公务员期刊网 精选范文 废水处理范文

废水处理精选(九篇)

废水处理

第1篇:废水处理范文

关键词:含氟;废水处理;研究

1前言

氟是人体必需的微量元素之一,适量的氟有益于人力健康,但是含量过低或过多都会危害健康,特别是过多会引起氟中毒。人们日常饮用水含氟量一般控制在0.4~0.6mg/L,长期饮用氟离子浓度大于1mg/L水对人体不利,严重的会引起氟斑牙与氟骨症以及其他一些疾病,甚至会诱发肿瘤的发生,严重威胁人类健康。

现代工业的发展的同时,排放了大量的高浓度含氟工业废水,这些废水一般含有呈氟离子(F-)形态的氟。而很多企业尚无完善的处理设施来对这些废水加以处理,排放的废水中氟含量超过国家排放标准,氟离子浓度应超过了10mg/L,严重地污染着人类赖以生存的环境的同时给人类的健康造成很多威胁。因此,高浓度含氟废水处理研究成为了当前环保及卫生领域重要的研究课题。

2含氟废水处理的基本工艺研究

当前,国内外高浓度含氟废水的处理方法有数种,常见的有吸附法和沉淀法两种。其中沉淀法主要应用于工业含氟废水的处理,吸附法主要用干饮用水的处理。另外还有冷冻法、离子交换法、超滤除氟法、电凝聚法、电渗析、反渗透技术等方法。

2.1沉淀法

沉淀法是高浓度含氟废水处理应用较为广泛的方法之一,是通过加药剂或其它药物形成氟化物沉淀或絮凝沉淀,通过固体的分离达到去除的目的,药剂、反应条件和固液分离的效果决定了沉淀法的处理效率。

2.1.1化学沉淀法

化学沉淀法主要应用于高浓度含氟废水处理,采用较多的是钙盐沉淀法,即石灰沉淀法,通过向废水中投加钙盐等化学药品,使钙离子与氟离子反应生成CaF2沉淀,来实现除去使废水中的F-的目的。该工艺简单方便,费用低,但是存在一些不足。处理后的废水中氟含量达15mg/L后,再加石灰水,很难形成沉淀物,因此该方法一般适合于高浓度含氟废水的一级处理或预处理,很难达到国标一级标准。另外,产生的CaF2的沉淀包裹在Ca(OH)2颗粒的表面,因此不能被充分利用,造成浪费。

近年来,一些专业人士对工艺进行了大量的研究,在加钙盐的基础上,加上铝盐、镁盐、磷酸盐等,除氟效果增加的同时提高了利用率。再加石灰的基础上加入镁盐,通过石灰与含镁盐的水溶液作用,生成氢氧化镁沉淀实现对氟化物的吸附。在废水中加入硫酸铝、明矾等铝盐,与碳酸盐反应生成氢氧化铝,在混凝过程中氢氧化铝与氟离子发生反应生产氟铝络合物,生产的氟铝络合物被氢氧化铝矾花吸附而产生沉淀。另外,可以在在水中加入氯化钙、复合铁盐作混凝剂和高分子PAM作絮凝剂,在不增加现有设备处理设备的基础上,提高了废水处理效果。

2.1.2混凝沉淀法

混凝沉淀法是通过在水中加入铁盐和铝盐两大类混凝剂,在水中形成带正电的胶粒,胶粒能够吸附水中的F-而相互并聚为絮状物沉淀,以达到除氟的目的。混凝沉淀法一般只适用于低氟的废水处理,一般通过与中和沉淀法配合使用,实现对高氟废水的处理。由于除氟效果受搅拌条件、沉降时间等因素的影响,因此出水水质会不够稳定。

铁盐类混凝剂一般需要配合Ca(OH)2使用,才能实现高效率,并且处理后的废水需要用酸中和后才能排放,因此工艺比较复杂。铝盐除氟法是在水中加入硫酸铝、聚合氯化铝、聚合硫酸铝等的铝盐混凝剂,利用Al3+与F-的络合以及铝盐水解后生产的A1(OH)3矾花,去除废水中的F-,效果不错。由于药剂投加量少、成本低,并且一次处理后出水即可达到国家排放标准,因此铝盐混凝沉降法在工业废水处理中应用较为广泛。

2.2吸附法

吸附法是将装有活性氧化铝、聚合铝盐、褐煤吸附剂、功能纤维吸附剂、活性炭等吸附剂的设备放入工业废水中,使氟离子通过与固体介质进行特殊或常规的离子交换或者化学反应,最终吸附在吸附剂上而被除去,吸附剂还可通过再生恢复交换能力。为了保证处理效果,废水的pH值不宜过高,一般控制在5左右,另外吸附剂的吸附温要加以控制,不能太高。该方法一般用于低浓度含氟废水的处理,效果十分显著。由于成本较低,而且除氟效果较好,是含氟废水处理的重要方法。

2.3其他方法

除了上述两种比较常用的方法外,还有一些方法虽然没有被普遍应用,但是已经成为行业人士研究的对象,在一些特种含氟废水处理中取得较好的效果。其中包括离子交换法、电渗析、反渗透膜法等方法。反渗透技术借助比渗透压更高的压力,使使高氟水中的水分子改变自然渗透方向,通过反渗透膜被分离出来,先主要应用于还水淡化和超纯水制造工艺中。当前使用的反渗透膜主要有低压复合膜、海水膜和醋酸纤维素膜等。电渗析法是外加直流电场,利用离子交换膜的选择透过性,使水中的离子能够定向迁移。离子交换法是使用离子交换树脂或离子交换纤维实现除氟离子的一种方法。离子交换树脂需要用铝盐进行预处理和再生,因此费用会比较高。与离子交换树脂相比,离子交换纤维耗资小,而且比表面积较大,吸附能力强,交换速度及再生速度快,具有良好的耐辐照性能,并且处理后不会给水体带来任何污染,反而具有清洁作用,是一种理想的深度去除水中氟离子的方法。

3化学混凝沉淀法废水处理试验研究

3.1研究机理

化学沉淀法就是利用利用离子与氟离子结合生成难溶于水的CaF2沉淀,等沉淀后以固液分离手段将F-从废水中去除。化学方程式如下:

Ca2++2F-=CaF2

如果在废水中同时加如钙盐和磷酸盐,能够形成更难溶于水的含氟化合物,是水中F-的残留量更低,提高了除氟效果。化学方程式如下:

F-+5Ca2++3P043+=Ca5(PO4)4F

混凝沉淀法通过在水中加入铁盐和铝盐两大类混凝剂,在配加Ca(OH)2,利用Al3+与F-的络合以及铝盐水解后生产的A1(OH)3矾花,去除废水中的F-。如加入铝盐,Al3+与F-形成AlFx(3-x)+,夹杂在AI(OH)3am中被沉淀下来。

3.2试验流程与方法介绍

取定量废水水样,首先在水中加入一定量的CaCl2作为沉淀剂,等沉淀物沉淀5分钟后再加入适量的AlCl3和Ca(OH)2作为混凝剂,另加六偏磷酸钠作为助凝剂对其进行处理,再等沉淀5分钟后讲水排放。具体流程如图1所示。尽量多做几次,每个试验完毕后,采用电极法测定每次试验后的氟离子的浓度。

化学混凝沉淀法将化学沉淀和混凝沉淀结合起来使用,能够解决一些常用方法处理以后存在的水质不稳定,药剂使用量过多,或存在二次污染等问题。试验结果表明,利用化学混凝沉淀法处理含氟工业废水,设备和工艺简单,运行费用低,除氟效果好,是一种比较理想的含氟废水的处理方法。

4结束语

目前使用较多的方法主要是化学沉淀法、絮凝沉淀法和吸附法。化学沉淀法一般用于处理高浓度含氟废水,由于操作简单,低成本效果好,因此使用较为广泛。与化学沉淀法相反,混凝沉降法一般只适用于含氟较低的废水处理,高浓度含氟废水首先要经过化学沉淀法经过一级处理,然后采用混凝沉降法进行再次去氟。吸附法主要适用于水量较小的饮用水的深度处理,相对来说处理费用高,而且操作比较烦琐。当然,其它的一些方法各有各的使用领域和优势。

总之,含氟废水处理过程中,在选择处理方法时要实际情况,根据水质情况和要求达到的标准而定,尤其要重视以废治废和综合利用。因此,在含氟废水的处理中要遵循资源化与无害化相结合的原则,以获得较好的经济效益。

参考文献

[1]张玲,薛学佳,周任明.含氟废水处理的最新研究进展[J].化工时刊,2004,18(12).

