公务员期刊网 精选范文 钢筋混凝土论文范文

钢筋混凝土论文精选(九篇)

前言:一篇好文章的诞生,需要你不断地搜集资料、整理思路,本站小编为你收集了丰富的钢筋混凝土论文主题范文,仅供参考,欢迎阅读并收藏。

钢筋混凝土论文

第1篇:钢筋混凝土论文范文

关键词:钢筋混凝土框架节点抗震性能核芯区

1问题的提出

近年来,随着抗震理论的深入发展,在钢筋混凝土框架结构的延性设计上,“强剪弱弯,弱梁强柱,更强节点”已经成为工程界的共识。这种“能力设计”的思路确保钢筋混凝土结构在地震作用下,依次在梁端和柱端出现塑性铰,通过塑性耗能机构避免在较强的地震作用下结构产生严重损伤和在更强地震作用下发生危及生命安全的局部或整体失效。而钢筋混凝土框架节点在结构达到预计的最不利非弹性反应之前不应出现剪切失效,并具有一定的耗能能力。

钢筋混凝土框架结构的延性是反映结构在荷载作用下,进入非线性状态后在承载力没有显著降低情况下的变形能力。对于延性大的结构,其产生的塑性变形也大,但永久变形太大,结构可能在重力作用下引起坍塌,也可能使结构的损坏部位不可修复。因此,在钢筋混凝土框架结构的设计上,必须综合考虑一定程度的承载能力和一定范围的延性。

钢筋混凝土框架节点的受力机理指通过合理的计算假定模式,描述由梁、板、柱传来的内力(M、N、V、T)在框架节点核芯区的传递和由此产生的各种破坏型式。目前比较流行的有三种理论:斜压杆机理、剪摩擦机理、桁架机理。这三种框架节点的受力机理,应用于各种不同的破坏型式和设计规范中。新西兰的框架节点设计以斜压杆和桁架机理共同作用为依据,美国则以梁剪机理和斜压杆机理为主。而我国《建筑抗震设计规范》(GB50011—2001)中用于抗震框架节点设计的主要计算公式是用来确定节点水平箍筋用量的“框架节点核芯区抗震受剪承载力计算公式”,并未全面考虑到影响钢筋混凝土框架节点抗震性能的各种因素,值得进一步探讨研究。

2影响钢筋混凝土框架节点抗震性能的因素

2.1材料强度

混凝土强度直接影响框架节点抗剪承载力,对于承受一定荷载的框架节点,混凝土强度越高,则梁、柱的截面尺寸越小,框架节点核芯区混凝土的承剪截面也相应减小,在一定配箍率下,对其抗震性能反而不利。

我国《混凝土结构设计规范》(GB50010—2002)提倡使用HRB400级钢筋,钢筋强度虽然大于HRB335级钢筋,在相同的设计条件下,用钢量相对减少,但是钢筋表面与周边的混凝土粘结锚固能力下降,在框架节点的高粘结应力区,钢筋和混凝土的共同作用相对较差,钢筋易滑移。

2.2节点型式

对于一榀平面框架,按框架节点所在位置,节点主要有四种基本型式:顶层边柱节点(型)、顶层中柱节点(型)、中间层边柱节点(┣型)和中间层中柱节点(╋型)。对于型节点,梁、柱的纵筋均需在框架节点核芯区内锚固,节点核芯区受力较复杂,易产生破坏。对于型节点,梁的纵筋可直通锚固,水平荷载作用下,柱抗弯承载力弱于梁,柱端易产生塑性铰。对于┣型节点,柱抗弯承载力较大,“强柱弱梁”比较容易满足,但梁筋的锚固相对薄弱,梁筋易发生粘结滑移,角柱节点受力最为不利。对于╋型节点,强震作用下,框架节点两侧梁端可能均达到屈服,框架节点核芯区受到很大的剪力,容易发生核芯区剪切破坏。

2.3轴压比

试验研究表明,在一定范围内轴向压力可提高框架节点核芯区混凝土的抗剪承载力。由于柱轴向压力的作用,在框架节点核芯区混凝土开裂以前,柱截面受压区面积加大,斜压杆作用加强。当混凝土出现裂缝时,混凝土块体间产生咬合力。随着轴压比的增大,抗剪承载力相应增大,但当轴压比超过某一临界值时,框架节点受压区混凝土产生微裂缝,使混凝土压碎,抗剪承载力反而下降。

2.4剪压比

为了防止框架节点核芯区出现斜拉破坏或斜压破坏,必须控制剪压比,即限制配箍率,避免框架节点核芯区混凝土的破坏先于箍筋的屈服。

2.5水平箍筋

在框架节点内配置水平封闭箍筋,一方面对框架节点核芯区混凝土产生有利约束,增强传递轴向荷载的能力,另一方面承担部分水平剪力,提高框架节点的抗剪承载力。试验表明,配箍适当的框架节点核芯区出现贯通裂缝后,混凝土承担的剪力继续增加,箍筋全部屈服,混凝土与箍筋同时充分发挥作用,使节点核芯区受剪承载力在破坏时达到最大。对于配箍较高的节点,当节点核芯区产生贯通斜裂缝时,混凝土抗剪承载力达极值,但箍筋应力还很低,混凝土破坏先于箍筋屈服,使得节点核芯区的抗剪承载力达不到预期的最大值,箍筋不能充分发挥作用。

2.6竖向箍筋

在水复荷载作用下,框架节点核芯混凝土出现交叉斜裂缝后,剪力的传递由斜压杆作用过渡到水平箍筋承担水平分力、柱纵向钢筋承担竖向分力以及平行于斜裂缝的混凝土骨料咬合力所构成的桁架抗剪机制,设置竖向箍筋可承担框架节点剪力的竖向分量,减少混凝土的负担,从而提高框架节点的抗剪承载力,但施工不便。

2.7柱纵向钢筋

柱纵向钢筋通常按抗弯要求设置,沿柱截面的高度方向,按构造规定也相应配置一定数量的纵向钢筋。这些纵筋与水平箍筋联合对框架节点核芯区混凝土形成双向约束。因此,合理布置柱纵向钢筋对提高框架节点抗剪承载力有一定贡献,但增加柱纵向钢筋不像增加水平箍筋那样能显著地提高框架节点的抗剪承载力。

2.8直交梁

国内外的实际震害与试验研究表明,垂直于框架平面与节点相交的直交梁对框架节点核芯区混凝土具有约束作用,从而提高框架节点的抗剪承载力。但是,如果斜向地震的双轴效应使两个方向梁的纵筋都屈服,则降低了直交梁对节点的约束作用。对于仅一侧有直交梁的框架节点,抗剪性能并未改善框架节点的抗剪承载力。

2.9楼板

框架节点四周的楼板对节点核芯区具有约束作用,与梁轴平行的楼板钢筋与梁上部受力钢筋协同工作。如果考虑楼板作为梁翼缘在受弯过程中发挥的作用,则应相应地提高节点的剪力计算值。

2.10预应力作用

对钢筋混凝土框架节点施加预应力,可使框架节点核芯区混凝土增加约束,处于双向受力状态,从而提高框架节点的抗剪承载力。但通过框架节点核芯区的无粘结预应力筋,削弱核芯区混凝土的面积,降低框架节点的抗剪承载力。因此,对于无粘结预应力混凝土框架节点,可将预应力作用对框架节点的抗剪承载力的提高作为结构的安全度储备。

2.11偏心影响

在高层建筑设计中,为了使建筑立面产生与外墙或柱面齐平的效果或产生凹凸错落的效果,经常要求梁、柱中心线错开,甚至要求梁侧面与柱侧面重合,出现大量的大偏心框架节点,这时框架节点受到附加扭矩之类的次内力作用,剪力在节点内的传递比较复杂。通过实际震害和试验研究可以发现,与无偏心框架节点相比,偏心框架节点抗剪承载力明显下降。

2.12异形柱节点

T型柱框架节点的抗剪承载力较低,框架节点在梁一屈服后马上进入通裂状态。当梁宽大于柱腹板宽度时,处于柱腹板外的梁纵筋在节点处锚固较差。

2.13反复荷载

在反复荷载作用下,材料强度和构件强度降低,粘结锚固性能退化,剪切变形加大。由于框架节点内剪应力方向交替变化,核芯区斜向裂缝的张开与闭合交替产生,导致框架节点核芯区抗剪承载力和剪切刚度降低。框架节点两侧的梁纵向钢筋可能产生一侧受拉达到屈服,另一侧受压达到屈服,产生很高的粘结应力,使钢筋滑移,发生粘结破坏。随着梁端变形的逐步增加,框架节点核芯区抗剪承载力相应逐渐衰减。

2.14斜向地震的双轴效应

当地震作用方向与建筑物主轴方向不一致时,可能使两个方向的梁都达到屈服,这时作用于节点对角斜面上的水平剪力约为其中一个方向的2倍,然而斜裂缝遇到的箍筋与一个方向受剪时遇到的箍筋数目仍然相同。如果这些水平箍筋与柱截面各边平行,则钢筋的斜向分力仅仅是单向受剪时可抵抗剪力的1/2。对于双向对称的框架,双向受剪所需要的剪力钢筋约为单向受剪所需剪力钢筋的2倍。因此,斜向地震作用下,框架节点的强度和刚度迅速降低,梁筋较早出现粘结滑移破坏。

3建议

通过以上对影响钢筋混凝土框架节点抗震性能的各种因素的讨论,在钢筋混凝土框架节点的设计上,综合“概念设计”和“构造措施”,确保结构设计安全经济。

参考文献

[1]唐九如,钢筋混凝土框架节点抗震,东南大学出版社,1989.

