抗震性态目标的选择以及通过正确设计实现性态目标三部分。对于具体的工程结构,基于性态的抗震设计过程是:首先,设计人员提出几种抗震性态目标及对应的造价;其次,由社会团体或业主选择结构应达到的性态目标;最后由设计人员根据所选定的性态目标进行抗震设计,使结构满足预期的抗震性态目标。基于结构性能的抗震设计理论的基本内容包括地震设防水准、结构抗震性能目标和结构抗震设计方法等三方面。

4.1 地震设防水准

地震设防水准是指未来可能施加于结构的地震作用的大小。由于地震设防水准直接关系到未来结构的抗震能力,因此地震设防水准的选择在基于结构性能设计的理论中占有重要地位。Vision2000在关于结构性能设计的研究报告中,建议设防地震等级如表3所示。

表3Vision2000中的设防地震等级的划分

4. 2 结构抗震性能水准

结构抗震性能水准表示结构在特定的某一地震设计水准下预期破坏的最大程度。结构和非结构的破坏以及因它们破坏引起的后果,主要用结构破坏程度、结构功能性和人员安全性来表达;对于不同等级的抗震性能,都应根据结构类型、整体结构、竖向和横向承载构件、性能水准、结构变形、设备装修、修复使用等方面加以定义,应该表达为量化指标,以便工程设计和评估。表4为对结构性能等级的描述。

表4 结构抗震性能等级及其划分方法

Vision 2000针对建筑结构定义了四个可接受的抗震性态等级,即:

等级1 完全保持正常使用功能:建筑物基本未遭受破坏,可完全正常地投入使用;

等级2 维持一定的使用功能:非关键设备或设施遭受较小的破坏,建筑物可继续使用;

等级 3 确保生命安全:建筑物遭受中等或大范围破坏,但生命安全无忧;

等级 4 不倒塌:建筑物破坏严重,生命安全受到威胁,但不会倒塌。

建筑结构的抗震性态目标选择示于图1.1。抗震性态目标定义为在预期设计地震下结构应达到的性态等级。图中,三条斜线分别代表三个可供选择的抗震性态目标,从上到下分别为基本目标、提高目标1和提高目标2。对于一般建筑物可选择基本目标,对于重要建筑物(如医院等)一般选择提高目标1,而对于会引起严重次生灾害的建筑物(如核电站等)一般选择提高目标2。越高的性态目标意味着越高的工程造价。

图1 结构的设防目标与设防等级、抗震性能等级的关系

规范提出的抗震性能目标是最低标准,结构抗震性能目标可以根据业主的要求采用比规范的设防目标更高的设防标准。结构的设防目标与设防等级、抗震性能等级的关系如图1所示。

4. 3 基于性能的抗震设计方法

基于性能的抗震设计方法自提出以来,在国内外都受到广泛重视和研究,对基于性能的抗震设计的主要理念和目标,学术界也基本形成一致的认识。但是怎样把基于性能的抗震设计思想合理并且简单有效的应用到实际设计中,目前尚无统一的方法和标准。概括起来,基于性能的抗震设计方法主要有承载力设计方法、直接基于位移进行抗震设计方法、能量设计法。

(1)承载能力设计方法

这是我国规范现阶段采用的设计方法,对于常遇地震,利用反应谱计算底部剪力,然后按一定规则分配至结构全高并与其他荷载组合,进行结构的强度设计,使结构的各部分都具有足够的承载能力,然后再进行变形验算。承载力能力设计方法的优点是为设计人员所熟悉,并易于使用,性能概念清楚,细部设计可靠,通过非线性静力分析验算,进一步增强了对结构非线性反应的控制,可以更好地达到预期性能目标。缺点是该方法基于弹性反应,对于非弹性反应仅用于结构类型有关的系数加以折减,表面上它控制整个性能目标,实际上却只是保证了一种性能目标。

(2)直接基于位移进行抗震设计

该方法采用结构位移作为结构性能指标,与传统方法相比,基于位移的抗震设计方法从根本上改变了设计过程。主要不同是,该方法用位移作为整个抗震设计过程的起点,假定位移或层间位移是结构抗震性能的控制因素。设计时用位移控制,通过设计位移谱得出在此位移时结构有效周期,求出此时结构的基底剪力,进行结构分析,并且进行具体配筋设计。设计后用应力验算,不足的时候用增大刚度而不是强度的方法来改进,以位移目标为基准来配置结构构件。该法考虑了位移在抗震性能中的重要地位,可以在设计初始就明确设计的结构性能水平,并且使设计的结构性能正好达到目标性能水平,是性能设计理论中很有前途的一种方法。但应用于多自由度体系、多种结构类型等时,还需要做更多的研究。

(3)能量法

假设结构破坏的原因是地震输入的总能量,地震对结构物及其内部设施的破坏时由其输入的能量与结构物所消耗的能量共同决定的。能量设计法的优点就在于,能够直接估计结构的潜在破坏程度,对结构的滞回特性以及结构的非线性要求概念清楚。另外,耗能元件的设置可以更好地控制损失。缺点在于应用方法不够简化,不确定因素较多。

可见,基于性态的结构抗震设计,实际上是对人们早已认识的“多级抗震设防” 思想的进一步的细化。这一设计思想使抗震设防目标与设计过程直接相联系,设计工程师可以更准确地把握结构在不同的地震动水平下的实际性态,使所设计的结构更加经济合理。

