公务员期刊网 精选范文 生物信息学基本概念范文

生物信息学基本概念精选(九篇)

生物信息学基本概念

第1篇:生物信息学基本概念范文

一、信息哲学:自然化运动进程中的一个“副产品”

20世纪英美哲学界占主导地位的思想倾向是自然主义。自然主义的渊源可以追溯到古希腊,但它在当代的复苏和盛行,则首先得益于自然科学在解释世界时所获得的巨大成功。相对于前科学时代的一切自然哲学和形而上学体系,自然科学的概念、方法和规律对世界的解释更能令人信服。以物理学为主要代表的自然科学的昌盛,使自然主义焕发出前所未有的生机。所以,到了20世纪的最后几十年,几乎没有哲学家乐意说自己是一个非自然主义者。[1]121分析哲学是自然主义盛行的另一个动力。维特根斯坦在《逻辑哲学论》中就表达了鲜明的自然主义倾向:能说的东西就是能用自然科学命题所说的东西。此后的分析哲学家无不受此倾向影响。从维特根斯坦、石里克到奎因再到普特南和福多,分析哲学的演进同时体现出自然主义的发展脉络。自然主义者认为,哲学研究和科学研究在目的和方法上是一致的,差别只在于两者关注的对象不同。自然科学关注具体问题,而哲学则关注一般性问题。世界是统一的实在,因而可以构建统一的理论来加以说明,这就是自然主义的总则。自然主义的研究纲领和操作方法称为自然化(naturalizing),就是要运用分析、还原等方法,通过自然科学的概念、术语、原则,对传统哲学所关注的意义、价值、认识、真理等一般性问题做出自然主义的说明。通过自然化就可以使要说明的对象具有科学上的合理性、合法性,进而证明它在自然界中具有存在地位。自然化的方案众多,自然科学领域内的一切学科都可以充当解释项。所以整个自然科学就既是一种本体论标准,又是一个“终极解释装置”。质言之,科学是存在的尺度。不能被科学验证的东西是值得怀疑的,其或者没有研究的价值,或者在认识地位上次于科学。自然主义所引发的争论在根本上可以归结为两点。第一点体现在方法论上,表现出的问题是:有没有诸如第一哲学之类的东西?第二点体现在本体论上,表现出的问题是:世界能否被自然化?对这两个问题的回答,代表着自然主义的方法论和本体论承诺。自然主义对第一个问题的回答是否定的。因为既然自然科学和哲学的研究方法具有一致性,那么当然就不可能存在先在于或者独立于感觉经验和经验科学的第一哲学。第二个问题是自然主义关注的焦点和难点,其中最大的难题就是心理现象,特别是意向性问题。“任何想要把人类和心理现象当做自然序列的一部分的人都必须用自然主义的术语来解释意向关系(intentionalrelations)。”①所以,当代自然主义者从事的工作基本上都是围绕着对心理现象,尤其是意向性的自然化展开的。

对意向性的自然化就是用自然科学术语来说明意向性。为了达成这一目标,自然主义哲学家们进行了各种各样的尝试。自然科学领域中几乎所有的学科都被自然主义者当做工具,纳入到自然化的解决方案当中。其中一个显着的标志就是,自然主义哲学家往往会使用他所依据的自然科学的学科名称或者概念来命名他所建立的自然化理论。比如,阿姆斯特朗(D.Armstrong)、刘易斯(D.Lewis)等人以物理学为基础对意向性进行的“同一论”说明,米利肯(R.Millikan)、博格丹(R.Bogdan)和塞尔(J.Searle)等人分别依托生物科学作出的“新目的论”说明和“生物学自然主义”说明,哈曼(G.Har-man)、沃菲尔德(T.Warfield)、布洛克(N.Block)等人借用计算机科学中十分流行的“功能作用”概念进行的“功能作用语义学”说明,德雷斯基(F.Dretske)以通信理论为基础作出的“信息语义学”说明,福多(J.Fodor)以计算机模块理论进行的“模块论”说明等。自然主义者在运用各种科学技术理论对意向性进行自然化时,体现出很强的宽容性和开放性。因此,即便在表面上看来他们建立的理论毫无共同之处,但实际上从事的却是相同的工作。所以也有人称哲学正在经历一场“自然化转向”。[2]452从上世纪70年代开始,自然化运动中增添了“信息”元素。德雷斯基、福多等哲学家在探索意向性自然化的新路径时,发现信息科学技术存在着巨大的解释潜力,因而将信息及其相关概念引进到自然化的解决方案当中。德雷斯基在1981年出版的《知识与信息流》(KnowledgeandtheFlowofInfor-mation)时至今日,仍然是以信息为基础进行自然化操作的代表作,其主要目的就在于完全利用信息概念对知识、信念、意向性等作出自然主义的说明。正如德雷斯基自己所言,他的“整个工程可以被视为自然主义的一次实践”[3]。而在福多看来,有信息封装的计算系统就是模块,利用模块理论对意向性进行的自然化就是“为表征构筑自然主义条件”[4]31。正是通过这些具有自然主义倾向的哲学家的努力,原本只是单纯作为科学概念的信息在哲学中有了一席之地。所以从渊源和背景来看,如果说以计算机为代表的信息科学技术和通信理论的发展为信息哲学的诞生准备了技术前提的话,那么分析哲学和自然主义,尤其是自然化运动则可以被视为信息哲学的思想背景。如果需要在哲学史中为信息哲学进行定位的话,我们认为其逻辑顺序是这样的:自然主义传统科学主义传统和分析哲学自然化运动信息哲学。自然主义传统在近代科学的刺激下复苏,进而通过科学主义表现出来,在分析哲学的推动下形成了声势浩大的自然化运动,而信息哲学则只是自然化运动所采用的众多方案中的一种。所以,从起源来看,信息哲学完全是在分析哲学和自然主义传统主导下的自然化运动的一个“副产品”。

二、信息哲学与自然化运动内在关联的逻辑起点之发生学演进

“信息”作为信息哲学的核心和基础概念,是信息哲学的逻辑起点。对信息概念进行历时性考察,探究其如何从单纯的科学概念演化为一个具有“哲学身份”的概念,能够在逻辑上再现信息哲学的发生过程,在发生学上揭示信息哲学与自然主义和自然化运动的内在关联。按照信息概念内涵的演化,这一过程可大致区分为以下三个阶段:(1)“科学概念”阶段。20世纪中叶,《信息论》和《控制论》问世,信息概念成为“科学概念”。1948年信息论之父申农(Shannon)发表了划时代的论文《通讯的数学理论》,第一次将信息纳入科学研究的视野。通过这篇论文,信息正式成为一个被广为接受的科学概念。但是,作为科学概念的信息只关心信息量,而不关心信息内容。因此,申农所创立的信息论实际上是 一种信息的数学理论。在此背景下,申农把信息定义为不确定性的降低或者可能性的减少。在同年出版的《控制论》中,美国数学家、控制论的主要奠基人维纳(Wiener)对信息作出了这样的描述:“信息就是信息,不是物质也不是能量。不承认这一点的唯物论在今天就不能存在下去。”[5]155申农和维纳都看到了信息概念的复杂性和多义性,但受制于其自然科学研究的目的和背景,他们对信息的认识主要停留在科学层面。维纳对世界的“物质、信息、能量”三元论说明过于简单和草率,在哲学界并没有引起广泛关注。但是,他们对信息的科学说明却为哲学家的工作奠定了基础。(2)“科学概念”向“哲学概念”的过渡阶段。早在1953年,受到物理主义影响的卡尔纳普(R.Car-nap)为了对符号的意义进行自然化,便在《语义信息》一文中大胆预测,申农的信息论“会在不久的将来发挥重大影响”[6]147-157。在该文中,他还率先提出,对语义信息(semanticinformation)和实用信息(pragmaticinformation)进行区分是一项重要工作。[6]147-157从信息的定量分析入手解决信息语义问题,至此开始成为哲学家切入信息哲学研究的一条基本路径。麦凯(D.Mackay)于1969年提出“定性信息的定量理论”,认为信息与其接收者知识的增加有关。20世纪七八十年代以后,信息科学技术的广泛应用和发展,引起了自然主义哲学家的广泛关注。信息概念开始出现在各种自然化理论当中,由此迎来了信息概念的第二次质变。对信息进行哲学界定一时间成为哲学界的时尚,哲学家互相抱怨对方误解和误用了真正的信息概念。西尔(Sayre)批评“阿姆斯特朗和丹尼特滥用了‘信息’一词”[7]53。哈姆斯(Harms)也认为查莫斯(Charlmers)“不应该把信息理论看作是可能存在的状态,以及这些状态如何相关和构造”[8]475。在这一时期,美国哲学家德雷斯基所做的工作最具有开创性和代表性。在他看来,进行意向性的自然化,主要就是要说明“纯物理系统如何可能处在知识和信念(内容)的状态之中”[3]。为此,他从申农的通信理论出发,用信息来说明知识和信念。他认为,申农所建立的信息论目的虽然在于对信息的量进行度量,但其中也隐含着说明信息内容的功能。这种功能是作为自然科学成果的通信理论本身所具有的,所以利用这种功能所进行的信息论说明就是纯粹的自然化的说明。为了满足自然化的需要,信息概念在本体论、认识论和因果论层面都得到了较为系统的说明。正是自然主义者从事的这些工作,才使信息完成了从科学概念向哲学概念的过渡。[1]121(3)“哲学概念”的认可阶段。以信息论为基础的自然化,使信息概念在哲学中的地位获得日益广泛的认可。丹内特甚至断言:“信息概念有助于最终将心、物和意义统一在某个单一的理论中。”[9]对信息与知识、表征、真理、意向性等之间关系的探讨,带动了对信息的本质、地位和存在方式等信息哲学元问题的研究。1998年,《元哲学》出版的《数字凤凰———计算机如何改变哲学》对信息哲学的发展作出了肯定。[10]1随后,英国哲学家弗洛里迪(L.Floridi)又发表了《什么是信息哲学》等文章,第一次明确提出了信息哲学研究的范式、目标和纲领。进入新世纪之后,以信息哲学为研究课题的着作不断涌现,标志了信息哲学作为一个独立的哲学分支得到哲学界的认可。从对信息概念内涵演化之三个阶段的分析可以看出,以信息概念为逻辑起点的信息哲学与自然主义和自然化运动具有深刻的内在关联性。对信息哲学作为一个相对独立的哲学分支的“认可”,并未表明信息哲学从此成为一种新的研究范式,并未表明其已独立于自然化运动。因为其一,信息概念被纳入到自然化方案当中经过近半个世纪的发展,尽管其强大的解释功效逐渐显现,吸引了越来越多的哲学家投身到此项研究当中,但结果只是造就了一个以信息概念为共同基础的强势自然化派别的出现。其二,自信息概念被引入哲学领域以来,围绕信息的哲学研究在方法、旨趣、纲领等方面从未发生过根本性变化,即使弗洛里迪抛出“信息哲学”的提法,其实际意义并没有表面上看起来的那么重大,从信息的定量分析入手解决信息的语义问题,仍然是信息哲学研究的基本方法,或者说信息哲学的基本研究方法没有超出自然主义的视域。事实上,信息哲学试图建立统一信息理论的核心目标,就崭露着无法掩饰的自然化烙印。