第2篇:钢筋混凝土论文范文

关键词:结构设计抗震

一.抗震设计思路发展历程

随着建筑结构抗震相关理论研究的不断发展,结构抗震设计思路也经历了一系列的变化。

最初,在未考虑结构弹性动力特征,也无详细的地震作用记录统计资料的条件下,经验性的取一个地震水平作用(0.1倍自重)用于结构设计。到了60年代,随着地面运动记录的不断丰富,人们通过单自由度体系的弹性反应谱,第一次从宏观上看到地震对弹性结构引起的反应随结构周期和阻尼比变化的总体趋势,揭示了结构在地震地面运动的随机激励下的强迫振动动力特征。但同时也发现一个无法解释的矛盾,当时规范所取的设计用地面运动加速度明显小于按弹性反应谱得出的作用于结构上的地面运动加速度,这些结构大多数却并未出现严重损坏和倒塌。后来随着对结构非线性性能的不断研究,人们发现设计结构时取的地震作用只是赋予结构一个基本屈服承载力,当发生更大地震时,结构将在一系列控制部位进入屈服后非弹性变形状态,并靠其屈服后的非弹性变形能力来经受地震作用。由此,也逐渐形成了使结构在一定水平的地震作用下进入屈服,并达到足够的屈服后非弹性变形状态来耗散能量的现代抗震设计理论。

由以上可以看出,结构抗震设计思路经历了从弹性到非线性,从基于经验到基于非线性理论,从单纯保证结构承载能力的“抗”到允许结构屈服,并赋予结构一定的非弹性变形性能力的“耗”的一系列转变。

二.现代抗震设计思路及关系

在当前抗震理论下形成的现代抗震设计思路,其主要内容是:

1.合理选择确定结构屈服水准的地震作用。一般先以一具有统计意义的地面峰值加速度作为该地区地震强弱标志值(即中震的),再以不同的R(地震力降低系数)得到不同的设计用地面运动加速度(即小震的)来进行结构的强度设计,从而确定了结构的屈服水准。

2.制定有效的抗震措施使结构确实具备设计时采用的R所对应的延性能力。其中主要包括内力调整措施(强柱弱梁、强剪弱弯)和抗震构造措施。

现代抗震设计理念是基于对结构非弹性性能的研究上建立起来的,其核心是关系,关系主要指在不同滞回规律和地面运动特征下,结构的屈服水准与自振周期以及最大非弹性动力反应间的关系。其中R为弹塑性反应地震力降低系数,简称地震力降低系数;而为最大非弹性反应位移与屈服位移之比,称为位移延性系数;T则为按弹性刚度求得的结构自振周期。

60年代开始,研究者在滞回曲线为理想弹塑性及弹性刚度始终不变的前提下,通过对不同周期,不同屈服水准的非弹性单自由度体系做动力分析,得到了有关弹塑性反应下最大位移的规律:对T大于1.0秒的体系适用“等位移法则”即非弹性反应下的最大位移总等于同一地面运动输入下的弹性反应最大位移。对于T在0.12-0.5秒之间的结构,适用“等能量法则”即非弹性反应下的弹塑性变形能等于同一地震地面运动输入下的弹性变形能。当“等能量原则”适用时,随着R的增大,位移延性需求的增长速度比“等位移原则”下按与R相同的比例增长更快。由以上规律我们可以看出,如果以结构弹性反应为准,把结构用来做承载能力设计的地震作用取的越低,即R越大,则结构在与弹性反应时相同的地震作用下达到的非弹性位移就越大,位移延性需求就越高。这意味着结构必须具有更高的塑性变形能力。规律初步揭示出不同弹性周期的结构,当其弹塑性屈服水准取值大小不同时,在同一地面运动输入下屈服水准与所达到的最大非弹性位移之间的关系。也揭示出了延性能力和塑性耗能能力是屈服水准不高的结构在较大地震引起的非弹性动力反应中不致发生严重损坏和倒塌的主要原因。让人们认识到延性在抗震设计中的重要性。

之所以存在上诉的规律,我们应该注意到钢筋混凝土结构的一些相关特性。首先,通过人为措施可以使结构具有一定的延性,即结构在外部作用下,可以发生足够的非线性变形,而又维持承载力的属性。这样就可以保证结构在进入较大非线性变形时,不会出现因强度急剧下降而导致的严重破坏和倒塌,从而使结构在非线性变形状态下耗能成为可能。其次,作为非线弹性材料的钢筋混凝土结构,在一定的外力作用下,结构将从弹性进入非弹性状态。在非弹性变形过程中,外力做功全部变为热能,并传入空气中耗散掉。我们可以进一步以单质点体系的无阻尼振动来分析,在弹性范围振动时,惯性力与弹性恢复力总处于动态平衡状态,体系能量在动能、势能间不停转换,但总量保持不变。如果某次振动过大,体系进入屈服后状态,则体系在平衡位置的动能将在最大位移处转化为弹性势能和塑性变形能两部分,其中,塑性变性能将耗散掉,从而减小了体系总的能量。由此我们可以想到,在地震往复作用下,结构在振动过程中,如果进入屈服后状态,将通过塑性变性能耗散掉部分地震输给结构的累积能量,从而减小地震反应。同时,实际结构存在的阻尼也会进一步耗散能量,减小地震反应。此外,结构进入非弹性状态后,其侧向刚度将明显小于弹性刚度,这将导致结构瞬时刚度的下降,自振周期加长,从而减小地震作用。

随着对规律认识的深入,这一规律已被各国规范所接受。在抗震设计时,对在同一烈度区的同一类结构,可以根据情况取用不同的R,也就是不同的用于强度设计的地震作用。当R取值较大,即用于设计的地震作用较小时,对结构的延性要求就越严;反之,当R取值较小,即用于设计的地震作用较大时,对结构的延性要求就可放松。

目前,国际上逐步形成了一套“多层次,多水准性态控制目标”的抗震理念。这一理念主要含义为:工程师应该选择合适的形态水准和地震荷载进行结构设计。建筑物的性态是由结构的性态,非结构构件和体系的性态以及建筑物内容物性态的组合。目前性态水准一般分为:损伤出现(damageonset)、正常运作(operational)、能继续居住(countinuedoccupancy)、可修复的(repairable)、生命安全(lifesafe)、倒塌(collapse)。性态目标指建筑物在一定程度的地震作用下对所期望的性态水准的表述。对建筑抗震设计应采用多重性态目标,比如美国的“面向2000基于性态工程的框架方案”曾对一般结构、必要结构、对安全起控制作用的结构分别建议了相应的性态目标――基本目标(常遇地震下完全正常运作,少遇地震下正常运作,罕遇地震下保证生命安全,极罕遇地震下接近倒塌)、必要目标(少于地震下完全正常运作,罕遇地震下正常运作,极罕遇地震下保证生命安全)、对安全其控制作用的目标(罕遇地震下完全正常运作,极罕遇地震下正常运作)。对重要性不同的建筑,如协助进行灾害恢复行动的医院等建筑,应该按较高的性态目标设计,此外,也可以针对甲方对建筑提出的不同抗震要求,选择不同的性态目标。

三.保证结构延性能力的抗震措施

合理选择了结构的屈服水准和延性要求后,就需要通过抗震措施来保证结构确实具有所需的延性能力,从而保证结构在中震、大震下实现抗震设防目标。系统的抗震措施包括以下几个方面内容:

1.“强柱弱梁”:人为增大柱相对于梁的抗弯能力,使钢筋混凝土框架在大震下,梁端塑性铰出现较早,在达到最大非线性位移时塑性转动较大;而柱端塑性铰出现较晚,在达到最大非线性位移时塑性转动较小,甚至根本不出现塑性铰。从而保证框架具有一个较为稳定的塑性耗能机构和较大的塑性耗能能力。

2.“强剪弱弯”:剪切破坏基本上没有延性,一旦某部位发生剪切破坏,该部位就将彻底退出结构抗震能力,对于柱端的剪切破坏还可能导致结构的局部或整体倒塌。因此可以人为增大柱端、梁端、节点的组合剪力值,使结构能在大震下的交替非弹性变形中其任何构件都不会先发生剪切破坏。

3.抗震构造措施:通过抗震构造措施来保证形成塑性铰的部位具有足够的塑性变形能力和塑性耗能能力,同时保证结构的整体性。

这一系统的抗震措施理念已被世界各国所接受,但是对于耗能机构却出现了以新西兰和美国为代表的两种不完全相同的思路。首先,这两种思路都是以优先引导梁端出塑性铰为前提。

新西兰的抗震研究者认为耗能机构宜采用符合塑性力学中的“理想梁铰机构”,即梁端全部形成塑性铰,同时底层柱底也都形成塑性铰的“全结构塑性机构”。其具体做法是通过结构分析得到各构件组合内力值后,对梁端截面就按组合弯矩进行截面设计;而对除底层柱底以外的柱截面,则用人为增大了以后的组合弯矩和组合轴力进行设计;对底层柱底截面则用增大幅度较小的组合弯矩和组合轴力进行截面设计。通过这一做法实现在大震下的较大塑性变形中,梁端塑性铰形成的较为普遍,底层柱底塑性铰出现迟于梁端塑性铰,而其余所有的柱截面不出现塑性铰,最终形成“理想梁铰机构”。为此,这种方法就必须取足够大的柱端弯矩增强系数。

美国抗震界则认为新西兰取的柱弯矩增强系数过大,根据经验取了较小的柱弯矩增强系数,这一做法使结构在大震引起的非弹性变形过程中,梁端塑性铰形成较早,柱端塑性铰形成的相对较迟,梁端塑性铰形成的较普遍,柱端塑性铰形成的相对少一些,从而形成“梁柱塑性铰机构”。

新西兰抗震措施的好处在于“理想梁铰机构”完全利用了延性和塑性耗能能力较好的梁端塑性铰来实现框架延性和耗散地震能量,同时因为除底层柱底外的其它柱端不出现塑性铰,也就不必再对这些柱端加更多的箍筋。但是这种思路过于受塑性力学形成理想机构概念的制约,总认为底层柱底应该形成塑性铰,这样就对底层柱底提出了较严格的轴压比要求,同时还要用足够多的箍筋来使柱底截面具有所需的延性,此外,底层柱底如果延性不够发生破坏很容易导致结构整体倒塌。这些不利因素使该方法丧失了很大的优势。

因此很多研究者认为不需要被塑性力学的机构概念所限制,只要能在大震下实现以下的塑性耗能机构,就能保证抗震设计的基本要求:

1.以梁端塑性铰耗能为主;

2.不限制柱端塑性铰出现(包括底层柱底),但是通过适当增强柱端抗弯能力的方法使它在大震下的塑性转动离其塑性转动能力有足够裕量;

3.同层各柱上下端不同时处于塑性变形状态。

我国的抗震措施中对耗能机构的考虑也基本遵循了这一思路,采用了“梁柱塑性铰机构”模式,而放弃了新西兰的基于塑性力学的“理想梁铰机构”模式。

抗震设计中我们为了避免没有延性的剪切破坏的发生,采取了“强剪弱弯”的措施来处理构件受弯能力与受剪能力的关系问题。值得注意的是,与非抗震抗剪破坏相比,地震作用下的剪切破坏是不同的。以梁构件为例,在较大地震作用下,梁端形成交叉斜裂缝区,该区混凝土受斜裂缝分割,形成若干个菱形块体,而且破碎会随着延性增长而加剧。由于交叉斜裂缝与塑性铰区基本重合,垂直和斜裂缝宽度都会随延性而增大。抗震下根据梁端的受力特征,正剪力总是大于负剪力,正剪力作用下的剪压区一般位于梁下部,但由于地震的往复作用,梁底的混凝土保护层可能已经剥落,从而削弱了混凝土剪压区的抗剪能力;交叉斜裂缝宽度比非抗震情况大,以及斜裂缝反复开闭,混凝土破碎更严重,从而使斜裂缝界面中的骨料咬合效应退化;混凝土保护层剥落和裂缝的加宽又会使纵筋的销栓作用有一定退化。可见,地震作用下,混凝土抗剪能力严重退化,但是试验发现箍筋的抗剪能力仍可以维持。当地震作用越来越小时,梁端可能不出现双向斜裂缝,而出现单向斜裂缝,裂缝宽度发育也从大于非抗震情况到接近非抗震情况,抗剪环境越来越有利。此外,抗震抗剪要求结构构件应在大震下预计达到的非弹性变形状态之前不发生剪切破坏。因为框架剪切破坏总是发生在梁端塑性铰区,这就不仅要求在梁端形成塑性铰前不发生剪切破坏,而且抗剪能力还要维持到塑性铰的塑性转动达到大震所要求的程度,这就需要更多的箍筋。同时,在梁端塑性变形过程中作用剪力并没有明显增大,也进一步说明这里增加的箍筋不是用来增大抗剪强度,而是为了提高构件在发生剪切破坏时所达的延性。

