公务员期刊网 精选范文 模块化设计技术范文

模块化设计技术精选(九篇)

模块化设计技术

第1篇:模块化设计技术范文

关键词:专业技术人员继续教育;课程模块化;模块

中图分类号:G72 文献标识码:A

一、课程模块化设计的特点

(一)课程模块须做到相关性、系统性和递进性

课程模块须做到相关性、系统性和递进性,这是专业技术人员继续教育课程模块总体框架搭建的基本原则。相关性指所有模块安排均与岗位职能相关。系统性是指课程模块总体应体现履行全部岗位职能所需要的专业能力和素质的综合。递进性是指课程模块层级随气候预测培训子目标的层级性而呈现层级展开。

(二)课程模块设置应突出实践性和实用性

课程模块设置应突出实践性和实用性。不以学科为中心来组织教学内容,不强调知识的系统性、完整性,而是从业务实际需要出发来组织培训课程内容,强调能力本位和知识的必需和够用。气候预测岗位工作实务性强,在教育培训中解决部分实践性问题显得尤为必要。

(三)课程模块应具搭配性和可更新性

为了能够最大程度地实现实践环节子目标,实践子模块与理论子模块的配套性相当重要。这是在课程模块总体框架搭建之后,子模块安排的基本原则。子模块之间相对独立,子模块的子目标也相对独立,但具有巧妙的内在联系。每个子模块代表一项知识、技能,同一个一级模块下,子模块的选择代表了技能或专业知识的搭配。因此,模块的不同选择可以代表不同层次的气候预测业务能力需求。课程模块也应具有可更新性,以适应不断发展的业务需求。

二、课程模块化设置的优势

(一)课程模块化能够将理论和实践有机结合起来

目前,在学历教育中,高校对短期气候预测这门课程设置的学时安排跨度较长,学生学完课程不能及时应用到工作中,这也说明了短期气候预测课程的学历教育教学效率不高,呈现出一种隐性的教育资源浪费。然而,毕业生在进入工作岗位时,对要做些什么、如何做等都有个重新学习和认识的过程。本研究正是基于这一考虑而探讨课程模块化设置,认为课程模块化对于人才能力的培养是注重实践性的,加大了实践性和感性认识,避免了以往重理论轻实践,理论和实践脱节的状况。

(二)课程结构模块化能够体现核心课程理念

一方面,课程模块化的设置体现了核心课程的理念,它不但能及时体现新知识、新技术和新方法,大大增强培训内容的适用性,而且能在一定程度上适应不同学习基础、发展需求各异的学员的需要。另一方面,由于培训内容取舍的依据是岗位的实际需求,因此绝大多数模块都以某一知识或技能的形成为主线,把专业知识和专业技能有机地融合为一个整体。每个模块几乎都是以问题为中心进行综合化的典范。

(三)课程模块化能够与岗位层次衔接起来

模块化思想起源于工业生产,目的在于简化设计和制造工作,缩短产品和设备研制时间。培训课程模块化设置能提升学习效率,加快专业人员岗位适应和胜任速度;对于已从事业务工作一段时间的人员来说,培训课程模块化设置能够有效节约培训时间,做到有的放矢;对于已处于专业技术高级岗位的业务人员来说,通过对新技术、新方法及专题研讨的培训课程模块的学习,能够有效提高专业素养和业务水平。

三、课程模块化设置方法

(一)设置原则

专业技术人员继续教育应该对不同层次的业务人员分别进行岗位胜任能力和专业技能的描述。事实上,各岗位层次间的能力、技能必然按层次呈现出递进关系,而这一关系将为课程模块化与岗位层次的衔接奠定基础并搭建框架。

对于新上岗的业务人员来说,课程的模块化设置强调拓宽知识面,增强综合分析能力,以够用、实践为主;对于已工作一段时间,需参加岗位培训的业务人员来说,课程的模块化设置强调培训有效完成工作任务所必需的知识和技能方面的内容;对于已处于气候预测高级岗位的业务人员来说,需要强调对新理论、新方法以及专题研讨方面的培训。

(二)设置结构

根据不同岗位层次培养目标和专业发展需求,可将课程分成基础理论、技术方法、专题研讨和学科前沿信息三类模块。基础理论模块是对所有与课程理论有关的内容进行选择压缩,设置最基础、最主要、最实用的内容,同时应强调理论讲解与个例分析紧密结合,剩余其他有关理论内容可以留给学员自学。该模块也是短期气候预测研究领域的坚固基石。技术方法模块是基于基础理论模块,应成为学历后专业技术培训的重点模块,是体现核心培训课程理念的模块,强调通过实践性教学环节,进而待学员在培训结束之后将培训所学应用到本地化工作当中,做到学以致用,真正对短期气候预测从业人员的工作能力有所提高。专题研讨和学科前沿信息模块是基于基础理论和技术方法模块,通过对气候预测专题的研讨以及对短期气候预测学科前沿的最新信息的介绍,让学员领悟渗透在这些信息中的研究方法和思维方式。目的不是介绍理论知识,而是培养学员的创新意识和创新精神。

四、课程模块的分类

(一)基础理论模块

基础理论模块是最基础、最主要、最实用的课程内容,以短期气候预测课程为例,它包括气候系统及其变化和预测、大气环流基本状况、大气低频变化及遥相关、海气相互作用和陆面过程对气候的影响5个子模块(详见图1)。其中,气候系统及其变化和预测子模块最基础的理论模块内容,大气环流基本状况、大气低频变化及遥相关、海气相互作用和陆面过程对气候的影响4个子模块是短期气候气候预测最主要、最实用的理论模块内容。

(二)技术方法模块

技术方法模块是体现核心培训课程理念的模块,以短期气候预测课程为例,主要梳理了目前短期气候预测业务中常用的短期气候预测技术方法和国内外常用的气候预测业务质量评估方法,该模块包括物理统计预测方法、气候动力数值模式预测方法、动力与统计相结合预测技术和气候预测业务质量评估方法这4个子模块(详见图2)。

(三)专题研讨和学科前沿信息模块

专题研讨和学科前沿信息模块的目的是为培养学员的创新意识和创新精神。以短期气候预测课程为例,专题研讨和学科前沿信息模块包括专题气候预测研讨和短期气候预测学科前沿信息两个子模块。专题气候预测研讨子模块包括气温、降水、ENSO、台风数量、冷空气频次、沙尘频数、农业生产条件等短期气候预测专题。短期气候预测学科前沿信息子模块主要介绍短期气候预测学科前沿的最新信息。

五、结语

本文对课程模块化的研究,还停留在概念层面,深层次的研究成果还需在专业技术人员继续教育的实践中继续研究。另一方面,短期气候预测目前仍面临很多科学难题,传统的气候预测理论和方法需要及时更新认识和应用,因此对短期气候预测培训课程模块的设置也应及时做出适当调整,这对丰富和发展气候预测培训教学研究和实践也具有十分重要的作用。

参考文献

[1]张宇.“模块化”与“能力本位”:国外职教课程的早期印象及其影响[J].职教通讯,2011(11).

[2]贾凡.开放大学成人模块学习的理论与实践研究[J].职教论坛,2014,(12).

第2篇:模块化设计技术范文

关键词:模块化教学;环境艺术设计;课程设计;探索实践

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2014)42-0169-02

模块化教学是从以人为本、全面育人的理念出发,根据职业教育培养人才的要求,通过课程模块之间有效衔接,形成的一种“宽基础、活模块”教育模式。旨在培养学生具有宽泛的基础人文素质、基础职业能力,使其成为合格的专门技术人才。模块化教学具有灵活性、针对性、现实性、经济性的特点,不但重视知识的传授,而且更重视知识的应用。它克服了传统教学方法中只注重教师讲授、学生听课、单项信息传递的教学方法,模块化教学把学生作为教学的中心,强调学生在教学中的主观能动作用,注意调动学生的学习自觉性和主动性,教师和学生之间的活动是互动式的。

一、课程基本情况

《软件应用AutoCAD》是高职院校环境设计艺术专业的专业必修基础技能课程,CAD即计算机辅助设计(Computer Assistant Design)的缩写,由美国Autdesk公司开发,主要利用计算机的计算功能和高效的图形处理能力,对产品进行辅助设计、分析、修改和优化。该课程的教学目的是教会学生电脑制图的技能,并能够利用电脑快速、准确、规范、美观地绘制图纸。通常开设在大一的第二学期,其前导课程有《工程制图》和《人体工程》,前导课程主要是教会学生读图、识图和用纸笔规范绘图的能力,而CAD则是用鼠标、键盘、电脑屏幕来表达图纸内容,相当于掌握另一种绘图工具的应用;后续课程有《3dsMax电脑效果图制作》和《室内居住空间设计》,同时电脑制图作为一项单独的技能,直接对应着设计师助理职业工种的核心技能,并将一直应用到学生毕业设计和顶岗实习,所以又是后续课程学习的重要基础和保障。

二、课程设计思路

《软件应用AutoCAD》课程设计思路是基于职业岗位的工作过程。作为设计师助理职业岗位群的工作职责一是协助主案设计师的日常事务,包括设计项目的现场勘测、根据设计任务书的要求完成设计草案、为用户讲解设计方案等,二是能够按照专业制图规范完成施工图的绘制,包括平面图、立面图、内部结构图、剖面图和节点详图等的绘制。职业岗位群与典型工作任务的对应关系决定了该岗位群对职业能力的要求:既要学习软件AutoCAD的命令和操作,又要结合环艺专业的职业特点,掌握室内装饰设计图和施工图的绘制流程与技能。

为了达到教学目标,突破重点难点,课程设计小组采用了任务驱动和理实一体化的教学方法,以够用原则对知识点和技能操作进行重新构建,将教学环节设置为两大模块,即软件操作模块和家装图绘制模块,每个模块下再设置若干个学习任务,对应具体的知识能力目标,见表1。