[2]彭天杰等.工业污染治理技术手册仁[M].成都:四川科学技术出版社,1985.

第2篇:废水处理范文

工艺流程如图1所示,废水首先进入反硝化池,与回流污泥经推流式搅拌机混合均匀,发生反硝化反应(若搅拌机发生故障,可将通入反硝化池的空气管微开),然后水经底部回流窗进入硝化池发生硝化反应,硝化后的水在鼓风动力作用下一部分通过上部回流窗回流到反硝化池,一部分经溢流堰通过重力作用流入脱气池脱气,脱气后的水最后在二沉池内进行泥水分离,澄清后的水经溢流堰流入暴雨调节池,经泵提升至长江,污泥一部分回流,一部分进行浓缩脱水外运。整个A/O工艺采取A、B两个系列并列运行。表1设计出水水质项目COD

/mg/LBOD5

/mg/LNH3—N

/mg/LSS

/mg/L出水≤100≤30≤15≤70

图1工艺流程图

1反硝化池2硝化池3固定螺旋曝气器4推流式搅拌机5溢流堰6脱气池7二沉池2活性污泥培养及驯化从上海金山石化废水处理厂接种4t经脱水后的活性污泥,用水稀释至300m3,MLSS为380mg/L。在培养期间,按甲醇∶尿素∶磷酸=100∶8∶3的比例投加营养物,控制COD负荷率在0.34~0.40kg/(kgMLSS.d)之间(其中1kg甲醇相当于1.5kgCOD)。当MLSS达到1500mg/L时,补充生活污水至500m3,约90d后,污泥颜色逐渐由黑色变成淡红色,最后变为红棕色,MLSS达到5000mg/L以上。培养结束后转入驯化阶段,启动污泥循环系统。驯化过程中,COD负荷率控制在0.2kg/(kgMLSS.d)左右,NH3—N负荷率控制在0.016kg/(kgMLSS.d)左右。3稳定运行阶段当污泥经30d驯化后,该废水处理进入稳定运行阶段,下面就其稳定运行阶段的COD负荷率、NH3—N负荷率、COD/TN同COD去除率、NH3—N去除率的相互关系逐一分析,并对温度控制作一介绍。

3.1COD负荷率同COD去除率之间的关系(见图2)

第3篇:废水处理范文

含镍废水来源较为广泛,一般镀镍领域是含镍废水的主要来源,在镀镍的生产过程中,需要不定时的用清水对镀件表面进行清理,保证产品的表面质量,此时就会产生大量的含镍废水。受到我国技术水平的限制,在早期,对含镍废水一般采用先污染后治理的思路,这种方式严重影响了自然环境,对生态平衡造成了很大的影响。随着科学技术的发展,发达国家已经摒弃这种传统的处理工艺,从含镍废水的源头进行治理,从根本上杜绝了污染环境的情况出现,同时还实现了含镍废水的重复利用,不仅减少了含镍废水对环境的污染,而且节约了资源。基于我国的基本国情,在技术手段上还有很长的路要走,在对含镍废水的处理上仍停留在先污染的阶段。因此,提高对含镍废水处理的技术水平,减少重金属废水对环境和人类的危害,我们还需要不断努力。

2对重金属废水中含镍废水处理技术分析

随着人们环保意识的不断增强,那些没有达到排放指标的废水已经不能随意排放,特别是这些重金属废水,如果排放到自然环境中,不能很快被分解,对生态环境和生活品质都有着巨大的威胁。为了保护自然环境,从源头上治理含镍废水,下面将介绍几种对重金属废水中含镍废水的处理技术,为提高我国的含镍废水处理技术做出借鉴和参考。

2.1化学沉淀法

化学沉淀法,因其操作简便,工序简单,而且投入资本较少,受到了很多化工厂的青睐。在采用化学沉淀重金属废水时,其主要原理是利用加入的试剂使其与废水中的重金属元素发生化学反应,生产难溶的沉淀物,再通过过滤等手段将其排除,直到废水达到指标才能排出或循环使用。一般化学沉淀法只用作前期处理,将废水中的大部分重金属离子去除,后面还要结合其他处理手段,才能达到净化废水的目的。现阶段,化学沉淀法以氢氧化物沉淀为主,该方法易于控制,成本低,一般用石灰就能满足使用要求,因为保持pH在10左右,废水中的重金属离子的氢氧化物基本不能溶解,这样就能将其沉淀,一般在沉淀过程中,可以适当加入明矾、有机高分子等物质,可以大大提高沉淀的效果。但是这种方法虽然运用较为广泛,但是存在很大的问题,在沉淀过程中,会有大量的污泥产生,这样得到的水肯定不能满足排放指标,还需要对其进行浓缩处理,这样就大大增加了处理的难度。

2.2离子交换法

在含镍废水处理过程中,离子交换法不仅能大范围的将镍离子分离,而且反应速度较快,除镍效果明显。其中,离子交换树脂被得到了广泛的应用,而且这种交换树脂很容易得到,成本低廉。利用离子交换树脂进行工作时,受到多方面环境因素的影响,其中主要的影响因素有pH值、温度、污染物的浓度和反应的时间等等。

2.3吸附法

所谓吸附法,就是采用吸附工艺和材料对含镍废水中的物质进行吸附已达到水排放指标的方法。吸附法在工序设计和操作上,灵活性较大,而且出水率较高。对于某些吸附过程是可逆的,因此可以进行反复使用。活性炭吸附剂,利用活性炭自身结构组织的特点,对含镍废水中的镍离子进行吸附。活性炭的原材料的煤,但煤的价格太高,经过科研人员的不断努力,发现家畜垃圾制成的活性炭比煤提炼出的活性炭吸附效果要好,而且经济实惠。因此,寻找价格低廉的吸附剂,是目前科研人员的重中之重。此外,生物吸附剂,是目前被公认为最有发展前景的一种吸附方法,但只能适用于低浓度的重金属废水。这种吸附方法,试剂来源较为广泛,而且成本投入较低,吸附效果明显,目前仍处于研发阶段,但不能放弃对该吸附方法的研究,它对重金属废水的处理有着非比寻常的意义。

2.4膜分离法

膜分离法,就是利用不同型号的膜对重金属废水进行处理,这种处理方式效率高,占有空间少。目前,常用的膜分离方法主要有三种:首先,超滤,即在低压环境下对重金属废水中的胶状物进行去除的一种技术。超滤膜的孔径,只能分子直径小于该孔径的分子或离子通过,对于大分子物质则不能通过。其次,反渗透,该方法是运用半透膜,施加一定的压力,这样会使得溶剂通过半透膜,但是溶质会被阻挡在一侧,实现了重金属废水分离、进化和浓缩的效果。但是由于重金属废水杂质过多,如果利用半透膜进行净化,会污染半透膜,而且这种方法所需的能量较多,目前在工厂处理重金属废水时使用率较低。最后,纳滤,该技术操作简便,而且能耗较低,对除镍离子的效果明显,所需的施加压力在UF和RO之间。

3结语

第4篇:废水处理范文

[关键词]分质处理 含铬废水 含镍废水 含铜废水 回用

中图分类号:X703 文献标识码:A 文章编号:1009-914X(2014)36-0095-01

1、前言

某电镀企业位于农村地区,年加工电镀件10万m2,镀种主要涉及镀锌、镀铜、镀镍、镀铬、镀仿金、镀代铬、度枪色,镀种较齐全,但由于周边配套设施不完善,无排水去向。由于企业镀种较多,电镀废水种类也比较多,为了避免多种污染物在处理之互相干扰,增加废水的回用可行性,将电镀废水进行分质处理回用。