综上所述,与非抗震抗剪相比,抗震抗剪性能是不同的,其性能与剪力作用环境,塑性区延性要求大小有关。我们可以采取以下公式来考虑抗震抗剪的强度公式:

其中为混凝土抗剪能力,为箍筋抗剪能力,为由于地震作用导致的混凝土抗剪能力下降的折减系数,且随着剪力作用环境、延性要求而改变。我国的抗震抗剪强度公式也以上面公式为基础的,但是为设计方便,不同的烈度区取用了相同的公式,均取为0.6,与上面提到的混凝土抗剪能力随地震作用变化而不同的规律不一致,较为粗略。

延性对抗震来说是极其重要的一个性质,我们要想通过抗震措施来保证结构的延性,那么就必须清楚影响延性的因素。对于梁柱等构件,延性的影响因素最终可归纳为最根本的两点:混凝土极限压应变,破坏时的受压区高度。影响延性的其他因素实质都是这两个根本因素的延伸。如受拉钢筋配筋率越大,混凝土受压区高度就越大,延性越差;受压钢筋越多,混凝土受压区高度越小,延性越好;混凝土强度越高,受压区高度越低,延性越好(但如果混凝土强度过高可能会减小混凝土极限压应变从而降低延性);对柱子这类偏压构件,轴压力的存在会增大混凝土受压区高度,减小延性;箍筋可以提高混凝土极限压应变,从而提高延性,但对于高强度混凝土,受压时,其横向变形系数较一般混凝土明显偏小,箍筋的约束作用不能充分发挥,所以对于高强度混凝土,不适于用加箍筋的方法来改善其延性。此外,箍筋还有约束纵向钢筋,避免其发生局部压屈失稳,提高构件抗剪能力的作用,因此箍筋对提高结构抗震性能具有相当重要的作用。根据以上规律,在抗震设计中为保证结构的延性,常常采用以下措施:控制受拉钢筋配筋率,保证一定数量受压钢筋,通过加箍筋保证纵筋不局部压屈失稳以及约束受压混凝土,对柱子限制轴压比等。

四.我国抗震设计思路中的部分不足

我国在学习借鉴世界其他国家抗震研究成果的基础上,逐渐形成了自己的一套较为先进的抗震设计思路。其中大部分内容都符合现代抗震设计理念,但是也有许多考虑欠妥的地方,需要我们今后加以完善。

其中,最值得我们注意的是,与国外规范相比,我国抗震规范在对关系的认识上还存在一定的差距。欧洲和新西兰规范按地震作用降低系数(“中震”的地面运动加速度与“小震”的地面运动加速度之比)来划分延性等级,“小震”取值越高,延性要求越低,“小震”取值越低,延性要求越高。美国UBC规范按同样原则来划分延性等级,但在高烈度区推荐使用高延性等级,在低烈度区推荐使用低延性等级。这几种抗震思路都是符合规律的。而目前我国将地震作用降低系数统一取为2.86,而且还把用于结构截面承载能力设计和变形验算的小震赋予一个固定的统计意义。对延性要求则并未按关系来取对应的,而是按抗震等级来划分,抗震等级实质又主要是由烈度分区来决定的。这就导致同一个R对应了不同的,从而制定了不同的抗震措施,这与关系是不一致的。这种思路造成低烈度区的结构延性要求可能偏低的结果。

另外,我国规定的“小震不坏,中震可修,大震不倒”的三水准抗震设防目标也存在一定的问题。该设防目标对甲类、乙类、丙类这三类重要性不同的建筑来说,并不都是恰当的。这种笼统的设防目标也不符合当今国际上的“多层次,多水准性态控制目标”思想,这种多性态目标思想提倡在建筑抗震设计中应灵活采用多重性态目标。甲类建筑指重大建筑工程和地震时可能发生严重此生灾害的建筑,乙类建筑指地震时使用不能中断或需要尽快修复的建筑,由于不同类别建筑的不同重要性,不宜再笼统的使用以上同一个性态目标(设防目标),此外,还应该考虑建筑所有者的不同要求,选择不同的设防目标,从而做到在性态目标的选择上更加灵活。

五.常用抗震分析方法

伴随着抗震理论的发展,各种抗震分析方法也不断出现在研究和设计领域。

在结构设计中,我们需要确定用来进行内力组合及截面设计的地震作用值。通常采用底部剪力法,振型分解反应谱法,弹性时程分析方法来计算该地震作用值,这三种方法都是弹性分析方法。其中,底部剪力法最简便,适用于质量、刚度沿高度分布较均匀的结构。它的大致思路是通过估计结构的第一振型周期来确定地震影响系数,再结合结构的重力荷载来确定总的水平地震作用,然后按一定方式分配至各层进行结构设计。对较复杂的结构体系则宜采用振型分解反应谱法进行抗震计算,它的思路是根据振型叠加原理,将多自由度体系化为一系列单自由度体系的叠加,将各种振型对应的地震作用、作用效应以一定方式叠加起来得到结构总的地震作用、作用效应。而对于特别不规则和特别重要的结构,常常需要进行弹性时程分析,该方法为直接动力分析方法。以上方法主要针对结构在地震作用下的弹性阶段,保证结构具有一定的屈服水准。

第3篇:钢筋混凝土论文范文

关键词:屋面裂缝事故处理

1工程概况

某幼儿园1995年8月开工,于1996年12月竣工交付使用,建筑面积1643m2,为一幢3层框架及部分砖混结构建筑。钢筋混凝土梁式桩基,三层局部楼面及屋面为井字梁结构。于1999年3月发现①~⑤轴、A~D轴间井字梁两侧屋面板底以下部位出现多道肉眼可见的垂直裂缝。在清除表面粉刷层后发现裂缝沿构件截面高度呈上宽下窄状,宽度约0.5~1mm,多为表面裂缝,基本未贯穿梁底,且大都分布在跨中区域,在LB梁上的分布多于LA1及LA2梁,同时井字梁的周边梁与其下砌体结构产生了明显的错位.

2裂缝原因分析

(1)该楼共设8个沉降观测点。根据基础沉降观测结果,由于为桩基础,沉降量均较小,最大沉降量10.4mm,最小沉降量9.3mm,最大差异沉降仅1.1mm,故可排除基础沉降量过大引起梁体裂缝的可能。

(2)对梁体进行回弹测得混凝土强度等级达到C20,符合原设计要求,故可排除梁身混凝土强度等级不足引起梁体开裂的可能。

(3)该井字梁结构系夏季施工,原定屋面做法为刚性防水层上用1∶10水泥珍珠岩找坡,再做架空层隔热,而后考虑铝白色SBS具有反光、防漏的双重作用,而改用铝白色塑膜面SBS防水卷材替代架空层。通过实地检查发现,该防水材料已老化变质,其上铝白色也已退尽。宁波地区冬季最低室外温度在-5℃左右,室内温度可达到10℃,夏季室外温度可达到38℃左右,在阳光直射处则可达到45℃以上,室内温度为30℃左右。该井字梁层面上虽做有珍珠岩找坡层,但厚度较薄,且其上SBS已失去原有的反光作用,故该层面保温性较差,梁体的室内外温差无论冬夏季至少在10℃以上。

3设计计算的复核

现以LB梁为例进行裂缝宽度复核。该构件的裂缝控制等级应为三级,最大裂缝允许宽度为0.3mm。复核工作分两部分进行。

(1)按受弯构件验算梁体裂缝宽度,其最不利情况应是荷载效应与温度效应产生的弯矩叠加。因该梁是夏季施工的,冬季则产生收缩变形,梁顶与梁底的温差使梁顶收缩大于梁底,因此,冬季温度效应产生的跨中弯矩与荷载效应产生的跨中弯矩是同号的,即冬季二者的影响是叠加的。

经计算得屋面综合荷载q=7.58kN/m2,区格的长a和宽b分别为3.4m和3m,则荷载效应产生的弯矩

Ml=0.34qa2b=0.34×7.58×3.42×3=4kN·m

而由构件上下表面温差产生的温度弯矩Mt:

Mt=EIαΔt/h=Ebh2αΔt/12=2.55×104×250×700×700×10^-5×10/12=26000000N·mm=26kN·m

其中E为C20混凝土弹性模量取2.55×104N/mm2;α为C20混凝土线膨胀系数,取1×10^-5,I为构件截面惯性矩,矩形时为bh^3/12,(b为构件宽250mm,h为构件高度700mm);Δt为构件上、下表面温差,取为10℃。

因而M=Ml+Mt=89.4+26=115.4kN·m

按《混凝土设计规范(GBJ10-89)》受弯构件公式算得最大裂缝宽度Wmax=0.215mm<0.3mm。

(2)按受拉构件验算梁体裂缝宽度。由于该梁为夏季施工,冬季则产生收缩变形,但受支座的约束,在混凝土内产生拉应力。如夏季施工时的温度为35℃,冬季按0℃计算,则冬夏温差将达35℃左右。如近似按轴心受拉构件验算,则可算得最大裂缝宽度Wmax=0.82mm>0.3mm。

由计算过程中得知,温度变形产生的伸缩应力很大(本例为781kN),虽然计算中已考虑了钢筋混凝土构件同砖混结构的协同变形因素,但由于两者的线膨胀系数不同,砖混部分还是对构件产生了较大的约束。

(3)很明显,本工程屋面井字梁侧面出现裂缝的主要原因是由于冬夏季温差引起的混凝土收缩变形以及冬季室内外温差所产生内力效应的影响叠加于荷载效应的综合作用结果。因该梁是在夏季施工的,而且保温隔热措施较差,在冬季的低温下,沿梁长方向产生收缩。当收缩变形受到支座的约束时,在梁体内产生了拉应力。由于混凝土的抗拉强度较低,当拉应力超过抗拉强度时,便产生裂缝。此外,设计中没有按构件由于温度收缩变形引起的拉应力进行抗拉强度验算,抗拉筋明显不足,也是导致井字梁构件裂缝的主要原因之一。由于LA1、LA2梁配筋大于LB梁,故裂缝在LB梁上分布较广。

4处理措施

该工程从竣工到发现裂缝已经过两年多时间,此后又经过近三个月的现场裂缝发展的观测,证实裂缝的开展已处于稳定状态。引起构件裂缝的主要因素——混凝土收缩变形由于各种井字梁及其支承系统的协调变形已趋稳定,同时按温度效应与荷载效应组合验算构件抗弯强度证明梁截面承载力能够满足使用要求,故工程上仅按温度裂缝的因素对构件作了如下处理。