5国内外的研究与应用发展

自基于结构性能的抗震设计理论提出以来,建立以结构功能评价为理论基础的结构设计体系是近几年美国、日本和新西兰等国家的研究课题。美国成立放眼21世纪委员会,其目的是建立新的结构性能设计体系的框架。1995年4月,日本建设省启动了一项3年联合研究开发项目,称为“建筑结构现代工程方法开发”。该项目旨在建立基于性能的结构工程方法以推动技术革新。另外,欧洲国家和拉美国家也在进行此项研究,中国这方面研究还处于起步阶段。

在未来应用方面,美国《洛杉矶性能高规2005》和《旧金山市性能高规2007》已清晰展现了性能设计方法用于高层建筑结构的具体技术框架,可供我国相应规范进行修订时的参考:

(1)在三水准地震作用下,分别从正常使用、生命安全和防止倒塌三个极限状态对结构进行分析和设计,保证结构满足以上三个极限状态的性能目标。

(2)基本设计地震(中震)作用下的结构分析应考虑P-效应、基础刚度、偶然偏心的影响,但取消(或放松)剪重比限值和层间位移限值。

(3)小震作用下正常使用极限状态只在特殊的情况下才要求进行结构计算分析,并应考虑预期地震水平和结构累计损伤程度,可以采用线性反应谱分析方法,也也可以采用时程分析法。

(4)Pushover方法不再适用于高层建筑,应采用三维非线性时程分析方法,荷载组合考虑双向地震作用。结构非线性分析反应的评估应引入能力设计的思想,将结构构件的评估分成三个水平:延性结构复核、有限延性结构复核和完全弹性状态的非延性结构复核。

(5)混凝土结构的弹性模量应考虑开裂、黏性滑移、屈服强化、剪切开裂后的受拉刚化、节点区变形等影响,取其毛截面的0.5倍进行模量折减,或者根据试验数据拟合。

(6)地震时程记录的选取应满足场地特性与统计意义。

(7)非线性分析模型必须经过试验校正。

6结语

基于结构性能的抗震设计理论是以结构抗震性能分析为基础的结构设计,是设计理念上的一次变革,代表了未来结构抗震设计的方法,采用“投资-效益”准则下的抗震性能水准的划分、抗震性能目标的确定以及常用的性能抗震设计方法,将克服基于承载力的抗震设计不能预估结构屈服后的工作性能的缺陷,可充分发挥工程师的主动性,工程师可以根据实际情况与业主的要求及其它条件自主地选择结构性能目标水准、结构措施等。

7参考文献

[1]小谷俊介. 日本基于性能结构抗震设计方法的发展[J]. 建筑结构, 2000,(6):3-9

[2]韩小雷,郑宜,季静,黄艺燕.美国基于性能的高层建筑结构抗震设计规范[J]. 地震工程与工程振动, 2008, 28 (1) : 64- 70

[3]孙俊,刘铮,刘永芳.工程结构基于性能的抗震设计方法研究[J]. 四川建筑科学研究, 2005, 31(3):98-101

[4]李应斌,刘伯权,史庆轩.基于结构性能的抗震设计理论研究与展望[J]. 地震工程与工程振动, 2001, 21 (4) : 73- 79

第5篇:防震设计论文范文

关键词:高层建筑;框架结构 ;抗震

中图分类号:[TU208.3] 文献标识码:A 文章编号:

一 建筑结构抗震的理论分析

1 建筑结构抗震规范简介

建筑结构抗震规范是由各国建筑抗震经验总结而来,具有权威性。建筑结构抗震规范是指导建筑抗震设计,包括结构动力计算,结构抗震措施以及地基抗震分析等主要内容的法定性文件它既反映了各个国家经济与建设的时代水平,又反映了各个国家的具体抗震实践经验。

2 抗震设计的理论

(1)拟静力理论:拟静力理论是20世纪10~40年展起来的一种理论,它在估计地震对结构的作用时,仅假定结构为刚性,地震力水平作用在结构或构件的质量中心上。地震力的大小当于结构的重量乘以一个比例常数(地震系数)。

反应谱理论:反应谱理论是在加世纪40~60年展起来的,它以强地震动加速度观测记录的增多和对地震地面运动特性的进一步了解,以及结构动力反应特性的研究为基础,是加理工学院的一些研究学者对地震动加速度记录的特性进行分析后取得的一个重要成果。

(2)动力理论:动力理论是20世纪70-80年广为应用的地震动力理论。它的发展除了基于60年代以来电子计算机技术和试验技术的发展外,人们对各类结构在地震作用下的线性与非线性反应过程有了较多的了解,同时随着强震观测台站的不断增多,各种受损结构的地震反应记录也不断增多。进一步动力理论也称地震时程分析理论,它把地震作为一个时间过程,选择有代表性的地震动加速度时程作为地震动输入,建筑物简化为多自由度体系,计算得到每一时刻建筑物的地震反应,从而完成抗震设计工作。

二 高层建筑结构抗震设计

1 抗震措施

在对结构的抗震设计中,除要考虑概念设计、结构抗震验算外,历次地震后人们在限制建筑高度,提高结构延性(限制结构类型和结构材料使用)等方面总结的抗震经验一直是各国规范重视的问题。当前,在抗震设计中,从概念设计,抗震验算及构造措施等三方面入手,在将抗震与消震(结构延性)结合的基础上,建立设计地震力与结构延性要求相互影响的双重设计指标和方法,直至进一步通过一些结构措施(隔震措施,消能减震措施)来减震,即减小结构上的地震作用使得建筑在地震中有良好而经济的抗震性能是当代抗震设计规范发展的方向。而且强柱弱梁,强脊弱弯和强节点弱构件在提高结构延性方面的作用已得到普遍的认可。