三、哲学的“信息转向”现实地蕴涵于自然化运动

第2篇:生物信息学基本概念范文

【关键词】自主论/还原论/生命现象/解释/遗传信息

【正文】

1.目的性解释或功能解释的方式是概念自主性的逻辑延伸

如果承认生物学理论具有自主性,那么理论自主性的根本在于概念的自主性,即存在所谓不能用物理——化学术语进行描述和定义的概念。生物学理论自主性的另一表现——理论体系的目的性解释或功能解释方式,是概念自主性的逻辑延伸。另一方面,生物学理论中仅存在自主性概念并不必然导致目的性解释或功能解释,例如,孟德尔遗传学、公里化处理后的群体遗传学和进化论的演绎体系(1),其中所有的概念都没有与物理——化学发生关联,都是自主的,只有在一个体系中,例如,以分子生物学为主体的现代生物学,存在自主性概念的同时,又存在物理——化学的术语和概念,并且,二者都处于解释起点的位置,才必然导致目的性解释或功能解释的理论结构,这种结构成为融合自主性概念与物理——化学概念为一体的方案。就现代分子生物学来说,其中的物理——化学概念所描述的是生命现象中的分子及其行为,而自主性概念所描述和推演的是我们宏观经验的生命现象本身,这二者之间,从概念的构造和体系的建立的过程来说,分属两套逻辑体系,因而它们之间没有逻辑演绎的导出关系(2),同时,由于生命现象的复杂性(即使假定把它描述成所谓的因果反馈网络是可行的方案),难于形成一个由前者到后者的历史演化的因果决定性的理论描述,剩下来将二者结合在一个理论中的唯一方案就是目的性解释或功能性解释的方式。由此形成的体系中,自主性概念(如遗传信息)处于核心地位,物理——化学的术语和概念(如dna,蛋白质)是附属的。现代还原论(或称分支论,企图将生物学作为物理科学的一个分支)对生物学理论的目的性解释或功能解释方式的一切责难,以及将其变换为演绎解释方式的企图,如果不首先化解概念的自主性问题,将是徒劳的。

从生物学理论的客观构建过程来说,这些“自主性概念”是直接从生命现象中认定的,因而也是无机世界所没有的。在自主论看来,无论站在什么角度或立场上,“自主性概念”是理论中不可再分解的最基本,最原始的元素,是解说其它现象的起点;而在还原论看来,从物理——化学的立场或从无机界与生命界的关系的角度来看,“自主性概念”是复合的,应由物理——化学的术语和概念复合而成,因而它们就不应是理论中最基本的元素。我们顺着还原论的思路思考下去,还原,就是最终由物理学中的概念逻辑地演绎“自主性概念”的内涵。物理学中所有概念都终究归结为可感知、可操作的三个量纲:质量、空间、时间。物理科学内部的还原都是这种归结:对热质的否定并把热现象归结为能、温度归结为分子的平均动能,从化学到量子力学等等,著名的“熵”,则以热量与温度的关系来表示,在申农创立了信息论之后,人们便千方百计地寻找“信息”与物理学的关系,勉强将其与“熵”联系起来。从有限的意义上说,分子生物学还原了经典遗传学,将基因还原为dna和“遗传信息”,而“遗传信息”如何进一步归结为物理学的量纲呢?“遗传信息”是一系列生命过程的整体赋予dna等生物大分子行为以生物学意义的概念,也就是说在解释的逻辑次序上整体在先,元素在后,这是“遗传信息”这一概念的自主性的来源。因此,分子生物学的还原仅是有限意义上的还原,甚至不能说是还原,因为它仅仅是以一个自主性概念(遗传信息)解说了另一个自主性概念(基因),而“遗传信息”已成为现代生物学的研究范式或纲领的核心。因此,现代分子生物学并没有给还原论以支持,而且具有反作用,因为,如果说经典遗传学是一个演绎体系因而在这一点符合还原论的要求,那么分子生物学由于“自主性概念”与物理——化学概念的混合而具有了目的性解释和功能解释框架的特征,这成为生物学理论自主性的表现特征之一。

现代自主论正是从分子生物学的这些自主性特征出发,声明了自己的原则和立场。

2.现代自主论的原则及其本体论基础

从活生生的生命现象中直接认定一些概念,从而它们独立于无机界,有别于物理——化学语言,使建立在这样的概念之上的理论具有自主性,最极端的例子是本世纪初的生理学家杜里舒(h·driesch)将“活力”概念科学化和理论化,使它成为逻辑解释的起点;孟德尔到摩尔根所构造的经典遗传学中的“基因”,也是直接以生命现象以及从中所获得的数据为根据认定的有别于物理——化学的概念。本世纪六十年代,分子遗传学将“基因”用dna分子片段代替,使人们一度认为生物学的自主性是一种虚幻的认识,迟早会消失的。但是,并非dna分子片段唯一地代替了基因,而是dna分子与“遗传信息”二者一起来解释基因。“遗传信息”又是直接来源于生命现象的概念,仅就这一点来说,分子生物学仍然具有自主性。这是现代生物学自主论的根据。

现代自主论的主要论点是生物学完全有根据形成自主的概念,“自主”意味着不能由物理——化学术语来分解或描述或定义。为了区别于分子生物学诞生之前的生机论或活力论,现代自主论提出以下原则:将生物学能否还原为物理科学与能否用物质原因阐释生命现象严格区分为两个问题。(3)这个原则所要强调的是,物理——化学并不是对物质世界的唯一表述方式,关于生命有机体自身的物质原因的表述(生物学理论)则是另一种关于物质世界的理论表述方式,二者之间不存在逻辑蕴涵或逻辑导出关系。生物学还原为物理科学,其严格意义是以物理——化学的概念和定律来解释生命现象,从而推演生物学理论。仅从概念的层次来说,完全用物理——化学的术语描述或定义生物学概念,已经非常苛刻而至今远未做到。现代自主论“用物质的原因阐释生命现象”则宽松得多,实际上,分子生物学就是这样,以生命大分子组成,再加上遗传信息、复制、转录、翻译以及选择、稳定等诸多生物学独有的自主性概念,成功地阐释了从功能到进化的许多生命现象和活动。这是一个非常实际的原则,既可以摆脱科学史上令人厌恶的“活力”纠缠,又没有象还原论那样自套枷锁。

虽然如此,如果深究这一原则,则存在以下问题:

第一,现代自主论所称的具有自主性的生物学概念的认知来源无疑仍是对生命现象的直接认定,因此,在还原论或分支论那里应该是纯粹的解释对象的生命现象,在此成为认知和解释的起点。至少在这一点上与“活力”概念是相同的;

第二,现代自主论的本意是,生命现象中的物质运动方式为无机界所没有,因而对这些运动方式、关系等可形成独立于或自主于描述无机界物质运动方式的物理——化学的术语、概念乃至规律、理论,作为解说生命现象的前提。这种主张或可与当下的生命现象或“功能生物学”(4)相谐调,但与科学界的一个基本承诺(也是一个从未被证实过的预设)相抵触:生命来自于无机界。这意味着生命现象中的运动方式与无机界的运动方式有—个逻辑与历史相统一的关系,描述它们的理论也应有一个统一的逻辑关系,因而自主性不应该是必然的。

第三,在解释上,“物质的原因”中的“物质”是指生命体组成,主要是生物大分子,因此在现代自主论看来,分子生物学在具有了自主性的同时,又具有了物质性。而具体体现这种主张的分子生物学必然是自主性概念与物理——化学的术语和概念相“混合”的理论,其中,直接以生命现象作为实在性基础的自主性概念占有主导地位,是理论的核心。“遗传信息”规定了未来的蓝图,成为生物大分子所有行为的目的性基础与源泉,(5)它以生物大分子自身的逻辑内涵所没有包容的、因而是外在的东西,来赋予生物大分子行为以生物学意义。这就使得dna等生物大分子成为遗传信息等概念的附庸,导致了目的性解释或功能解释方式(2)。这实际上仅仅一半是物质的,而另一半却仍旧是“生机”的。这样,与其说是解释生命现象,不如说是在阐释生命形式下的分子及行为。这样的理论之所以被人们接受,其原因之一是人们接受了“生命来自于无机界”这个科学界中最基本的承诺之一,它已成为一种指导思想,给人们带来了希望:迟早有一天我们可以使理论上的从无机到生命的逻辑与历史上的从无机到生命的演化过程统一起来。因此,现代自主论的原则尽管与现代生物学相一致,但是,它却与这样一个重大的承诺不谐调。

第四,由此,我们可以做这样的一个回顾:生机论以从生命现象中认定的概念作为解释的起点,可简略称为“以‘生命’解释生命”;还原论则基于近现代科学精神的要求,以描述无机界的概念为起点来解释生命现象(即“以‘物质’解释生命”);而现代自主论的原则和主张,在分子生物学的具体体现中,却付出了这样的代价:以自主性概念为核心规范了物理——化学的术语和概念,以此为解释起点,但所解释的并非是生命现象本身,而是分子的行为(尽管是生命形式之下的)——自主性的那部分所解释的是生物大分子的(物质的)行为(即“以‘生命’解释物质”),“物质原因”那部分所解释的也仍是物质,而非生命。

以上几点,既是现代分子生物学理论体系中存在的哲学疑难,又是现代自主论的主张所存在的问题。现代自主论的原则是以现代生物学为其合理性依据的,它之所以坚持这一原则,一方面是由于现代分子生物学的内容的确如此,另一方面又企图把这一原则固定为今后理论生物学构建的指导性原则。这不由得使人想起了二千多年前亚里士多德的技巧,他不满意柏拉图在灵魂(生命)与肉体(物质)之间设置的鸿沟,企图找出生命过程与物理过程的密切联系,同时又要界说生命过程以表明与物理过程的区别,他构造了“形式因”和“目的因”的概念来解决这一问题:一件东西赖以构成的原料或物质并没有告诉我们它是什么,但赋予它以形式或目的,我们就可以根据它能做什么来说明它。

进一步的问题是本体论问题。现代自主论的优势在于现代生物学理论的形态和内容确以一些自主的概念作为理论根基的,但它的本体论基础却不令人信服:“生物学自主性的本体论根据在于生命有机体这种体系中的因果关系是复杂的,其中,生命整体行为对部分的制约是无机界所没有的。”(3)在此,存在着这样的悖论:因果关系是对现代生物学自主性的否定,而这里却以因果关系(尽管是复杂的,但仍是因果关系)作为自主性的本体论基础——前文分析了“一个理论体系中自主性概念与物理——化学概念同存并列作为解释的最基本元素,必然导致目的性解释或功能解释的方式”,它的逆否命题便是“非目的性解释(演绎的或因果关系的)体系不允许两种概念混合并列为解释的起点”,只能由一方还原另一方。那么,理论出现了“自主性”,到底是由于生命现象太复杂、纯粹以无机界为起点因果地或演绎地解释生命现象太困难而采取的权宜之计;还是由于存在着无机界所没有的“制约”,因而生命现象在本体上具有“自主性”(自主于无机界、确切地说自主于物理——化学的运动机制),使生物学也具有了“自主性”?接下来就发生这样的重大问题:本体上的自主性是什么?它与“活力”“生命力”的本质区别是什么?现代自主论可以争辩:生物学理论的自主性并不等同于生命现象具有自主性。但是,“整体对部分的制约”等诸如此类的现象如果在本体上不是自主的,而是与无机界有演化机制的因果关联,又为何不能为物理——化学(包括未来的物理科学)所描述?除非承认“科学的认识方法是有限的和不完备的”以及进一步承认“人的认知能力是极为有限的”这样令人气馁的命题,这又回到了“太困难而采取的权宜之计”上来。