(1)改善屋面保温性能。考虑到原有屋面防水材料SBS已老化变质,为防止屋面渗漏,揭去重做。同时重新在屋面上铺设了架空层,以降低梁体的冬夏季温差与室内外温差。

(2)鉴于构件裂缝宽度较小,故采用表面处理法施工。具体方法为:凿去裂缝两侧各宽5cm范围内的粉刷层,对裂缝处用水冲洗,然后刷掺有107胶的水泥浆,最后用1∶2水泥砂浆抹平凿出的凹槽。对井字梁边梁与支承墙体间的错位处,先贴上宽300mm的铅丝网,再用水泥砂浆进行重新粉刷。同时在构件修补后经过一年左右的跟踪观测,没有发现新裂缝产生,因此可以认定以上分析结果以及裂缝处理方法是正确的。

5结束语

对于象井字梁构件这类体量较大,相互之间约束又较多的混凝土构件,为防止产生温度裂缝可采取如下一些措施:

(1)选择适宜的季节浇注混凝土。因为混凝土的抗拉强度较低,为防止其收缩变形使梁体内产生拉应力,应尽量选择温度低的季节浇注。必须在热天浇筑时,可采用冰水或深井水拌制,或设置简易的遮阳装置,并对骨料进行喷水预冷却,以降低混凝土的搅拌和浇筑温度。

(2)选用水化热小和收缩小的水泥(如矿渣水泥、粉煤灰水泥),选用级配良好的骨料,并严格控制砂、石子的含热量,尽量降低水灰比,合理使用减水剂,加强振捣,以减少水化热,提高混凝土的密实性和抗拉强度。

(3)做好保温隔热工作,尽量减少构件的冬夏季温差和室内外温差。

第4篇:钢筋混凝土论文范文

(一)建筑材料质量控制不严

1.砂、石子:①含泥量控制不严。②石子表面特征及颗粒形状不符合要求。

2.水泥:①水泥品种与标号未按工程性质及所处环境进行选择。②对进场水泥不复试。③不同品种、不同标号的水泥混用,导致质量事故。

(二)模板部分

1.底层支撑的地基夯实不够,混凝上浇筑时,立底模的垂直支撑常在混凝土浇筑时,被水淋湿,地基软化,使受力的支撑随之沉降,造成梁、板弯曲变形或裂纹等缺陷。

2.支撑系统失稳,使钢筋混凝土出现塌落。

3.不进行模板设计,导致模板强度、刚度不足。

4.模板安装不符合要求,导致钢筋混凝土构件尺寸超差。有的模板接缝不平顺,甚至大缝隙、孔洞也不修补就浇灌混凝土,因跑浆而出现蜂窝、麻面等缺陷。

(三)钢筋部分

1.进入现场的钢筋材质与实验单不符;施工时钢筋绑扎不牢固,出现松动和位移,绑扎间距及保护层不符合要求;还有钢筋接头的形式不符合规定,搭接长度小于规定值等。

2.焊接的质量差,使用的焊条品种、规格和质量不符合设计要求和规范规定;施工管理不善,粗心大意。有的操作人员不懂结构,盲目施工。

(四)混凝土部分

1.支模时,由于底层支撑的地基土夯的不密实,浇注混凝土就使受力的支撑发生沉降,造成结构件弯曲变形而产生裂缝。支模时的几何尺寸掌握的不好,造成梁、板的尺寸不符合设计要求,支的模板缝隙过大、孔洞不修补,振捣不密实、骨料配合比不准等原因,使混凝土出现蜂窝、麻面、露筋、孔洞等缺陷。

2.混凝土配合比不准、搅拌不均匀、模板内杂物清理不干净、木模板不浇水湿润,造成混凝土强度不足,拌制混凝土前不试配,搅拌混凝土不计量,使用的外加剂不经试验。

3.混凝土浇注后,没有进行很好的养护,致使混凝土受冻或水分蒸发过快,造成混凝土的强度不足或出现裂缝。

二、控制好钢筋混凝土质量的要点

(一)加强工程监控

1.人的质量意识及组织机构的控制,所有施工管理人员以及施工人员,首先要学习、掌握好国家有关的规范规定,牢固树立“百年大计、质量第一”的思想,建立健全的各种质量责任制,使其自觉的执行有关质量要求的及规定,确保施工的各个环节都能满足质量要求。

2.在建筑工程中全面推进质量管理,建立与健全质量保证体系,加强质量教育,提高各级领导和施工管理人员、操作人员的质量意识,落实质量保证措施,消除质量隐患,在施工企业中开展自检、互检活动,奖优罚劣。

(二)原材料的质量控制

1.钢筋在进料之前,应根据设计要求的钢筋规格和厂家提供的出厂质量证明书或试验单,在准备购进的钢筋中,按不同级别、规格的钢筋分别抽样的作试验。在同一批钢筋中任意抽样,分别在每根截取拉伸、冷弯、化学分析试件各一根,每组拉伸、冷弯、化学分析试件各两根,送至国家认可的实验室去检验,钢筋抽样检验合格后,方可购进钢筋,以免不合格的材料入场。

2.所有材料进入现场后,监理工程师应根据材料报验单上填写的不同级别、规格、数量的钢筋进行验收。现场监督人员也要认真检查和核对,对各种材料的试验单及合格证是否合格,各种指标是否符合要求,材料和试验单是否相符等,在确人无误后方可使用。

(三)施工过程中的质量控制

1.在支模板前,做好板模设计,使其所支的模板具有足够的强度、刚度和稳定性,可靠的承受浇注混凝土的重量侧压力以及施工过程中所产生的其它荷载。

2.在支模板时要做到接缝严密、不得跑浆、漏浆,同时要保证各种结构构件的形状,几何尺寸及相互位置的正确。

3.正确留设和处理施工缝。《规范》CB50204—92规定,施工缝的位置宜留在结构受剪力较小且便于施工的部位。柱应留水平缝;梁、板、墙应留垂直缝。在施工缝处继续浇筑混凝土时,应待已浇筑的混凝土达1.2N/mm2强度后,清除施工缝表面水泥薄膜和松动石子或软弱混凝土层;经湿润、冲洗干净,再抹水泥浆或与混凝土成份相同的水泥沙浆一层,然后浇筑混凝土,细致捣实,使新旧混凝土结合紧密。

4.钢筋在下料加工之前,首先应该计算锚固定长度,以免下料返工,浪费工料。在制作的过程中,要检查其符合规范要求之后,再下料加工。在钢筋绑扎的过程中,要严格按照国家的有关规范执行,做到材质、根数、直径、间距、接头、绑扎位置、焊接等符合设计要求和规范规定。

5.做好成品保护工作,做到认真检查,防止在施工的过程中人为踩踏,改变钢筋的正确位置。

6.严格按设计要求的混凝土标号配合比执行,搅拌时准确控制各种材料的用量误差在规定的允许范围内。混凝土的搅拌时间要达到要求,保证混凝土的和易性和塌落度符合要求。浇注前将模板内的所有杂物清理干净,木模板要浇水湿润,浇注时要设专人振捣,严禁漏振防止蜂窝、麻面、露筋等现象出现。正确留置和处理施工缝使其留设的位置,接搓的处理符合有关规定。

7.混凝土浇注完毕后,必须按规定进行养护,保持必要的湿度,冬季施工按照规定掺加防冻剂,做好保温措施,保证水泥水化正常进行,防止发生干缩裂缝。

总之,建筑过程中的钢筋混凝土质量必须控制好,只有这样才能保证建筑工程的安全,保证千家万户的安全。

参考文献:

[1]蒋晓燕,贾锦龙.浅析钢筋混凝土工程质量低劣的原因[J].河南建材,2005,(1).

[2]姜作杰.钢筋混凝土结构常见质量事故分析及处理[J].呼伦贝尔学院学报;2005,(2).

第5篇:钢筋混凝土论文范文

关键词:钢管混凝土叠合柱;箍筋约束;强度理论;极限承载力

中图分类号:TU312;TU398

文献标志码:A文章编号:1674-4764(2016)05-0020-07

Abstract:Based on the unified strength theory and the influences of intermediate principal stress and the material of tension and compression ratio were considered when coming down to the ultimate bearing capacity of square steel tube-reinforced high strength concrete column. Effective constraint coefficient and ineffective constraint coefficient were introduced to consider the different constraint functions of concrete derived from the stirrups, the constraint concrete outside steel tube was divided into effective constraint region and ineffective constraint region. The square section was equivalent to circular section to consider the double constraint function to concrete in steel tube derived from steel tube and outer steel reinforced concrete. Then a new method for the axial ultimate bearing capacity of square steel tube-reinforced concrete column was deduced. The results were in good agreement with the experimental results and the correctness of the theory formulae was proved. Influential effects of some parameters were analyzed and the analysis results showed that the ultimate bearing capacity of square steel tube-reinforced high strength concrete column increased with the increase of the side pressure coefficient. Influence coefficient of intermediate principal stress, the material of tension and compression ratio and the longitudinal reinforcement ratio, while it decreases with the increase of radius-thickness ratio.

Keywords:steel tube-reinforced concrete column;stirrup constraint; strength theory; ultimate bearing capacity

高强钢管混凝土叠合柱是由截面中部的高强钢管混凝土柱和钢管外的钢筋混凝土叠合而成的柱,也可以看成是在钢筋混凝土内置钢管混凝土而成的柱,内截面钢管形式有圆钢管、方钢管和矩形钢管,又可称为核心高强钢骨混凝土组合柱。高强混凝土有强度高、变形小的优点,但其延性差、脆性大,不利于抗震;将其与钢管结合,可以充分发挥二者的性能,同时也具有较好的变形能力、较大的刚度和良好的抗火性能等优点,经济效益良好[1-2]。

国内外对钢管混凝土已经进行了较多的研究。Evirgen等[3]通过钢管混凝土柱的轴压试验,分析了宽厚比、混凝土强度等因素对钢管混凝土柱极限承载力、延性和屈曲行为的影响;Wang等[4]基于18根圆形钢管混凝土柱轴压和偏压的试验结果,详细地介绍了该型构件的失效模式、承载能力等性能;吕学涛等[5]对圆钢管钢筋混凝土短柱进行明火试验,分析了升温时间和配筋率对受火后钢管钢筋混凝土短柱剩余承载力、刚度和延性的影响规律。而对钢管混凝土叠合柱的研究相对较少:幸坤涛等[6]利用数值分析方法对高强钢管混凝土核心短柱在轴心受压时的荷载变形关系曲线进行了全过程分析;聂建国等[7]考虑核心钢管混凝土和普通混凝土受压性能存在的明显差异,分析了混凝土体积配箍率等因素对柱协同工作的影响;龙跃凌等[8]在分析核心钢管混凝土组合柱受力机理的基础上,同时考虑圆形截面和方形截面对钢管外混凝土的影响,对核心钢管混凝土组合柱承载力进行了分析;郭全全等[9]进行了叠合柱短柱偏心受压试验,并基于试验采用截面极限平衡理论提出了叠合柱偏心受压短柱的正截面承载力公式;徐蕾等[10]利用有限元分析软件和试验结果对钢管混凝土叠合柱火灾下的温度特性和力学性能进行了研究。