2 高层建筑结构的抗震设计方法

① 阻尼器的使用

目前,运用于高层建筑的结构调谐振动控制装置有多种:调谐质量阻尼器 、调谐液体阻尼器、质量泵、摆式质量阻尼器、液体—质量控制器等。其中,调谐液体阻尼器是一种被动耗能减振装置,近年来进行了大量的研究和应用。调谐液体阻尼器利用固定水箱中的液体在晃动过程中产生的动侧力来提供减振作用。其具有构造简单,安装容易,自动激活性能好,不需要启动装置等优点,可兼作供水水箱使用。

② 柔性结构的运用

在高层建筑抗震当中,即由传统的以“硬抗”为主的抗震体系转变为以“柔抗”为主的结构减震控制体系。建筑采用动力平衡的建筑结构体系防震减震效果会更好,这样可以以柔克刚、刚柔相济,有效的释放地震冲击力。

③ 高延性构件的运用

目前,我国的高层建筑很多采用延性结构体系来抗震设防,即适当控制结构的刚度,容许结构构件在地震时进入塑性状态,具有较大的延性,以此消耗地震能量,减小地震反应,减轻地震给高层建筑带来的破坏与损失。如果一座高层建筑物具有较大的延性,即使承载能力较低,它所能吸收的能量也会较大,虽然较早出现损坏,但能经受住较大的变形,避免倒塌;而仅有较高强度而无塑性变形能力的脆性结构,吸收能量的能力弱,一旦遭遇超过设计水平的地震时,很容易因脆性破坏而突然倒塌。所以,延性结构的运用这种体系,在很多情况下是有效的,它可以消耗地震能量,减轻地震反应,使结构物“裂而不倒”。

④ 设置多道抗震防线

高层建筑结构需要设置多道抗震防线。建筑物应设置多道抗震防线,当第一道防线的构件在强烈地震作用下遭到破坏后,后备的第二道乃至第三道防线能抵挡后续的地震动的冲击,使建筑物免于倒塌。

3高层建筑结构抗震设计

(1)选择场地地基

选择场地地基首先要根据实际工程需要,并且还要考虑地震活动情况。分析天然地基时的抗震承载力要根据不同的场地来进行,另外,分析地震所造成的危害度也要根据不同场地来进行。如果有必要,可采用规范的地基来进行处理。对避让距离的确定可根据地震强度、断裂的地质历史、场地土的厚度来进行,进而有利于对场地范围内的地震断裂的确定。必须确保避开对建筑不利的地段来进行场地地基的选择,如果如法避开,可以利用合适的抗震措施来进行。

(2)合理匹配建筑结构刚度、承载力和延性设计

建筑结构的抗力较高时能够在一定程度上降低总体延性的要求。因此,要综合考虑整个结构的承载力和构造等因素来对结构的抗震能力进行衡量。当发生地震时,建筑物将会受到地震作用,其大小与动力特性有着很大的关系。但是,结构的抗侧力刚度的提高一般都需要提高工程造价,因此,使结构中的所有构件都具有较高的延性是提高建筑物的抗震性能最理想的措施,虽然这个理想措施很难在实际中实现。工程实践比较经济可行的方法就是有选择的提高结构中的重要构件以及关键杆件的延性。因此,合理匹配建筑结构刚度、承载力和延性设计在高层建筑结构抗震设计中是非常重要的。

参考文献

[1] 朱镜清.结构抗震分析原理[M].地震出版社,2002.11.

[2] 李国强.沈祖炎.高层建筑抗展设计的发展趋势.建筑结构学,1992,8.

第6篇:防震设计论文范文

关键词:性能特性抗震设计抗震设防防震目标

一、基于性能特性研究的抗震设计理论概述

1、基于性能的结构抗震设计含义

建筑设计中基于性能的抗震设计的理论形成于1992年,是由美国的学者最先提出的,随后经过理论的拓展和总结由美国的权威组织给出了明确的定义和描述。概括的说就是:基于性能的抗震理论以结构抗震的性能分析为理论基础,针对不同的抗震作用水准,将结构的抗震性能划分为不同的顶级,设计者根据结构的重要性和实际的用途和业主及使用者的特殊要求,采用合理的抗震性能目标和适应性结构抗震措施进行设计,使得建筑结构在各种水准地震的作用下形成的最终的破坏程度达到相应的标准,即满足业主或者行业标准的要求,通过对工程项目进行生命周期的费用效率分析,选择并确定一种安全可靠且符合经济合理化的优化平衡。从简单的含义上看,就是利用性能标准选择结构措施,并使之符合使用标准和经济标准。

2、基于性能的抗震理论特征

基于性能的抗震设计理论实际上是一种在对地震灾害分析和对现行的抗震设计理论的反思的基础上产生的,此理论的设计理念和方法与传统的设计不同,但是其设计的依据却蕴含来了现有的设计理论和经验,具体的特征如下:

1)支持采用多级设防的目标,我现行的是“小震不坏、中震可修、大震不倒”基本抗震原则,主要的目标是确保人身安全,这时抗震的根本思路和目标,无法避免大型地震中的巨大经济损失。基于性能抗震设计理论提出了多级目标设计的理念,此种分级 方式即考虑到了生命安全也从经济性上考虑,最大限度的降低业主和社会的损失,保证在其可承受的范围内,以此为基础更加注重非结构件和内部设施的保护,将经济效益的机制引入到了设计中,利用经济决策方式通过进行费用效率分析,在可靠和经济之间需求平衡,以确定最佳的抗震方案,达到优化设计的目的。