因此,现代还原论固执地坚持以下两点与现代自主论的原则以及生物学理论现实作对:第一,生命必须纯粹地作为解释对象,而不能在解释之先从生命现象中预设某些概念作为解释的起点,如果生物学理论中有这样的概念,则它应被分解为物理——化学的语言;由此,第二,用演绎的解释方式转换由于存在自主性概念而采用的目的性解释或功能解释方式。坚持以上两点,也即将生命现象作为纯粹的解释对象而从无机界来演绎,就意味着用“物质的原因解释生命”与“生物学还原”是同一个问题。由于这种理想主义的固执,还原论所遭遇的困境甚于现代自主论。

3.现代还原论的困境

还原论的致命之处,主要不在于它反对现代自主论的原则,而在于反对现实的生物学理论的形式和内容去追求一种不太切合实际的理想。对生物学理论中的目的性解释和功能解释的诸多责难及演绎还原的要求所依赖的合理性依据——解释预言的检验是经验上可操作的,已随着现代生物学的成功而烟消云散,因为目的性解释或功能解释方式同样在试验上可检验。面对现代生物学的成功,以及还原所难以克服的诸多困难,再加上现代自主论强有力的批判和否定,现代还原论发现,剩下来可依赖的唯一合理性是哲学意义上的依据,即“生命来自于无机界”这一预设性和承诺性命题,我们不应“以‘生命’解释生命”,也不应“以‘生命’解释物质”,合理的“解释矢量”的方向应是“以‘物质’解释生命现象”。在这里,“生命现象”是一个很不具体的抽象概念,实际上可具体为被“约束”或“规范”的物质行为表现和“约束”或“规范”机制本身,这是真正的解释对象,也是理论自主性的实在性基础。因而,对于还原论来说,追究“基因”或“遗传信息”的起源和分子进化机制已成为其最后的坚守阵地,并且,当代自组织理论和超循环理论的盛行,似乎为还原论带来了令人振奋的希望。

迈尔曾将生物学理论划分为功能生物学与进化生物学,(4)在功能生物学中,基因所携带的遗传信息是生物学一切功能和目的的基础和源泉,只要突破这一点,即能够用物理——化学的语言演绎地描述形成遗传信息的分子进化机制,那么,还原论至少在原则上取得了胜利。但是,通过以下分析,这种希望似乎又是水中之月。

前面说过,“自主性概念”之所以“自主”,是由于它直接对应于生命现象或认定“生命的实在”,它反映了生命特有的本质,因此,它作为理论的起点,不必给予也不可能进行物理——化学的描述。还原论否认存在生命的特质,把所谓“自主性概念”或直接来自生命现象的概念看成是“复合性”的,可分解为诸多物理——化学的术语和概念,与此相应的试验上可操作性依据是生物化学对生命有机体的组成还原。但是,组成上的还原虽然可作为生命与无机界密切联系的依据,但也没有否定现代自主论的“用物质的原因解释生命不等于还原”的命题及所坚持的原则。否定“自主性概念”的充分条件不仅仅是把它看成“复合性”的,而且要以物理——化学的术语和概念逻辑地导出它的内涵。如果只满足于组成上的还原,结果只能是以“自主性概念”为核心来赋予生物大分子及其行为以生命意义(2)。与逻辑导出相对应的试验依据不是组成上的分解还原,而是与逻辑导出同向的试验可操作性,说白了,就是由无机要素合成生命,哪怕是最简单的生命现象。例如,对于超循环论来说,就是生物大分子超循环耦合能否在试验条件下发生,这涉及到“生命来自无机界”这一命题由哲学化向具体的科学化的过渡,关系到还原论在科学上能否真正站稳。但是:

第一,由无机到生命,经历了漫长时间,并且,生命的产生和演化是在十分优越的条件下选择了唯一快捷的途径而发生的。以人类的有限生命和历史是否有能力进行这种操作呢?这就象大海里的沙子,原则上是有限的,如果想数清楚有多少粒,则在实践上是一个无限的问题。退一步说,仅理论上的操作,即以物理——化学诸要素,通过在无机背景下取得的参数,进行自组织理论的非线性过程计算,来描述无机与生命之间的逻辑关系,这种非线性理论的计算操作也同样是事实上的无限复杂。这种原则上的有限而实践上的无限,直接冲击还原论的哲学基础:决定论。只有决定论成立,由无机到生命的逻辑演绎方式才是理论上可操作的,才具有进行预测和试验上可操作的价值和意义;决定论的前提又是自然有限论,而无限性就意味着不确定性,也就意味着逻辑演绎的理论之路是不通畅的、实践之路是不可操作的。

第二,自组织理论本身的结论——非线性过程的不可逆性,使这种操作不可能。从无机到生命的历史过程,其中有许多偶然性或随机因素起了决定作用并已作为“信息”储存于生物大分子的结构中。由于偶然性或随机因素的不可重复,使时间不可反演,因而整个过程无法进行重复操作。

第三,自组织理论和超循环论的非线性动力学过程的不确定性,使从无机到生命的演绎过程不可能。在此,应对“因果决定论”与“演绎解释方式”作出区分,一般来说,这二者被合二为一地用来与目的性解释或功能解释方式相对立,但它们之间是有区别的。因果决定论是用来表述定律或原理的方式,而演绎解释的方式是解释体系乃至理论体系的构成框架,即因果决定论形式的定律或原理是作为演绎框架的解释前提而出现的。这就可以提出这样的问题:否定了因果决定论的自组织理论的非线性过程的定律、原理是否可以作为从无机到生命演绎解释框架的解释前提呢?按照还原论解释的要求,如果中间环节有不确定因素,将阻碍这种演绎解释的逻辑通道的畅通。只有解释前提的因果决定论形式才与整体的演绎解释框架相谐调。尽管自组织理论及超循环论这一新物理科学曾经被讨论的热火朝天,由于它在分子自组织领域内就已经在逻辑上不确定了,因而,至今为止它对生物学的影响只限于描述性地说说而已,至多提供一个框架式的思想启示。

4.结语

还原论所遭遇的困境,是由于坚守着理想主义的科学信仰而不顾生物学现实。但是,无论是同情还原论而提出的带有折衷性的整体还原,还是反对还原论的自主论,在其构建生物学理论的建议中,只要还主张保存直接来自于生命现象的术语和概念,并且不可被物理——化学的术语和概念、也即描述无机世界的术语和概念所代替,都是在认识论上允许预先设定生命现象作为解释的起点,从而在本体论上承诺了存在着一种生命特质,也就有违于“从无机到生命的历史走向和逻辑走向相一致”这一基本的科学承诺。

在现代生物学面前,还原论成为固执地坚守理想和信仰的牺牲者而在所不惜,自主论由于切合生物学理论的现实而取得了优势,并以能够指导未来生物学理论的构建为最大的价值所在。但是,笔者认为,一门学科,特别是具有哲学色彩的学科,其意义和价值不应仅仅依赖于其他学科,更不能以其可否“指导”自然科学的发展为其价值标准。逻辑实证主义起始的现代科学哲学的历史已证明这种“指导”是虚妄和徒劳的,科学往往自我发展而不听命于哲学家的“指导”。在这方面,还原论也并不是无可厚非。无论是还原论还是自主论,它们的目的都是企图指导生物学理论按照它们指定的框架来运行,结果使我们处于这样一个悖论之中:如果信守“生命来自无机界”这一命题,则应否定“不能用描述无机界物质运动的概念、规律即物理科学进行还原”;而坚持还原论,则遇到操作上包括不确定性对演绎过程的否定的阻碍。这是否值得我们反思一下过于功利主义倾向的行为,以修正我们对科学的哲学探讨的目的?科学哲学的真正意义和价值在于自身,在于对科学及其与自然的关系的理解,在于它自身体系的建立,这个体系体现了人类的心智对完美的追求和向往。这一点,特别是在一个人欲横流的社会里,是极为可贵和重要的。

【参考文献】

(1)rosenberg.a.(1985).the structure of biological science.(cambridge:cambridge university press).

(2)郭垒:“生物学自主性与物理科学的理论构建”,《自然辩证法研究》,1995年第3期。

(3)董国安、吕国辉:“生物学自主性与广义还原”,《自然辩证法研究》,1996年第3期。

第3篇:生物信息学基本概念范文

[关键词]语义互联 本体 全局本体 UMLS

[分类号]G250.73

1 引言

语义提取、语义分析、语义检索、语义集成和语义互操作已经成为当前语言学、逻辑学、图书馆学情报学、计算机科学等领域的研究热点。各领域从不同角度进行理论探讨和技术挖掘,力图进一步推动数字资源的语义互联和语义互理解。随着本体理论的日趋深入和本体技术的渐臻发展,本体作为一种蕴含知识间语义关系且能在知识层提供知识共享和复用的工具已经得到共识,以本体为知识组织核心的语义检索成为主要研究方向,并已积累了一定的研究成果。在此基础上,专家学者开始探讨本体在知识管理、语义互操作、决策支持和推理中的应用,并探讨本体促进数字资源语义互联的模式、机制并构建实验性系统。在医学领域,由于美国国立医学图书馆长期的积累,已经形成世界范围公认的知识组织体系,包括科学的叙词表、各种本体、医学术语标准、国际分类标准等。这为医学领域的数字资源进行语义互操作奠定了基础,为整合分散的、异质的各类生物医学数据源提供了保障。本文整合各种领域本体,集成各领域本体中的概念、术语和概念之间的语义关系,提出了医学数字资源语义互联模式――以UMLS为主导的多本体融合模式。

本文的研究意义在于促进各种知识本体在医学信息领域中的有效共享,为建立智能化的医学临床科研融合系统提供基础性研究,为进行深层次的医学数据挖掘与服务提供理论支持。

2 医学数字资源语义互联模式

UMLS(the Unified Medical Language System)是美国国家医学图书馆(National Library of Medicine,NLM)设计和维护的一体化医学语言系统。UMLS词表已成为词典标准在生物医学知识中共享,并被应用于生物医学数据库的信息提取和集成、本体的语义集成等。鉴于此,在构建医学数字资源语义互联方面,充分利用专家对UMLS在描述概念方面已取得的研究成果不失为一个捷径。

医学数字资源语义互联模式是以UMLS为主导的多本体融合模式,其充分考虑了UMLS在描述概念和语义集成方面的优势地位,为生物医学用户提供了统一的语义空间。在该语义空间中,异构数字资源通过语义标引实现语义互理解,用户可以对生物医学文献、生物医学数据库、临床数据进行数据挖掘、数据集成、决策支持、自然语言处理和知识发现,实现对知识的智能服务和共享。该模式是一种基于全局本体统控、多种本体融通的数字资源语义互联模式框架,见图1。在该模式中,每一种本体发挥他们各自在数据挖掘、语义分析、语义检索方面的作用,充分体现出本体的复用以及对现有知识组织体系的再利用;另外,该模式将提供词典标准的UMLS作为全局本体,形成共享的词汇集,从而保证本体之间的语义互理解。

3 医学数字资源语义互联的结构

以UMLS为主导的多本体融合模式由三个基本层和两个链接层构筑。

3.1基本层

・用户层。该层是系统与用户的交互接口,用户通过应用接口层对异构数据源进行语义查询、数据挖掘等操作。

・语义层。该层是系统的核心层,是以UMLS为主导的多本体融合数字资源互联模式的关键所在,该层以UMLS为全局本体,通过本体映射和本体集成方法与工具复用医学生物学领域本体。