目前,对于高强钢管混凝土叠合柱轴压承载力的计算,部分研究只考虑钢管对混凝土的约束作用而未考虑箍筋的约束作用;部分考虑钢管对混凝土的约束作用和箍筋对混凝土的约束作用,但均未考虑混凝土对钢管内混凝土的约束,即未考虑钢管内混凝土受到的双重约束。在实际工程中,叠合柱配箍量较多,在达到极限状态时,箍筋约束混凝土不会过分剥离,能和钢管内混凝同承担荷载。而尧国皇[11]的有限元结果也表明钢管核心混凝土受到钢管和钢筋混凝土的双重约束,其承载力比同样条件下普通钢管混凝土中混凝土要大。因此,考虑内部混凝土受到的双重约束作用是有必要的。本文以内配圆钢管的方形截面高强钢管混凝土柱为研究对象。构件处于较高应力状态时,箍筋约束混凝土角部受到约束强,边缘中部受到的约束弱,对箍筋约束混凝土利用Mander模型[12]进行有效约束区和非有效约束区的划分,推导出有效约束区系数和非有效约束区系数,同时,本文考虑钢管核心混凝土受到钢管和钢筋混凝土的双重约束效应,基于统一强度理论对钢管和钢管约束混凝土承载力分析,推导出方形截面高强钢管混凝土叠合柱的轴压极限承载力,与文献试验值对比验证,并分析了径厚比、中间主应力影响系数、材料拉压比、纵筋配筋率、侧压系数的影响特性。

1 双剪统一强度理论

俞茂宏以双剪单元体和双剪屈服准则为基础,考虑应力状态的所有应力分量以及它们对材料屈服和破坏的不同影响,建立了一个全新的强度理论和一系列新的典型计算准则。统一强度理论包含了无限多个计算准则,几乎可以适用于各种材料,应用十分方便。其表达式为[13]

2 极限承载力的计算

2.1 箍筋约束钢管外混凝土承载力

实际工程中,构件达到极限状态时,内部钢管的横向变形较小,故不再考虑钢管变形对箍筋约束混凝土的影响[1]。研究表明,方形截面的箍筋对混凝土约束较弱,且对混凝土的约束不均匀,仅在箍筋转角处对混凝土有较大的约束[8]。箍筋约束混凝土有效约束区和非有效约束区划分如图1所示。

基于文献[8]的假设:箍筋对其约束混凝土的约束应力均匀分布,则箍筋受力如图2所示。

2.3 钢管约束混凝土的承载力

基于文献[8]的结论,本文考虑钢管混凝土对钢管混凝土的约束作用。且箍筋对混凝土的约束作用均匀分布。而方钢管对于混凝土的约束效应,等同于间距为零的箍筋对混凝土的约束承载力的效应。方钢管轴压承载力的计算过程中,认为钢管对混凝土的约束也均匀分布[18]。箍筋约束混凝土和厚度与箍筋直径相同的钢管约束混凝土,二者不同的是侧面对于混凝土的约束:钢管是连续的,箍筋是间断的。本文在方钢管的基础上引入侧向约束系数ke2来考虑箍筋对混凝土约束的不均匀性,从而将箍筋约束混凝土转化为方形钢管约束混凝土。

按照截面面积和含钢率相等将方钢管的有效约束应力等效为圆形钢管混凝土的侧压力p,则混凝土和钢管受力如图3所示。

2.4 钢管混凝土叠合柱轴压承载力

在构件达到极限承载力之前,外侧的保护层混凝土早已被压碎[21],因此,在本文计算承载力时不再考虑混凝土保护层对极限承载力的贡献。并且在构件达到极限承载力时钢管和纵向钢筋已经屈服。方形高强钢管混凝土叠合柱的承载力由箍筋约束钢管外混凝土、纵筋、钢管、钢管约束混凝土构成。计算公式为

3 算例验证与分析

3.1 计算结果对比

由于钢材的拉压强度相近,取拉压比为α=1,取k=2.1,b=1时[16],将文献[22]和文献[23]中的部分试验数据代入式(21)中进行计算并与试验值对比,结果见表1。

3.2 影响因素分析

3.2.1 侧压系数和纵向配筋率的影响

取文献[22]中试件FZ-2和FZ-3柱为对象,取不同的侧压系数k值(1.5、2.0、2.5、3.0)以及不同的纵向钢筋配筋率(0.85%、1.15%、1.51%),得到的极限承载力的变化情况如图4、图5所示。

试件破坏时,纵筋已经屈服[8],在一定范围内,纵向配筋率的增加会贡献更多的承载力。图中也可以看出:承载力随着纵向配筋率的增大而增大;侧压系数越大,对混凝土的约束越强,故承载力越大。经分析,k值每增大1,承载力约提高917 kN。

3.2.2 钢管径厚比对极限承载力的影响

径厚比的影响主要表现在对核心混凝土的约束作用上。径厚比不同,其对混凝土的约束作用就不同,钢管径厚比越大,其对混凝土的约束作用越弱,反之,约束作用越强。以文献[22]中FZ-1柱,采用不同的径厚比,得到的承载力变化如图6所示。

由图6可知,随着径厚比的增大,极限承载力逐渐变小,并且减小的速率越来越慢。故为获得较大的承载力,钢管的径厚比不宜过大。

3.2.3 材料拉压比α与中间主应力影响系数b的影响

以文献[22]中试件FZ-2为例进行分析,取α分别为0.8、0.9、1.0,取b分别为0、0.2、0.4、0.6、0.8、1.0进行承载力的计算,如图7所示。

由图可见,在中间主应力系数b不变的情况下,承载力随着α值的增加而增加;在材料拉压比α不变的情况下,中间主应力系数b越大,承载力越高;而理论上b值越大,极限面也越大,理论与试验分析相吻合。在中间主应力增加量相同的情况下,材料拉压比越大,承载力曲线斜率越大,即承载力增加越多。综上所述,中间主应力和材料拉压比对承载力有影响,故计算时考虑二者对承载力的影响会使结果更加精确。

4 结 论

1)基于双剪统一强度理论,综合考虑了材料拉压比、中间主应力的影响,并且考虑了内部混凝土受到的双重约束作用,推导出了高强钢管混凝土叠合柱轴压承载力的计算公式。该公式能合理的考虑材料的实际性能,又能真实的反应构件各部分的受力状况。通过试验值与本文理论计算值的对比,证明本文推出的方形高强钢管混凝土叠合柱轴压极限承载力计算方法是正确的。

XU L,LIU Y B.Research on fire resistance of CFSTRC subjected to fire [J].Journal of Building Structures,2014,35(6):33-41. (in Chinese)

[11] 尧国皇.钢管混凝土叠合柱轴压工作性能研究[D].北京:清华大学,2012.

YAO G H.Research on performance of concrete-filled steel tube reinforced concrete columns [D].Beijing:Tsinghua University,2012. (in Chinese)

[12] MANDER J B,PRIESTLEY M J N,PARK R.Theoretical stress-strain in model for confined concrete [J].Journal of Structural Engineering,1988,114(8):1804-1826.

[13] 俞茂宏.混凝土强度理论及其应用[M].北京:高等教育出版社,2002.

YU M H.Concrete strength theory and its engineering application [M].Beijing:Higher Education Press,2002. (in Chinese)

[14] VARMA A H,SAUSE R,RICLES J M,et al.Development and validation of fiber model for high strength square concrete filled steel tube beam-columns [J].American Concrete Institute Structural Journal,2005,102(1):73-84.

[15] 吴鹏,赵均海,李艳.方钢管混凝土短柱轴压极限承载力研究[J].四川建筑科学研究,2013,39(3):8-13.

WU P,ZHAO J H,LI Y,et al.Study on the axial ultimate bearing capacity of square concrete-filled steel tubular,stub column [J].Sichuan Building Science,2003,39(3):8-13. (in Chinese)

[16] 赵均海.强度理论及其工程应用[M].北京:科学出版社,2003.

ZHAO J H.Strength theory and its engineering application [M].Beijing:Science Press,2003. (in Chinese)

[17] 中国土木工程学会高强与高性能混凝土委员会.高强混凝土结构设计与施工指南[M].2版.北京:中国建筑工业出版社,2001.

China Civil Engineering Society High Strength and High Performance Concrete Committee.High strength concrete structure design and construction guide [M].2 Edition.Beijing:China Building Industry Press,2001. (in Chinese)

[18] 令昀,赵均海,李艳.PBL加劲型方钢管混凝土短柱轴压承载力统一解[J].钢结构,2014,29(10):13-17.

LING Y,ZHAO J H,LI Y.Unified solution of ultimate bearing capacity for concrete-filled steel square tubular short column stiffened with PBL [J].Steel Construction,2014,29(10):13-17. (in Chinese)

[19] 王仁,熊祝华,黄文彬.塑性力学基础[M].北京:科学出版社,1982.

WANG R,XIONG Z H,HUANG W B.Foundation of plastic mecghanics [M].Beijing: Science Press,1982. (in Chinese)

[20] 过镇海,时旭东.钢筋混凝土原理和分析[M].北京:清华大学出版社,2003.

GUO Z H,SHI X D.The principle and analysis of the reinforced concrete [M].Beijing:Tsinghua University Press,2003. (in Chinese)

[21] 谢晓锋.高强钢管(骨)混凝土核心柱轴压性能的试验研究[D].广州:华南理工大学,2002.

XIE X F.An experimental research on the composite column with core of high-strength concrete-filled steel tube under axial compression [D].Guangzhou:South China University of Technology,2002. (in Chinese)

[22] 蔡健,谢晓锋,杨春,等.核心高强钢管混凝土柱轴压性能的实验研究[J].华南理工大学学报(自然科学版),2002,30(6):81-85.