三、课程设计特色

(一)模块化教学,技能逐步提升

以够用原则在课程设计上对课程教学的内容进行模块化安排,每个任务都有对应的知识点和技能要点。在教学方法和手段上,《软件应用AutoCAD》采用了讲授教学法、演示教学法、任务驱动教学法、案例教学法和实践教学法。比如在学习模块一的内容时,老师首先要讲授软件的基础知识、界面组成,然后演示软件的基本操作,接下来可以通过下达绘制家装图库图形的项目任务,让学生感受项目管理,同时以教师引导项目任务作为案例进行案例分析和教学,最后采用以学生训练为主,集教、学、做合一的实践教学法来提升教学效果。

(二)信息化教学,教学资源具有共享性

信息化教学是在信息化环境中,老师与学生借助现代教育媒体、教育资源和教育技术方法等进行的教学双边活动,以学生的学为主,老师提供交互式的教学指导。《软件应用AutoCAD》信息化教学主要依托世界大学城的空间教学平台,上传电子教案、电子课件、实训案例和实训素材,为学生的学习活动提供支撑和保障。尤其是教学团队提供了碎片化教学资源,以3~10分钟的微课解决软件操作应用和绘图过程中的难点与技能要点,实现教学过程的全覆盖,学生一旦有不会操作的节点,就可以通过碎片化的教学资源得到解答。同时利用世界大学城的留言板栏目、私信栏目以及课堂作业栏目,完成教学互动和对学生的远程指导,培养了学生的信息素养和自主学习探究的能力,体现了强烈的时代感。

(三)以学生为主体,教师提供全程学习辅导

我院环艺专业的课程体系设置主要分成基础类、技能类、设计类和工程类四大类别的课程,《软件应用AutoCAD》属于技能类的课程。随着教学的深入,学生在学习设计类和工程类课程时,也都有教学团队对这个软件进行后续的跟进和巩固训练,可以说一直辅导学生进行后续学习至毕业设计和毕业实习,教学团队起着不断的引导作用,使得学生能非常熟练地掌握软件应用和制图规范,达到职业岗位群的职业要求。

(四)过程化考核,课程评价真实到位

考核评价分过程考核和成果考核两部分,过程考核包括学习态度(10%)、课堂评估(20%)、作业完成(20%),主要从学习能力、方法和操作技能上体现,课堂作业和课后作业不仅要求按量还要求按质完成;成果考核体现为作品考核,占50%,即老师提供手绘量房草图,要求学生利用软件CAD绘制成电脑图,并完成初步设计方案图的绘制――即考核内容源于教学内容,又因其结合了职业岗位群的职业能力要求而高于教学内容,更灵活,更有创新性。通过这些措施,综合完成学生的课程过程评价。

四、结论

综上所述,《软件应用AutoCAD》课程依据环艺专业的特点,着重AutoCAD绘图、标注、打印等工具在施工图方面的应用,体现以“提高能力为核心,以突出基本操作为重点”的课程模块化设计理念,充分发挥教师引导、学生主体的作用,依托世界大学城空间教学平台,创建信息化的教学环境和教学资源,有效地促进学生学习的积极性,着重培养学生的信息素养以及专业知识的可持续发展能力,有利于学生职业能力的形成。

参考文献:

[1]郑小军,杨满福,林雯.现代教育技术能力训练[M].北京理工大学出版社,2009.

[2]郑小军,杨满福,林雯.信息技术与课程整合示范课例的设计与开发――以网络探究性学习的教学设计为例[J].广西师范学院学报(自然科学版),2007,(02).

[3]王晶莹,高鸿翔.高职《土建工程CAD》课程模块化改革的教学实践[J].中国科技纵横,2011,(16).

[4]卞素兰.模块化教学法在AutoCAD教学中的探索应用[J].科技风,2008,(1).

第3篇:模块化设计技术范文

Abstract: This paper introduces the basic idea of modular nuclear power, analyzes and studys the application history and current status of domestic nuclear power modular technology, and through the construction of AP1000 Nuclear Power Plant and the construction status studys the influence of modular technology to the construction of nuclear power plants and gives notes and some improvement measures to provide reference ideas for the development of modular technology.

关键词:核电厂;模块;模块化;人力需求;模块产能;AP1000;建造和施工

Key words: nuclear power plant;module;modular;human needs;module production capacity;AP1000;building and construction

中图分类号:TL3 文献标识码:A文章编号:1006-4311(2010)25-0123-02

0引言

模块化技术有很多优点,早已在造船、航空、石化、能源等建设项目中得到成功的应用,有着不错的建造历史和较好的建造经验。因此,美国URD文件在ALWR(先进轻水反应堆)可建造性的政策声明中要求应用先进的模块化技术,尤其要求非能动的ALWR更广泛地采用模块化建造方式。基于此,当今的第三代核电厂大都采用了模块化的设计和建造方法,模块化也几乎成了第三代核电厂的特征之一。

1国内现状

模块的应用在我国也有二十多年的历史,最早用在核岛厂房穹顶钢衬里施工技术中。例如我国第一座核电站秦山一期即采用了核岛厂房钢衬里预制和吊装技术,但当时没有称作模块化技术。模块化技术这个称呼的出现是最近几年的事。如今在核电行业流行的模块化设计、建造技术应用其实始于秦山三期CANDU反应堆建造,也是真正意义上的模块化技术应用。

1.1 穹顶钢衬里模块穹顶钢衬里实际是模块,也可称为“穹顶钢衬里模块”。上世纪七八十年代,秦山一期核电站的穹顶被设计成了上下两层预制,分别吊装,以减少吊装重量。之后的恰希玛核电站建造改进了这个设计,采用整体预制并吊装完成。八十年代的大亚湾核电站的穹顶建造和安装,按照法国的吊装方法进行,即穹顶分为A、B两片穹顶分别预制,吊装就位后再拼接。如今这项技术经过改进,“穹顶钢衬里模块”为整体预制,一次性吊装。

1.2 反应堆厂房钢衬里模块应用国内反应堆钢衬里的安装一般是单块钢板吊装定位,再与其它钢板焊接成环,不是一整层钢衬里吊装,然后与其它层拼接,通常不称作模块化技术。我国钢衬里模块化技术应用始于台山核电#1机组(EPR技术)。2010年3月20日和5月18日,首层和第二层核岛厂房筒体钢衬里模块吊装成功。

1.3 其它模块应用

除了穹顶钢衬里模块、核岛钢衬里模块之外,秦山三期CANDU堆建造中也应用了一些其它模块,包括机械模块和钢结构模块。其中最有代表性的是“下穹顶模块”、 “喷淋钢模块”[1]。下穹顶模块是一个钢结构模块,与普通穹顶模块外观差不多,在地面预置完成由大型吊车一次性吊装就位。当下穹顶在地面预置时,反应性控制机构平台同时安装部件,反应堆厂房也开始安装设备,做到了平行施工。喷淋钢模块是一个机械模块,位于反应堆厂房顶部。包括了大量的钢结构、喷淋系统管道、阀门、设备、电气和仪表等部件,共分为6个子模块。对照以前同样的项目,仅这一个模块就节省了三个多月的建造工期[2]。即将开始建造的山东石岛湾核电站,即20千瓦的高温气冷堆核电站(HTR-PM)也将利用模块化技术建造,包括了广义和狭义模块化的两种概念。

1.4 三门核电模块化我国正在浙江三门、海阳采用西屋AP1000技术建造四个核反应堆,大量使用了模块化技术,包括机械、结构两大类。西屋比任何其它NSSS供应商更彻底地、高度依赖于模块化技术,尽最大可能地使用模块化技术来评估AP1000的42个月的建造工期(FCD~COD),其中FCD~FLD的建造工期只需要36个月。西屋认为,36个月的建造计划最大的单一驱动力就是模块技术[2]。在AP1000核电厂中,结构模块大部分为双层墙体模块,即CA模块。墙体模块吊装就位后,混凝土再浇注在双层钢板中形成墙体。由于模块是在工厂预制,现场组装拼接成整体,因此相对传统的混凝土墙体可以节省绑扎钢筋和支模板的时间,做到了平行施工,节省建造工期。也因为如此,AP1000核电厂的许多区域都布置有结构模块,他们分布在核岛厂房的大部分区域。除了结构模块之外,整个核岛厂房和汽轮机厂都分布着大量的机械模块。

1.5 三门核电模块化存在的问题目前,三门核电机一期工程正处于建造中,大体上来说情况不错。但由于AP1000没有建造过首堆,因此出现了不少问题,要实现50个月建造周期(FCD~FLD,理论计划应为36个月)困难很大。表现在:

1.5.1 模块的数量发生变化因为没有建造过首堆,模块施工设计未完成,因此数量一直变化,趋势如图1。

1.5.2 模块详细设计要求不明模块设计初期,模块设计只有一本技术规格书,规定了模块技术总要求,但模块的详细要求、图纸的细节等没有制定,设计反复修改,浪费大量时间。

1.5.3 模块设计进度滞后模块设计未及时完成造成了三门、海阳核电厂建造进度滞后。例如KB10、KB13两个模块,位于厂房最底层,2008年10月左右才完成REV.0版图纸,此时距离三门FCD只有5个月时间。

1.5.4 采购进度滞后采购进度滞后影响模块设计和预制,因而又造成现场施工进度滞后。

1.5.5 模块安装问题多(设计变更工作量巨大)AP1000建造经验表明,各个模块碰撞多、安装困难等问题较多,设计变更数量大,进度受到很大影响。

2模块化注意事项

核电厂模块化应结合各个厂址不同的厂址特征条件进行具体考虑,并进行详细评估,以实现模块化建造的目标。除了上述问题之外,核电模块产能不足和核电建设人力不足两个方面问题也需重视。