・数据源层。该层集成异构数据,包括临床数据、实验数据、基因(蛋白质)数据、文献数据和网页数据。

3.2链接层

・知识管理层。该层位于数据源层和语义层之间,在该层上,本体作为一种词汇来源支持对数据和资源的标引注释、检索和跨医学信息资源和本体的映射,反映数据资源层与语义层的交互。

・决策支持与推理层。该层位于用户层与语义层之间,在该层上,本体作为一种语义核心集支持对自然语言的处理、数据的集成、决策支持以及知识发现。

三个基本层是医学数字资源语义互联的根本和目的所在,两个链接层是数字资源语义互联功能和智能的体现。

4 医学数字资源语义互联的机理

4.1UMLS本体的全局统控

医学知识本体为用户、资源和服务提供了信息交互的理解平台,为信息共享提供了可能性。目前,国际上开源的生物医学领域本体大体分为4种:基于医学信息检索的本体类型(UMLS、MeSH),基于生物医学数据的本体类型(OBO系列本体、GO),基于临床医学的本体类型(OpenGALEN、转化医学本体TMO),基于医学调查的本体类型(OBI)。这些医学领域本体或者建立了临床术语,或者为关联、集成和转化以患者为中心的数据提供了框架,或者定义一套结构化的通用的受控词表,都已经应用于自然语言处理的各个方面,如在词义冲突消除、语义冲突化解、语义检索、机器理解等方面,这些本体库各具特色,而UMLS在描述概念、术语、概念间关系、语义类型和语义关系方面更为全面和成熟。医学数字资源语义互联模式框架中,UMLS起全局本体的作用,利用UMLS融合语义互联框架中的局部本体,诠释用户、资源的语义,为两者之间的语义互联提供纽带。

4.2多本体融合的语义标引机制

在医学领域,最重要的三种数据资源是:生物(医学)文献、临床文献和基因产物。目前对这三种数据资源进行标引都有通用的标引词表和本体,这些现有的知识组织体系是信息组织专家多年研究的成果,已被广泛接受而且拥有大量的研究型用户,对这些知识组织体系的继承有助于促进数字资源语义互联的快速实现。

・生物(医学)文献。生物(医学)文献数据库是已广泛为医学领域学者和研究者使用的数字资源,对于这些商品化的数字资源,已经进行了标引(注释大多采用人工标引方法),标引采用MeSH词表和基因本体(GO)。

・临床文献。对于临床文献,目前世界上通常使用国际疾病分类(ICD)系统进行编码,另外,SNOMEDCT正在被越来越多的国家作为电子健康档案的标准术语,除此之外可以使用MeSH进行注释。

・基因产物。在生物学中,需要对实验数据的功能性描述进行注释。如使用基因本体对实验中基因产物的功能注释,复用SNOMED CT和美国国家癌症研究所的NCI叙词表的OWL版本对组织微序列数据库中的数据进行注释,利用MeSH对基因表达库中的人类疾病进行注释。

在以UMLS为主导的多本体融合模式中,底层的数据源由各种医学知识本体进行语义标注,再借助于UMLS这一全局本体对已经进行了语义标引的数据进行语义互联。UMLS与各种叙词表、开源本体之间的映射借助于Lexical Grid(词汇网格)。Lexical Grid是美国梅奥医学中心生物医学信息学部设计的,旨在利用公共的工具、数据格式以及读取(更新)机制来弥补格式、配套工具以及编程接口方面的互不兼容问题,从中发挥桥梁和纽带的作用。Lexical Grid对有关资源的表达由一个单独信息模型实现,该信息模型可通过一套公共的应用编程接口(application programming inter-faces,APIs)加以访问(存取),这些APIs则是借助于共享型的索引加以联合,并且,这些索引可以在线下载、松散耦合、本地扩展、全局修订以及在网络空间和网络时间范围内现成可用,且彼此相互交叉链接。如图2所示:

4.3多本体融合的语义检索模式

以UMLS为主导的多本体数字资源语义互联系统的语义检索子系统运用UMLS本体对各种数字资源进行检索和浏览之后,对产生的检索结果进一步进行知识挖掘。用户提交检索词或检索式后,系统接受返回的检索结果,利用UMLS本体对检索结果进行词串鉴别、术语提取,最终到概念识别,通过数据挖掘,使检索结果成为进一步检索的候选检索词。

・将检索结果对应的概念转换成UMLS本体的类,并将检索结果与UMLS类对应起来,形成检索结果的可视化数据,此时的检索结果不仅仅是字符匹配,而是基于UMLS概念的检索结果分析。

・在检索结果导航中,根据UMLS本体概念之间的11种关系(如直接上位关系、直接下位关系等)提供扩检和缩检功能。

・在检索结果导航中,根据UMLS概念的语义关系(54种语义关系),提供概念与概念之间在语义关系上的反馈式检索方式。通过用户积极性反馈式的进一步选择与确认,进行检索结果的扩检与缩检,当然这一步需要用户具有相关知识。

・UMLS作为一种全局本体,通过概念映射到各个局部本体,进而形成检索结果导航模型。根据检索结果导航模型,检索结果被统计并对应到相应的UMLS分类导航目录和各本体的分类导航目录,用户可利用该导航目录快速找到自己所需要的文献。

该语义检索模式,提供以UMLS为主导的多本体检索结果分类概览,帮助用户实现基于概念的检索结果快速导航;自动提供与检索提问相关的术语;自动提供与检索提问相关的上位概念、下位概念和同位概念;自动提供与检索提问相关的概念之间的语义关系;自动提供与检索提问相关的准确的生物实体,从而提高检索的准确率和召回率。

4.4多本体融合的信息集成构架

信息集成分为:结构集成、语义集成和智能集成。以UMLS为主导的多本体融合模式以全局本体UMLS为中心纽带,在结构化集成的基础上,对信息间语义的关系实施深度挖掘和充分利用,进而完成语义级信息集成。一方面,通过提供医学领域的全局本体UMLS,为数据集成所需要的标准化提供支持,可将要集成的数据源转换成一种通用格式并将其转换为通用词汇。另一方面,围绕UMLS本体,可以定义数字资源语义互联全局架构,可根据全局框架进行语义查询,并在全局性架构和本地架构(要集成的数据源架构)之间进行映射。参考基于本体的信息集成系统TAMBIS,BioMediator、OntoFu-sion、ARIANE和MASBOI,结合基于语义模型的信息抽取概念模型,设计信息集成框架,如图3所示:

各组件的功能和作用如下:

・原始信息。包括临床数据、文献数据库、基因(蛋白质)数据库等结构化信息和半结构化信息数据源。

・信息抽取。从原始数据中经过自然语言处理(如MetaMap)抽取出词串和术语组织成元数据库。

・局部映射。将元数据中的词串和术语匹配到各个局部本体中。

・全局映射。一方面,以UMLS全局本体为标准。将局部本体映射到全局本体解决局部本体问的语义异构性问题,满足彼此间相互查询的需求;另一方面,UMLS提供了全局框架,将已匹配到局部本体中的元数据映射到UMLS概念中,满足对原始数据的语义标引需求。

・概念-关系分析器。对数据管理、本体学习、语义检索和知识发现的数据进行自然语言处理,对处理结果进行概念-关系分析,分析后依据全局映射匹配到UMLS中的概念和语义关系,匹配后交由推理机和查询接口。

・查询接口。一方面,是为用户提供的统一语义查询界面,用户借此提交查询关键词,提出查询请求;另一方面,将经过概念-关系分析的查询,提供给UMLS概念及概念间关系的可视化检索结果导航,再提供给用户。

・推理机。将经过概念-关系分析的术语进行UMLS概念匹配并建立概念矩阵,以发现新的概念间关系和新知识,新的概念间关系用于本体进化,新知识将被写入知识库。

5 医学数字资源语义互联的功能

医学数字资源语义互联不仅仅致力于为医学工作者提供基于语义的检索,更重要的是为用户、数字资源和程序之间建立理解一致的信息交互结构。医学数字资源语义互联模式的构建为医学信息处理提供了可共享的平台,使得针对临床工作者、医学科研人员和医疗保险的数据之间具有了语义互通的可能性。基于此,其功能不仅限于智能检索,还包括自然语言处理、本体学习、专业知识发现等。

5.1自然语言处理

自然语言处理(NLP)能自动识别文本中所感兴趣的实体名称,将数据库中的信息转化成人类可读的语言,自然语言处理将扩展互联的医学数字资源范围,从而使互联模式更机智能化。从自然语言处理系统处理的文本及处理技术两个角度来考虑,在生物医学领域,临床医学和分子生物学是两个最重要的内容子域。在临床的内容子域中,重点是疾病、解剖学、病因和治疗以及这些现象之间的互动。因此,语义处理对概念和关系识别后,还需将所处理的文本内容映射到一定的知识结构。利用生物医学本体所提供的丰富词源可开发出许多自然语言处理系统。以UMLS为主导的多本体数字资源语义互联系统为满足大规模文本处理的需求,利用了美国国家医学图书馆(NLM)研发的在线工具――语义知识表征。

・SKR是由美国国家医学图书馆研发的项目,该项目致力于在图书馆现有资源基础上建立生物医学自由文本上可用的语义表达。SKR系统的核心组件是MetaMap,如图4所示:

SKR/MetaMap对自由文本进行语义层次的分析且是基于语境的语义分析。MetaMap使用知识密集型的方法,包括符号、自然语言处理和计算语言学等技术,是一个把生物医学文本与UMLS超级词表中的概念匹配起来的程序,MetaMap的自动文本映射可将文本解析成名词短语,形成词串,对词串按照阈值形成Meta映射候选集。SKR/SemRep也是为了发现生物医学研究文献中的语义命题而开发的,通过语法分析和UMLS的领域知识识别出自由文本中的实体,用来提取生物医学文献中的语义假设。

・以UMLS为主导的多本体语义互联系统的自然语言处理系统,读入MetaMap处理后的数据,将形成的Meta映射候选匹配到全局本体UMLS概念上,之后对自由文本进行基于概念的语义标注,供语义检索子系统使用。

5.2智能检索

医学数字资源语义互联模式能够实现不同程度的智能检索功能:①以UMLS为主导的多本体融合模式,提供了概念关系级别的知识组织体系,全局本体与局部本体的映射融合,易实现概念级别的扩检与缩检,易进行概念组合的描述,易梳理出概念关系,从而不断逼近检索;②语义互联模式提供了反馈式检索方式,能加深人机互理解程度;③数据存储形式为RDF的三元组形式,这种形式方便推理,支持概念语义的查询。

5.3本体学习

本系统中的知识发现涉及到本体准备、本体扩充、事例选择、本体挖掘和本体进化几个阶段。知识发现通过主成分分析、独立成分分析、神经网络和统计学方法等数据分析技术以及二维、三维和散点图等可视化方法,能够帮助用户发现概念间的新关系,丰富本体中类的语义关系。另一方面,4.2中所提到的三类标引内容包括生物(医学)文献、临床文献和基因产物,这些数据来自不同领域,但是通过UMLS而相互连通,从而在临床试验设计、地理学和人口学数据、流行病学数据、药物、治疗以及基因等不同领域的数据中进行集成,将分散的事实连接成新的概念和关系,使本体通过互操作实现本体学习。