2)扩展空间,体现设计的个性化。现行的抗震设计主要是按照规范进行一成不变的设计,因此设计缺乏灵活性,结构设计者总是在被动的情况下进行进行设计,而基于性能的抗震设计除了需要满足共性规范外,也更加注重个性设计的需求,增加了业主和设计人员的交流范围,在根据结构的用途和业主需求确定结构性能的目标后,设计人员就可以在此性能目标的基础上选择设计方法,采用相应的构造措施,而此种设计更加的灵活,对调的设计积极性和新材料、新技术、新工艺等的应用打开了方便之门,同时结构的抗震能力是在抗震性能的目标下形成的,也是的建筑的抗震能力可以预见。

3)设计方法多元化。目前基于性能的抗震理论还没形成统一的研究方法,很多学者采用结构层间变形或者定点移位作为性能指标,其从传统的以力学为基础的设计转变为以形变为基础的设计,从弹性设计的方法转变为弹塑性的设计方法,解决了传统设计理论上的缺憾,尽可能的是的建筑结构的预期功能和实际地震中起到的功能相一致,以保证设计的有效性。

二、基于性能的抗震结构设计的内容

1、地震设防的水准设定

地震设防的标准是指设定未来可能作用在建筑上的地震等级和作用效果,美国工程师协会曾提出,基于结构性设计理论追求能控制结构所可能发生的各种地震破坏的水准,因此需要根据不同的重现期选择可能发生的对应不同的地震动参数。在协会的报告中指出四个地震设防的水准:1)无损伤的正常状态,即结构只受到轻微损伤,不需要进行修理就可继续使用而不带有隐患;2)结构出现损伤但可修复,此种情况下结构仍然发挥效应,但是在次要部位出现损伤,需要进行修复;3)保证生命安全的状态 ,即人员的生命安全可以得到保证,结构的损伤较为严重,但是仍在业主可以接受的范围内;4)倒塌控制水准,结构损坏严重威胁生命安全,虽然损伤但没有倒塌,经济上的损失已经超过了业主可以接受的最大上限。

2、结构抗震的性能目标设定

此项内容就是针对某种地震设防的水准而设定期望达到的抗震性能的等级,抗震设防目标德尔建立需要综合考虑地质、功能、重要性、投资、效益、震后损失、重建、历史和文化价值、社会效应、业主要求等因素。从地震设防的角度看,规范提出的抗震目标实际上是最低的设防标准,而结构抗震设计则是根据业主需求采用的设防标准,其要高于规范设定的范围。使用者可以根据自身的情况出发,设定一个合理的性能目标。为了方便结构设计,这些定性的性能指标最终将被量化,成为具体结构设计的重要参数依据。

3、基于性能的结构设计实施

此项内容就是要求将结构的性能要求转化为合理的性能参数以此形成具体的指导设计的基础性数据。为了达到这一目标,需要配合合理的处理和分析方法,将前面的目标转化为与性能指标相关量化数据,使之作为指导设计的具体指标。

三、高层建筑结构基于性能的抗震设计

按照前面的理论分析的思路,下面就某个高层项目的性能抗震设计的过程进行例举阐述,以说明在高层建筑中实施性能抗震结构设计的流程和措施。

1、工程基本情况

某城市的高层建筑,按照建筑的整体设计要求,工程项目地下结构为三层,地上为三层裙楼,主要塔楼设计为45层,从工程的高度超过了150m。项目的主体采用的是混凝土框架加核心筒的结构形式。按照业主的需要,建筑的设计使用年限为50年,整体钢筋混凝土结构为二级,根据地域情况,此建筑为丙级,抗震设防为7。

2、对结构性能的目标选择

通过对工程具体情况的分析,设计人员通过对工程的具体情况的把握,并与业主方进行了沟通,取得了一致意见,选定此工程的抗震性能目标为以下具体几项:1)小震情况下满足的要求是:结构在地震的影响下保持完好结构不出现明显的损伤,震后不需要修复也可使用,且在震后不需要对人员安全采取任何保护措施。2)中震的情况下结构应当满足要求:在中等强度的地震中,建筑相对脆弱的部位和重要结构件出现轻微的裂缝,属于轻度损坏,而在设定的部位后者延性部位则允许出现中度的损坏,条件是出现明显的裂缝,构件受损程度为进入屈服阶段。震后需要进行维修方可继续使用。3)高烈度地震情况下建筑应满足:整体结构在震中出现的逐级的损坏,即整体结构都会出现不同程度的损坏,而大部分为轻微,部分出现中等损坏构件进入到屈服阶段,出现裂缝,整个楼体的安全性降低,结构需要进行安全性的支护方可允许人员进出,如果恢复使用将需要进行大面积维修。

3、性能目标的实现措施

1小震目标

工程在结构设计的过程中,设计人员通常采用的是计算机辅助设计,即利用软件将性能目标和实际的结构的参数联系起来,从而获得可以指导工程建设的具体结构参数。在计算中主要遵循的是高层建筑结构空间的有限元分析和计算方法,利用三维建模的方式进行模拟分析,如表1所示,为具体的计算后的结构参数。计算完成后,将具体分析得出的参数与国家标准相比较,应保证所有的参数都符合国标,同时按照性能目标进行分析和衡量,保证其满足具体的设定目标,同时在具体的模型仿真对比中,估算其经济指标,使之满足业主的经济效益。表格中各种参数都达到比超过出了国标的要求。

2)中等地震的目标实现

结合前面的设计参数,对中等地震中所要达成的目标进行细化,并在基础数据的基础上对某些参数进行修正,使之到达设计的目标。根据目标要求,中震情况下,地震对结构件的影响使之超过了弹性变形范围,结构的损坏将出现硬性的结构损伤,但是其范围是可以修复,此时的重点就是通过结构的合理设计保护重点结构的安全,即舍弃某些结构件的完整,而保护主体框梁的安全。在此设计的思路上对整个设计的参数进行细部调整。如:设定中等烈度高出普通等级1.55°;在进行不屈服设定的时候将结构件的水平影响系数调整到中等强度的0.23;改变整个结构组合的内力情况;对材料强度的参数进行必要的调整,使之达到结构强度的标准;对抗震承载力系数进行调整等,通过这些措施结构的初步设定参数得到必要的调整,使的满足小震目标的某些参数提升达到中等地震的设防目标。