2、电镀废水的具体情况

该企业电镀废水根据污染物类型不同分为含镍废水、含铜废水、含锌废水、含铬废水和其他废水。

①含镍废水

含镍废水为连续排放,主要污染物为pH、COD、TNi。其浓度为pH7-8、COD100mg/L、TNi 23mg/L。

②含铜废水

含铜废水为连续排放,主要污染物为pH、COD、TCu。其浓度为pH7-8、COD100mg/L、TCu 37.8mg/L。

③含锌废水

含锌废水主要污染物为pH、COD、TZn。其浓度为pH7-8、COD100mg/L、TZn66.8mg/L。

④含铬废水

含铬废水为定时排放,主要污染物为pH、COD、Cr6+。其浓度为pH5-6、COD100mg/L、Cr6+39.4mg/L。

⑤其他综合废水主要污染物为pH、COD、SS、石油类、TZn、Cr6+、TNi,其浓度为pH3-4、COD100mg/L、SS120mg/L、石油类12mg/L、TCu 3.3mg/L、TZn 20mg/L、Cr6+3.5mg/L、TNi1.6mg/L。

3、电镀废水的治理工艺及可行性分析

(1)含铬废水

本项目含铬废水为定期排放,每次排放废水为工件在镀铬和钝化之后的第一道清洗废水,废水进入车间内含铬废水处理设施处理(阳离子交换柱+蒸发浓缩器+含铬溶液回收罐),离子交换柱通过树脂离子交换将废水中的镍离子、铜离子、锌离子等低价位的金属离子去除,六价铬则存留在废水中,再通过蒸发浓缩器去除大部分水,以水蒸气的形式蒸发损失,将六价铬离子保留在浓缩液中,回收含铬溶液的比例约为10%左右,含铬溶液浓缩至400g/L,回用于镀铬、钝化工序。

(2)含镍废水、含铜废水和含锌废水

含镍废水、含铜废水和含锌废水处理工艺原料相同,分别采用一套离子交换处理系统。通过阳离子树脂的离子交换功能将废水中的镍离子、铜离子、锌离子等阳离子从废水中分离处理吗,反应式如下:

通过实测,处理后出水水质为0.5-9.8mg/l,当水质接近回用于冲洗工序用水水质要求时(中间镀层清洗水各金属离子浓度≤10mg/l,最终镀层清洗水各金属离子浓度≤20mg/l),对树脂进行更换再生;再生液中镍、铜、锌含量均在150g/L以上,最终分别进入镀槽,对金属元素回收利用;由于再生液中可能含有微量的异金属离子,为了避免异金属离子富集,镀槽内添加可以促使其共沉积的添加剂;并在停产时通过电解对异金属离子进行处理,这样就保证了镀液的长期稳定性。

(3)综合废水

综合废水处理站处理工艺为“反应池+综合废水处理机+沉淀+碳滤+反渗透”。其他废水经综合废水池混合后打入反应池,投加入还原剂NaHSO3溶液,控制ORP在300mV以下,PH值为2.0-3.0;空气搅拌,反应10-20分钟,可使Cr6+还原分解至要求以下。反应式如下:

然后流入自动综合废水处理机。碱、综合废水处理剂和高分子絮凝剂PAM在微电脑的自动控制条件下添加、反应,使大量的金属离子生产沉淀,反应式如下:

反应混合液进入斜板沉淀分离池后,因水力流速减缓而静止沉淀,重金属形成絮体因重力作用沉淀至沉淀槽底部,上清液经溢流堰自流出水排入碳滤器,经碳滤器的过滤和吸附等一系列的深度处理后,进入反渗透处理装置;反渗透处理装置处理后,渗透液满足生产回用水要求,浓缩液进入蒸发器进行浓度处理,蒸馏后的废水与渗透液一起回用于生产,蒸馏产生的浓液回到综合废水池重新处理;当综合废水处理产生的弃水和浓液中重金属离子富集达到一定浓度,为了保证污水处理的效果和生产的有序进行,浓液定期作为危险废物交由有资质的单位处理。通过实测污水站日常运行监测结果为综合废水经污水处理站处理后后出水水质为pH6-9、铜离子0.01-0.04mg/l、镍离子0.01-0.03mg/l、铬离子0.01-0.04mg/l;满足企业提供的清洗工序回用水水质要求(中间镀层清洗水各金属离子浓度≤10mg/l,最终镀层清洗水各金属离子浓度≤20mg/l)。

第5篇:废水处理范文

关键词 印染废水,处理技术

中图分类号: X703文献标识码:A 文章编号:

1 引言

纺织工业是我国传统的支柱产业,已有一个多世纪的发展历史,纺织工业使用的原料是各种天然纤维和化学纤维。因纤维种类的不同,所产生的污染物性质和数量不同,其控制污染和治理污染的方法也就不同。

2 印染废水的产生和特点

2.1 印染废水的产生

在纺织工业中会产生各种废水,其中以印染废水污染较为严重,其排放量约占工业废水总排放量的1/10 ,是当前最主要的水体污染源之一,因此印染废水的综合治理已成为一个迫切需要解决的问题。

棉及其混纺织物印染加工的一般工艺流程为:

烧毛-退浆-煮炼-漂白-丝光-染色-印花-整理

2.1.1 退浆废水

退浆是用化学药剂将织物上所带的浆料退除,同时也除掉纤维本身的部分杂质。退浆废水是碱性有机废水,含有浆料分解物、纤维屑、酶等,其COD、BOD5 都很高。退浆废水的量较少,但污染较重,是前处理废水有机污染物的主要来源。

2.1.2 煮炼废水

煮炼是用烧碱和表面活性剂等的水溶液,在高温(120℃)和碱性(pH值为10~13)条件下,对棉织物进行煮炼,去除纤维所含的油脂、蜡质、果胶等杂质,以保证漂白和染整的加工质量。煮炼废水呈强碱性,含碱浓度约为0.3%,呈深褐色,BOD5和COD值都较高。

2.1.3 漂白废水

漂白是用次氯酸钠、双氧水、亚氯酸钠等氧化剂去除纤维表面和内部的有色杂质。漂白废水的特点是水量大、污染程度较轻,其BOD5和COD值均较低,属较清洁废水。

2.1.4 丝光废水

丝光是将织物在浓氢氧化钠溶液中进行处理,丝光废水是在丝光过程中产生的废水。丝光废水特点是碱度高,BOD5和COD均较低。

2.1.5 染色废水

染色废水主要污染物是染料和助剂。染色废水水质变化很大,一般染色废水的色泽较深,可生化性差,其COD值一般为300-700mg/L,色度可高达几千倍 。

2.1.6 印花废水

印花废水主要来自配色调浆、印花滚筒、印花筛网的冲洗废水,以及印花后处理时的皂洗、水洗废水。印花废水中除染料、助剂外,还含有大量浆料,其BOD5和COD值都较高。

2.1.7 整理废水

整理废水含有树脂、甲醛、表面活性剂等。整理废水量较小,对混合废水的水质水量影响也较小。

2.2 印染废水的特点及危害

印染废水的主要特点有:①色度大,有机物含量高。②水质变化大③PH值变化大。④水温水量变化大。

印染废水的色泽深,严重影响着水体外观。印染废水的色度严重,用一般的生化法难以去除。有色水体会影响日光的透射,不利于水生生物的生长。

3 印染废水的基本处理方法

印染废水处理方法大致可分为物理化学法、化学法、生物法3大类,但由于印染废水成分复杂,在实际应用中大多采用几种方法的组合来完成对印染废水的彻底处理。

3.1 物理化学处理法

3.1.1 混凝法

混凝法是向废水中加入一定的物质,使原溶于水的或呈细微状态而不易沉降、过滤的污染物,集结成较大颗粒,以便分离的方法。用絮凝法处理印染废水,投资费用低、设备占地少、处理容量大、脱色率高,是印染废水物化处理中应用最广泛的方法。

3.1.2 吸附法

吸附法是应用较多的物理处理方法。该方法采用多孔状物质的粉末或颗粒与印染废水混合,或使废水通过由颗粒状物质组成的滤床,使废水中染料、助剂等污染物质吸附于多孔物质表面而除去。吸附技术特别适合低浓度印染废水的深度处理,在工艺上投资小,方法简便易行,成本较低。