5.4知识发现和专业知识聚类

医学数字资源语义互联中的自然语言处理系统利用MetaMap,对读入的MetaMap文本数据进行统计,基于UMLS统计出术语的概念信息,形成概念共现矩阵,利用聚类分析软件,对概念间的关系进行可视化表现,进行直观的概念关系梳理和知识挖掘;并将针对同一目的所产生的不同事实和观点联系起来,形成新的概念和假说,从而辅助知识发现。

6 结语

第4篇:生物信息学基本概念范文

关键词:概念教学过程模型障碍策略

人们认识事物时,把事物的属性及其相互关系,经分析、比较、综合等作用,概括地、定型地代表一个物体、动作、性质、状况等的抽象的共同观念叫做概念。因此,概念是客观事物本质属性在人脑中的反映。化学概念是反映物质在化学运动中的固有属性的一种思维形式,它是化学知识的基本元素和重要组成部分,是掌握物质变化规律的基础,也是深刻理解化学原理的基础,对培养学生的能力起着重要的作用。

在实际教学中,有些化学概念学生容易学习,有些则非常难学,教师使用相同或相似的方法进行不同的化学概念教学时,取得的效果相差甚远。如“物质的量”及其单位“摩尔”的学习,教师觉得难教、学生觉得非常难学。化学概念的建立应该具有一般的基本过程,我们试图从化学概念的基本特征和建立概念的心理过程中寻找化学概念有效教学的策略,使得学生能够有效地学习化学概念,从而促进化学的有效学习。

1概念学习的特征

概念的学习过程是“反映事物本质属性的共同观念”在人的大脑中从无到有的过程,因此,有必要全面认识概念及其建立的过程,即概念的特征和概念建立的心理过程。

1.1概念的特征

1.1.1内涵和外延

任何一个概念都有它明确的内涵和外延。

内涵是指概念所反映的事物的本质属性,通常是通过下定义的方法来表示的,如“物质的量”的定义是“含有一定数目粒子的集体”,给概念下定义是对事物的本质属性的认识在一定阶段上的总结。概念不仅对所反映的事物的本质属性有质的规定性,有些概念还具有量的规定性。因此,一般来说,概念既可以用文字或语言的形式来表述,有些概念还可以用数学公式予以定量阐述,如“物质的量”又可定义为“n=N/NA”。

外延是指概念所涉及的范围和条件。如“物质的量”的外延是“含有一定数目粒子”这一本质属性的粒子集体的类型,如分子、原子、离子(或原子团)、电子、质子、中子等。

1.1.2客观和可测

概念是从客观事物中概括和抽象出来的,它反映了客观事物的本质属性和内在联系,因此,具有客观性。如“物质的量”是客观存在的不同类型的粒子的集体。

同时具有质和量两个规定性的概念叫物理量。一切物理量都能被测量,用仪器进行直接的测量,用公式进行间接的计算,还可以通过测量其他物理量进行间接的测量。如“物质的量”的测量,可以通过间接测量质量、气体体积等方法进行。

1.1.3抽象和精细

一个概念能够反映出大量形形的物质的共同属性,因而具有高度的概括性和抽象性,它超脱了具体的现象而说明了事物的本质。一个被抽象的概念,还可派生出新的概念,称为概念的多重抽象性。如“物质的量”可派生出“摩尔质量”、“气体摩尔体积”和“物质的量浓度”等。

客观事物的方方面面的属性,表面上看来有些属性是相似或相近的,但用不同的概念能够把这些属性精确地区分开。例如,“量”是人们生活中经常使用的一个含混概念,人们说“量”的多少,可能是质量、体积、纯度、质量分数等等。然而,概念却能准确地区分它们。

1.1.4发展和变化

概念是在科学实践中逐步形成和发展起来的,一个概念的内涵是否正确,外延是否恰当都要用实践来检验,并随着科学实践的深入发展而不断得到补充、修正和重构。原子的概念从德谟克里特提出,经历了“实心球模型—布丁模型—行星模型—卢瑟福模型—分层模型—原子核模型—电子云模型”。由此可见,科学发展的历史,也是概念产生和发展的历史,同时也应该成为概念学习发展的过程。

1.1.5联系和结构

概念和概念之间虽然可以进行精确的区分,但它们之间并不是孤立的,它们之间存在着直接的或间接的联系,其主要形式是从属和并列。在从属关系中,下位概念从属于上位概念,如氧化还原反应与氧化反应的关系,氧化还原反应属于上位概念,而氧化反应属于下位概念。氧化还原反应的学习是在氧化反应和还原反应学习之后进行的,称为上位学习;反之,在具有上位概念的情况下学习下位概念称为下位学习。并列关系指的是概念与概念间既不产生从属关系,也不产生总括关系,但相互之间具有潜在的联系,如质量与物质的量等。

1.2概念学习的过程

关于人的认识的发展过程,列宁曾做过这样的概括:“从生动的直观到抽象的思维,并从抽象的思维到实践,这就是认识真理、认识客观存在的辩证的途径”。认知心理学认为,形成概念是人在认识事物的过程中积极主动地进行概括、推理、提出假设,并将这一假设应用于日后遇到的事例中加以检验。由此可知,概念的形成是以感觉、直觉和表象为基础的,以分析、综合、抽象、概括、系统化和具体化为主要思维活动,从个别到一般、从具体到抽象、从现象到本质的认识过程。因此,可以将学生概念学习的过程划分为:

1.2.1感知现象

感知是由于环境对感官的刺激引起的事物的整体属性在人脑中的反映,属于认知过程中的感性阶段,概念学习的感知来自于客观环境(对客观事物的生活经验)和教育环境(教材、图片、模型、录像和实验等)。但要注意的是:人的知觉系统摄取和加工外部环境信息的能力是有限的,应该对刺激进行选择和过滤;同时感知受到人的需要、愿望、兴趣、以往经验(前概念)的影响。

1.2.2思维加工

思维是人脑对客观事物的间接的和概括的反映,主要包含抽象和概括两个过程:抽象就是在思想上区别某种事物的本质属性和非本质属性,从而抽取本质属性;概括则是将某种事物的本质属性推广到同类事物中去。这一过程依赖于各种思维方法的综合运用。不同概念的形成,其思维方法不尽相同,最基本的有:①分析概括一类事物的共同属性和本质特征,如化学反应、糖类、蛋白质;②抽取物质的某一属性,得出表征物质某种性质的量,如相对分子质量、相对原子质量、摩尔质量、气体摩尔体积;③用理想化的方法进行科学抽象,如理想气体、分子模型、原子模型;④概念的组合及发展,如摩尔质量(质量和物质的量)、气体摩尔体积(物质的量和气体体积)、物质的量浓度(物质的量和溶液体积);此外,还有运用演绎、类比及等效的方法等。

1.2.3形成概念

形成定义是形成概念的认知活动的最高境界,也是进一步理解概念的基本依据。

概念的定义方法一般有:①属加种差,如酸性氧化物是在其属概念——氧化物的基础上进行的;②操作定义,如摩尔质量是将物质的质量与物质的量的比值这一数学操作进行定义的;③外延定义,对于外延边界清楚的集合概念,若能举出他的全部外延,就可以下肯定外延的定义,如不饱和溶液,就是指没有达到饱和状态的溶液。

理解概念主要从以下三个方面考察:①明确引入概念的原因;②明确概念的内涵和外延;③了解概念与相关概念之间的区别和联系。

1.2.4重构认知

新概念形成后,如果不能与原有认知结构建立起意义联系,在一定程度上意味着概念没有真正建立。认知结构的重构,主要是使头脑中散乱的现象和事实、概念、理论形成秩序,使头脑中的化学知识得以扩展、更新或重构,这一过程是由同化和顺应使认知结构达到新的平衡的过程。

2概念学习的障碍

中学生的逻辑思维正处在由经验型向理论型发展的阶段,思维的品质不够健全,使得他们在学习概念时存在着一定的困难,可能形成各种学习障碍。我们认为,中学生概念学习的障碍主要表现为与概念学习四个心理过程相对应的四个方面:

2.1感性认识不足

感性材料是形成和掌握概念的前提和必要条件,感性认识不足是概念学习的主要障碍之一。例如,如果没有观察过化学反应,就不能掌握化学变化。用以表征物质特殊性质的概念,如“物质的量”是对含有6.02×1023个粒子的集合体的抽象,远离人们的日常生活经验,不能找到直接的感性材料,从而导致了学习障碍。

2.2思维方法不当

概念的学习是在获得足够多的感性材料后,利用各种思维方法形成科学的概念。没有掌握建立科学概念的正确思维方法和思维过程,是概念学习的又一障碍。如果在建立概念过程中不能运用分析、综合、比较、分类、类比、抽象、概括、推理判断以及理想化等思维方法和思维过程,就很难使感性认识上升到理性认识,即形成的概念只能处于浅表的感性层次。

2.3定势思维影响

长期的思维实践中,每个人都形成了自己惯用的、格式化的思考模式,当面临现实问题时,我们能不假思索地把它纳入特定的思维框架,并沿着特定的思路对它们进行思考和处理,即思维定势。思维定势的益处是用来处理日常事务和一般性问题,能驾轻就熟,得心应手。然而,思维定势的弊端在面临新情况、新问题而需要开拓创新时,就会变成“思维枷锁”,阻碍新观念、新点子的构想,同时也阻碍了对新知识的吸收。正如法国生物学家贝尔纳所说的:“妨碍人们学习的最大障碍,并不是未知的东西,而是已知的东西。”学习“物质的量”时,按照汉语习惯,“物质的量”相对于“物质的质”而言,通常理解为“物质(宏观或微观)的多少”,这与科学的含义有很大的差别。

2.4相关概念干扰

概念之间既有联系、又有区别,学生常常不能区分相邻、相近的概念,这是相关概念干扰的表现之一。如物质的量与质量、物质的量与它的单位摩尔、摩尔质量与相对分子质量、物质的量浓度与溶质的质量分数等概念间的关系是学生概念学习中常见的混淆点。

相关概念干扰的表现之二是前概念的干扰。学习科学概念前,学生已经从日常生活或以前的学习中积累了不少与概念有关的感性经验,对客观事物有了一定的认识,形成了一定的概念,其中有些是片面的、错误的,从而干扰了科学概念的形成。

3教学模型的构建

根据奥苏贝尔的同化说,知识的获得过程是以文字或其它符号表征的意义同学习者认知结构中原有相关的观念(包括表象、概念或命题)相联系并发生相互作用后,转化为个体的意义的过程,即知识掌握过程是材料的逻辑意义与学生的原有认知结构中的原有观念相互作用,从而产生个体心理意义的过程。结合概念学习的心理过程,从更普遍的意义上构建化学概念教学的过程模型(表1):

由上述的全新概念“摩尔”和导出概念“摩尔质量”的教学实例中可以反映出,在具体概念的教学中均可以采用概念教学的基本过程模型进行教学。

4概念教学的策略

根据上述关于概念建立的心理过程和概念教学的过程模型的讨论,我们可以得出与概念教学过程相适应的解决策略。

4.1形象直观演示,获得感性知识

通过运用生动的直观形象,如观察实验(演示实验或学生实验)、图表和模型、计算机模拟动画等,让学生从中了解有关某概念的部分信息,获得有关概念的感性认识,为认知结构中接纳和理解这一概念奠定基础。在获得感性认识的基础上,指导学生自觉地将观察到的宏观现象与物质的微观变化联系起来思考,进而从微观角度加深对概念的理解。