3)大震情况的目标实现

在设计中,与中震目标实现相似,在利用软件进行分析和比对的时候,将其设定的范围进一步扩大,模拟在罕见的高烈度地震的影响下结构所产生的应力改变和相互作用,实际上就是将结构所产生的水平和竖向位移设定为最大,并以此对结构参数进行调整,使之达到:结构不出现扭转的效果;第一批塑性铰出现在某些楼层的梁上;在水平应力的作用下底部的剪力墙再进入塑性变形,以此保证剪力墙为建筑的“脆弱”部位,消除地震的某些应力效应,而保证框架结构的安全,使之始终不能达到塑性阶段。这样将就可以是结构在大震中只出现剪力墙的损坏,而保证主体框架的安全,最终达到大震下的性能目标。

四、构造设计的措施

还以前面的工程项目为例,在结构设计中按照参数要求,结构中采用的水泥等级为60号,在初级抗震的轴压比要求下,剪跨比在1.5就可以满足性能要求,但是这样就出现了剪跨比小于2的情况,因此在结构设计中应当对此情况进行调整,以适应中等地震的要求,具体措施有:调整轴压比,在规范的基础上通过模拟计算进行逐级调整,使之达到保证柱体延性的需求;在经济性能允许的范围内,增加主体的箍筋密度,增加的密度应控制在整体成本和重量的合理范围内,这样可提高钢筋对混凝土的约束能力,保证其在地震的作用下纵向钢筋的抗应力能力,满足强剪弱弯的思路;控制柱体中纵向配筋的比例,项目中设定的纵向配筋的比率小于1.2%。另外,项目还采用了对边柱、角柱、剪力墙端柱等柱体总面积进行了必要的调整,即在原有的标准基础上进行了适当的增加,以此满足地震设防的需求,同时在设计中始终遵循将剪力墙作为抗震的易损结构,保证其具有延性和消能能力。

所以该项目中对剪力墙的设计采取了一些控制措施,如:剪力墙加强范围进行了适当的扩大,向下和向上进行了必要的拓展,在地下一和地上一层的范围内进行了剪力墙的增强,主要是增加了约束构件,控制其形变范围。边缘约束构件设计使得箍筋范围符合国标要求,并增加了纵筋的配筋率,同时对剪力墙的控制达到其剪应力标准,并控制连梁的跨度高度比在2-5之间,连梁箍筋的间距也满足100mm的范围。工程中对筒体的剪力墙也进行了必要的参数调整,在筒体的边角位置设计了约束构件,构件的长度为剪力墙的25%,在强化区域采用箍筋和型钢进行加固处理。

结束语:

第7篇:防震设计论文范文

论文摘要:本文对人防结构设计与抗震结构设计进行比较, 人防结构设计在很多方面与抗震设计相似,提出了一些提高延性的措施。

人防地下室应能承受常规武器或核武器爆炸动荷载的作用,人防地下室一般也有抗震设防要求,设计时应使之能承受地震动荷载及武器爆炸动荷载作用。人防结构设计与抗震结构设计既有相同又有不同之处。下面是些粗浅认识的总结,希望能对设计工作有些帮助。

1 荷载作用方式

相同点:两者均为偶然荷载,均为动荷载,设计时均按一次作用考虑。不同点:人防结构构件如果暴露于空气中则直接承受空气冲击波的作用,如果埋于土中直接承受土中压缩波的作用,因此人防荷载对结构构件外表面的是直接作用,其动荷载直接作用于构件,其作用为外力;而地震动荷载则是由于地震时地面运动引起的动态作用,其实质是惯性力,是间接的作用。建筑物的所有构件(只要有质量)均会由于地震动而存在惯性力。人防动荷载一般是直接作用于人防地下室外表面的构件,一般可按同时作用于围护结构考虑,而人防地下室内部的墙柱等构件只间接承受围护构件及上部结构传来的动荷载。

2 荷载的大小

人防动荷载(即常规武器或核武器爆炸动荷载)其冲击波压力是随时间变化的,为方便设计计算《人防规范》将它简化成等效静荷载,它只代表作用效果的等效,等效静荷载并不是实际作用的力,但它方便了设计计算可以用静力分析的模式进行内力计算;设计时等效静荷载的大小的确定主要与设防抗力等级有关。

地震作用大小首先与震级、烈度、震源深度、建筑物离震源的距离等有关。其次与建筑物的质量大小、建筑物所处的场地条件及土质、及建筑物的动力特性(如自振周期、振型、阻尼等)有关。

3 设计方法:

抗震设计方法通常为“三水准、二阶段”的设计方法,设防目标为“小震不坏,中震可修,大震不倒”。为实现设防目标取小震下地震动参数计算结构弹性下的地震作用效应,进行截面承载力验算。第二阶段是大震下的结构弹塑性变形验算。并通过概念设计和抗震构造措施来满第三水准的设计要求。

人防结构设计的动力分析一般采用等效静荷载法:由于在动荷载作用下,结构构件振型与相应静荷载作用下挠曲线很相近,且动荷载作用下结构构件的破坏规律与相应静荷载作用下破坏规律基本一致,所以在动力分析时,可将结构构件简化为单自由度体系,用动力系数乘以动荷载峰值得到等效静荷载,这时结构构件在等效静荷载作用下的各项内力就是动荷载作用下相应内力的最大值。按等效静荷载分析计算的模式代替动力分析,给防空地下室结构设计带来很大方便。采用等效静荷载分析时,为满足抗力要求,结构材料参数应乘以材料强度综合调整系数。最后结构构件在动荷载作用下的变形极限用允许延性比[β]来控制。按允许延性比进行弹塑性工作阶段的防空地下室,即可认为满足防护和密闭要求。 转贴于