CAI J,XIE X F,YANG C,et al.An experimental research on the composite column with core of high-strength concrete-filled steel tube under axial compression [J].Journal of South China University of Technology(Natural Science Edition),2002,30(6):81-85. (in Chinese)

第6篇:钢筋混凝土论文范文

【关键词】混凝土;钢筋;腐蚀速率;影响因素

钢筋腐蚀是在役钢筋混凝土结构性能劣化的重要原因之一。钢筋腐蚀主要包括诱导期和发展期两个阶段。前者主要关注侵蚀性物质(如二氧化碳或氯离子)在混凝土中的传输累积规律以及钢筋表面钝化膜的脱钝过程;后者主要关注腐蚀钢筋混凝土结构的性能劣化规律。由于钢筋腐蚀速率不仅控制了钢筋有效承载面积削减的快慢,而且决定了腐蚀产物的生成与积累过程,进而影响混凝土保护层的开裂和剥落,所以混凝土中钢筋的腐蚀机理和影响因素分析是钢筋腐蚀发展期的重要研究内容。

1 混凝土中钢筋的腐蚀机理

新浇筑的混凝土呈高碱性,能够保证钢筋表面钝化膜的稳定性,使钢筋不发生腐蚀。受混凝土碳化和氯盐侵蚀等因素的影响,钢筋表面的钝化膜逐渐失去稳定性而遭到破坏。脱钝的钢筋表面与钝化膜完好的钢筋表面之间会产生电位差,在氧气和水充足的条件下钢筋就会发生腐蚀。混凝土中钢筋的宏电池腐蚀如图1所示。其中,脱钝区钢筋的铁原子离开晶格转变为表面吸附原子,然后越过双电层放电转变为Fe2+,发生氧化反应,形成钢筋宏电池腐蚀的阳极,对应的电化学反应方程式为

(1)

在钝化膜完好区的钢筋与混凝土交界面,氧气和水获得从阳极区通过钢筋转移到该区域的电子而形成OH-,发生还原反应,形成钢筋宏电池腐蚀的阴极,对应的电化学反应方程式为

(2)

图1 混凝土中钢筋的宏电池腐蚀图示

阳极氧化反应生成的Fe2+与阴极还原反应生成的OH-会进一步通过下式反应生成Fe(OH)2

(3)

当混凝土中的氧气供应充足时,Fe(OH)2与氧气反应生成Fe(OH)3,Fe(OH)3脱水后变成疏松、多孔的红锈Fe2O3,其化学反应方程式为

(4)

(5)

当混凝土中的氧气供应不足时,Fe(OH)2与氧气反应生成黑锈Fe3O4,其化学反应方程式为

(6)

钢筋腐蚀不仅导致钢筋的有效承载面积减小,而且所生成的腐蚀产物(如Fe(OH)2、Fe(OH)3和Fe2O3)发生体积膨胀,会导致混凝土开裂,甚至引起钢筋与混凝土之间发生粘结滑移,从而劣化钢筋混凝土结构的性能。

2 混凝土中钢筋腐蚀的影响因素

(1)水灰比

水灰比直接影响混凝土的强度和密实性,进而影响钢筋的腐蚀速率。减小水灰比,能够改善混凝土和钢筋交界面处的微观结构,降低该区域的氧气和孔隙水含量。一般来讲,水灰比越大,混凝土的强度就越低,密实性越差,外界物质越容易侵入混凝土内部,导致混凝土内钢筋的腐蚀速率越高。

(2)水泥的种类及活性掺和料

不同水泥的成分有很大的差异,对水泥水化产物的成分和含量有很大的影响,进而影响到混凝土的强度和密实性。活性掺合料能够参与水泥的水化,增加混凝土中水化硅酸钙凝胶的含量,降低混凝土中连通孔隙的数量,提高混凝土的密实性,进而减小混凝土内钢筋的腐蚀速率。

(3)混凝土电阻率

混凝土的电阻率与混凝土的水饱和度、混凝土原料、氯离子含量、碳化程度、温度等因素相关。电阻率反映了混凝土内部的粒子通道数量,二者表现为反比关系。随着混凝土电阻率的减小,钢筋的腐蚀速率逐渐增大。

(4)混凝土碳化程度和氯离子含量

混凝土碳化和氯离子侵蚀是混凝土内钢筋腐蚀的两个主要原因。通常,混凝土碳化会导致混凝土的中性化,当钢筋表面混凝土孔隙溶液的pH值小于临界值后,钢筋钝化膜开始破坏。当混凝土钢筋表面的自由氯离子浓度超过临界氯离子浓度后,钢筋钝化膜也会发生破坏。自由氯离子的含量越高,钢筋腐蚀的速率越高,且发生点蚀的概率也越大。

(5)混凝土保护层厚度

环境中的侵蚀性物质达到钢筋表面必须经过混凝土保护层。保护层越厚、越密实,侵蚀性物质达到钢筋表面的时间越长。因此增加混凝土保护层厚度能够有效减缓钢筋钝化膜破坏、开始腐蚀的时间,即延长腐蚀诱导期。

然而,混凝土保护层厚度对钢筋腐蚀速率的影响规律目前还没有一致性结论。Mendoza等基于野外暴露腐蚀试验,发现部分试件的钢筋腐蚀速率随着保护层厚度的增加而不断增大;Hussain等分析了不同环境条件下混凝土中的氧气对钢筋腐蚀速率的影响,发现部分试件的钢筋腐蚀速率随保护层厚度增加而增大。采用加速腐蚀试验,分析了保护层厚度对钢筋腐蚀速率的影响,发现钢筋的腐蚀速率随着混凝土保护层厚度的增加而不断减小。

(6)空气相对湿度

空气相对湿度直接影响混凝土的水饱和度,后者通常随着前者的增加而增加,进而引起混凝土电阻率的降低。同时,空气相对湿度的增大会使混凝土中氧气的扩散速度降低,进而使阴极反应的速率降低。在两者的综合作用下,钢筋的腐蚀速率随空气相对湿度的增加先增加再减。

(7)环境温度

根据Arrhenius方程可知,温度的升高会加快化学反应速率。但由于钢筋腐蚀过程比较复杂,关于温度对钢筋钢筋腐蚀速率的影响仍缺乏统一性的结论。发现在阳极控制的条件下,反应速率主要与阳极的温度有关,且在68℃以下时反应速率随着温度的升高呈指数形式增加,符合Arrhenius方程;在阴极控制的条件下,腐蚀速率主要与阴极温度有关,且在80℃以下时呈线性关系增长,高于80℃后,由于氧气的溶解度降低,腐蚀速率迅速减小。对混凝土试件进行了为期1.5年的监测,发现钢筋的腐蚀速率和温度之间没有明显的关系。研究发现,在含氯盐的湿润混凝土中,腐蚀速率随着温度的升高而增加;在干燥或半干燥的混凝土中,温度对钢筋腐蚀速率的影响规律恰好相反。

(8)结构荷载

结构荷载直接影响裂缝的宽度、间距以及钢筋的应力。混凝土开裂后,裂缝为外界侵蚀性离子侵入混凝土内部提供了快速通道,进而引起钢筋腐蚀速率的增加。

3 结语

基于混凝土中钢筋的腐蚀机理,讨论了水灰比、水泥种类及活性掺和料、混凝土电阻率、保护层厚度、环境温度、相对湿度等因素对钢筋腐蚀速率的影响规律,对于混凝土中钢筋腐蚀的预防和控制具有指导意义。

参考文献:

[1]余波,毋铭,杨绿峰.混凝土中钢筋的腐蚀行为及腐蚀速率实用预测模型[J].建筑材料学报,2014(5).

[2]施惠生,郭晓潞,张贺.水灰比对水工混凝土中钢筋锈蚀的影响[J]. 水利学报,2009.

第7篇:钢筋混凝土论文范文

关键词:钢筋混凝土梁;配筋;裂缝;抗弯试验;

中图分类号:TU241 文献标识码:A 文章编号:1006-8937(2016)32-0155-03

Study of bending resistance by the dead load of reinforced concrete beam and with steels for calculation

Zhangli Sisi,Yang Jinglin,Sun Tao,Liang Songhu

(1.Orient Science & Technology College, Hunan Agricultural University,410128,Changsha

2.College of Engineering,Hunan Agricultural University,410128,Changsha)

Abstract:Reinforced concrete beam was used to construction by the theoretical calculation and engineering experience, but lack of theoretical calculation combine with test verification. on this problem, we according the standard of concrete design to do concrete beam tests which span was 2.4m, using the calculation results of reinforcement ration to do a bending resistance experiment. The experiment results show that different reinforcement ration of beams have different carrying capacity, the high reinforcement ration can resist more loads. In addition the experiment indicates lower than the lowest limits of reinforcement ration 21.4% and higher than it 78.6% this beams damage occurred. Lower reinforcement ratio beams when damage by the dead load which has fewer cracks, in contrast is more, therefore the beam slow damage was effected by reinforcement ratio. The design of reinforcement ratio was 0.5% the beam have the best performance of bending resistance.

Key words:reinforcement concrete beam; reinforcement ratio; crack; bending test

1 概 述

钢筋混凝土梁是现代建筑中常见的建筑构件,是将混凝土抗压性能强和钢筋抗拉强度高等特征结好起来,因此钢筋混凝土梁能够承受荷载作用下内部产生的拉应力和压应力。房屋建筑工程中钢筋混凝土梁一般承受由上部构件传来的静荷载作用[1-3]。在进行钢筋混凝土结构设计时根据建筑上部传给梁的荷载,按梁所能承受该荷载作用下极限状态进行配筋。钢筋混凝土梁承受荷载作用达到极限破坏状态与梁横截面类型、大小、混凝土强度、钢筋强度等多因素相关[4-6]。钢筋混凝土梁的破坏形式有少筋破坏、适筋破坏和超筋破坏。其中少筋破坏是一种脆性破坏,在破坏前无裂缝出现等征兆,超筋破坏是构件因混凝土承载达到极限钢筋未达到屈服的一种脆性破坏[7]。钢筋混凝土梁进行配筋计算的目的是在极限荷载以下时避免构件发生破坏,设计计算的原理是构件所受荷载达到极限状态时构件属于适筋破坏,由于适筋破坏是一种徐变,可在一定程度上保护生命财产安全。本文对钢筋混凝土梁配筋计算的一般方法进行试件设计,并根据所计算的结果,按不同配筋情况进行试验研究[8-10]。用试验结果验证理论计算,以期为钢混凝土梁配筋提供合理的参考依据。

2 试件设计

试件高度依据混凝土结构设计规范《GB50010-2010》梁高度为跨度的1/8~1/14L。试验设计的梁净跨度L为2.4 m,则梁高度h按最大值设计为300 mm,梁宽度b按1/3~1/2 h设计为

150 mm,梁的钢筋保护层厚度为20 mm。试件设计梁所能承受的均布静力总荷载为14 kN/m。

3 配筋计算

最后试验对不同配筋率混凝土梁完全破坏时荷载值进行统计,L-1、L-2、L-3、L-4、L-5梁所对应的破坏荷载分别为37.29 kN、44.16 kN、49.21 kN、48.43 kN、47.85 kN。其中L-1和L-2梁下部受拉钢筋全部拉断,而L-3、L-4、L-5下部受拉钢筋没有拉断,但梁上部混凝土局部压碎严重失去承载能力。梁L-1破坏是沿一条裂缝从下至上开裂破坏,L-2是上部出现局部混凝土压碎,下部有裂缝,破坏时不沿裂缝从下至上形成通缝破坏。L-3梁下部受拉区有多处宽度较大裂缝且分散,上部局部混凝土压碎。L-4和L-5梁下部混凝土裂缝较密集,上部多处混凝土压碎。通过对L-1和L-2梁破坏处的裂缝分析,中间冲毁分受弯荷载相同时,梁破坏时并不一定是沿正中间缝隙开裂断开,而是沿中间0.8 m处随机产生的裂缝断开。因为混凝土梁试件受压时中间0.8 m处梁内部每一个截面抵抗弯矩作用是相同的,所以每个截面均可能出现断裂破坏。通过以上不同配筋率混凝土梁试件的破坏试验,配筋率为0.50%时,钢筋混凝土梁承受荷载作用最大。