2.1 模块产能不够目前我国仅有一座已建成模块工厂,产量为年产两座AP1000核电厂模块。而另外两座核电模块厂(中核二三公司益阳核电设备厂和中核华兴南京核电设备厂)处于建造计划中,其产能估计都在年产两座AP1000模块,且投产日期都将在2012年初左右。考虑到ASME取证等影响因素,投产日期可能滞后。根据世界核协会(WNA)的报道,我国目前采用AP1000技术的核电项目有48个反应堆,近两年之内也有将近18个堆。

2.2 核电厂建造人力资源不够根据美国能源局(USDOE)NP2010计划对第三代核电厂建造人力资源需求的预测,一个堆顶峰时期人力需求大约需要2400人,如表1。秦山三期经验表明,两座70万千瓦重水堆建造高峰期(2001年)的建造人力数约为7000人,此时,现场仍然需要双班工作。考虑到子分包商以、业主、AECL等的人力,其现场总人力高峰期超过8000人。根据美国和中国的实际国情,考虑到双堆建造时间间隔、双堆建造人力资源的优化作用、模块化建造的节约人力作用以及QS III的模块化施工情况,估计每个双堆建造总人数高峰期应在5000~6000人之间。我国在建和近期(2011年底之前)计划建设的机组共有56台机组(含AP1000技术)和更多规划中的机组。按照25台双机组估算,2011年底前,熟练工的数量需求也达8.8~10.5万左右,高学历人才将在3.8~4.5万之间(据表1)。然而目前我国高校本科核专业毕业人数不到1000人/年[4],各主要施工单位熟练工人数也无法满足需要,缺口巨大。

2.3 模块设计和进度管理优化三门和海阳AP1000核电厂的建造经验表明AP1000模块设计必须在至少三个方面重新优化:①模块设计;②模块设计进度;③模块建造进度管理。模块设计优化包括模块设计和和材料国产化两方面,并应综合起来考虑,方便制图、采购和安装,减少碰撞等问题,做优施工设计。模块设计应在建造开始前完成,以方便设备采购、预制和其它工作,减少变更,从而加快施工进度。QSIII的经验表明,最终的施工设计图纸和文件至少需要比FCD提前9个月完成并到达现场。而日本的经验则显示,提前完成设计还可以节约现场人力大约40%。

2.4 其它需要考虑的问题除了上述问题之外,模块工厂本身和模块运输两个问题也需要认真关注。模块工厂考虑应集中于模块工厂的产能、硬件设施、管理水平和模块预制经验等,这些都可能成为制约模块生产进度的短板。当模块预制工厂短缺,利用其它工厂如船厂、普通的模块工厂时,这些因素必须考虑到。而运输方面则应集中于场外运输条件。三门和海阳的模块运输采用水路运输+短途陆路(要求为沿途无桥梁与隧道的国内二级公路标准道路)方式,交通比较方便。对于内陆AP1000厂址,场内运输作为AP1000核电厂的特征之一,厂内运输能够很好解决。但场外运输也许要借助全陆路运输或者内河航运,公路与河道的运输条件能否满足要求则需要仔细评估。

3结束语

模块化技术及其理念是一种很好的核电设计、建造方法,理论上能为核电建造节约不少时间和投资费用,因此吸引了许多用户。得益于模块化技术的发展进步和AP1000技术在我国的大规模推广应用,我国的模块应用水平得到了快速发展和提高。然而,模块化技术也有它的局限性。三门和海阳的模块化建设经验表明,我国的核电模块化建造还远未达到成熟的水平。上文的分析探讨显示,模块化技术的应用需要解决的问题很多,挑战很大。理论上的好处能否转化为实实在在的利益应结合厂址进行具体、详细的分析和论证,并在设计建造技术实力、项目管理水平达到足够的高度和建造参与各方的密切配合下才能实现。

参考文献:

[1]年发扬.国内核电站模块化建造浅析.工业技术.2009,17:59-60.

第4篇:模块化设计技术范文

关键词:模块化设计;机械设计;运用操作

1前言

随着我国经济的高速发展下,越来越多的集中式体户变为了个体户,更多的是要求机械制造商在制作的过程中降低成本。当然传统的机械设计方法已经不再适用于现在的要求了。而从设计的角度来看,我国模块化设计方法在机械设计的运用中得到肯定,而这样就可以缩短工期,从而降低机械制造陈本,所以说模块化设计无论是从设计为理念还是制造上为基础,都是机械制造商最好的选择。

2模块化设计的概念与特点

(1)模块化设计方法是目前机械设计当中的一种尤为重要的方法,它指的是在进行机械化设计中,将原有得不同的部分规划与想对应的模块里,并对每个模块的设计进行了全方位的思考,然后将其各个部位重新组装在一起,最后完成整个机械设计的所有概念、内容。在机械设计的过程中,要对模块做好划分,并且全方位做好规划,确保知道每个模块具有的功能,然后考虑到每个模块相互之间组合在一起的意义。同时,还要保证每个模块之间的独立性能,并且做到能够进行相互的更换,才能促进了系统功能的升级。模块设计方法作为一种新的观点理念,它本身具有显著的特点存在着[1]。(2)模块化在设计当中的主要方式分为以下几种:①横向式的模块化设计方式,在不改变原产品的基础上,利用到模块化设计成变种形态的产品,而这种模块化设计的形式容易实现操作、更易于广为推出。②纵向式的模块化设计方式,在不改变原产品的基础上,在同一形式当中对不同规格的产品进行统筹的设计。③横向式和跨系式的综合型模块化设计,当然,除了发展横向式系列的产品以为,改变了某种模块的设计还可以得到出了其他不同系类的产品,从而便于横向系类和跨向系类模块的设计。④全种系类的模块化设计包括了纵向形式与横向形式,而全种系类更是在基础之上用于制造出类似于跨系列产品模块化设计。(3)模块化设计的推出方便了维修。模块化设计方法能使维护变得简单操作,以少量应多量,以及尽可能的投入少的生产得到多的产品的理念,以最具有划算的方法满足于现在各种需求。由于模块化设计法本身具有可替换性,并且在当中出现了一个模块的故障,那么在机械设计应用中就可以通过检查,将出现问题的模块部位进行更换即可,免去了不必要的资源流失。(4)模块化设计方法节约成本。模块化设计简化了包装的整个过程,以前机械制造商在包装设备的时候只能根据产品自身的特点为其采取指定包装过程。而这样的范围规定太过于狭小,设计出来的包装只适合运用到同一种规模下的产品,然后其他的系列的产品又要从新制造出新的包装,从而给包装带来很大的不方便。这样不仅仅是在人力、物力上的一种铺张浪费,更是难以提高机械制造商运行的成效。然而运用模块化设计方法形成出的产品,在具体的运用中,能满足于各种产品,从而使包装简单化。模块化设计的方法能够节省成本,并且可以用在于有较少的模块当中去完成更多的机械的包装上,从而有效的节省了资源的设计成本[2]。

3模块化设计与其他具有现代化技术的融合

3.1模块化与成组技术的共同的特点

模块化的组成技术都是针对于现代生产的产物提出多样化的。成组的技术主要是利用零件的形状及工艺上具有某种的相似性为其理论,利用有关数据以及事物本体的相似性做到问题的归类化。并通过对具有相似零件的标准形式,做规范的处理,从而使小批量的产品成为具有流水生产方式的一种。而规模化技术也是秉着生产出小批量的产品、中批量的模块、大批量的零件的方法,也充分的利于机械机床部件上的相似性,把具有相似的部件经过同意的归类所形成的模块。而两者具有共同点是:集中的处理具有相似的事物,并把具有一定相似性的事物规范化[3]。

3.2模块化与柔韧性制造的技术

柔韧性制造技术自始以来,一直以多样化、快节奏作为前提,重点强调出系统对生产反应的可变、多变性能。然而模块化正好符合柔韧性技术这一特点的前提依据,模块化技术在利用模块化解决机械机床上的共同特性之后,又具有集中的解决单独的个性问题。并且达到以最少的模块组成最大机床的思想来实现当今社会的多样化。当机床为生产工具的时候,则其利用模块化的特点,灵活多用,并通过模块的组合达到了柔韧性的制造技术。

3.3模块化与高科技辅助技术

将高科技辅助系统和数据库里的技术引用到模块化技术里,在相当大的程度上取代了人类完成大量工作无法完成的复杂、重复性的工作当中。并且,具有一定的稳定性等方面超越了人类。而在另一面。通过模拟化的方法,把复杂系统分解成各个简单的系统,并对各个简单的系统做高科技的技术分导,可以充分发挥高科技的重要性以及具有强大的功能。

4模块化技术在机械设计中的运用

4.1机械设计的理念

机械设计指的就是满足于当代社会经济指标配合着相对式的技术条件,并对其功能的需求锁定出最有综合性方案的进程,而机械设计本身具有综合性能、相近性能、多层次性能等特点。而这些性能更是成为创造新型的机械产品必不可少的基础,从而根本上的决定了生产出的产品功能、质量以及性能。而用户群体对机械产品有着多样化、个性化、高品质、低消费的要求也是逐步扩大。而加入了模块化设计方法更是能面对广大群众对机械设计要求上的一种挑战。

4.2对模块进行划别区分

在对产品进行模块划分的同时,要以独立功能的单月形式作为整体的模块,既可以对已划分的功能在结构上做到独立的特性,这样模块容易拼成、组建以及搭配。并且形成了多种的变形产品,这样的模块才具有完整性,并能保证其质量的过关。而以组件部分作为模块来看,功能分解细化之后,可以通过进一步的将部件中的某些组建进行模块化,更是可以通过替换与舍掉一些零件,可以使部件产生出不同的作用与用途。而这比替换了整个部件更方便一些,而参照模块划分出来的层次,并参照其需要,结构以及功能上对产品模块做出细微的划分,而对产品本身的需求也是对客户需要的划分。要在客户需要的基础之上对该产品进行功能性的区别划分,又必要要在产品功能的基础之上对产品所处的结构进行总的区分。并且将具有同种功能的结构进行合理的区分,可以这么说,模块划分的好与坏影响着模块设计的成与败、质与量。但同时,要考虑在模块本身的发展空间里做出一定的余留,以便可以引入新的观点理念时不会出现阻碍模块构成的障碍而基于模块化设计的合理方法来看,多样化且个性化的体系更能满足于广大顾客们的需求,并且产品可以快速的分解、结合,同时还能通过大批量的生产和管理上的统一从而降低了生产和管理的经济成本[4]。