4 设计原则:

人防设计与抗震结构设计的设计原则一样:

4.1 结构应尽可能有足够的延性,避免脆性破坏,钢筋砼结构构件均应采取“强柱弱梁”“强剪弱弯”的设计原则。

4.2 各结构构件抗力相协调的原则,避免出现薄弱部位。防空地下室的结构,应充分考虑各部位作用荷载值不同,破坏形态不同以及安全储备不同等因素,保证在规定的动荷载作用下,结构各部位(如出入口和主体结构)都能正常地工作,防止由于存在个别薄弱环节致使整个结构抗力明显降低。如果某个部位失效,将导致整个人防区失效。同样抗震设计也十分强调避免出现薄弱环节(如薄弱层,软弱层等),因为大震时薄弱层或软弱层出失效将导致建筑物倒塌,产生严重后果。

5 提高延性的设计构造措施

核武器与常规武器爆炸均属于偶然性荷载,具有量值大,作用时间短且不断衰减的特点,结构构件承受动荷载时已经处于弹塑性工作阶段,因此,结构构件具有较大的延性,对吸收动能,抵抗动荷载是十分有利的。人防结构设计时,构造上应采取“强剪弱弯” “强柱弱梁”“强节点弱杆件”的设计原则。如可充分利用受弯构件和大偏心受压构件的变形吸收武器爆炸动荷载作用的能量,以减轻支座截面的抗剪与柱子抗压的负担,确保结构在屈服前不出现剪切破坏和屈服后有足够的延性,最终形成塑性破坏,提高结构的整体承载能力;又如受弯构件应双面配筋,对承受动荷载作用下可能的回弹和防止在大挠度情况下构件坍塌十分重要,另外在节点区应有足够的抗剪、抗压能力和足够的钢筋锚固长度。上述这些措施和抗震设计的原则是一致的。

参考文献

第8篇:防震设计论文范文

关键词:建筑结构 抗震设计 结构动力特性 战略规划

一、研究背景以及结构抗震理论的发展

近年来,我国地震频发,自2008年“5·12”汶川大地震之后,2009年6月30日云南姚安6.0级地震,2010年4月14日青海玉树发生7.1级地震,2012年9月7日云南彝良、贵州威宁交界处发生5.7级地震,2013年4月20日四川省雅安市芦山县发生7.0级大地震等等。在地震中,无一例外的伴随着大量房屋倒塌以及其他建筑物被损毁的现象,不仅仅造成了大量的财产损失,也严重威胁人民群众的生命安全。而且注入日本等一些地震多发地区对于建筑物结构的抗震设计要求较高,我国近年来对此也不断加以重视,也取得了一些进展,但是由于各方面的原因,整体建筑物的抗震能力还较差。事实上,国家在建筑物抗震设计当中,明确提出三个标准:“小震不坏,中震可修,大震不倒。”地震防烈度7度以下(含7度)为小震;8度为中震;9度以上(含9度)为大震。因此,对于建筑物结构设计中的抗震设计是应该有着明确的规划和指导的。

自20世纪以来,结构地震反应计算方法的发展,大致可以划分为三个阶段。第一阶段为静力理论阶段---静力法。1920年,由日本大森房吉提出。假设建筑物为绝对刚体,结构所受的水平地震作用,可以简化为作用于结构上的等效水平静力F,其大小等于结构重力荷载G的k倍。第二阶段是反应谱理论阶段,地震反应谱是单自由度弹性体系在地震作用下其最大的反应与自振周期的关系曲线称为地震反应谱。1943年美国皮奥特( M. A. Biot)发表了以实际地震记录求得的加速度反应谱,提出的“弹性反应谱理论”。由于反应谱理论正确而简单地反映了地震特性以及结构的动力特性,从而得到了国际上广泛的承认。实际上到20世纪50年代,反应谱理论已基本取代了静力法。目前,世界上普遍采用此方法。 第三阶段是动力分析(时程分析法)阶段,时程分析法将实际地震加速度时程记录作为动荷载输入,进行结构的地震响应分析。不仅可以全面考虑地震强度、频谱特性、地震持续时间等强震三要素,还进一步考虑了反应谱所不能概括的其它特性。时程分析法用于大震分析计算,借助于计算机计算。

二、建筑结构抗震设计的重要性分析

一是充分保护人民群众的生命财产安全。人类社会在发展过程中,首先要解决的就是温饱与安全的需求(马斯洛的需要层次理论可以说明),如据有关报道,在2008年的汶川地震的主震区内,完好的建筑几乎没有。除却地震本身的烈度较高,破坏性较强的原因之外,一个更重要的问题值得我们的深思,就是建筑结构的抗震能力非常差,长时期以来,国人对于建筑的抗震设计重视不够,一方面在技术水平上缺乏突破,另一方面一部分人受利益驱动,往往在施工过程中,存在偷工减料等行为,导致了建筑物抗震能力薄弱,加强建筑结构抗震设计的重要性,对于保护人民群众的生命财产安全不言而喻。