3.2 化学处理法

3.2.1 氧化法

氧化法是在氧化剂的作用下,使染料分子中发色基团的不饱和双键被氧化断开,形成分子量较小的有机物或无机物。

3.2.2 电化学法

电化学法分为电解和内电解两种方式。前者耗能较高,运行成本较大,在印染废水治理过程中应用较少;后者也称铁屑还原法或零价铁法,即是通过铁屑还原槽中铁炭微电池的电化学作用和填料的吸附作用,以及其它各种协同作用来处理废水。该工艺以废铁屑为原料,无需消耗电力资源,具有“以废治废”的意义。

3.3 生物法

生物法具有运行成本低、处理效果稳定等优点,在印染废水处理中得到了较为广泛的应用。在这里主要介绍几种当前印染废水处理中常用的生物处理方法。

3.3.1 活性污泥法

活性污泥法大多数采用完全混合式, 也就是待处理的废水先进入系统中的曝气池与池内原先的混合液进行充分混合, 使池内空间各点水质基本均匀,以最大限度地承受进水水质的变化。

3.3.2 生物膜法

生物膜法是通过生长在填料如滤料、盘面等表面的生物膜来处理废水的方法,常用的生物膜法主要有生物接触氧化法、生物滤池、生物转盘和生物炭法等。在印染废水处理中,最常用的是生物接触氧化法和曝气生物滤池。

3.3.3 水解酸化法

染色废水难以被生物降解的有毒物质, 应先进行水解酸化处理。水解酸化池主要降低废水毒性、提高废水可生化性,分解印染废水中大量难降解的高分子有机物,改善污水有机物的可生化性能,提高BOD5/COD的比值,并同时承担污泥氧化分解的功能。

3.3.4 厌氧处理

对浓度较高、可生化性较差的印染废水,采用厌氧处理方法能较大幅度地提高有机物的去除率但因其生产运行管理要求较高,在厌氧处理法后面还需好氧法处理才能达到出水水质要求。

4 印染废水处理典型工艺

4.1 典型工艺流程

预处理-水解酸化-生物接触氧化-后处理工艺在印染废水处理中应用最为广泛。由于印染废水中存在大量难生物降解的染料、浆料和助剂,因此在生物处理中,一般都会先经过缺氧段水解酸化再进行好氧处理。

在预处理中,主要应用的方法有混凝沉淀,二氧化氯或臭氧氧化,各种药剂进行化学沉淀等。而在后处理中,应用最多的是吸附法。

对于一般棉布及棉混纺产品的印染废水,COD浓度高,色度高,可生化性差,所用的染料也是水溶性的活性染料,较难处理,所以在好氧生物处理之前,设置混凝沉淀池去除大量有色物质,以及水解酸化池提高废水的可生化性,减轻后续处理的负荷,典型流程见图1。

4.2 减碱量废水处理工艺介绍

碱减量是纺织印染企业对涤纶(聚对苯二甲酸乙二脂)织物,在前处理过程以碱液在高温下对涤纶大分子脂键水解、腐蚀,促使纤维组织松弛,减轻织物重量,从而使织物具有真丝感的一种新工艺。碱减量废水中主要污染物是减量下来的聚酯纤维低聚物, 水解下来的对苯二甲酸、乙二醇以及对苯二甲酸钠。

酸析法是目前常用的处理方法。其主要工艺技术是:生产车间将碱减量废水单独汇集至集水池;由提升泵将废水送到回收装置,进行过滤、净化;接着加入硫酸酸析(将pH调至3);然后用固液分离获取对苯二甲酸(粗品);剩余的废水排入废水调节池与印染废水一起处理。在生产中最常见的工艺流程就是将减碱量印染废水先进行预处理,若在经济上可行可进行对苯二甲酸回收,再将预处理后的减碱量废水与染色和印花废水进行混合处理,见图2。

图2酸析预处理加混合处理工艺流程

有研究表明,对碱减量—印染混合废水可采用在高碱度条件下直接加入混凝剂硫酸镁及少量高分子絮凝剂HPAM,再降低pH进行酸析的预处理方法。经反复多次试验,发现该方法不仅能有效去除废水的色度、浊度,大大降低COD ,而且产生的絮体颗粒大、絮块结实、较易除去。

5 前景与展望

第6篇:废水处理范文

关键词: 电镀废水;废水处理;金属离子

电镀被称为当今全球三大污染工业之一,随着科学技术的发展电镀工业的规模亦发展,排放的废水量越来越大,有资料报道电镀废水排放量约占工业废水排放量的10%,其主要来源有:前处理除油酸洗工序,镀件的清洗水,废电镀液,跑、冒、滴、漏的各种槽液和排水,冲洗水及设备冷却水,成分非常复杂,除含CN-废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。随着电镀工业的快速发展,

一、化学法。此法就是向废水中投加化学药剂。通过化学反应改变废水中污染物的化学性质,使其转变成无害或易于与水分离的物质再从废水中除去的处理工艺。但化学法的最大不足之处,是生产用水不能回收利用,浪费水资源且占用场地较大。包括以下四种:

(1)中和沉淀法。此法主要是向含重金属的废水中加入石灰、碳酸钠、苛性钠等沉淀剂进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。但此法处理的废液出水pH值较高,特别是其当废水中含有 Zn、Al、Pb、Sn等两性金属时,生成的沉淀物会在较高的pH值下再溶解,因此要严格控制pH值,实行分段沉淀。另外废液中如果含有卤素、氰根等阴离子要先予去除,否则将会和重金属形成络合物,影响处理效果。

( 2)硫化物沉淀法。但其缺点是:沉淀颗粒小,易形成胶体,需添加絮凝剂辅助沉淀,因此增加了成本,且沉淀物在水中残留,遇酸生成气体,易造成二次污染,故此法应用并不广泛。但可和中和沉淀法配合使用,用石灰作为硫化法沉淀的pH调节剂,效果更好。

( 3)氧化还原法。向废水中投加还原剂将高价重金属离子还原成低毒的低价重金属离子后,再使其碱化成沉淀而分离去除的方法。如向废水中加入硫酸亚铁将毒性高的Cr6+(约为Cr3+的100倍)还原为毒性低得Cr3+,再利用沉淀法除去Cr3+。该法原理简单,易于操作,但存在处理出水水质差,不能回收利用,处理混合废水时,易造成二次污染。所以该法一般用于污水的预处理。

(4)铁氧体法。该法是利用过量的 FeSO4作为还原剂,在一定酸度下使废水中的各种金属离子(主要是Cr6+、Ni2+、Cu2+、Zn2+)形成铁氧体晶粒沉淀析出从而使废水得到净化的方法。故此法在国内电镀业中应用较广。但该法产泥量大,且污泥制作铁氧体时的技术条件较难控制,需耗能加热至70℃左右,处理成本较高,处理后盐度高,而且不能处理含汞和络合物的废水。

二、电解法。在电场的作用下使废水中的有害物质通过电解在阴、阳两极上分别发生还原、氧化反应转化成无害物质,或利用电极氧化还原产物与废水中的有害物质发生化学反应。但缺点是不适用于处理含较低浓度的金属废水,并且电能消耗、铁极板消耗量很大,成本高,一般经浓缩后再电解经济效益会更好。

三、离子交换法。是利用离子交换剂自身所带的自由移动离子与废水中待处理的离子进行选择换,从而分离废水中有害的物质使废水净化的处理方法。但由于离子交换剂选择性强,制造复杂,成本高,再生剂耗量大,因此在应用上受到一定限制。

四、萃取法。利用一种不溶于水而能溶解水中某种物质的有机溶剂投入废水中,使废水中的溶质充分溶解而从废水中分离出去的方法。由于溶剂在萃取过程中的流失和再生过程中能源消耗大,此法的应用受到了很大的限制。

五、吸附法。是利用吸附剂的物理吸附、化学吸附及氧化还原等作用,以除去废水中的有害物质的方法。不足之处是吸附速度慢,容量小,不适于有害物浓度高的废水。一般用作预处理手段或深度净化。

六、膜分离技术。是利用膜的选择透过性对废水中某些成分进行分离去除的方法。应用于电镀废水处理的膜技术主要有电渗析、反渗透、超滤、纳滤等。利用膜分离技术一方面可以回收利用电镀原料,大大降低成本,另一方面可以实现电镀废水零排放或微排放,具有很好的经济和环境效益,是一项很有发展前途的技术。