4.3对现有的模块进行编码

模块编码的意义在于对完整的模块当中的规格、参数等和模块之间相互进行完整的整合管理,并且标明其名称。并对产品的模块进行重新的编码,以便于区分产品,便于管理,从而建设出统一并且完整的标准规范化的模块,更充分的利用产品生产的开发。对模块化设计进行独特性、完整性、合理性、的编码,并实现产品的通用性能与开放性性能。

4.4进行有效率的模块组装

在产品功能确定了以后进行了模块的组合,从而保证了整个机械设计的合理性,同时也需要在实际运用中也起到关键的作用。组装产品的时候要确保组成部件的完整,不可缺失、丢失。进行模块间的合理分配,做到注重布局的合理效果。同时,因为模块又具有替换性能,所以在使用的过程中可出现问题是可以进行更换的,并且要做到某个模块的更换并不会影响到其他模块的正常运行。

4.5完成设计本职工作

在通过之前的设计、组装等时候,还是要进行完成整个产品的工作。而将模块化设计运用到机械式机床上时,包括了机床的传动式模块、执行力度模块、辅助模块等。其中传动室的模块包括了主传动力轴、水平的进给箱、垂直的进给箱等。而执行的模块又概括于、刀子架机、工作桌台等,辅助模块又包含了保护罩、刀架库、机床的电气等。

5结论

而综上所述,模块化的设计方式是实现我国当代机械设计当中大规模生产产品的主要保障,使得产品更加的符合当前的广大顾客、市场上的需求。而在提高自身的效率同时,也降低了机械设计的资金成本,并且在质量占有着相当大的优势。而模块化设计的方法在很大的程度上又满足了机械设计当中的需要,并且在机械设计的具体运作当中又有了良好的效果。它已经不仅仅是作为缩短设计时间的一个重要因素,更是又利于创造出机械设备的一个基础,提高了我国机械设计的水平。因此,往后在进行机械设计产品的时候,需要注重模块化设计方法的灵活运用。并懂得把握住重要的分析点,严格的按照规定去划分好模块,并对设计人员的综合素质做出深入的培养,重视起经验的分析与总结,使模式化设计得到更好的应用,我相信,随着模块化设计越来越标准化的进一步提升,模块化设计之间相互转化的性能也会上升,而机械设计理念与制造水平将会更得到提高,从而促进我国机械化水平的日趋增升。

作者:刘吉宝 单位:兰州理工大学

参考文献:

[1]蔡业彬.模块化设计方法及其在机械设计中的应用[J].机械设计与制造,2005(08):154~156.

[2]蔡燕华.分析模块化设计方法及其在机械设计中的应用[J].科技传播,2014(04):160,154.

第5篇:模块化设计技术范文

关键词:专业;模块参数;设计

中图分类号:G712 文献标识码:A 文章编号:1672-5727(2013)12-0123-02

模块教学法是国际劳工组织开发的一种职业教育法。实训模块作为模块教学的一种基本形式,其核心是模块参数设计。实训模块参数设计能使操作技术与相关理论更好地结合起来,在实训操作和理论学习之间寻求最佳切入点,对最大限度地提高学生操作技能起着十分重要的作用。

设计实训模块参数的基本要求

实训模块参数设计依据国家标准和专业技术规范从实训角度进行参数设计,其目的是优化技术参数,量化操作要求,增加实训可操作性,为进一步提高专业水平打下良好的基础。因此,实训模块参数设计应力争做到以下几点。

着力提高培训质量,筑牢专业生存意识 培训质量是学校立足之“本”,存在之“基”,是生成部队战斗力的保证。培训质量也是学生综合能力的体现,综合能力越强,本专业学生在部队油料系统遂行保障的能力就越强,培训专业越能得到基层单位和上级的认可,专业生存环境就优。

贯彻落实教学大纲,夯实按纲施训理念 教学大纲是职业教育的纲领性文件,是开展教学训练的基本参照和重要依据,具有很强的权威性和严格的规范性,对训什么、怎样训、训到什么标准都做了明确规定。设计模块参数时,要吃透大纲精神,明确专业要求,力求做到“三个不能”:(1)不能超“纲”。设计模块参数时,应按本专业教学大纲的规定,明确“训什么”后,依据大纲精选科目进行参数设计,确定“怎样训”、“训到什么程度”。不能任意增加参数难度,主观上不能超“纲”。(2)不能无“据”。大纲规定了各专业的所训科目,各科目有相应的专业技术规范要求。因此,设计模块参数时,只能采用本专业的技术规范,不能跨专业、跨行业使用,甚至根本不按规范设计,做无“据”设计。(3)不能任“为”。每一种操作都有相应的专业技术规范,每种专业技术规范都有一定的精度要求,某些维度有多个供选参数。因此,设计模块参数要有选择性地选用适合本专业操作的技术参数,不能跨维度、跨技术参数选择参数项目。例如,钳工实训适用的技术规范有:《形状公差和位置公差 通则、定义、符号和图样表达方式(GB/T1182-2008)》、《公差原则(GB/T4249-2008)》、《形状与位置公差 未注公差值(GB/T1184-2008)》、《形状与位置公差 最大实体要求、最小实体要求和可逆要求(GB/T16671-2008)》和《表面粗糙度参数及其数值(GB/T1031-1995)》等。设计钳工实训模块参数时,钻孔的形状公差只能选用孔的形状公差(见表1),而不能“借”用锉削的平行度公差或其他形状公差。如果跨维度和跨参数项目使用参数指标,就是张冠李戴、主观任“为”的表现。

始终坚持实用原则,加强技术支撑力度 模块参数是指导实训的技术指标。保证设计简单实用的参数是确保实训顺利进行的技术前提。过于复杂的参数,学生难以完成实训定额;过于简单的参数,又达不到实训要求。精度过低的参数,不利实训操作;精度过高的参数,貌似精准,但操作精准度难以达到。为了设计出简单实用的参数,应对技术参数进行细分、量化。(1)细分参数项目。每个实训模块都有多项操作,每项操作都有一定精度的技术标准衡量。有针对性地对每一个参数项进行细分,是完成实训课目的技术保障。细分参数项时,应坚守专业技术规范,突出体现单个操作动作的技术特点,该分就分,不能求多求全,更不能画蛇添足。(2)量化参数值。量化参数值,一要量有“准度”,“准度”是量化的前提,是确保精度的基础,选“准”最能代表本专业此项操作的参数区间,防止超“围”;二要量有精度,应仔细选好每一个实训操作技术参数精度,确保每项操作有精度可量,有标准可依,使设计出的参数精度能准确表示该项操作的技术要求。

严格区分专业特性,突出实训参数“个性” 油料专业培训囊括油库专工、油库电工、油料化验员和装备修理等七大专业11个工种,各专业呈现出独有的特性。油库电工技术参数隐匿性强;油料化验参数精密度高,主观性强,易累积个人误差和操作误差;油库专工工种多,参数纷繁复杂,对动作技能要求较高。在设计参数时,应综合考虑各专业特性,突出参数“个性”,使设计出的实训模块参数与本专业紧密结合。

设计实训模块参数需注意的事项

设计实训模块参数时,应在教学大纲课时定额内全面考虑,充分结合油料专业各自特性,设计出贴切实用的实训模块参数。因此,设计好参数的关键是做到以下三点:

维度设计要合理 维度是指单一实训模块操作内容涉及的范围和领域的广泛程度,可以用代表模块操作的维度个数来量化。根据教学大纲要求,应提炼出模块中最具代表性的多种典型操作,加以筛选,设为实训模块维度,而不是面面俱到地罗列整个工种所有操作。综合分析油库电工、油料装备修理等专业课程得知,每种实训模块都存在多个操作维度。因此,设计这些课程实训模块维度时,应突出主要操作特征要素的维度,适当减少次要操作特征的维度,恰如其分地把握好单个实训模块维度的“域”宽,使设计出的操作维度贴切、合理。

设计合适的参数个数 实训模块的每个维度都有一个或多个技术特征参数,参数的多寡直接影响模块完成程度。参数过多,学生需完成的工作量多,实训很难达标。参数过少,工作量少,任务也易完成,模块实训达不到所需思维深度。为了达到课程目标,在设计实训模块参数时,应减少抽象思维层次,降低多重逻辑推理标准,控制实训模块参数的个数在合适的范围内。例如,油库专工培训实施模块化教学时,操作分为锯削、锉削、钻孔等维度,划线维度只有尺寸精度要求,设一个技术参数(如图1所示);锉削有形状与位置公差等技术要求(见上页表1),设平面度、垂直度和平行度三个参数。这样既可突出主要技术参数,规范操作维度,又能控制参数个数和整个实训模块的维度总量。

参数难度设计要适中 技术兵专业实训模块专业性很强,模块参数受各专业技术规范和国家标准的制约较多,参数难度体现在技术参数“精度”上。在设计实训模块参数时,选择参数精度不同,参数难度就不同。精度越高,难度越大,学生完成实训模块的难度就越大。按照国家标准,结合专业技术规范和课程目标,难易程度设计应由浅入深,逐级增加,控制参数的精度在中上程度,不可无限制地拓展和提高教学要求。以油料化验员实训为例,对33项单项式模块实训时,每个项目的技术参数都采取化验方法。进行《发动机燃料实际胶质测定》模块操作时,采用的国家标准是《中华人民共和国国家标准 UDC 655.52/.54.001.4》,其中精密度要求:柴油的实际胶质测定中,同一操作者测定两个结果之差不应大于下列数值:

实际胶质含量,mg/100 mL 重复性,mg/100 mL

≤15 2

>15 较小结果的15%

从精密度要求可以看出:重复测定每100mL柴油中实际胶质含量两个结果之差不应大于2mg。如果我们在设定参数时,把它提高到1mg,精度标准相对增加了一倍。由于油料化验操作步骤多,难计算,结果需修正等,这样会人为地使整个实训难度加大。因此,设计实训模块参数应根据学生实际,选择能完成的适用技术参数,避免选择精度过高的参数,以达到难度适中的要求。

实训模块参数的设计方法

实训模块参数设计应突出学生的“主体”地位,强调教师的“主导”作用,把调动学生的主观能动性放在首位,着重培养学生整体思维、逻辑思维和独立思考的能力,力求达到提高学生最佳动作技能的实训效果。为了提高实训效果,可采取以下方法。

引用法 引用法是在设计专业模块参数时引用油料专业技术规范和国家标准中的数据所采用的方法。设计模块参数时可采用两种方法引用:一是单纯引用,又称直接引用,即直接从正规出版社出版的专业技术规范和国家标准中引用技术参数,其特点是引用的参数具有很高的权威性;二是间接引用,是指从本单位或培训学校引用实践证明实用性很强的技术参数,间接引用时要注意甄别,选择不超出国家标准和专业技术规范范畴的参数。

创新法 创新法是在进行专业实训模块参数设计时,依据现有的国标和规范,创造出某种新颖、独特的有使用价值的新参数的方法。创新设计参数时,根据量具精度,突出实训模块某项参数精度要求。例如,钳工锉削加工标准的尺寸精度为0.01~1mm,设定实训尺寸精度参数为0.15mm(见表1),设定的精度比中锉加工的最低精度0.2mm高,但比中锉最高0.05mm低。要求用1/50的游标卡尺测量,学生必须具备较好地读取量具数据的能力,直接突出了锉削加工操作精度要求,同时也强调学生使用中锉的水平。但应注意,设计参数不能超“标”、超“规”和跨“专业”,更不能天马行空,任意设计。

综上所述,应以教学大纲为主旨,设计符合专业特性的实训模块参数,给实训操作提供量化指标,有力地指导实训操作,更好地实现理论教学与实践操作的“无缝”对接。

参考文献:

[1]成大龙,余梦生,等.机械设计手册[M],北京:化学工业出版社,2008.

[2]中国石油化工股份有限公司科技研发部.石油和石油产品试验方法国家标准汇编(2005)》[S].北京:中国标准出版社,2005.

[3]朱文良.提高教学质量,培养高素质的医学人才[J].城市建设理论研究,2012(10).

作者简介:

第6篇:模块化设计技术范文

课程教学体系基本结构的合理性决定专业学生技术技能学习效率和质量,即专业课程开设的前后顺序、课程教学课时要安排合理,以科学的课程组织形式开展教学活动。机电一体化专业课程体系结构考虑对技术技能型人才的质量要求,需要全面覆盖基础课程、技术课程、实训课程和选项课程四大模块,四模块分别占比:23%、20%、40%、17%。机电一体化课程考虑技术技能视角构建课程体系,要尤为注重技术技能训练。

2构建思路

机电一体化专业课程体系构建是基于学生未来职业要求和技术技能型质量要求的,要充分考虑职业资格考试和技能大赛对教学引领作用,在课程体系中集中体现技术、技能属性。考虑现有机电一体化专业教学模式,将机电一体化专业课程体系构建为“阶段+模块”、“理论+实践”的互补体系。机电一体化专业教学课程阶段主要包括职业基础能力培养阶段、职业专门技术能力培养阶段、职业关键能力培养阶段和职业拓展能力培养阶段四个阶段,对学生在未来职业中所需技术技能进行培养,全面提升学生综合专业能力。机电一体化专业教学课程模块主要包括基础课程、技术课程、实训课程和选项课程四大模块,其中基础课程模块就学生在未来职业中的职业素质和基础能力进行开发培养,切实提高学生职业综合素养;技术课程模块就学生在未来职业中的专业技术能力进行开发培养,主要设置职业技术性课程;实训课程模块就学生在职业技术性课程中所学进行实训教学;选项课程模块就学生在未来职业中具体工作岗位所需设置的课程,具有较强的专业性和技术技能导向性。

3课程体系总体设计

高校机电一体化专业课程体系的总体设计框架是基于机械工程行业需求,强化学生技术、技能基础,拓宽机电专业能力,突出未来职业能力,提高综合专业素质,全面职业发展的课程结构,是面向多方向工作岗位需求,设计大类模块化课程的体系。机电一体化专业课程体系的总体设计包括集“自然科学+人文社会科学+专业思想教育”在内的基础课程教育(一个基础),包括集“电工电子基础平台+机械基础平台+计算机控制技术基础平台”在内的平台课程教育(三个平台),包括集“自动生产线方向+机电一体化设备+模具设计和制造+数控技术应用+计算机辅助机械设计”等多模块课程教育(多模块)。

4课程体系设置分析

第7篇:模块化设计技术范文

1快速创新设计理论与方法

1.1模块化设计理论与方法

模块化是指采用具有相对固定结构和功能作用的模块对产品或系统进行组织和规划;通过对产品在某种范围内按照不同功能、相同功能的不同性能或者不同规格进行分析,规划出不同的功能模块,通过不同模块的选择和组合,配置出系列产品,以满足用户的不同需求的设计方法[2]。模块化设计是适应性设计、快速配置设计和可重构设计等现代设计的重要设计方法和核心技术,通过功能模块的配置组合能够实现产品的标准化和个性化设计。模块化设计已在现代产品设计中广泛应用,其理论基础是Suh[3]提出的独立公理理论,即“一个最优设计必须保持功能需求的独立性”。20世纪50年代,欧美一些发达国家提出了模块化设计[4]的概念,随着计算机技术的发展,这一概念越来越得到设计界的广泛关注和深入研究。人们在模块化设计概念的定义、模块的划分与组合、实现过程,以及基于模块化设计的产品平台规划与设计等方面都有相当多的研究。Suh[3]从“功能-设计参数”映射的角度给出了模块化设计的定义:模块化设计是将产品、过程和系统以一定的形式表现,满足预定的客户需求,采用的方法是选择恰当的设计参数,完成从功能需求域到设计参数域的映射。Ulrich等人[4]从设计学角度指出了影响模块化设计程度的两个基本因素:1)产品功能域与物理结构域之间的对应程度。2)产品物理结构间相互关联程度的最小化。PAHL等人[5]仍然认为模块化设计是完成从功能需求域到模块功能域的映射,再考虑模块特性参数(如尺寸、重量等),完成从模块的功能域到模块的结构域映射,并按照不同的模块功能,在设计域内(功能域和结构域)进行模块分类与定义。在模块化设计的方法研究中,模块划分技术是关键技术之一。ERIXON等人[6]提出了产品某项功能成为独立模块需要满足的11个条件,并将其作为模块划分的普遍原则,根据子功能结构建立模块识别矩阵,然后对模块识别矩阵进行聚类分析。STONE等人[7]考虑产品的各个子功能与能量流、物流和信号流的关联性,将一种功能模型定量化建模方法用于产品架构开发,并以客户需求重要度为度量标准,建立需求与功能数据库,将功能与需求的关系定量化作为模块划分与模块发展的主要依据。GU等人[8]提出了一种基于产品全生命周期技术的多目标(可回收设计、可升级设计、可重用设计和重构设计)模块划分方法,并将模糊数学中权重的概念应用于功能结构分析,为定量化模块划分提供了依据。模块组合技术是模块化设计的另一关键技术。O’GRADY等人[9]针对网络设计环境下分布协同设计,研究了其模块组合方法,即建立一个基于面向对象的模块化产品设计环境,根据用户的需要,将不在一个地区的各个模块制造商生产的模块快速组合成模块化产品。TSAI等人[10]考虑产品设计、加工和装配等复杂性,基于并行工程思想,按产品功能在设计过程中的不同类型接口关系进行模块的不同类型划分,并从中选择最优模块,最后根据模块包含的相关信息,对模块中的各个功能进行优先权排序,以此作为产品规划设计的原则。另外,在模块化设计中,模块接口的匹配是模块组合的重要条件,即一个零/部件结构能够成为模块的条件是零/部件的功能、结构以及其接口特征不能超出模块化产品给定的标准接口所允许的范围[11]。HILLSTROM[12]基于公理化设计原理,并结合面向装配和制造的设计方法,对模块化设计的接口进行了系统分析。

1.2参数化设计理论与方法

参数化设计是产品设计规格化、系列化的一种简单、高效和快速的方法,通过改变结构特征某一部分或某几部分的尺寸,基于参数化驱动技术,实现对特征中相关部分的自动改动。参数化设计是CAD的一个重要理论和方法,它包括两个基本要素:参数化图元和参数化修改引擎。CAD中的图元都是以对象特征的形式表现,并通过参数的调整变化驱动图元的变化,参数包含作为数字化对象图元的所有信息。参数化修改引擎所使用的参数驱动技术,使设计者对设计对象所做的全部改动都可以在其他相关联的部分自动反映出来,并采用智能结构单元、视图和注释符号,通过一个变更和约束驱动引擎使每一个图元都可互相关联。对象特征尺寸的改动、移动或者删除所引起的参数变化,会引起相关对象特征参数产生相应的变化,不同视图下所发生的改变都能以参数化的、双向的方式扩散到所有其他视图,以保证所有设计对象的一致性,不必对所有视图逐一进行修改,从而显著提高设计效率和设计质量。1963年由Sutherland[13]在SketchPad系统中提出参数化设计方法,Light等人[14]在1982年提出变量几何和几何约束思想。为提高零件生成的智能化,在20世纪80年代将人工智能技术(AI)应用到参数化设计中,如神经网络和几何推理等技术,更重要的是将参数化技术应用到实体造型并形成了特征造型技术。产品开发之初,零件形状和尺寸都具有一定的不确定性,因此希望零件模型具有柔性修改的能力。参数化设计可将零件模型中固定的参数变量化,使之成为可以在一定范围内修改的参数,根据不同设计要求,对变量化参数赋予不同数值,就可获得不同形状和规格的零件模型。约束是CAD中参数化模型的重要内容,包括零件图形的几何约束和工程约束。几何约束分为尺寸约束和结构约束。尺寸约束是指通过指定特征尺寸参数描述的约束,如长度尺寸、角度尺寸以及直径尺寸等;结构约束是指几何元素间的拓扑约束关系,如垂直、平行、相等、同心和相切等。工程约束是指尺寸之间的函数约束关系,即根据工程设计知识,通过定义尺寸各变量之间在参数值或者逻辑上的关联关系来表示。