二是促进建筑结构设计技术与理念的创新与发展。我们知道,日本是一个地震多发地区,事实上,在1880年以前,日本对于建筑物结构的抗震设计也不是很重视。1880年横滨地震(M=5.4)之后,日本成立了日本地震学会,1891年在浓尾地震之后,鉴于地震给建筑物造成的重大损害,日本成立了“震灾预防调查委员会”,开始着手进行抗震结构设计研究。经过近百年的发展,日本的建筑物结构抗震设计无论是在技术还是在理念上都处于领先的地位,如大量的震害分析表明,反应谱理论虽考虑了振幅和频谱两个要素,但只解决了大部分问题,地震持续时间对震害的影响始终在设计理论中没有得到反映。这是反应谱理论的局限性,后来,日本大规模的采用动力分析(时程分析法)。

三是具有良好的社会正向效应。整个社会发展是一个复杂的系统,从这一战略高度加以认识的话,我们不难发现,对于建筑物抗震结构设计的加强对于构建和谐社会具有重要意义,良好的建筑物抗震能力,能够减轻人民群众的生命财产损失和风险,有利于维护社会稳定,对于建设“美丽中国”,实现“中国梦”,具有良好的社会效应。因此,不能孤立的片面的静止的对待建筑结构抗震设计。

三、建筑结构设计抗震设计的对策分析

一是加强对建筑结构抗震设计的战略规划。建筑结构抗震设计是一个系统工程,涉及到众多方面的内容,如建筑场地、地基与基础;结构地震反应分析和抗震验算;多层砌体结构抗震设计;钢筋混凝土结构的抗震设计;多、高层钢结构房屋的抗震设计;单层钢筋混凝土厂房的抗震设计;结构隔震与消能减震控制等等。因此,要从战略层面加以重视和规划,我国有《建筑工程抗震设防分类标准》、《城市抗震防灾规划管理规定》等国家标准,对建筑物抗震设防分类、责任划归、防灾规划均有具体划分。应该加强在实际工作中的执行力度。

二是优化建筑结构抗震设计的技术方法。建筑结构抗震设计的基本方法与不做包括,首先计算结构的地震作用—地震荷载;其次计算结构、构件的地震作用效应—M、Q、N及位移;再次,地震作用效应与其他荷载效应进行组合、验算结构和构件的抗震承载力及变形。

我们知道,地震作用和结构抗震验算是建筑抗震设计的重要环节,是确定所设计的结构满足最低抗震设防安全要求的关键步骤。由于地震作用的复杂性和地震作用发生的强度的不确定性,以及结构和体形的差异等,地震作用的计算方法是不同的。

三是加强结构抗震设计的二次优化。在当前的地震多况下,尤其是烈度较大的情况下,抗震结构设计的二次优化至关重要。在多遇地震作用下结构的弹性变形验算,属于第一阶段的抗震设计内容;在罕遇地震作用下结构的弹塑性变形验算,属于第二阶段的抗震设计内容。经过第一阶段抗震设计的结构,构件已经具备了必要的延性,多数构件可以满足在罕遇地震下不倒塌的要求;对某些处于特殊条件的结构,尚须计算其在罕遇地震作用下的变形,即进行第二阶段抗震设计,以考察安全性。在此基础上,确定建筑物的相关结构内容,从建筑方来讲,总想把外立面做得很美观,显得特别复杂;但从抗震角度讲,外观越复杂的,恰恰就越不抗震,因此,更应该充分重视建筑结构设计,选择合理的建筑结构,不能因噎废食。

参考文献:

[1]吕西林,蒋欢军.建筑结构抗震研究的若干进展[J].同济大学学报(自然科学版),2004,32(10):1278-1284.

[2]李碧雄,甘立刚,王清远等.基于震害和数值分析的加固建筑结构抗震性能评估[J].四川大学学报(工程科学版),2010,42(5):142-149.

[3]耿中举.建筑结构抗震加固方法应用探析[J].城市建设理论研究(电子版),2013,(12).

[4]夏念恩,谭正清.从汶川地震谈对建筑结构抗震的几点思考[J].黄冈职业技术学院学报,2008,10(4):11-13.

第9篇:防震设计论文范文

【关键词】建筑结构;结构设计;防震设计

我国地震灾害多发,并具有分布广、震源浅、频率高的特点,是世界上受地震灾害影响最严重的国家之一,因此,加强我国建筑结构的防震设计对于降低地震灾害损失、保全人民生命财产安全有着极其重要的作用,所以,这就要求,建筑设计师们在进行建筑结构的防震设计时,不仅要注重防震设计的常规计算,还要结合实际情况采取概念化防震设计,从而使建筑的防震性能更完善。

一、建筑结构防震设计主要方法

通常建筑结构的防震设计可分为理论性防震设计及概念性防震设计两种,理论性反震设计即结构工程师以建筑结构的防震理论及规范为依据进行反复分析验算,最后所获得的数据式的结果,再将其使用到建筑设计中。概念性设计即不采用传统方法进行验算,在一些较难获得精确性的分析时,采用结构体系与分体系间的结构破坏机理以及相应的力学关系来获取最为基本的防震设计原则,来确定结构的总体设计以及反震细部的宏观控制。

概念设计的优势在于能够快速高效的对结构体系进行比较、整理和设计。其缺点在于对一些实际防震数据的取值存在一定误差。

二、建筑结构防震设计基本原则

2.1建筑结构体系中的构件应具备一定的刚度、承载力、稳定性以及延性等性能,结构性构件的设计应遵循“强柱弱梁、强剪弱弯、强节点弱构件、强底层柱(墙)” 的基本防震原则,对可能会造成结构体系的薄弱部位,应具有针对性的提高该部位的防震能力。对于承受纵向荷载的结构构件不应作为主要的耗能构件。

2.2设计多道防震防线

2.2.1一个良好的防震街头体系必须由多个延性优秀的分体系构成。并使延性较好的构件连接协同工作,比如在框剪结构是由剪力墙以及延性框架分体系组成,双肢或者多肢剪力墙分体系组成。