然而,由于人的感知系统的容量有限,教学中应精选直观教学的内容,尽可能采用最常见、最易得、最经济和最形象的直观内容,从而确保学生对感性知识的有效获取。

4.2分析特征信息,抽象相关信息

在教学情境中,有意提供一系列与概念相关的信息,进行辨别、提取和概括。然后从部分事例中已确认的特征信息入手分析各类事例,逐步舍弃干扰信息,使特征信息的精度和准度提高,在此基础上,将有关特征以一定的方式联系组合起来,构成概念的抽象定义。在这一过程中,关键要指导学生的思维方法和思维过程。

对特征信息进行抽象,有助于用语言清晰准确地表述和有序地记忆这些特征,这就成为学生掌握概念的前提和关键。

4.3准确表述内涵,清晰界定外延

引导学生将与某概念有关的本质特征组合起来,用语言或文字形式加以概括和提炼,即表述,可分为具体性表述和定义性表述,具体性的表述“口语化”特征明显,所反映的信息一目了然,把握比较容易;而定义性表述则更能反映概念的丰富内涵,文字简练、表达精确、逻辑性强。如化学键是相邻原子间强烈的相互作用。

概念的外延常常通过定义中反映特征信息的关键词来限制。如化学键概念定义中的“相邻”、“强烈”。

4.4深化发展概念,形成概念系统

人的思想是由现象到本质、由肤浅到深刻不断深化、以至无穷的过程。人的认识不断深化,必然促使概念不断发展。如氧化还原反应概念学习经历“氧的得失—化合价升降—电子转移”的过程,从而使概念及其相关概念的定义趋于完善。这说明概念是发展和变化的,因此,在具体教学中,应尊重学生的认知水平,恰如其分地描述和表达不同阶段的概念。

学习心理学认为,一个重要概念,是在概念的系统中形成和发展的。引导学生利用认知结构中原有的、适当的概念系统来接纳和学习新概念是十分必要的。其主要方法是:将新概念与认知结构中的适当概念相联系,并促进对新概念的关键属性或定义的理解;将新概念与原有概念进行精确分化,找出它们之间的相同、相似和相异之处;将相关的概念融会贯通,组成整体结构,便于记忆和运用。

通过以上论述,可以认为在概念教学中均可以采用上述构建的概念教学的过程模型来设计并组织教学,但教学的原则是因材施教,教学的标准是有效教学。我们认为,应从学习内容、学习者和教育者三方面思考和探讨“因材施教”中的“材”:具体概念的教学过程模型不是唯一的、固定的,它应随着教学体系、教学内容的变化而变化,它应随着学生年龄、学习能力的变化而变化,它还应随着教师的教学风格与教学资源的变化而变化。但不管选择何种教学过程,概念教学都应具有某些共同特征和基本过程,都应遵循有效教学的目标。

参考文献

林海斌1梁凌志21.温岭市温中双语学校,浙江台州3175002.温岭市新河中学,浙江台州317502

[1]胡卫平.中学科学教学心理学,北京:北京教育出版社,1999

[2]陈至为,贾秀英.中学科学教育,杭州:浙江大学出版社,2001

第5篇:生物信息学基本概念范文

一、概念图在中学物理教学中的应用

1、激发学生学习物理的兴趣

中学物理研究的是自然界最基本的规律,反映的就是现实生活的内容,概念和理论来源于自然和社会实践。概念是物理学科知识的基础,然而在多年的物理教学中我发现,学生往往忽视了对基本概念的掌握,特别是不能形成概念网络,更不能比较深刻地了解概念间的联系,这成为大部分学生学习物理困难的主要原因。

现在我们可以利用inspiration、mindmanager、personalbrain、brainstorm等制作概念图的相关软件,在老师的指导下由学生自己总结概念结构,学生根据自己的理解制作物理知识系统的概念图。由于这种设计符合自己的思维特征,因此这种方法学生十分愿意接受。

2、促使物理教师改变教学观念

传统的“以教师为中心、以课堂为中心、以教材为中心”的课堂教学模式中,教师是以“一书、一嘴、一粉笔”进行教学的,教师是中心,学生是陪衬,学生必须围着教师转,整个课堂就是教师的“一言谈”。概念图做为一种新型的教学手段,可以使教师改变自己传统的教学手段,提高课堂教学的效率。物理课堂教学设计中运用概念图,能将原来显现在教师头脑中的教学内容、教学理论和教学经验以视化的形式表现出来,相当于在虚拟的环境中完成了一次教学过程,教师能更有效地组织教学内容。如果教师能把概念图用于教学设计,并在课堂中用作教学策略,而且也要求学生在学习过程中自己去尝试建立概念图,他们就能成功地把握概念的意义,也能成功地对自己的学习进行控制。

3、培养学生的物理思维,提高学习效率

概念图作为一种学习的方法,能促进学生的思维发展、合作学习和创造性学习,最终使学生学会学习。

概念图清晰地展现了物理概念间的关系,可以帮助学生理清新旧知识间的关系,促使他们整合新旧知识,建构物理知识网络,浓缩知识结构,从而使学生从整体上把握知识。 概念图能有效地改变学生的认知方式,促进学生的意义学习、合作学习和创造性学习。通过学生共同合作制作概念图,或者教师和学生共同来完成概念图,有助于协作小组成员之间共同发展认知和解决问题。师生通过概念图的制作、修改、反思和再设计的往复循环,可以不断完善概念图,学会反思自己的学习过程,从而学会自我导向学习,最终使学生学会学习,大面积提高学生的学习成绩。如在完成力与运动、磁场的单元教学之后,为了使学生能够清晰掌握相关的概念结构,可让学生回忆所学习的基本知识和它们的关系,建构概念图。在以后的学习过程中,当他们有新的想法,可以再进行改进、完善。这种方式可以促使学生积极动手和动脑思考,使他们能够从整体上掌握基本知识结构和各个知识间的关系,在头脑中形成清晰的概念网络。

4、评价物理学习的手段

概念图作为教学评价的工具适用于物理课堂教学活动不同阶段的教学评价。传统的物理学习评价方法常常只能考查学生离散的物理知识,而概念图却可以检测出学生的物理知识结构及对物理知识间相互关系的理解和产出新知的能力,有效地评价学生的创造性思维水平。通过让学生养成画概念图的习惯,教师可及时了解学生学习的进展与诊断学生的问题,从而改进教学,是形成性评价的好方式。因此,概念图不仅可用以评价学习者对知识理性认识的清晰性,同时也可了解其情意品质。

二、概念图应用于教学过程中存在的问题

1、教学观念落后

多数教师只是把概念图作为一种教具在课堂教学中演示,学生在学习过程中依然是被动接受,实际上是以教师为中心的接受式教学模式,不能体现素质教育的要求。因此,在教学中应注重教师培训,转变观念,引入新的教学模式。

2、教学环境落后

第6篇:生物信息学基本概念范文

【摘 要 题】图书情报工作论坛

【英文摘要】This paper is designed to&n……

信息素质教育是20世纪70年代形成的一个新兴研究领域,它的出现是与社会的发展变化相一致的,它是现代社会的产物。作为一门在信息科学与教育学交叉点建立起来的信息素质教育学,是一门以信息检索技能为研究对象,探讨信息检索技能的生成、本质、功能及其发展规律的科学。

经过国内外学者近30多年的初步探索,信息素质教育学科体系初步形成。随着信息素质教育理论研究的深入,构建科学的、具有中国特色的信息素质教育学理论体系,已成为学术界普遍关心的一个课题。本文试图以当代信息素质教育学的研究主题的反思为基础,探讨此研究领域的基本架构。

1 信息素质教育领域国内外研究现状述评

1.1信息素质(Information literacy)的内涵

近年来国外大学教育发展的一个重要趋势是“信息素质”教育(Information Literacy)。因特网上有500多个专门的网站,1200万条网络信息涉及这方面的内容。

在技术变革和信息爆炸的时代中,不管是学术研究,工作还是日常生活中,每个个体都面临着丰富繁杂的信息选择,都必须了解信息需求,知道如何及何时借助各种工具进行信息检索、评价和有效利用,对这种技能的见解逐步形成了信息素质的观念。由于信息素质对个体事业和生活的重要性,在某种程度上,它也是信息社会中的重要生存技能之一。

信息素质的概念首先是从图书馆检索技能发展和演变过来的,最早是1974年由美国信息产业协会主席保罗·泽尔斯基(Paul Zurkowski)提出的,当时将信息素质解释为“解决问题时利用信息的技术和技能”。1989年,美国全国图书馆协会(American Library Association)对信息素质作了定义:“个体认识信息需求,检索,评价和有效利用信息的综合能力”[1]。1998年,美国全国图书馆协会和教育传播与技术协会制定了信息素质的九大标准,分信息素质、独立学习和社会责任三方面的表述,丰富了信息素质的内涵。2000年,美国全国图书馆协会的学院与研究图书馆协会颁布了适用于高等教育的信息素质标准和性能指标。

在我国,信息素质通常被定义为:从各种信息源检索、评价和使用信息的能力,是信息社会劳动者必须掌握的终身技能。信息素质的内涵包括:认识到准确和完整的信息是明智决策的基础;认识到信息需求及问题所在;制订信息检索策略;掌握信息检索技术;能评价信息;根据实际用途组织信息;将新信息融会到现有知识结构中,在批判性思考、解决问题和交流的过程中使用信息。

早在1985年美国教育家就认为,面向21世纪的学生,除了要接受传统的阅读、写作和数学教育外,还需要具有信息交流、批判性思考和解决问题的能力。教育的最基本的目标是让每个学生学会如何识别所需的信息,如何寻找、组织、并能以明晰和有说服力的方式加以描述。1992年美国“信息素质全国论坛”将45项评价标准列为全国教育总目标的评价内容。

长期以来,信息素质教育仅局限于将专门从事信息服务的学生中间,主要教学内容是传授图书馆学、情报学知识,因为这一学科所要研究的正是如何搜集、整理和提供信息。但根据信息社会对各行各业的人才需求来看,了解和掌握信息组织、检索和分析加工等一些图书馆学、情报学理论知识和方法对于加强自身的信息素质是非常有用的,是信息素质教育中的一个重要内容。国外不少图书馆学校开始开设这类远程教育课程,网络上也有各种类型的用户培训服务。知识经济时代,文献信息的传播方式、渠道等都发生了变化,教师的角色也会发生变化。这些问题的提出对信息检索课程体系的研究和教育都提出了新要求。信息素质是大学生必须具备的基本素质之一,培养学生的信息素质也是高等教育的基本任务之一。

1.2 国外信息素质教育研究现状述评

美国 1988年,学校图书馆员协会出版了《信息就是力量》指南,提出学校媒体中心应提供各种形式的信息获取途径,培养学生利用信息的兴趣和能力,与其它教育者一起制定适应学生的学习策略。1987年,美国图书馆协会成立了信息素质教育委员会,目的是明确信息素质在学生学习、终身教育和成为一个良好公民的过程中的作用,设计在正式和非正式学习环境下的信息素质教育模型,决定继续教育和教育培养的发展方向。委员会由教育界和图书馆界主要负责人组成。1989年1月,委员会出版了关于信息素质问题的报告(ALA Presidential Committee on Information Literacy)。报告论述了信息素质教育对个人、企业、国家的重要性,分析了信息素质教育的机遇,说明了信息时代学校的主要任 务,并提出了若干建议。1990年,“国家信息素质教育论坛”(The National Forum on Information Literacy)成立,目前已发展到超过65个国家组织委员会代表企业、政府、教育等不同部门。1990年,美国大学与中学教育中部协会的高等教育委员会制定了“信息素质教育结果评估大纲”,1996年又确定了“信息素质教育在普通教育计划中的框架”。1994年至1995年,美国对全国3236所大学的信息素质教育情况进行了调查。美国高等教育协会(AAHF)成立了“信息素质教育行动委员会”,定期开展活动。1998年美国学校图书馆协会(AASL)和教育通信和技术协会(AECT)出版了《学生学习的信息素质标准》,对中小学学生的信息素质能力标准进行明确的规定。2000年1月,美国大学和研究图书馆协会(ACRL)通过了《高等教育中信息素质能力标准》,包括5项标准和22项操作说明,作为教师或图书馆员评估学生信息素质能力的一个指南。