1.3产品族设计理论与方法

产品族设计是通过基本特征、组件或子系统的共享,以满足不同市场需求的多产品设计方法,是实现规模化产品制造的有效手段。对于产品族的定义,许多学者给出了不同的描述。Ulrich[4]将产品族定义为由某种参数化数据结构确定的一组产品,当所有参数赋予某一具体数值时,就表现为一个具体产品。Erens等人[15]认为产品族是具有相同内部接口的一组产品,并且在设计的各个领域(功能域、技术域和物理域)中产品族接口为标准化接口,能够实现产品部件的完全互换。McAdams等人[16]将产品族定义为具有相同功能流的一组产品。Simpson等人[17]定义的产品族是建立在通用产品平台之上的一组相关产品,并共享平台通用特征、部件和子系统,以此满足市场的多样化需求。其中,参数化产品族(scale-basedproductfamily)在平台公共变量不变的基础上,通过可调节变量的值来满足不同性能要求的系列化产品,是产品族设计的一个具体方法,平台通用性的考虑和实例产品性能选择是参数化产品族设计的关键问题[18]。产品族结构体系(ProductFamilyArchitecture,PFA)是现代大规模定制设计方法(DesignforMassCustomization,DFMC)的核心部分,它为制造企业内的不同部门协同工作提供一个公共平台,同时作为一个类产品以实现产品变型设计来满足客户多样化需求。目前研究的产品族模型主要有通用物料清单(GenericBill-of-Material,GBOM)模型、三视图模型和产品族主结构模型等。Tseng等人[19]给出的产品族三视图体系结构模型,包括功能视图、行为视图和结构视图及其相互之间的映射关系。其中,功能视图表达产品的总体功能及其子功能结构图;行为视图从技术角度描述产品功能的技术原理;结构视图则描述产品的零/部件组成与装配模型。Hegge等人[20]提出GBOM定义,以产品族将GBOM定义为一组变量,并通过一组参数指定具体值来确定这些变量,现在GBOM已成为表达产品族结构及其构型的基本模型。在国内也开展了产品族的大量研究。祁国宁等人[21]提出了面向大批量定制(MassCustomization,MC)的产品事物特性表建模技术。由描述产品构成的产品族主结构以及描述零/部件的主模型和主文档组成模块化产品族。其中,产品族主结构描述了一个可配置的模块化产品系统的组成情况,并包括所有标准零/部件。基于产品族的主结构、构件主模型和主文档,结合客户的个性化需求,采用配置设计或变型设计方法,可以进行产品的快速定制设计。此外,Jiao等人[22]在面向对象方法和语义网络的基础上,建立了通用产品族信息模型,其多视图产品族结构采用树形结构、多样化变量值和配置规则进行表达,以此生成不同特殊需求的产品变型,同时减少各视图间的数据冗余。Nomaguchi等人[23]根据标准建模语言(UnifiedModelingLanguage,UML),提出了关于产品族体系结构的知识表达模型,该模型记录了设计的整个过程的详细步骤和设计结果,方便设计过程的跟踪查看;为便于设计者进行准确、无冗余的知识获取,模型还将用户需求、产品功能、结构和成本等不同层面的产品信息进行了集成。目前,本体技术开始应用于产品族模型的建立,Nanda等人[24]构建了基于本体的产品族设计方法,在表达产品族结构时使用网络本体语言,应用规范化的概念分析(FormalCon-ceptAnalysis,FCA)方法寻找设计特征间的共性元素,在此基础上,建立了产品族多视图模型的一般表达方式;高鹏等人[25]也基于本体的方法提出了本体之间的映射法则,构建了本体映射、知识映射和模型映射三层映射模式,并以此为核心搭建了产品配置模型的建模框架。Siddique等人[26]研究了产品族设计体系结构的开发过程,给出了产品族体系结构的数学模型、评价指标和有效性推理规则,并对产品组件、模块和体系结构进行了构建,给出了装配过程的描述方案。朱斌等人[27]则对传统设计方法学和面向产品族设计的差异进行了研究,从产品设计的需求模型、功能原理模型和结构设计模型等三个方面,论述了关于产品族设计模型的构建方法。

1.4可重构设计理论与方法

来源于可重构制造系统的可重构性的概念出现于20世纪90年代。1997年美国Michigan大学的Ko-ren等人[28]首次提出可重构制造系统的概念。可重构制造系统(ReconfigurableManufacturingSystem,RMS)指系统能根据生产的需要,准确地构建出需要的生产功能和生产能力。在1999年国际生产工程研究学会(CIRP)上,Koren等人[29]又对可重构制造系统进行了重新定义,即可重构制造系统是一种预先设计为可快速改变结构、硬件与相应软件的制造系统,并能实现在一个零件族内快速调整生产能力和生产功能,以满足市场或客户需求的突然变化;因此,RMS的主要特点是:1)将加工零/部件控制在一个零件族内;2)突出生产能力和生产功能变化而驱动的重构;3)以可重构机床(ReconfigurableMachineTools,RMT)为基础进行重构。随着可重构性及可重构制造系统的研究发展,其重要性日益显现。美国国家研究委员会(NRC)于1998年在《2020年制造挑战的设想》报告中,就明确地将可重构技术列入21世纪的六大挑战与十大关键技术中,而且排在十大关键技术的第一位。随着制造领域的研究应用,可重构思想开始从制造系统逐步发展到组织体系、制造装备以及产品设计等各种领域,形成了可重构性的概念。Setchi等人[30]基于可重构性的用途,从较为宏观的角度给出了可重构性的定义,他们认为可重构性是一种重复变更或重排系统中构件的能力,且具有继承性、定制性、可转换性、可诊断性和产品化等特征,以此实现产品多样性、重用性、快速性、低成本、高效率、可靠性和简化性等要求。英国剑桥大学的Siddiqi等人[31]给出了需要驱动的可重构的主要因素,并提出了可重构系统建模方法。我国在最近几年也开展了可重构性理论相关研究。清华大学的罗振璧等人[32]针对传统可重构的局限性,提出了基于面向用户需求与使用变化的和基于拓扑相似性“广义组合理论”的可重构性定义。梁福军等人[33]综合运用相似性分析、图论和集合论等理论,研究了制造系统的逻辑重构设计;楼洪梁等人[34-35]利用图论研究了机床的可重构性。在可重构算法方面,王素欣等人[36]运用粒子群算法解决了关于制造系统单元可重构的问题。刘溪涓等人[37]研究了零件配置过程中约束的不同类型,利用“有效可选域”的概念,建立了最小损失函数算法,该算法不仅考虑了构件约束,还考虑了零件重构约束。刘世平等人[38]研究并建立了重构目标模型,利用两个聚类定量指标给出聚类的目标函数,并采用遗传算法对重构进行求解。在可重构设计方面,各国学者主要研究了机床、机器人和其他新产品的可重构设计。在机床方面,Tilbury等人[39]对机床的组成原理进行了研究。冯宁等人[40]结合可重构机床的特征,运用矩阵结构化方法建立机床各组成部分的运动学方程,并提出了由所选择的构件组成机床的所有拓扑结构的方法。许虹等人[41]基于并行工程思想,提出了一种考虑加工工艺与机床配置同时完成的可重构机床设计方法。在可重构机器人方面,Hui等人[42]研究了一种产品化、可重构和可扩展的机器人系统(IntegratedRasterImagingSystem,IRIS)。Paredis等人[43]研究了可重构机器人及其可产品化系统(ReconfigurableModularManipula-torSystem,RMMS)。赵广涛等人[44]基于树状拓扑结构研究了产品化机器人的重构规划设计问题。于海波等人[45]结合图论原理方法,给出了一种比较简单有效的可重构机器人构型综合方法。魏延辉等人[46]采用两级计算(遗传算法和迭代算法)优化了机器人构形组合设计。李树军等人[47]研究了可重构机器人产品的结构,最后总结并设计了七种具有功能独立性的产品。李国喜等人[48-49]提出了基于功能-原理-行为-结构的产品模块化可重构设计方法和基于可拓理论的变形设计与配置方法。