七、生物法。生物处理过程主要是利用微生物的生命活动过程,在这个过程中通过生物有机物本身或其代谢产物具有的静电吸附、酶催化转化、络合、絮凝、共沉淀和对pH值缓冲等功能与重金属离子的相互作用达到净化废水的处理方法。由于传统处理方法有成本高、对大流量含低浓度重金属的废水难于处理等缺点,随着重金属毒性微生物的研究进展,生物处理技术日益受到人们的重视,采用生物技术处理电镀金属废水呈发展势头。

综述

以上介绍了废水处理的几种常用方法,都各有利弊。显然各种重金属因其行业和工艺的差异,而是在设计处理方法时要统筹考虑以下几个原则:1经处理后的废水应符合国家排放标准或可回用,不产生二次污染。2应适应废水的浓度、pH值、成分变化等特点。3所用废水处理设备、设施,投资要小占地面积和基建工作量也要小。4应节约能源,回收效益高。力求把电镀工艺、镀件漂洗工艺、废水的分流和收集,各类废水治理技术的选择,综合成一个统一系统来设计,寻找一个最经济合理的方案。

另外,实施循环经济、推行清洁生产,提高电镀物质、资源的转化率和循环利用率,从源头上削减重金属污染物的产生量,不难看出未来综合治理技术、生物技术和膜分离技术的运用将是电镀废水治理的热点和发展方向。

参考文献

[1] 侯爱东,王飞,徐畅.综合一体化处理电镀废水技术及应用[ J] .电镀与环保,2003

[2] 马小隆,刘晓东,周广柱. 电镀废水处理存在的问题及解决方案 山东科技大学学报,2005

[3] 刘军坛.电镀废水处理技术的发展[ J] .化工纵横, 1996

第7篇:废水处理范文

【关键词】低放废水处理;调试;排放

1项目概况

某低放废水处理站用于科研活动产生的低放废水的处理。设计处理能力3m3/h,设计年处理废水100m3,放射性废水的平均放射性活度10000Bq/L,处理后废水的放射性活度达总α<1Bq/L,总β<10Bq/L时排放。

2工艺流程

该低放废水处理站的废水处理工艺主要考虑了絮凝沉淀、超滤和离子交换。絮凝沉淀法适用于大多数放射性核素的去除,去污因子一般为10~100,并且产生的污泥量较多。离子交换法具有从浓度极低的溶液中有选择的交换出某些粒子的特点。经过化学沉淀处理的放射性废水,由于交换悬浮的和胶体的放射性核素,以至于剩下的核素几乎都呈离子状态,这些废水再经过离子交换就得到活度很高的净化效率。离子交换法在运行过程中产生废树脂,需考虑废树脂的处置问题。超滤是利用废水在压力下所有可溶性物质均可通过膜,而高分子量的物质、胶体不能通过膜。在较低压力下,超滤可以高通量产水,去污因子较高,一般可达102~103。絮凝沉淀+过滤+超滤+离子交换的低放废水处理工艺的处理效率可达99.98%,出水浓度可降为0.2Bq/L。该处理工艺主要考虑科研单位产生的低放废水的量少和断续产生的特点。主要工艺设备包括2台废水储存槽、1台絮凝沉淀槽、1台多介质过滤器、1套超滤膜组件、2台离子交换槽和2台监测槽。总体来说。其设计规模较小,运行成本较低,设备维护简单,兼顾了低放废水的收贮、暂存、处理和排放。该低放废水处理站的废水处理部分根据不同的工艺组合。

1)废水储存槽废液检测合格后排入监测槽。当来水的水质经检测符合排放要求时,则直接排入监测槽,经审批后槽式排放。

2)絮凝沉淀+过滤。若来水水质不满足直接排放要求,则经pH调节,絮凝剂混合后排入絮凝沉淀槽,等待一定时间后进入砂滤处理,处理后的废水检测符合排放要求,则排入监测槽,经审批后槽式排放。

3)絮凝沉淀+过滤+超滤。若来水水质不满足直接排放要求,则经pH调节后于絮凝剂混合后排入絮凝沉淀槽,等待一定时间后进入砂滤处理,若处理后的废水检测不符合排放要求,则进入超滤处理系统处理,若符合排放要求,则排入监测槽,经审批后槽式排放。

4)絮凝沉淀+过滤+超滤+离子交换。若来水水质不满足直接排放要求,则经pH调节,絮凝剂混合后排入絮凝沉淀槽,等待一定时间后进入砂滤处理,若处理后的废水检测不符合排放要求,则进入超滤处理系统处理,若仍不符合排放要求,则进入阴阳树脂床进行离子交换处理,若符合排放要求,则排入监测槽,经审批后槽式排放。若经离子交换处理的废水仍不合格,则将处理后废水返回继续处理,直至满足排放要求。

3调试

3.1单元调试

3.1.1废水槽

1)接收废水。打开进水阀,持续进水当槽内水位达到上限水位1.85m时,进水电动阀自动关闭,只要液位达到废水槽的上限液位时,报警系统开始持续响铃,直至操作人员降低液位为止。

2)调节pH。开启废水槽水循环调节废水pH,关闭进水阀,打开出水阀和pH调节回流阀,开启废水循环泵中进行水循环,直至pH检测合格后关闭阀门和废水泵。

3)取样。与pH调节操作相同,只是不需要加入酸碱等试剂。

4)废水排放。当检测合格后,启动排放阀和废水循环泵,直接将废水泵入监测槽中,手动打开排放阀排放废水。

3.1.2絮凝槽

1)废水处理。启动絮凝计量泵通过管道混合器与废水充分混合,然后通过废水泵排入絮凝槽,一般絮凝沉淀6h即可,上清液通过絮凝槽废水提升泵,将废水提升到多介质过滤器。

2)废渣排放。废渣通过压缩空气与渣浆泵直接排入水泥固化间的泥浆暂存槽中。

3.1.3超滤组件

1)废水处理。来自多介质过滤器的水通过超滤进出水阀通过2台超滤床运行,超滤滤膜为圆筒型结构,水由中心往周围通过滤膜渗透,达到超滤的功能。

2)超滤膜反洗。超滤运行到一定的时间要进行反洗和药剂清洗,一般正常运行30min要进行反洗(反洗时间为30s),反洗通过打开监测槽水循环泵,打开反洗进出水阀,关闭进出口阀利用监测槽中的水进行反洗;当连续运行5~8个周期,进水压力升高达到0.2~0.3MPa(稳定工作压力为0.2MPa左右)时,要进行药剂清洗,药剂清洗通过药剂配料槽、清洗泵,清洗水经过过滤器后通过清洗进出水阀进行清洗,如果清洗后,运行压力持续升高应该更换超滤膜。超滤器中的清洗水,直接排入上一级絮凝槽中。

3.1.4离子交换槽

1)废水处理。经过超滤不合格的废水经树脂床的进口阀进入树脂床进行离子交换处理。

2)废树脂处理。树脂达到交换容量或辐射水平超标后,关闭离子交换槽的进口阀和出口阀向离子交换槽内充入压缩空气,待其压力达到设计值后,打开树脂出口阀,将废树脂推动到水泥固化间的废树脂槽。

3.2联动调试

联动测试是采用添加了示踪核素的非放自来水为研究对象,模拟低放废水处理全部流程的操作,同时对各环节的核素水平进行监测。并进行标准工况,即正常运行情况,以及事故工况,即发生停电、冒槽及设备故障等问题时的处理。示踪试验主要是用Co2+、Sr2+和Cs2+作为示踪剂开展试验,通过在废水槽中加入示踪剂,并对原始水样进行编号,如Co-01-、Sr-01-、Cs-01-系列。加入示踪剂并调节pH为7.5的水样(Co-02-、Sr-02-、Cs-02-系列),并对絮凝沉淀的上清液(Co-03-、Sr-03-、Cs-03-系列)、超滤后液体(Co-04-、Sr-04-、Cs-04-系列)和监测槽液体(Co-05-、Sr-05-、Cs-05-系列)进行取样分析。上述处理流程对钴、锶、铯3种核素的去除效果满足排放要求,处理后均达到或低于原始水平,但从运行成本上考虑可以细化前端对废水pH的调节,并通过对絮凝剂的选择达到较好的处理效果,以达到满足排放要求的目的。

4运行

该低放废水处理站经过调试后已平稳运行超过20个月,期间各主工艺设备运转正常。并开展了真实低放废水的处理和排放工作,但由于来水的活度水平很低(总α<0.0551Bq/L,总β≈0.381Bq/L)均远低于相应的排放限值,因此经向环保主管部门审批后,在省辐射监督站的监督下进行了排放,未进行其它环节的处理验证。

5结论

通过调试和运行,低放废水处理站处理后的废水满足排放要求,保障了生产工作的正常开展。但存在诸如失效后废树脂仅用压缩空气无法彻底载带,需通入一定量的清水,造成二次废物增加等问题,需要进一步的改进加以完善。

参考文献:

[1]杨庆,侯立安,王佑君.中低水平放射性废水处理技术研究进展[J].环境科学与管理,2007(9):103-106.