5 结 语

本文通过对设计梁截面为150×300 mm,净跨度为2.4 m钢筋混凝土梁的配筋计算进行析,计算出梁下部受拉区最低配筋率为0.28%。按设计梁尺寸和计算结果制作钢筋混凝土梁试件,其中梁的混凝土材料和钢筋材料以及外形尺寸均一致但设置受拉区的配筋面积不同。不同配筋率混凝土梁试件开始出现破坏时荷载不同,随配筋率的增加第1条裂缝出现时荷载值增加。通过低于极限荷载配筋率的混凝土梁试件设计并进行抗弯破坏试验,发现其仍能达到设计荷载作用下所承受的最大弯矩值。说明规范中设计的最低极限荷载是有一定富余安全系数。对试件进行完全抗弯破坏过程中裂缝数和裂缝形态分析,配筋率增加,混凝土梁破坏时裂缝数增多,配筋率大于0.5%后其裂缝数不随配筋率增加而增加。配筋率可影响到混凝土破坏时的延缓性。低配筋率的混凝土梁产生的裂缝呈竖直态,高配筋率则在由中间向两边,裂缝由竖直扩散呈倾斜状。低配筋率混凝土梁下部受拉区钢筋屈服断裂后,受弯矩作用相同的混凝土截面均可能出现断裂破坏。配筋率较高混凝土梁破坏时梁上部混凝土被压碎,受拉钢筋未拉断。以上不同配筋率混凝土梁设计试件受弯破坏时所能承受最大荷载的配筋率为0.5%,选择适宜配筋率可提高钢筋混凝土梁抗弯能力。

参考文献:

[1] 莫振林.陶粒混凝土梁受弯性能的试验研究[D].长沙:长沙理工大学,

2008.

[2] 许斌,曾翔.冲击荷载作用下钢筋混凝土梁性能试验研究[J].土木工程 学报,2014(2):41-51.

[3] 肖诗云,曹闻博,潘浩浩.不同加载速率下钢筋混凝土梁力学性能试验 研究[J].建筑结构学报, 2012, 33(12):142-146.

[4] 颜志华.体外预应力加固混凝土梁试验研究[J].世界桥梁,2007,2007

(1):50-52.

[5] 易伟建,潘柏荣,吕艳梅. HRB500级钢筋配箍的混凝土梁受剪性能试 验研究[J].土木工程学报,2012(4):56-62.

[6] 牛荻涛,卢梅,王庆霖.锈蚀钢筋混凝土梁正截面受弯承载力计算方法 研究[J].建筑结构,2002(10):14-17.

[7] 周仕刚,高永飞.CFRP加固初始受载钢筋砼梁弯曲性能的试验研究[J].

玻璃钢/复合材料,2003(2):7-10.

[8] 楼庄鸿.论预应力混凝土梁桥的裂缝[J].公路交通科技,2000,17(6):

49-52.

[9] 肖建庄,兰阳.再生粗骨料混凝土梁抗弯性能试验研究[J].特种结构,

2006,23(1):59-63.

第8篇:钢筋混凝土论文范文

关键词:钢筋混凝土;桥梁裂缝;外在荷载;不均匀变形;施工工艺

中图分类号:U445 文献标识码:A 文章编号:1009-2374(2014)25-0106-02

1 概述

随着我国现代化进程的不断加速,交通运输业发展也十分迅速,而钢筋混凝土桥梁的建设成为了重中之中。伴随钢筋混凝土桥梁的投入使用,钢筋混凝土桥梁的安全问题显得尤为重要,同时,裂缝的出现对工程质量的影响并导致桥梁垮塌的案例屡屡发生,因此经常困扰着桥梁设计人员和现场施工人员。其实只要从勘察设计阶段、设计阶段、施工阶段等方面层层把关,结合相关的理论知识,就可以避免或者减小钢筋混凝土桥梁工程中出现危害较大的裂缝。本文主要针对目前钢筋混凝土桥出现裂缝的实际情况,阐述了钢筋混凝土桥梁裂缝产生的原因及防治措施,为工程实践提供了理论基础和科学依据。

2 钢筋混凝土桥梁裂缝的原因及防治措施

2.1 外在荷载引起的裂缝

由外部荷载直接引起的裂缝,称为结构性裂缝,这种裂缝的出现表示设计人员设计的钢筋混凝土桥梁的计算承载力不足或其他原因引起的荷载承载力不足。一般在设计阶段,如果设计人员水平不高,对于荷载认识不清楚,错误或者漏算外部荷载,致使在最后配筋时出现错误是导致混凝土结构开裂的重要原因。在施工阶段,随意改变钢筋混凝土的施工顺序,也会引起结构受力开裂;使用阶段,出现超出设计荷载的车辆、交通事故、自然因素或者其他原因也会导致混凝土开裂。

2.2 不均匀变形引起的裂缝

由于钢筋混凝土不均匀变形引起的裂缝,称为非结构性裂缝,如地基变形、材料质量、温度变化、混凝土收缩、施工工艺等原因引起的结构变形受到限制时,在结构内部就会产生拉应力,当这个拉应力值达到混凝土抗拉强度的极限值时,就会引起混凝土裂缝的产生。

2.2.1 地基变形原因。一般地基的压缩变形,主要由建筑物荷重产生的附加应力而引起。在建筑物荷载作用下地基的变形既有垂向的变形,也有水平的变形。由于建筑物基础的沉降量与地基的垂向变形量是一致的,因此通常所说的基础沉降量指的就是地基的垂向变形量。在实际工程中,常常引起地基发生变形的因素首先是勘察设计人员提供的勘察设计报告不够准确,因此设计人员根据此勘察设计报告所设计出的图纸也不准确,这就是造成地基不均匀沉降的最主要的原因;其次,钢筋混凝土桥梁上部荷载大小、类型差异太大,一般情况,由于上部荷载的差异就会引起地基的不均匀沉降;第三,由外界原因引起的,比如冬季土壤的冻胀问题,冬季晚上气温比较低,由于地基冰冻膨胀对基础产生不利作用,白天气温回升引起冻土融化,钢筋混凝土桥梁地基下沉,反复冻融,反复作用就会使得地基不均匀沉降。

2.2.2 材料质量原因。混凝土是由胶凝材料、水、细骨料、粗骨料、外加剂和矿物掺合料按适当比例配合而成。首先混凝土中水泥是否合格是最主要的影响因素,一般情况,我们在施工现场使用水泥时必须要检验水泥的出厂合格证和出厂检验报告,随机抽取一些水泥做力学试验,只有当试验成功足时才能说明水泥本身合格。在使用过程中避免淋雨、受潮,水泥在硬化过程中控制其初凝和终凝时间,控制好水泥安定性,只有满足这些才能使水泥达到应有的强度。对于钢筋而言,由于现场施工技术人员的质量参差不齐,造成混凝土保护层厚度不足,使得钢筋与氧气和水发生化学反应,其体积将增大,从而胀裂混凝土保护层导致混凝土产生裂缝、贯通,最后破坏,因此我们在设计时要采取足够的保护层,施工时严格控制施工质量,防止氧气与水的入侵。

2.2.3 混凝土收缩原因。在实际钢筋混凝土桥梁工程中,混凝土收缩是引起桥梁裂缝最常见的原因之一,同时,水泥与水起水化作用逐渐硬化而形成的水泥骨架不断紧密,引起的混凝土体积缩小。混凝土成形后,表面水分蒸发,这种水分蒸发总是由表及里逐步发展,截面内外温度不等,内外收缩量不一样。混凝土表面收缩变形受到混凝土内部约束限制时,即在混凝土中产生拉应力,引起混凝土开裂。一般而言,用水量越大,水灰比越高,混凝土收缩越大;对一般钢筋混凝土桥梁而言,由于温度和收缩引起的裂缝原因,增加构造配筋可以有效地减小混凝土的裂缝,明显地提高混凝土的抗裂性能。

2.2.4 温度原因。混凝土具有热胀冷缩的性质,当混凝土的内部温度和外部温度或者外界温度温差较大时,混凝土就会发生变形,当混凝土里外表面温度变形受到约束时,在混凝土内部就会产生拉应力,此时若是应力达到混凝土的抗拉强度极限值时,就会引起混凝土裂缝,这种裂缝称为温度裂缝。引起温度变化的因素主要有年度温差,一年四季春夏秋冬不断变化重复交替,因此对钢筋混凝土桥梁的纵向位移影响比较大;水化热的影响,大体积混凝土浇筑之后混凝土水化放热,致使混凝土内部温度骤然升高,外部温度变化很小,造成混凝土内部外部温差较大,致使混凝土的表面出现裂缝,一般而言,我们尽量选择水化热低的水泥品种,减少入模的温度,降低内外差。

2.2.5 施工工艺原因。钢筋混凝土桥梁工程一般施工比较复杂,周期长,难度大,在实际施工过程中人为因素或者其他外界因素可控性比较差,因此,在施工中就容易出现横向、竖向、贯穿、非贯穿的各种各样的裂缝。由于施工工艺引起的裂缝原因主要有混凝土在施工过程中振捣不均匀、不密实,就会出现空洞、蜂窝、麻面,从而导致钢筋,因此在混凝土振捣时一定要保证混凝土的振捣质量;在施工过程中模板拆除过早,导致混凝土没达到应有的抗压强度,致使在外部荷载和自重作用下产生裂缝,因此我们一定要在混凝土完全达到强度时才能拆除模板,尤其是把握施工的各个阶段,严格按照设计图纸和技术标准,高标准、严要求来完成钢筋混凝土桥梁的全部施工过程。

3 结语

钢筋混凝土桥梁裂缝问题一直是工程上的一个热点话题,也与我们的日常生活息息相关,对钢筋混凝土桥梁裂缝问题的研究分析可以产生较好的社会经济效益,实践证明,只有对桥梁裂缝的原因分析清楚,才能在钢筋混凝土桥梁设计、施工、使用过程中避免裂缝的产生,从而延长钢筋混凝土桥梁的使用寿命,满通运输的需求。本文主要针对目前钢筋混凝土桥梁出现裂缝的实际情况,详细地分析了钢筋混凝土桥梁裂缝产生的原因及防治措施,为工程实践提供了理论基础和科学依据,从而在实际工程中采取合理技术以避免或者减少钢筋混凝土桥梁裂缝的产生。

参考文献

[1] 王铁梦.工程结构裂缝控制[M].北京:中国建筑工业出版社,1997.