2快速设计方法使能技术

快速设计方法离不开其使能技术的支撑,这其中最重要的使能技术有并行工程和虚拟样机技术。

2.1并行工程

并行工程(ConcurrentEngineering,CE)不仅是一种设计思想,更重要的是一种方法论,是现有先进设计制造和管理模式的理论基础[50]。美国防御分析研究院于1988年给出了并行工程的定义[51]:对产品设计及其相关过程,包括设计过程、制造过程和市场营销等过程,进行并行、一体化设计的系统化工作模式。这种工作模式要求产品设计开发者在开始设计时,要考虑产品生命周期中的各个阶段因素,其中包括用户需求、产品质量、生产成本与阶段进度。传统的企业组织结构会带来部门之间的分割与封闭,并行工程打破了这种各自独立的工作局面,站在产品全生命周期整个过程的高度,突出参与者集群协同工作的效应,对产品开发过程进行重构,结合先进的设计方法学,并在产品设计的初期将后期的所有因素进行综合考虑,力争完全实现产品设计和制造一次成功,从而极大地缩短了开发周期,降低了产品成本,增强了企业的竞争能力[52]。传统的产品设计制造模式为串行工程(SequentialEngineering,SE)模式,其产品开发过程是顺序完成,各个过程之间基本上是独立的,每一过程的开始是以上一个过程的结束作为前提,彼此缺乏信息交流。并行工程的关键是以系统集成为基础对产品及其过程实施并行设计,即是通过多学科产品开发人员的协调与合作,整合产品的开发流程,以缩短开发周期、提高产品质量、降低成本和增强企业竞争能力为目标的设计[53]。当然,并行设计的产品开发周期也分为不同阶段,每一阶段都有自己相对独立的时间段,不过时间段之间有一部分相互交叉重叠,而这部分重叠时间表示开发过程是同时进行的,因此,并行设计开发的时间远小于串行设计所用的时间。与传统线形的、顺序的且部门相对独立的过程相比,并行设计要求在设计的各个阶段,企业的相关部门应以互相合作、交互和平行的方式进行产品开发。当然,并行工程必须以先进的信息技术和产品设计技术为支撑,如以产品数据管理平台作为支持产品开发的环境,采用工作流来实现设计流程重组与流程管理,采用产品的数字化描述、面向制造的设计(DFM)、面向装配的设计(DFA)和质量功能配置(QFD)等技术来提高产品的设计水平[54]。

2.2虚拟样机技术

在激烈的市场竞争环境下,企业要想占据市场的主动地位,必须比同类企业提前设计并生产出满足用户需求的具有较高质量的新产品,由于物理样机存在成本高、生产周期长等不足,难以支撑企业的快速生产需求,成为企业保持竞争优势的一大技术瓶颈。越来越多的企业和研究机构开始研究采用何种方法取代物理样机从而突破这一瓶颈,正是在这样的技术背景下虚拟样机技术应运而生。虚拟样机技术(VirtualPrototypingTechnology,VPT)是一种基于数字化样机的虚拟设计方法,是计算机辅助/面向设计(CAx/DFx)技术在各个领域的发展和应用。对于虚拟样机的定义[55-56],从20世纪90年代以来,国内外的研究人员根据各自的研究领域特点,给出了不同的概念。文献[57]中定义虚拟样机技术是“一种崭新的产品开发方法,它是一种基于产品的计算机仿真模型的数字化设计方法”,这里的数字模型指的就是虚拟样机。一个虚拟样机融入了不同工程领域物理模型数据,从产品的功能、技术原理、外观形态到产品的运行管理均模拟真实产品,并支持并行设计等方法学。虚拟样机技术的最核心优势是技术和信息的集成,即基于并行工程思想,应用计算机技术将计算机辅助设计(CAD)技术、系统运动学和动力学、数值计算方法和有限元技术,以及计算机辅助工艺等现代先进设计制造技术结合在一个系统中,迅速高效地解决问题。利用计算机辅助设计建立产品几何结构模型,在计算机技术和专业技术的支撑下,进行虚拟仿真产品的运动学和动力学分析,在此基础上,采用有限元技术进行数值计算分析,验证产品的强度等性能需求,最后将分析的结果通过动画显示、图表等方式直观表达,这样设计者可以方便快捷地对模型进行修改,在同一模型上赋予各种物理特性,取代物理样机,实现产品功能、结构、制造和试验等全过程的仿真分析,由此将设计意图通过计算机实时地表现出来。王栋[58]指出,虚拟样机技术是基于先进建模/仿真技术、信息技术、先进设计制造技术和企业管理技术,并将这些技术应用于复杂产品全生命周期和全系统的设计,并对它们进行集成管理,因此与传统产品设计支撑技术相比,虚拟样机技术更强调系统的集成,集成的思想将覆盖产品整个生命周期,通过不同领域的虚拟化协同设计,实现对产品的全方位测试、分析与验证。随着虚拟样机技术的研究和应用,产品设计开发新模式“设计-虚拟样机-产品样机”逐渐替代了传统模式“设计-样机制造-试验分析”,这对于增强产品设计创新、提高产品设计质量、缩短生产周期和降低产品成本具有重要意义[59]。虚拟样机的应用主要针对大型复杂机械产品,如飞机、车辆和轮船等。最典型的实例为波音公司无纸化研发777飞机[60-61],整个设计过程全部运用虚拟样机技术,研制费用减少94%,模具设计精度提高10倍,研制周期缩短50%,更重要的是确保了产品一次制造成功。基于虚拟样机技术,德国宝马汽车公司(BMW)研究开发了在三维虚拟环境中的交互碰撞仿真系统,通过改变汽车物理参数(如几何、拓扑结构等),进行碰撞仿真分析,快速获得碰撞仿真结果,并实时对结果进行动态显示和分析[62-63]。德国大众汽车公司从1994年开始将虚拟样机技术成功用于新产品开发,开发过程中以实时交互的方式进行,以连续和逼真的方式获得产品的设计结果,明显地提高了产品的质量,缩短了产品的开发周期,产品的开发成本也大大降低[64]。国内在20世纪末开始了对虚拟样机技术的跟踪与研究,并取得了初步的研究进展。在21世纪之初,随着我国市场化机制的日渐成熟,产品在市场中的竞争更加激烈,对虚拟样机技术的需求明显增加,社会逐渐形成了这样一个共识,企业要提高产品竞争力,必须应用虚拟样机这一关键技术。清华大学依托985学科重大项目“轿车数字化工程”[65-67],在国内率先开展了虚拟样机技术的应用。随后,在武器装备[68]、航空发动机和机车车辆等复杂机械产品中也采用了虚拟样机技术,以提高产品的性价比[69-70]。可以预见,在国内复杂产品的设计制造行业中,虚拟样机技术必将成为设计、制造、试验和运行等阶段的技术分析与评价的重要手段之一。

3设计需求与发展趋势

上述每种设计理论都有其各自提出的背景和积极意义,并以解决其应用背景和特定范围内的设计问题为目标,侧重点不尽相同,并无简单的孰高孰低之分。一个好的设计理论应当能适合自身的时代、背景的需求和技术的支持(包括约束),同时集成现有设计方法的可取之处,运用相关领域的先进研究手段创造性地提出自身的解决方案,并且具备可操作的支持工具与相对完善的评价体系。针对复杂机械系统设计,笔者认为上述设计方法有待从以下几方面进一步完善。1)模块化设计:信息技术、先进制造技术等的不断发展,给产品模块化设计理论和应用研究提出了更多新的课题,融合、利用其他现代设计方法、制造和管理技术已成为现代模块化设计的特点,模块化设计是快速设计、产品族设计和可重构设计等设计理论的基础。但是,复杂机械产品系统内部模块间物理相互作用的非线性、过程之间的耦合性,将造成任何环节或过程出现问题都会导致产品的设计出现问题,因此,基于智能知识的用户需求和功能的整理是模块化设计研究的重点。2)参数化设计:经过几十年的发展,参数化技术在设计中应用越来越广泛,不仅极大地扩展了图形的修改模式,增强了设计的弹性空间,在产品设计的各个阶段,包括概念设计、结构设计、实体造型设计、装配与公差分析以及数值仿真、设计优化等,均显示出强大的生命力,发挥的作用越来越大。对于复杂机械产品,产品设计具有层次性、尺度间的耦合性和参数的模糊性,不可能通过零/部件尺度参数简单的放大与缩小来满足多用户环境的需求,因此,多学科、多参数优化设计是复杂产品设计的必然趋势。3)产品族设计:参数化产品族主要关注于产品设计变量取值的合理共享,是参数化和模块化设计的进一步延伸。复杂机械在结构设计上表现为递归性,即迭代性和反复性,一般需要借能仿真系统,因此,要获得具有平台常量和可调节变量集的数学模型。4)可重构设计:相对传统的设计方式,可重构设计方法较好地解决了继承性和创新性两个设计问题,具有显著的优越性。可重构设计在重用已有的各种设计资源和设计经验知识的基础上,实现了产品的创新设计,能够快速响应竞争激烈的市场多样化和个性化需求,符合未来的发展方向。但传统的可重构性设计的理论基础是独立公理设计理论,强调“设计的明智”和“过程的合理”,强调发散性思维带来的设计创新,而复杂结构机械系统的耦合性和模糊性,则很难满足这一条件。借助模糊集理论研究模糊可重构设计理论和方法是发展趋势之一。

4结语

第8篇:模块化设计技术范文

随着科学技术水平的不断提高,高科技电子设备的不断发展,对电子工程故障的检测技术和检测模块方案也在不断的创新和完善,加强对电子工程故障检测模块组合式方案的探究是保证电子设备安全、稳定、可靠、运行的基础。

(1)电子工程故障检测。

电子工程又称信息技术,可分为电子技术、电测量技术和调整技术三部分。电子工程的研究对象一般为电子系统和电路。电子系统的本文由收集整理故障往往发生在早期阶段,此时系统还没有出现严重问题或失效,因而此类故障的不确定性极大。尤其是大型复杂电子系统,由于组成系统的模块之间和模块内部相对复杂的关系,导致故障的表现形式也随之复杂。当系统外部的可及测点达不到足够数量时,故障特征通常表现为不确定性和不完备。近年来,越来越多电路的模块化设计以及更广泛地应用集成技术,使得电子系统的模块级故障诊断也因之越来越重要。目前,电子系统故障诊断领域的研究基本集中在两方面,即状态评价和故障诊断、电子系统当前的运行状态是研究人员关注的主要问题,具体地说,就是系统是否已发生故障、故障的具体位置和故障的严重程度等方面。而想要深入了解系统运行的具体情况,仅仅依靠单一的故障检测模块是远远不够的,因而,本文提出了由传统和智能故障检测模块组成的电子工程故障检测方案。