英国 20世纪80年代以来,英国也开始了新一轮的教育改革。1998年英国议会通过了《1998教育改革法案》。该法案以法令的形式规定从1989年起全国所有中小学实行统一课程,法案规定开设两类课程:核心课程和基础课程。“信息技术和信息检索”课为中小学的公共基础课。

日本 1984年,中曾根首相成立临时教育审议会,三年中提交了四次咨询报告。第一次咨询报告提出了八项基本报导思想,明确指出:“适应信息化社会”,可见日本在80年代即重视“信息化意识”的培养,加强信息技术与信息检索课的教学。

1.3国内信息素质教育现状述评

我国高等学校的信息素质教育源于1984年教育部下达的[84]教高—字004号文件《关于在高等学校开设〈文献检索与利用〉课的意见》[4]。该文件规定在全国有条件的高校广泛开展文献检索与利用课教育,旨在提高大学生的情报意识和文献检索技能。1992年,国家教委印发《文献检索课教学基本要求》,标志着我国高校的文献检索与利用课教学开始朝着规范化方向迈进。1996年高等教育出版社先后出版了《科技文献检索教学大纲》(国家教委1994年12月编发)和《社科文献检索教学大纲》(国家教委1995年编发),该大纲的编发,对于规范教学内容、指导教学工作、保证教学质量、搞好课程建设、进行教学质量评估等有了重要依据。2002年,教育部高等学校图书情报工作指导委员会主办的全国高校信息素质教育学术研讨会在黑龙江大学召开。首次将文检课教学学术研讨会改名为“信息素质教育学术研讨会”,表明文献检索课教学已进入了新的阶段,发生了质的变化,图书馆用户教育又向前迈进了一大步。最近几年,教育部大力提倡包括信息素质教育在内的素质教育,高教司已在“新世纪高等教育教学改革工程”中立了一个“网络条件下的文献信息用户教育研究”项目,委托清华大学图书馆刘桂林馆长主持研究。

2.构建我国信息素质教育学科理论体系的原则

任何一门学科,都必须有它不同于其它学科的理论体系。形成独特的理论体系,是一门学科建立的标志,学科理论体系是否完善,在很大的程度上反映一门学科的发展水平。关于理论体系在学科发展中的重要性,黑格尔在谈到哲学的理论体系对哲学的重要性时的看法很具有代表性。他曾提出,“哲学若没有体系,就不能成为科学。没有体系的哲学,只能表示个人主观特殊心情,它的内容必定是偶然性的。哲学的内容,只有作为全体中的有机环节,才能得到正确的证明,否则便只能是无根据的假说或个人的主观确信而已。[3]”鉴于理论体系在学科发展中的重要作用,构建学科理论体系一直是学科建设的重心所在。

为此,著名科学史学家G.霍尔顿提出:“科学的主要任务,就是要从那些混乱和不断变化的现象中探索出一个有秩序和有意义的协调一致的结构,并以这种方式解释和超越直接的经验。”[4]对于信息素质教育学学科而言,这些道理同样是适用的。

万物皆系统。信息素质教育学科及其理论也不例外。我们在构建信息素质教育学理论体系时,除了应用唯物辩证法外,还应以系统论所提示的一系列科学方法、原则作为指导。

2.1整体性原则

人们对事物的属性认识要进入到“组织性”、“相关性”、“有机性”的认识,从对事物的单向研究,从而开拓对事物整体性研究到非线性研究,从而开拓对事物整体性研究的新领域。我们不能将视野仅仅局限于传统的文献检索和情报学,而应开阔视野,将宏观信息与传统的文献检索统一起来,透过各个子系统,要素之间的组织性、相关性、有机性,从总体上构建信息素质教育学科理论体系。

2.2有序性和动态原则

有序性原则认为,系统内部诸要素之间的相关性有一定规则,而不是杂乱无章的,认识一个系统就是要认识相关性中产生的“有序性”或规则性。这一原则表明,系统内部的“序”必须在与环境的物质、能量信息的动态交流中,才能保持和发展起来。人们从系统内在的有序过程和系统与环境的交换过程来分析系统,认识就进入到系统整体性的本质中。这就要求我们在构建信息素质教育学理论体系时,要充分考虑理论体系内部各个理论要素之间的相关性,使之保持有序性;同时,要从动态上研究信息素质教育学理论与信息环境之间的关系。以社会信息环境作为研究的起点,可深入到信息素质教育系统整体性的本质中。

2.3等级系统和系统发展原则

等级系统原则是将系统与系统之间的关系划分为等级式的不同层次。系统的形成是从无序向有序、从低级有序向高级有序、从低级系统向高级系统不断演化的历史过程。系统的等级存在本身是系统自身发展变化的产物。我们必须从发展的观点,从有序性不断飞跃的观点看待事物的系统。这就要求我们在构建信息素质教育学理论体系时,充分考虑各个子系统之间的层次性。

3.构建信息素质教育学理论体系的方法论基础

科学方法论是关于科学认识活动规律的概括和总结,是关于科学研究方法的理论。科学发展史表明,任何一门学科的理论研究,只有应用科学的方法,才能真正揭示事物的内在规律,建立起科学体系。科学的方法论是构建一门学科的根本前提,也是一门学科走向成熟的标志。因此,构建信息素质教育学理论体系,必须以科学的方法论为基础,

3.1确定学科的逻辑起点是构建学科理论体系的关键

一门学科的理论体系,是指该门学科的概念和联结这些概念的判断所组成的逻辑系统。构建学科理论体系,关键就在于确定学科的逻辑起点。所谓学科的逻辑起点,就是学科理论体系中最抽象、最简单的概念,是范畴体系的出发点或称逻辑始项。作为构建学科理论体系逻辑起点的概念,必须符合以下几个规定:

首先,作为逻辑起点的概念必须是科学的概念。从逻辑学的角度看,概念有科学概念和日常概念之分。作为逻辑起点的概念必须是科学概念,必须是反映客观现实的概念而非主观臆造的概念,必须是经过分析、综合、抽象、概括等思维过程所形成的具有明确的内涵和外延的概念,人们对该概念所指代的东西不会产生误解和歧义。

其次,作为逻辑起点的概念必须 是学科概念中最基本、最简单、最抽象的概念。任何一门学科都会有很多科学概念,但并不是任何一个概念都可以充当逻辑起点,作为逻辑起点的概念必须是一个高度抽象化的、在科学理论体系中属于核心地位、起着基础性作用的概念,本门学科的其它概念均可以通过它加以说明[5]。

再次,作为逻辑起点的概念必须是包含了所有研究对象的一切矛盾的“胚胎”和“萌芽”的概念,从这个概念出发,可以推演出学科理论体系中的所有概念和关系。

最后,作为逻辑起点的概念必须能体现逻辑与历史的统一。恩格斯指出:“历史从哪里开始,思维进程也应当从哪里开始,而思维进程的进一步发展不过是历史过程在抽象的,理论上前后一贯的形式上的反映,这种反映是经过修正的,然而是按照形式的历史过程本身的规律修正的。这时,每一个要素可以在它完全成熟而具有典范形式的发展点上加以考察。”[6]从恩格斯的话可以看出,学科理论体系的逻辑起点应与学科研究对象领域内人类实践活动的起点相一致,学科理论体系的逻辑演进应与学科研究对象领域内人类实践活动的发展相吻合,能够体现逻辑与历史的统一。

3.2从抽象上升到思维的具体是构建学科理论体系的基本思路

从逻辑学的角度看,任何理论体系都是一个范畴体系,都是通过范畴体系来解释其所研究的全部对象的。那么,怎样确立范畴体系呢?马克思在《政治经济学批判》导言中指出,人们对事物的认识是沿着从具体到抽象、由抽象到具体两条道路进行的。第一条道路是“从实在和具体开始,从现实的前提开始,先是获得“一个混沌的关于整体的表象,经过更切近的规定之后,……就会在分析中达到越来越简单的概念:从表象中的具体达到越来越稀薄的抽象,直到达到一些最简单的规定”。总之,根据马克思主义的观点,构建一门学科理论体系的方法就是从抽象上升到具体。

3.3逻辑分析、演绎推理等思维过程是构建学科理论体系的主要手段

我们把学科理论体系中最抽象、最简单的概念作为构建学科理论体系的逻辑起点,相应地,我们把与之相对应的最具体的概念、原理称之为逻辑终点。从逻辑起点向逻辑终点,即从最抽象的范畴向最具体的概念推进,必须通过分析、综合、归纳、演绎等思维过程,推演出一系列中介概念,使理论体系的构建沿着最抽象的概念这个逻辑起点经一系列中介概念到达逻辑终点,同时找出概念间的相互关系、原理间的必然联系,从而构建起学科的理论体系。

在构建学科理论体系的过程中,分析、综合、归纳、演绎等思维过程都起着重要的作用。我们通过归纳、分析、综合对经验事实进行整理总结,形成学科理论体系赖以建立的基本概念和基本原理,之后又通过分析、综合特别是演绎推理揭示概念间的相互关系和原理间的必然联系,从而构建一个逻辑严密的理论体系。

以上是构建学科理论体系的科学方法论的基本精神。按照这种方法论构建学科理论体系的典范就是马克思的《资本论》。在《资本论》中,马克思确定“商品”这一概念为逻辑起点,根据从抽象到思维的具体方法,从“商品”逐步推演到“货币”、“资本”、“剩余价值”等,最后到达逻辑终点“阶级”,从而构建起科学的《资本论》理论体系。那么,按照这种方法论构建的信息素质教育学理论体系又是什么样的呢?