2.2.2通常在较强地震发生之后会伴有多次余震,假如只设计一道防震防线,则很有可能在主震对结构进行破坏之后,再遭受余震,导致结构损伤累积,最终倒塌,因此,防震结构体系应具备一定数量的内、外冗余度,并有针对性的建立一些合理分布的屈服区,以及使主要一些耗能构件具备较高的刚度和延性。从而使结构体能够吸收和分解地震的大量能量,进而达到提高结构的防震性能的目的。

2.2.3合理的处理好结构体系中各构件的强弱关系,即在同一层中,若主要的耗能构件屈服以后,则其它侧力的构件仍在弹性阶段,从而延长结构体系的有效屈服,从而保证结构体系的延性以及抗倒塌能力。

三、建筑结构防震设计方法

3.1建筑结构隔震方法

这种隔震方法通常是通过在建筑的上、下部结构中间设置隔震装置来实现隔离地震能量的功能,一般根据隔离层的位置不同,可分为下面四种:

3.1.1地基隔震

地基隔震一般都设置在基础结构一下的地基中,在建筑史上,曾经有使用糯米垫层以及砂垫层来作为隔震保护的记载,还有采用铺设一层软粘土再铺设一层砂土,并在中间加设一层土工布的方法,但是由于这种方法,人们不好控制土层的形状,因此,隔震效果很不稳定。

3.1.2基础隔震

这种隔震方法一般适用于外观较为规则的低层建筑,其方法是在结构基础和上部结构间加设隔震装置,这种隔震方法一般有粘弹性隔震以及滚珠滑移隔震等形式,其装置也有基底滑移装置以及夹层橡胶垫装置等。

3.1.3层间隔震

层间隔震实质上是将隔震与结构防震相结合,在建筑结构上加装耗能减震的装置,这种隔震效果一般可以降低10—40%的地震破坏。

3.1.4悬挂隔震

悬挂隔震较为先进,它是通过将结构体大部分甚至全部质量悬挂起来,从而使地震破坏无法对结构体造成破坏。这种隔震方法被广泛应用于世界各国的许多桥梁及电厂锅炉架中。

3.2消能减震技术

该技术是通过提高结构体系的附加阻尼,从而降低结构体系的地震影响的方法,它不仅能应用于结构上部,也能应用在采用基础隔震法中的隔震层。它比依靠结构刚性及节点延性来分解地震能量要先进了一些,但其消能元件不能分离于结构主体,也不能完全的避免结构体的弹塑性变形,所以,它依然属于延性结构的范畴。

3.3机敏减震

无粘结钢支撑体系属于机敏减震支撑体系。在内核钢支撑以及外包钢管间不粘结,或内核钢支撑以及外包钢筋砼间涂抹无粘结漆,从而构成滑移界面,在终端加设外包层,两端露出内核钢支撑,再用高强螺栓连接结构体,从而保证拉力与压力都由内核钢支撑承担。

四、防震结构设计中的概念设计

防震结构设计中的概念设计的出现,是由于地震的随机性,目前还无法对其震动时间、震动频率以及震动强度进行预测,所以不能完全依赖于防震设计规范中的计算模式进行计算,而是应以建筑防震的基本理论以及长期的防震设计经验总结为依据,进行概念性防震设计,在防震概念设计中,应注意以下几点:

4.1建筑选址

在建筑选址时,设计人员就应结合具体的地质勘察报告,配合业主进行工程选址,尽量避开地震灾害较大的危险地段,选择对防震设计有利的地势,选择时应选择开阔平坦、土质较硬的中硬土等地段,应避开选择软弱土、液化土以及河岸、坡地、岩质不均匀的不利地段;另外,在同一建筑结构位置选择上,不应横跨在两种地基土上,也不应在同一结构体上,采用两种基础结构形式,从而使建筑基础结构受力不均匀,降低基础的整体性能与刚度。

4.2平立面布置应合理

建筑结构的动力性能取决于它的结构形式及建筑布局,结构形式符合防震原则,建筑布局简洁合理,这样才能确保建筑结构整体具有优秀的防震性能。所以,这就需要建筑物的建筑外观无论是平面还是立面都应尽量保持规则、对称,质量与刚度的均匀,尽量避免结构外形的大起大落,错层现象。

4.3结构选型与结构布置

结构形式要以建筑物的使用功能、设防烈度、建筑高度、工程地质、基础类型以及施工工艺等因素为前提,综合考虑,然后再对具体的施工技术以及工程成本进行详细对比再确定下来。如果仅从防震角度进行分析,那么一种良好的防震结构形式应满足以下性能:结构延性系数高;构件连接的整体性与连续性较好,并能发挥出建材的最大强度。结构的布置应遵循平面力求对称、纵向力求受力均匀的原则,从而使构件受力均匀,强度变化均匀,提高结构的整体防震性能。

五、结束语

随着我国国民经济的迅速发展,城市化水平的步伐加快,高层建筑随之增加,要确保这些越来越高、外形越来越复杂的建筑具有可靠的防震性能,确实是一个非常困难的问题,这对结构工程师们来说无非是一个艰巨的考验,因此,这就需要他们在建筑结构的防震性能设计中,不断地总结长期的防震设计经验,并对传统的防震设计方法进行创新,从而适应越来越复杂的建筑形式,为人们提供坚固、安全可靠的居住环境。

参考文献:

[1]周密.简要分析建筑结构设计中的防震设计[J].建材与装饰:上旬,2012,22(8):30--31.

[2]胡洁.浅析建筑结构防震设计[J].科技创新与应用,2012,12(06Z):226.