(2)电子工程故障检测模块研究。

1.传统模块与智能模块

1.1传统故障检测技术模块结构传统故障检测技术模块由传统电子测量仪器和电子设备经典检测方法构成

(1)传统电子测量仪器传统电子测量仪器是指为测量某一个或几个电参数而设计的、能用于多种电子测量的通用电子仪器,主要可归纳为以下7类:信号发生器,信号分析仪器,频率和相位测量仪器,网络特性测量仪器,电子元器件测试仪器,电波特性测试仪器,其它辅助仪器。

(2)电子设备经典检测方法电子设备经典检测方法是指经过时间验证最具有效性、实用性、规律性、通用性的故障检测方法,主要可归为以下7种:参数测量法,信号寻迹法,短路旁路法,分割测试法,干扰法,整机对比法,等效取代法。

1.2智能故障检测技术模块结构

智能故障检测技术模块分为单机模式检测系统和智能故障检测方法两个方面。

(1)单机模式检测系统现代智能检测技术是将计算机和人工智能相结合,以计算机为主体的智能检测系统。目前在智能故障检测系统中占主导地位的是单机模式。单机模式由一台计算机和相关接口以及必要的设备组成来完成系统的全部功能,具有结构简单、功能单一、实用性强等优点,因此应用较为普遍。

(2)智能故障检测方法智能故障检测方法是指不需要被测对象的精确数学模型,且具有智能特性的故障检测方法。已经过实践验证为比较成熟的有以下几种方法:基于粗糙集的检测法,信息融合故障检测法,神经网络故障检测法,故障树检测法,模糊故障检测法,专家系统故障检测法。

2.传统和智能故障检测模块组合方案的设计理念

传统的故障检测技术存在着虚假告警率较高、故障分辨能力偏低、信息来源不够广泛、缺乏推理机制和可扩展性等诸多缺陷,但由于这种检测技术已经使用了较长的时间,因而理论基础较为成熟,同时也形成了经典的检测方法,且检测装置也比较齐备,主要利用人工对电子设备的故障进行诊断和检测;而智能故障检测技术则是通过用计算机对人类思维方式的模拟以取得故障信息,全程自动化是其有别于传统技术的重要特点。而理论基础不够成熟、配套仪器价格昂贵等不足之处,使智能检测技术的使用范围有一定的局限性。基于两种故障检测技术各自的优势,可将两种检测技术进行结合,根据实际的检测目的和不同的被检测对象,有针对性地选择检测模块,形成模块组合式方案,从而优化故障检测过程。这样可以通过不同检测模块之间优势的互补,将电子工程故障检测技术的作用充分发挥出来。

3.传统和智能故障检测模块组合方案的设计原则

3.1加大对现代高科技电子技术的推广和使用力度

为符合当前电子工程故障检测标准的要求,进一步推广先进的模块组合式检测方案,要对以往工程的检测理念和技术进行吸收借鉴,从失败的案例中总结经验吸取教训,结合当代最新电子工程具体实施的实际情况,进一步优化方案设计,创新标准检测模式。

3.2以传统检测技术为基础,发展智能化检测技术

随着科学技术的不断发展和更新,电子工程检测方案也要与时俱进,追随科技前进的步伐,不断进行更新与优化,适时地引进最新的设备和,采用新技术,进行故障检测设备的更新,改进或更新专用通信室、通讯设备、故障控制室等方面,同时结合当代网络监控等新技术,以传统检测技术为基础和借鉴,实现通过智能化、网络自动化操作进行故障检测,使人为事故少发生甚至不发生,使尽可能多的应用科技创新成为电子设备智能化检测模式发展的大势所趋。

3.3做到“规范操作、巩固设施、提高质量、完善方案”

这十六个字体现了电子工程故障检测的总体要求,“规范操作”即是在操作中遵循工程检测的规范,“巩固设施”即是巩固电子故障检测的基础设施建设,加大基础建设的施工力度,“提高质量”是要提高电子工程检测的质量,同时保证理论建设的科学可持续性发展,“完善方案”是要逐步地完善检测技术方案并不断对方案进行优化和改进,以提高电子工程检测技术的合理性和对复杂环境的适应性。

4.模块组合式方案的实际操作

本方案的实际操作可分为3种情况进行:

(1)对于故障难度小,复杂程度低、维修时间充裕的中小型普通电子设备,可采用传统故障检测技术模块进行故障检测,具体程序为:①确定故障症状,区分故障症状和非故障症状。②确定故障区域,定位故障功能块。③缩小区域范围,找出故障电路。

(2)对于故障难度大、维修时间紧迫、故障设备数量多的中小型普通设备,高、精、尖专用设备,大型复杂设备等应采用智能故障检测技术模块进行故障检测。

(3)当设备处于以上两种情况混合存在或更复杂的状态时,应根据实际需要灵活地交叉使用、联合使用不同的检测方法以达到快、准、稳地消除设备所有故障的目的。

第9篇:模块化设计技术范文

论文关键词:核

1引言

EDA是(ElectronicDesignAutomation)的缩写即电子设计自动化。EDA的关键技术之一就是IP核(IntellectualProperty)。IP核是一段具有特定电路功能的硬件描述语言程序,具有可移植性,并具有很高的通用性和灵活性,可以通过软件编程完成用户需要的,不同的,特定的功能,可以任意使用在各种嵌入式微控制系统中。嵌入式IP核的应用,大幅降低了设计成本,缩短了设计周期,成为当今SOC的重要设计手段。在EDA技术和开发中占有重要的地位。

2系统介绍

本文的设计工具是Altera公司的QuartusII,用VHDL语言进行描述,采用自顶向下的设计原则。MC8051IPCore顶层结构图如图1所示,图1中指示了mc8051_core的顶层结构以及与三个存储模块的连接关系,同时显示了顶层的输入输出I/O口。定时器/计数器和串行接口单元对应于图1中的mc8051_tmrctr和mc8051_siu模块,数量是可选择的,在图中用虚线表示。MC8051IPCore核心由定时器/计数器、ALU、串行接口和控制单元各模块组成。ROM和RAM模块不包括于核心内,处于设计的顶层,方便于不同的应用设计及仿真。

图1MC8051IPCore顶层结构图

3系统实现

3.1可编程时间间隔定时/计数器8254的设计

任何微型计算机系统中都存在定时控制问题,可编程时间间隔定时/计数器8254的设计是在使用软件控制下的精确时间延迟,这样可以解决定时控制问题。内部结构如图2所示。

图28254内部结构图

3.28259的设计

分析8259A的功能和内部结构可知,本单元应分成五个部分三个模块来实现,模块层次关系如图3所示:

图38259层次关系图

各模块的主要功能如下:

数据缓冲模块:对8259A数据缓冲和暂存。

读写控制模块:负责8259A的所有初始化工作及读写操作。

中断请求模块:负责中断询求、中断信号的产生及判优。

中断控制模块:完成中断应答功能,中断向量的生成,级联选通,主从功能设置等这一系列功能。

优先级控制模块:设定实现不同的优先级判别方式。

3.3MCS-51IP核的设计

按照自顶向下的设计原则,整个系统分为:控制模块、定时/计数模块、算术逻辑模块ALU、串行通信模块四个功能模块,而RAM和ROM在使用时,只根据需要进行定制。系统核心由定时器/计数器、ALU、串行接口和控制单元各模块组成。ROM和RAM模块为方便各种应用设计和仿真,处于设计的顶层。在本设计中控制单元主要完成操作指令译码、时序逻辑控制、中断响应优先顺序处理和微操作控制等功能。它分为中断的响应及指令的译码子模块和微操作控制模块两个子模块。其中,ontrol_fsm模块产生各指令的控制信号并主要实现MCS-51中断的响应,ontrol_fsm模块产生微操作信号的具体操作过程,控制RAM存储器的读写地址及数据传输、PC寄存器的赋值、串口与定时器的中断信号处理、中断的查询、SFR的读写等功能。在定时/计数器单元,本设计能保证计数速率为1/12个振荡器频率。计数脉冲在选择计数器工作模式时在来自相应的外部输入引脚T0或Tl。对外部输入信号的占空比这一电平至少要保持一个机器周期,因为必须确保某一给定的电平在变化之前至少被采样一次。算术逻辑运算模块设计调试以优化后综合后产生的模块符号图如图4所示,该工程项目文件可在其它逻辑电路设计中直接调用。

图4ALU模块符号图

通过前面的模块设计和综合后生成MSC-51单片机系统,如图5所示:

图5mc8051最终图形

4.结束语

EDA技术近年来发展速度令人惊奇,它作为当下电子设计技术的核心,被广泛的应用在电子系统设计中。

本文创新点:1.采用完全同步设计,即整个SOC系统都是在统一工作时钟的协调下工作的。内部采用锁相环进行分频得到其它工作频率。2.指令集和标准8051微控制器完全兼容。3.优化的CPU时序使得完成一条指令最多只需1~4个时钟周期,执行性能优于标准8051微控制器8倍左右,提高其运算速度。4.用户可选择定时器/计数器、串行接口单元的数量。5.新增了特殊功能寄存器用于选择不同的定时器/计数器、串行接口单元。6.可选择是否使用乘法器(乘法指令MUL)。7.可选择是否使用除法器(除法指令DIV)。8.可选择是否使用十进制调整功能(十进制调整指令DA)。9.I/O口不复用。10.内部带256BytesRAM。11.最多可扩展至64Kbytes的ROM和64Kbytes的RAM。12.最多可扩展至64Kbytes的ROM和64Kbytes的RAM。

参考文献

1 唐颖.EDA技术与单片机系统[J].现代电子技术,2002,11(3):31-32.

2 谭会生,张昌凡.EDA技术及应用[M],西安:西安电子科技大学出版社,2004.4:15-18.

3 刘小俊,宋仲康.基于VHDL语言的全双工异步接收发送器的设计[J]微计算机信息2005.01:156-157.

相关热门标签