[2]杨斌,淡立君.3600m3/dSBR法污水处理站调试总结[J].科技视界,2012,7(19):263-265.

[3]于德爽,张红,聂文,等.高盐度水产品加工废水处理站的设计及运行调试[J].中国给水排水,2009,25(2):55-57.

[4]张胜,陈民东,严永红.江山化工废水处理站一期工程调试[J].给水排水,2008,34(2):62-65.

[5]郝文萍,盛新一,崔振华.冷轧废水处理站设计及运行管理[J].科技信息,2009(1):64-65,93.

[6]庄维龙.某化工厂污水处理站运行调试[J].广东化工,2014,41(5):210-211.

[7]王建龙,刘海洋.放射性废水的膜处理技术研究进展[J].环境科学学报,2013,33(10):2639-2656.

第8篇:废水处理范文

关键词:磁泥废水处理系统;沉降池;杂质处理

磁泥废水系统具有结构简单、合理布局的特点,会用多个操作处理磁泥废水中的污染源,消除或降低污染程度,让其符合排放标准,把对环境的影响降到最低。而经过处理的废水也可以二次利用,提高了水源的利用率,减少了能源的过度使用,避免给环境带来不良影响。

1磁泥废水处理系统

磁泥废水是在磁体材料的生产过程中产生,磁体材料倒入模具成型前,需现在模具中涂抹脱模剂,以让材料全部脱模,由此,会让流出的磁泥废水中有大量的铁粉、油等,如果没有经过处理直接把废水流入自然环境,将严重破坏生态,同时也降低了水资源的利用率。所以,加工企业在材料加工结束后,需对产生的废水进行处理,让其达到排放标准后再排放。因此,技术人员会用相应的技术,建立一个废水处理系统,技术应用后系统的特点是:设置多个处理层,分别是隔油池、溶气气浮机以及沉淀池等,通过隔油池隔离出来的废水用提升泵传送到溶气气浮机,连接沉淀池的两个管道分别是进液管道与污水管道,进液管道流出的水可以排出,也可以再次使用。用该技术处理后的效果是:先把磁泥废水放到隔油池,然后把处理后的废水用溶气气浮机处理,经过混凝反应后,可以过滤废水中的杂质,随后,用沉淀池和超滤单元清除杂质,如此,可有效减少废水对环境的污染,有良好的应用效果。

2磁泥废水处理系统的具体操作

磁泥废水处理系统是由多个小部分组成,且每个部分相对独立又互为统一,优化了磁泥废水的处理效果。

2.1操作方案

操作人员首先会把磁泥废水放到隔油池中,用隔油池内产生的反应,完成除油处理,当废水中的油清除后,经由提升泵把水送到溶气气浮机内,溶气气浮机内会用混凝反应对废水进行处理,随后,把水流入沉淀池,由进入水的管道进入,处理水中杂质,随后,再把水从出水口流出,流出的水经过超滤单元的处理后,检测是否符合排放标准,确定符合后排放,或是重新在生产中使用。这个过程中,溶气气体机的混凝反应是,在混凝区放入PAC和PAM,让两者充分混合,废水中的有机物与混合物发生反应后,会逐渐凝结成柳絮,变成絮凝物,这些絮凝物在溶气的包括下,漂浮到水面,随后用设备从水面刮离,做初步的杂质分离,但有些絮凝物仍在废水中,需经由沉淀池再次处理,并顺着清液流入超滤单元。如此,经过处理的废水可顺利流入环境。这一操作方案便于操作,可得到良好的效果,而处理过程中产生的废渣以及污泥,都被送到污泥处理单元处理,操作便利。

2.2操作方案的优化

原有的操作方案虽然可以取得好的效果,但仍可以继续改进,进一步优化方案的实施。比如,对于沉淀池,可以在池中放置一个隔板,分成两个区域,一个区域是缓水池,另一个区域是沉降池,而隔板应靠近溶气气浮机,并且在隔板的下半部分,设置一个连接缓水池与沉降池的水流通道,缓水池中的污水进口需和溶气气体机的污水出口连接,沉降池的清液进口与进液口连接。而溶气气体机会把经过处理的废水先流入缓水池,再通过两个池子连接的管道流入沉降池,这种方式,可以让废水慢慢流入沉淀池的底部,不会使沉降池中的水有过多的搅动,同时,这也可以防止絮凝物进入超滤单元。此外,为提升沉降池对杂质的沉降效果,可以在沉降池的上半部,放置斜向并起到间隔作用的导杆。其实际操作是:废水是按照自上而下的方式流入沉降池,然后再通过清液入口,流到超滤单元内,加入倾斜的导杆后,废水中的絮凝物不会随着水的流动进入清液口,而是在木棍的阻碍下,自然沉降。而导杆架设的过程中,会形成多个长方形间隔,在这些间隔的位置会放置一个挡泥板,板的一端固定在导杆的一端,板的其他部分远离导杆,整体呈现为悬置状。该挡泥板的设置,可以让絮凝物因为多方面的阻挡沉落,提升了杂质的清除效果。而既然是方案的优化,选择的沉淀池也有级别之分,即优化后的方案会设置一级与二级之分,一级沉淀池的池口设有一个溢流口,清液可从溢流口流入二级沉淀池,通过这两个级别沉淀池的设置,可以把废水中悬浮的絮凝物有效清除,加快了沉淀处理的速度。但这一方案应用一段时间后,超滤单元使用的膜原件不可避免的会发生堵塞,对此,可以在整个操作中设计一个反冲洗管路。反冲洗管理与水箱和水泵相连,水箱的进水口与超滤单元的透过液管道连接,并且连接管道上会设置一个三通阀,用于控制水箱的进水,进行反冲管道操作时,水箱内的水通过水泵施加水压,让水进入超滤单元,如此操作一段时间后,可以把超滤单元最后处理的水流入水箱,然后再用水箱内的水反冲,消除了膜元件的堵塞。此外,为保证管道的清洁,可以在水箱内的水反冲进超滤单元前,预先放入清洗剂,即提高了堵塞的处理效果,又可以让管道保持清洁。而除了用水清洁以外,透出液管道也可以与反吹气的气泵连接,当膜元件堵塞后,可用反吹气的方式处理,多方面的处理堵塞物,进而增加了超滤单元的使用时间。通过对实施方案优化的分析,可以总结出,对系统处理方式的进一步优化,可在原有的处理效果上进一步优化,提高了废水中杂质清除的效率。

3结语

本文先简单介绍了磁泥废水处理系统,包括系统使用的技术与技术应用后的效果,随后,分析了系统的实际操作与优化,与优化产生的问题、处理方案,由此,得出的结论是,负责生产磁质材料的企业,应加大对磁泥废水的处理力度,引入新技术,优化废水的处理,以让其符合废水的排放标准,提高水源的利用率,保护生态环境。

参考文献

[1]朱翀,雷美玲,张雪苹.民用飞机废水处理系统流动性能仿真研究[J].航空计算技术,2015,6:99-103.