第9篇:钢筋混凝土论文范文

Wang Tong;Dou Lijun; Wei Jiaming

(①College of Construction Engineering,Jilin University,Changchun 130026,China;

②School of Civil Engineering,Changchun Institute of Technology,Changchun 130022,China)

摘要:文章通过运用有限元软件ANSYS对锈蚀钢筋混凝土梁进行非线性分析,详细探讨了锈蚀混凝土和钢筋的本构模型、单元特性,并基于锈蚀钢筋与混凝土特殊粘结滑移理论,考虑锈蚀钢筋与混凝土之间的粘结作用。运用ANSYS进行锈蚀钢筋混凝土梁建模,进行有限元非线性分析。

Abstract: Through the nonlinear finite element analysis software ANSYS, corroded reinforced concrete beams are analyzed. The constitutive model of concrete and reinforced, as well as the properties of their elements is discussed in detail. The model of bond stress-slip relationship between steel bar and concrete which based on special bond stress-slip relationship theory is established. Beams, which is analyzed through the nonlinear finite element modeled with corroded reinforced concrete by ANSYS.

关键词:钢筋混凝土梁 ANSYS 粘结滑移 Combin39 受弯承载力

Key words: RC beam;ANSYS;bond stress-slip relationship;Combin39;flexural capaci

中图分类号:TU37文献标识码:A文章编号:1006-4311(2011)26-0075-02

0引言

钢筋混凝土结构是世界上应用最为普遍、范围最广的结构形式。而耐久性对钢筋混凝土结构影响甚大,然而,钢筋混凝土结构设计当中,对其考虑甚少,造成很多钢筋混凝土结构由于钢筋锈蚀而产生破坏。本文对三根不同锈蚀率的钢筋混凝土梁进行ANSYS有限元分析,得到的锈蚀钢筋混凝土梁的荷载-跨中挠度曲线,并对锈蚀钢筋混凝土简支梁的刚度变化规律、破坏特征、裂缝发展规律进行研究,并与锈蚀钢筋混凝土梁抗弯承载力计算值进行对比。

1材料的非线性本构关模型

1.1 混凝土本构模型钢筋混凝土结构的有限元分析的难点在于本构模型的建立。对于锈蚀的钢筋混凝土本构模型的描述也无定论。虽然,钢筋混凝土的锈蚀对混凝土本身的特性无特殊影响,可是其中部分锈蚀产物填充到混凝土内部孔隙里以及混凝土碳化、受酸盐腐蚀作用,在一定程度上影响了混凝土的力学性能。为使计算简化,多数学者在计算中假定混凝土各向同性近似认为腐蚀前后混凝土弹性模量基本保持不变。

1.2 锈蚀钢筋本构模型锈蚀钢筋名义应力-应变关系与钢筋锈蚀率有关,但不同试验所得有所不同。

当0

当?浊?叟5%时,f■=(0.962-0.848?浊)f■,?着■=(1.088-3.573?浊)?着■(2)

式中:?浊为钢筋平均截面锈蚀率;f■、?着■为锈蚀钢筋名义屈服强度和极限强度;f■、?着■为未锈蚀钢筋屈服强度和极限应变;dc为锈蚀钢筋的剩余直径mm;d为未锈蚀钢筋的直径,mm。

1.3 锈蚀钢筋与混凝土间粘结滑移本构模型锈蚀钢筋混凝土梁受力性能的有限元模拟,较为普遍的方法则是利用未锈蚀钢筋与混凝土的粘结滑移关系乘以粘结锈蚀退化系数,最后得到锈蚀后的粘结滑移关系。本文也采用此法。

典型的粘结滑移曲线包括五段,分别为:①微滑移段;②滑移段;③劈裂段;④下降段;⑤参与段。

锈蚀后钢筋与混凝土之间的粘结强度降低系数?茁[5]为:

当?浊?燮0.07时,?茁=1+56.28?浊-3375?浊2+55625?浊3-3×105?浊4(3)

当?浊>0.07时,?茁=0.017538?茁-1.0369(4)

锈后钢筋与混凝土之间的局部粘结强度?子为

?子=?茁・?子0(5)

式中:?子0为未锈钢筋与混凝土之间的粘结强度。

2锈蚀钢筋混凝土的破坏准则

混凝土的破坏准则采用Willan-Warnker的五参数模型,其表达式为:f/fc-S?叟0(6)

式中,f是主应力的函数,S表示失效面。

在ANSYS中 ,混凝土采用的是 Willam-Warnke 五参数破坏曲面,需要输入五个参数来确定混凝土的失效面,即:混凝土单轴抗拉强度ft,单轴、双轴抗压强度fc与fcb,围压压力?滓ah,在围压作用下的双轴、单轴抗压强度f1与f2,当围压较小时,失效面也可以仅仅通过两个参数ft和fc来确定,其他的三个参数采用Willam-Warnke强度模型默认值:fcb=1.2fc、f1=1.45fc、f2=1.725fc。本文中,裂缝张开剪应力传递系数与裂缝闭合剪应力传递系数分别取为0.6和1,抗拉强度为2.97,拉应力折减系数为-1。

3模型的选取、建立及求解

3.1 ANSYS中单元选择锈蚀混凝土梁采用Solid65单元来模拟。纵向受拉钢筋、箍筋及水平分布筋均采用LINK8单元模拟。为了模拟锈蚀钢筋与混凝土之间的粘结关系,采用了Combin39单元。Combin39单元是一个具有非线的弹簧单元,可对此单元输入广义的力-变形曲线以定义它的非线。钢筋和混凝土的接触面之间的相对移动有法向、纵向切向和横向切向三个方向,为全面考虑钢筋混凝土连接面上的相互作用,在钢筋和混凝土连接面上在每一对对应节点之间均分别建立三个非线性弹簧单元来模拟钢筋与混凝土之间三个方向的相互作用。

3.2 有限元模型建立ANSYS中,钢筋混凝土结构的有限元模型主要有分离式、组合式和整体式3种形式。考虑到锈蚀钢筋混凝土中,钢筋与混凝土中之间粘结滑移的粘结问题,本文中采用钢筋与混凝土分离式建模,在钢筋和混凝土之间插入界面单元,用来模拟钢筋与混凝土之间的粘结与滑移。用combin39单元时,每个纵筋节点处设置3个长度为零、具有不同刚度、互相垂直的非线性弹簧,垂直于钢筋的弹簧刚度取一个大数,即不考虑在垂直方向的滑移;平行于钢筋的弹簧刚度是根据锈蚀钢筋与混凝土的局部粘结滑移关系,再考虑钢筋单元的表面积来确定。网格密度、子步数、收敛准则、收敛精度等一些影响因素。本文分析类型为静定结构分析,采用Newton-Raphson方法,荷载子步为100步,并且为了加速求解速度及收敛速度,进行线性搜索和预测选项,收敛准则选用残余力的二范数来进行控制收敛,收敛容差值为0.05,进行计算,结果收敛。

4实验与分析

4.1 实验模型搜集文献[6],得到3根不同锈蚀率的钢筋混凝土梁,编号分别为X20,X40,X60。试验采用三分点加载方式,分级加荷,直至梁破坏为止,主要测定开裂荷载、极限荷载、跨中挠度等。

4.2 结果分析

4.2.1 ANSYS模拟荷载-挠度关系曲线对比分析图2分别为X20、X40、X60试验与本文ANSYS有限元计算的荷载-挠度关系对照图。从图2中,可以发现在开裂荷载之前,亦即弹性范围阶段,试验与模拟很接近;开裂后,荷载增大X20的荷载-挠度曲线符合良好,而X40、X60的模拟级试验荷载-挠度曲线有差距。本文认为:开裂之前,锈蚀钢筋混凝土梁与普通混凝土梁相差不多,此时,钢筋与混凝土的之间的粘结力仍未达到极限值;开裂之后,X20荷载-挠度曲线符合良好,是因为其锈蚀程度较小,钢筋与混凝土的粘结强度仍然较高,随着荷载增大,与试验值比较接近。X40、X60两根梁由于锈蚀率不断增大,钢筋与混凝土之间的粘结强度在不断降低,导致开裂后,荷载-挠度曲线有明显的转折,试验的挠度增长增快。

图2中试验曲线比模拟曲线值变形能力大,其原因是受压混凝土在破坏后,仍继续承受荷载,是得其充分发展,导致试验梁的变形能力大。

4.2.2 ANSYS模拟裂缝开展形态对比分析X20梁当荷载加开裂荷载时,跨中底边出现第一条裂缝,当荷载加至16KN时,加载点和跨中出现许多微小裂缝,当荷载加至极限荷载时,由于钢筋屈服混凝土压碎而发生塑性破坏,破坏形态如图所示。X20梁当荷载加载至9KN时,跨中出现第一条微小裂缝,当荷载加载至15KN时加载点附近出现大量的斜裂缝,当荷载加载至24KN时,试件由于钢筋屈服发生脆性破坏,破坏形态如图所示。X60梁当荷载加载到6KN时,在跨中出现第一条裂缝,当荷载加至19KN时,试件由于钢筋屈服而发生脆性破坏,破坏形态如图。ANSYS有限元模拟,当达到开裂荷载后,在梁中底部出现微笑裂缝,随着荷载增大,出现大量斜裂缝,达到破坏荷载后,裂缝增大,混凝土压碎,钢筋屈服。

4.2.3 ANSYS计算结果与试验结果对比分析表1 为试验及ANSYS模拟梁开裂荷载级极限荷载的对比。从表1中,发现不同锈蚀钢筋混凝土梁的试验值与ANSYS计算的开裂荷载值极为相近,这也符合前面的描述;对于极限荷载,X20、X40、X60的ANSYS计算值比试验值分别大13%、23%、49%,可见,随着锈蚀率的增大,按对未锈蚀钢筋与混凝土的粘结滑移关系乘以粘结锈蚀退化系数,得到锈蚀后的粘结滑移关系,虽然在有限元计算与试验值在误差允许范围,但是随着锈蚀率的增大,计算值效果越来越差。

从表1中,发现随着锈蚀率的增大,极限荷载是不断再减小的,可见锈蚀率的不断增大对钢筋混凝土梁的破坏是有着很大的影响,试验值的极限荷载下降幅度比有限元计算值要大。

5结论

在锈蚀率较小的情况时,锈蚀钢筋混凝土与钢筋的粘结模拟按照以往对未锈蚀钢筋与混凝土的粘结滑移关系乘以粘结锈蚀退化系数,再得到锈蚀后的粘结滑移本构关系,并利用ANSYS有限元软件中的Combin39单元描述这种本构关系,最终进行的模拟结果较为理想。另外,本文发现随着锈蚀率增高,这种模拟方式出现模拟结果与试验结果不断增大,但由于试验数据较少,对此结论的证明不足,今后,将对此现象进行不断研究和完善。

参考文献:

[1]GB5001022002,混凝土结构设计规范[S].

[2]商登峰.锈蚀钢筋混凝土梁受弯性能研究[D] .上海:同济大学,2005.

[3]徐善华.混凝土结构退化模型与耐久性评估[D].西安:西安建筑科技大学,2002.

[4]江见鲸.钢筋混凝土非线性有限元分析[M].西安:陕西科学技术出版社,2002.