第9篇:废水处理范文

关键词:啤酒废水 SBR法 好氧接触 新型接触 生物接触 UASB+SBR法

一、前言:

啤酒废水主要来自麦芽车间(浸麦废水),糖化车间(糖化,过滤洗涤废水),发酵车间(发酵罐洗涤,过滤洗涤废水),灌装车间(洗瓶,灭菌废水及瓶子破碎流出的啤酒)以及生产用冷却废水等。

啤酒工业废水主要含糖类,醇类等有机物,有机物浓度较高,虽然无毒,但易于腐败,排入水体要消耗大量的溶解氧,对水体环境造成严重危害。啤酒废水的水质和水量在不同季节有一定差别,处于高峰流量时的啤酒废水,有机物含量也处于高峰。国内啤酒厂废水中:CODcr含量为:1000~2500mg/L,BOD5含量为:600~1500 mg/L,该废水具有较高的生物可降解性,且含有一定量的凯氏氮和磷。

啤酒废水按有机物含量可分为3类:①清洁废水如冷冻机冷却水,麦汁冷却水等。这类废水基本上未受污染。②清洗废水如漂洗酵母水、洗瓶水、生产装置清洗水等,这类废水受到不同程度污染。③含渣废水如麦糟液、冷热凝固物。剩余酵母等,这类废水含有大量有机悬浮性固体。

二、啤酒废水处理方法:

鉴于啤酒废水自身的特性,啤酒废水不能直接排入水体,据统计,啤酒厂工业废水如不经处理,每生产100吨啤酒所排放出的BOD值相当于14000人生活污水的BOD值,悬浮固体SS值相当于8000人生活污水的SS,其污染程度是相当严重的,所以要对啤酒废水进行一定的处理。

目前常根据BOD5/CODcr比值来判断废水的可生化性,即:当BOD5/CODcr>0.3时易生化处理,当BOD5/CODcr>0.25时可生化处理,当BOD5/CODcr<0.25难生化处理,而啤酒废水的BOD5/CODcr的比值>0.3所以,处理啤酒废水的方法多是采用好氧生物处理,也可先采用厌氧处理,降低污染负荷,再用好氧生物处理。目前国内的啤酒厂工业废水的污水处理工艺,都是以生物化学方法为中心的处理系统。80年代中前期,多数处理系统以好氧生化处理为主。由于受场地、气温、初次投资限制,除少数采用塔式生物滤池,生物转盘靠自然充氧外,多数采用机械曝气充氧,其电耗高及运行费用高制约了污水处理工程的发展和限制了已有工程的正常使用或运行。

随着人们对于节能价值和意义的认识不断变化与提高,开发节能工艺与产品引起了国内环保界的重视。1988年开封啤酒厂国内首次将厌氧酸化技术成功的引用到啤酒厂工业废水处理工程中,节能效果明显,约节能30~50%,而且使整个工艺达标排放更加容易和可靠。随着改革开放的发展,90年代初完整的厌氧技术也在国内啤酒、饮料行业得到应用。这里所说完整的意义在于除厌氧生化技术外,沼气通过自动化系统得到燃烧,这是厌氧系统安全运行和不产生二次污染的重要保证,这也是国内外开发厌氧技术和设备应充分引起重视的问题。厌氧技术的引进与应用能耗节约70%以上。

下面主要介绍一下处理啤酒废水常用的几种方法:

(一)、酸化—SBR法处理啤酒废水:其主要处理设备是酸化柱和SBR反应器。这种方法在处理啤酒废水时,在厌氧反应中,放弃反应时间长、控制条件要求高的甲烷发酵阶段,将反应控制在酸化阶段,这样较之全过程的厌氧反应具有以下优点:

(1)由于反应控制在水解、酸化阶段反应迅速,故水解池体积小;

(2)不需要收集产生的沼气,简化了构造,降低了造价,便于维护,易于放大;

(3)对于污泥的降解功能完全和消化池一样,产生的剩余污泥量少。同时,经水解反应后溶解性COD比例大幅度增加,有利于微生物对基质的摄取,在微生物的代谢过程中减少了一个重要环节,这将加速有机物的降解,为后续生物处理创造更为有利的条件。

(4)酸化—SBR法处理高浓度啤酒废水效果比较理想,去除率均在94%以上,最高达99%以上。

要想使此方法在处理啤酒废水达到理想的效果时运行环境要达到下列要求:

(1)酸化—SBR法处理中高浓度啤酒废废水,酸化至关重要,它具有两个方面的作用,其一是对废水的有机成分进行改性,提高废水的可生化性;其二是对有机物中易降解的污染物有不可忽视的去除作用。酸化效果的好坏直接影响SBR反应器的处理效果,有机物去 除主要集中在SBR反应器中。

(2)酸化—SBR法处理啤酒废水受进水碱度和反应温度的影响,最佳温度是24℃,最佳碱度范围是500~750mg/L。视原水水质情况,如碱度不足,采取预调碱度方法进行本工艺处理;若温度差别不大,运行参数可不做调整,若温度差别较大,视具体情况而定。

(二)、UASB—好氧接触氧化工艺处理啤酒废水:此处理工艺中主要处理设备是上流式厌氧污泥床和好氧接触氧化池,处理主要过程为:废水经过转鼓过滤机,转鼓过滤机对SS的 去除率达10%以上,随着麦壳类有机物的去除,废水中的有机物浓度也有所降低。调节池既有调节水质、水量的作用,还由于废水在池中的停留时间较长而有沉淀和厌氧发酵作用。由于增加了厌氧处理单元,该工艺的处理效果非常好。上流式厌氧污泥床能耗低、运行稳定、出水水质好,有效地降低了好氧生化单元的处理负荷和运行能耗(因为好氧处理单元的能耗直接和处理负荷成正比)。好氧处理(包括好氧生物接触氧化池和斜板沉淀池)对废水中SS和COD均有较高的去除率,这是因为废水经过厌氧处理后仍含有许多易生物降解的有机物。

该工艺处理效果好、操作简单、稳定性高。上流式厌氧污泥床和好氧接触氧化池相串联的啤酒废水处理工艺具有处理效率高、运行稳定 、能耗低、容易调试和易于每年的重新启动等特点。只要投加占厌氧池体积1/3的厌氧污泥菌种,就能够保证污泥菌种的平稳增长,经过3个月的调试UASB即可达到满负荷运行。整个工艺对COD的去除率达96.6%,对悬浮物的去除率达97.3%~98%,该工艺非常适合在啤酒废水处理中推广应用。

(三)、新型接触氧化法处理啤酒废水:此方法处理过程为:废水首先通过微滤机去除大部分悬浮物,出水进入调节池,然后中提升泵打入VTBR反应器中进行生化处理,通过风机强制供风使废水与填料接触,维持生化反应的需氧量,VTBR反应器出水进入沉淀器,去除一部分脱落的生物膜以减轻气浮设备的处理负荷,之后流人气浮设备去除剩余的生物膜,污泥及浮渣送往污泥池浓缩后脱水。

该处理工艺有以下主要特点:①VTBR反应器由废旧酒精罐改造而成,节省了投资。与钢筋混凝土结构相比,具有一次性投资低,运行稳定,处理效果好等特点。

②冬季运行时,在VTBR反应器外部加了一层保温材料,使罐中始终保持较高的温度,提高了生物的活性。

③因 VTBR反应器高达10m左右,水深大,所选用风机为高压风机,风压为98kPa,N=75kw,耗电量大。

(四)、生物接触氧化法处理啤酒废水:该工艺采用水解酸化作为生物接触氧化的预处理,水解酸化菌通过新陈代谢将水中的固体物质水解为溶解性物质,将大分子有机物降解为小分子有机物。水解酸化不仅能去除部分有机污染物,而且提高了废水的可生化性,有益于后续的好氧生物接触氧化处理。

该工艺在处理方法、工艺组合及参数选择上是比较合理的,充分利用各工序的优势将污染物质转化、去除。然而,如果由于某些构筑物的构造设计考虑不周会影响运行效果,致使出水水质不理想,使生物接触氧化池的出水(静沉30 min的澄清液)COD为500~600 mg/L,经混凝气浮处理后出水COD仍高达300 mg/L,远高于排放要求(150 mg/L)。

但是此处理方法在设计和运行中回出现以下问题:

(1)水解酸化池存在的问题主要是沉淀污泥不能及时排除。由于该废水中悬浮物浓度较高,因而池内污泥产量很大,而原工艺仅在水解酸化池前端设计了污泥斗,所以池子的后部很快就淤满了污泥。另外,随着微生物量的增加在软性生物填料的中间部位形成了污泥团,使得传质面积减小。针对污泥淤积情况,在水解酸化池前可增设一级混凝气浮以去除水中的悬浮物,经此改进后水解酸化池能长期、稳定、有效地运行,其出水COD也从1100~1200 mg/L降至900 ~1000mg/L,收到了较好的效果。不过,增设混凝气浮增加了运行费用,而且气浮过程中溶入的O2还可能对水解酸化产生不利影响。因此,在设计采用水解酸化处理悬浮物浓度高的污水时,可增设污泥斗的数量以便及时排除沉淀污泥。此外,为防止填料表面形成污泥团应采用比表面积大、不结泥团的半软性填料。

(2)如果废水中污染物浓度较高或前处理效果不理想,生物接触氧化池前端的有机物负荷较高,使得供氧相对不足,此时该处的生物膜呈灰白色,处于严重的缺氧状态,而池末端成熟的好氧生物膜呈琥珀黄色。同时,水中的生物活性抑制性物质浓度也较高,对微生物也有一定的抑制作用。这些因素使得生物接触氧化池没有发挥出应有的作用,处理效果不理想。鉴于此,可一采取阶段曝气措施即多点进水,污水沿池长多点流入生物接触氧化池以均分负荷,消除前端缺氧及抑制性物质浓度较高的不利影响。改为多点进水并经过一段时间的稳定运行后,生物接触氧化池的出水(30 min的澄清液)COD为200~300 mg/L。再经混凝气浮工序处理后最终出水COD<150 mg/L(一般在130 mg/L),达到了排放要求。

(3)在调试运行过程中,生物接触氧化池中生物膜脱落、气泡直径变大(曝气方式为微孔曝气)、出水浑浊、处理效果恶化的现象时有发生。经研究、分析、验证发现这是由于负荷波动或操作不当造成溶解氧不足而引起的。溶解氧不足使得生物膜由好氧状态转变为厌氧状态,其附着力下降,在空气气泡的搅动下生物膜大量脱落,导致水粘度增加、气泡直径增大、氧转移效率下降,这又进一步造成缺氧,如此形成恶性循环致使处理效果恶化。

(4)在调试运行初期,发生这种现象时一般是增大供气量以提高供氧能力来消除缺氧,结果由于气泡搅动强度增大,造成了更大范围的生物膜脱落、水粘度更大、氧转移效率更低,非但没 能提高供氧能力反而使情况更糟。正确的处理措施应是减小曝气量,待脱落的生物膜随水流 流出后再逐渐增加曝气量使溶解氧浓度恢复到原有水平,若水温适宜则2~3 d后生物膜就可恢复正常。

因此当采用此工艺处理啤酒废水时要遵循下列要求:①采用水解酸化作为预处理工序时应考虑悬浮物去除措施。②采用推流式生物接触氧化池时,为避免前端有机物负荷过高可采用多点进水。③应严格控制溶解氧浓度,供氧不足会造成生物膜大范围脱落,导致运行失败。

(五)、内循环UASB反应器+氧化沟工艺处理啤酒废水:此工艺采用厌氧和好氧相串联的方式,厌氧采用内循环UASB技术,好氧处理用地有一处狭长形池塘,为了降低土建费用,因地制宜,采用氧化沟工艺。本处理工艺的关键设备是UASB反应器。该反应器是利用厌氧微生物降解废水中的有机物,其主体分为配水系统,反应区,气、液、固三相分离系统,沼气收集系统四个部分。厌氧微生物对水质的要求不象好氧微生物那么宽,最佳pH为6.5-7.8,最佳温度为35℃-40℃[2],而本工程的啤酒废水水质超出了这个范围。这就要求废水进入UASB反应器之前必需进行酸度和温度的调节。这无形中增加了电器。仪表专业的设备投资和设计难度。

内循环UASB技术是在普通UASB技术的基础上增加一套内循环系统,它包括回流水池及回流水泵。UASB反应器的出水水质一般都比较稳定,在回流系统的作用下重新回到配水系统。这样一来能提高UASB反应器对进水水温、pH值和COD浓度的适应能力,只需在UASB反应器进水前对其pH和温度做一粗调即可。

UASB反应器采用环状穿孔管配水,通过三相分离器出水,并在三相分离器的上方增加侧向流絮凝反应沉淀器,它由玻璃钢板成60°安装而成,能在最大程度上截留三相分离出水中的颗粒污泥。

此处理工艺主要有以下特点:①实践证明,采用内循环UASB反应器+氧化沟工艺处理啤酒废水是可行的,其运行结果表明CODCr总去除率高达95%以上。②由于采用的是内循环UASB反应器和氧化沟工艺串联组合的方式,可根据啤酒生产的季节性、水质和水量的情况调整UASB反应器或氧化询处理运行组合,以便进一步降低运行费用。

(六)、UASB+SBR法处理啤酒废水:本处理工艺主要包括UASB反应器和SBR反应器。将UASB和SBR两种处理单元进行组合,所形成的处理工艺突出了各自处理单元的优点,使处理流程简洁,节省了运行费用,而把UASB作为整个废水达标排放的一个预处理单元,在降低废水浓度的同时,可回收所产沼气作为能源利用。同时,由于大幅度减少了进入好氧处理阶段的有机物量,因此降低了好氧处理阶段的曝气能耗和剩余污泥产量,从而使整个废水处理过程的费用大幅度减少。采用该工艺既降低处理成本,又能产生经济效益。并且UASB池正常运行后,每天产生大量的沼气,将其回收作为热风炉的燃料,可供饲料烘干使用。UASB去除COD达7 500 kg/d,以沼气产率为0.5m3/kgCOD计算,UASB产气量为3 500m3/d(甲烷含量为55%~65%)。沼气的热值约为22 680kJ/m3,煤的热值为21 000 kJ/t计算,则1m3沼气的热值相当于1 kg原煤,这样可节煤约4 t/d左右,年收益约为39.6万元。

UASB+SBR法处理工艺与水解酸化+SBR处理工艺相比有以下优点:①节约废水处理费用。UASB取代原水解酸化池作为整个废水达标排放的一个预处理单元,削减了全部进水COD的75%,从而降低后续SBR池的处理负荷,使SBR池在废水处理量增加的情况下,运行周期同样为12 h,废水也能达标排放。也就是说,耗电量并没有随废水处理量的增加而增加。同原工艺相比较,每天实际节约1 500~2 500 m3废水的处理费用,节约能耗约21.4 万元/a。②节约污泥处理费用。废水经过UASB处理后,75%的有机物被去除,使SBR处理负荷大大降低,产泥量相应减少。水解酸化+SBR处理工艺工艺计算,产泥量达17 t/d(产泥率为0.3 kg污泥/kgCOD,污泥含水率为80%),UASB+SBR法处理工艺产泥量只有5 t/d(含水率为80%)左右,只有水解酸化+SBR处理工艺的1/3,污泥处理费用大大减少,节约污泥处理费用约为20元/a。

三、结论:

啤酒厂工业废水处理的工艺选择,必须因地制宜,谨防生搬硬套。各种工艺确定时,应充分调查工厂排水水质、水量、排水规律和特点,必要时应取样化验确认;应考察工厂提供的建设场地地形条件和面积大小;考察工厂所能承受的一次性投资及运行成本情况;考察工厂的管理水平和工人素质条件以及确定厂外排水条件及水电增容条件等进行适合本地区建设污水场并能长期达标运行的方案比选。比选中简单适用、运行可靠、达标稳定、节约能耗、投资经济是最重要的工艺原则。

参考文献:

[ 1 ] 袁惠民.杜绿君 啤酒技术及管理[M].北京:中国轻工业出版社,1994.

[ 2 ] 贺延龄 废水的厌氧生物处理[M].北京:中国轻工业出版社,1998

[ 3 ] Griffiths P.High Performance Nutrient Removal without Prefermentat ion[A].IAWQ 19th Biennial International Conference[C].Vancouver,1998.

相关热门标签