4.我国信息素质教育学科理论体系的结构和内容

按照科学的方法论构建信息素质教育学的理论体系,就是要将信息素质教育学的理论体系按照从抽象上升到思维的具体的思路展开。首先,要找出该门学科的最基本、最抽象的科学概念作为理论体系展开的逻辑起点。由于确定逻辑起点的实质是揭示该门学科的研究对象是一种什么样存在,因此一般将这一部分内容称之为存在论。其次,从作为逻辑起点的最基本、最抽象的概念推演出能够抵达逻辑终点的中介概念,形成与之相联系的相应的判断,即该门学科的基本原理和规律,揭示事物的本质。由于这一部分主要是揭示事物的本质,因此,一般将这一部分称之为本质论。最后,从基本原理和规律向逻辑终点推进,推演出基本原理和规律在具体中的体现,得出各种具体的逻辑结论。在应用性学科中,逻辑终点就是基本原理和规律在实践中的应用,因此这一部分一般称之为实践论。

4.1信息素质教育学存在论

存在论部分的中心任务就是确定信息素质教育学的理论体系的逻辑起点。我们认为信息素质教育学的理论体系的逻辑起点是信息素养。那么,这一概念是否符合一门学科的逻辑起点所必须具备的规定性呢?答案是肯定的。首先,信息素养是一个科学概念,它所反映的是现实的客观存在,具有明确的内涵和外延,是广为人们接受的概念。其次,信息素养是信息素质教育学学科中最基本、最简单、最抽象的概念,其它概念(如信息素质意识、信息素质关系、信息素质教育活动)均可以通过信息素养加以说明,它们都是客观存在和发展的。信息素养在信息素质教育学科理论体系中居于核心的地位,起着基础性作用。再次,信息素养包含了信息素质教育学一切矛盾的“胚胎”和“萌芽”。由此我们可以推演出信息素质教育的本质、信息素质教育的基本规律、信息素质教育准则、信息传播伦理等一系列下位概念。

存在论部分主要讨论以下二个方面的问题:

·信息素质教育的沿革:由于学科理论体系的逻辑起点应与学科研究对象领域内人类实践活动的起点相一致,学科理论体系的逻辑演进应与学科研究对象领域内人类实践活动的发展相吻合,因此,存在论中我们首先从信息素质教育的历史发展来探讨信息素质教育学是如何顺应社会的需要而产生和发展的。

·信息素质教育的存在价值:信息素质是构成终生学习的基础,是各门学科、所有学习环境和所有不同层次教育的根本因素之一。信息素质包括各种有效地使用信息技术和和信息资源的技能:是一种自由的艺术,包括了社会、文化和哲学等内容。

4.2信息素质教育学本质论

信息素质教育学本质论,主要是探讨信息素质教育的基本原理。这一部分主要讨论两个方面问题:

·信息素质教育的本质:信息检索技能是信息素质教育学的研究对象,对信息检索技能的认识直接制约着人们对信息素质教育学的理解和把握。信息素质教育又称信息素养教育,它是个体认识信息需求、检索、评价和有效利用信息的综合能力[8]。

·信息素质教育学的研究对象:信息素质教育的形成有其特定的社会背景,即信息的激增、信息经济的崛起与壮大、信息技术日新月异的发展以及人们观念的更新。因此,我们可以说,它的形成根植于社会实践的需要,其存在和发展有牢固的根基。因而,我们可以认为信息素质教育学的本质是一门应用性和综合性的边缘学科,是一门以信息检索技能为研究对象,探讨信息素质教育的生成、本质、功能及其发展规律的科学。

4.3信息素质教育学实践论

揭示信息素质教育学的本质和研究对象,目的在于用理论指导实践。由于信息素质教育学主要是一门应用性学科,因此,实践论在信息素质教育学理论体系中占有十分重要的地位。实践论部分主要讨论的问题有:

·信息素质教育基础:主要研究信息素质教育学的基本理论问题,包括学科性质、研究对象、体系结构、理论基础和相关学科等。

·信息素质教育学方法论:主要研究信息素质教育学方法体系构成及其内容。

·信息素质教育学发展史:人类的信息素质教育可追溯到中国古代传统的书籍提要,因而,研究信息素质教育的历史发展无疑是必要的。通过对其发展史的研究,我们可以借鉴以往的经验,为现代信息素质教育提供有益的启示。

·信息资源理论研究:以信息资源作为研究对象,研究信息资源的基本概念、类型、结构、布局以及信息资源的成本、价值问题,目的是进一步对信息素质教育作进一步深入的研究。

·信息政策研究:主要以信息政策的作用、类型、制定的原则、程序等为研究方向,从理论上为信息政策的制定和有效实施提供保证。

·信息素养教育学:该分支学科探讨社会环境对信息素质教育研究人员的知识结构、实际技能、人才本身的素质等方面的要求,教学方法与手段的研究,以及如何确定培养目标和课程体系以更利于人才的培养等等。

·信息素质 心理学:该分支学科主要研究人与信息的关系,信息对人的心理和行为的影响及如何消除信息给人们造成的不利心理影响,如何培养健康的心理素质等。

·比较信息素质教育学:该学科主要是通过从社会、政治、经济、文化、思想和历史的角度对跨国、跨地区和不同环境下的信息素质教育活动进行比较分析,以及信息素质教育与其它学科关系的跨学科研究等。

·信息素质教育学的发展论:以信息素质教育的未来发展为研究基点,主要研究信息素质教育的未来发展趋势,包括使用的技术手段、方法及现代信息素质教育从理念到方法的差异等。

总之,该体系以信息素质教育学科的研究对象为逻辑起点,体现了它的学科性质,反映了它的研究内容,从不同角度和层面对信息素质教育进行剖析,构建信息素质教育学科的分支学科。当然,信息素质教育学科是一门正在发展中的学科,因而,它的理论体系必将处于不断丰富和完善中。随着学科建设的推进,最终形成一个相对完善,比较成熟的理论体系。信息素质教育学科研究在21世纪必将迎来一个全面发展和繁荣的时代,成为信息科学乃至整个人文社会科学中一门倍受人们关注、青睐和重视的新兴边缘交叉学科。

【参考文献】

[1]ALA.America Library Association Presidence Committee on Information Literacy.Final Report.Chicago,1989

[2]丛敬军.从文献检索课教学到信息素质教育.情报资料工作,2002,(6)

[3]黑格尔.小逻辑(中译本).北京:商务印书馆,1980

[4]黄顺基主编.科学论.郑州:河南大学出版社,1990

[5]刘宝存,马忠虑.关于构建研究生教育学科理论体系的思考.学位与研究生教育,2000(6)

[6]马克思恩格斯选集.第二卷.北京:人民出版社,1972

第7篇:生物信息学基本概念范文

【关键词】医学生物学;教学方法;环境

1.生物形态结构的教学

1.1 教学特点

生物的形态结构是生物的生活习性和生理功能的基础,在《医学生物学基础》课中占较大比重。形态结构部分,不但专用名词较多,而且内部结构较细微复杂,学生难以想象和记忆。因此教学过程中应根据信息加工理论,积极引导学生参与信息的输入——加工——贮存——输出过程,提高学生的记忆水平。其教学的主要过程是:激发注意主动获取信息双重编码深入加工信息加强联系有效贮存信息反复提取正确输出信息。例如,眼球的结构,首先,通过介绍眼睛的功能,激发学生学习眼球结构的兴趣,通过对挂图、模型、实物等的观察、触摸、解剖,使学生在主动获取信息中,形成正确表象;其次,通过图象、实物与名称相结合,对获取的信息进行双重编码,深入加工信息;第三,将结构与功能相联系,在理解的基础上形成记忆,有效贮存信息;第四,通过各种练习,反复提取和应用相关信息,使之得到巩固、强化并能正确输出,以至形成长期记忆。

1.2 通过阐述生物学的现象、事实或实验结果,揭示生物学的基本理论、观点、规律

如:生命的起源和生物的进化、生物与环境的关系、遗传的基本规律等,都是通过对现象或事实的分析、比较,经过一定的推理判断得出结论或揭示规律。如何引导学生透过现象揭示本质,如何引导学生进行分析、推理、判断,总结规律,提高学生分析问题解决问题的能力,是上好这一类课的关键。根据判断形成的基本原理,这类课的基本教学过程是:列举事实,分析特征突出要点揭示本质分析比较明确外延准确表达给予定义实际运用达到巩固。例如“传染病”的概念:(1)根据学生的基础知识和生活经验,列举常见的疾病让学生分析,如:乙型肝炎、细菌性痢疾、蛔虫病、白化病、侏儒症等,问:上述疾病哪些会传染?哪些不会传染?归纳成表,再问为什么有的病会传染,有的病不会传染,并进一步分析传染病的病因。

2.教学手段

2.1 利用学生熟知地区图片,引出生态系统的概念。再以池塘为例分析组成。(解决教学重点)

2.2 通过多媒体、表演活动及分析情景等引发学生思考,将复杂转变为简单,给学生创造一个充分想象、互助互研的学习空间,激发学生求知的积极性、主动性和创造性,创建民主、和谐、生动活泼的教学氛围,使学生的观察能力、空间想象能力、分析综合能力得以训练。新授课以传授学习新知识为主要任务,它既是学生获取新知识改善知识结构的过程,也是学生认知能力和思维能力发展的过程,因此必须符合学生的认知规律去展开教学。本文根据生物新授课的教学内容,着重从学习心理方面谈谈各类型新授课的教学特点、教学过程、理论依据和教学策略。

2.3 联系学生实际生活,把生命教育有机融入学生活动中。

生物教学中环境教育是一个重要的知识点,环境孕育着人类,同时人类也在影响着环境。在环境教育教学中帮助学生建立起人和自然的和谐共存关系,摆正人类在自然中的地位。联系联合国环境署的决定:从1998年开始,每年世界环境日(6月5日)的主题都将是“为了地球上的生命”而不再更换。我们似乎不难理解环境保护的基础是爱,是每一个地球公民对自己、对他人、对所有生命的爱[1]。同时结合学校开展的素质教育活动,让学生接触生动活泼的生命世界,去田野树林、山川湖泊,看花草树木、虫鱼鸟兽,感受生命的丰富多彩、引人入胜。他们会发现每一片树叶都不同,每一朵花儿都绚丽,从而激发热爱生命的情感和探索生命世界的意趣。引导学生回归大自然,享受大自然,进而热爱大自然,保护大自然。

我们倡导体验、实践式的生命教育。老师用多么生动的话语来说明生命有多么珍贵,都没有学生自己在生活中的感悟来得有用。生命的成长需要生命本身的体验,才是真正意义上的获得,只有亲身体验的东西,才是真正意义上的获得。学校、教师不能越俎代庖,没有学生自己的体验,就无所谓人性的独立,特别是如果没有了学生的心灵的感受,精神世界就会变得贫瘠乏味,精神家园就会荒芜。让学生直接参与,分别感受“真实情境”中人物的各种情绪,体会其中的喜、怒、哀、乐,在此背景下了解自己今后可能碰到的挫折、困难及各种情况,进而学会生活,学会在生活中坚强;理解他人的处境,进而学会体谅别人,学会与人相处。给学生一些问题,让他们自己去解决,使学习成为一种愉悦生命的过程。

3.结论

3.1 首先了解新概念与学生原有概念的关系,在原有概念中寻找新概念的固着点,并揭示两者之间的关系,如上位关系、下位关系、并列关系,引导学生将新概念纳入原有的认知结构中,建立新的概念[2]。例如“群落”这一概念是在“种群”这一概念的基础上通过延伸、扩展形成的,其教学过程是:展示一幅生物群落图,从中找出各种生物,进而复习种群的概念,然后分析各种群之间的关系,如竞争、捕食、共生、寄生及一些间接关系,引伸出“群落”的概念。明确群落是由多个种群构成的,各种群之间必须具有直接或间接的关系,种群受时间和空间的限制,因此群落也必须是指一定的时间和一定的自然区域内多种生物的总和。两者间是一种从属关系,由此将群落纳入种群的认知结构中,使之形成联系。同理,在“群落”的基础上可以引伸出“生态系统”、“生物圈”等概念。然后将个体种群群落生态系统生物圈联系起来进行比较,揭示其内在联系。

3.2 生命教育既是人的全面发展的需要,也是学生健康成长的迫切要求。只有通过多种渠道多种途径,对医学学生进行生命与健康、生命与成长、生命与价值的教育,帮助和引导学生正确处理个人、集体、社会和自然之间的关系,使之学习并掌握必要的生存技能,认识、感悟生命的意义和价值,才能培养学生尊重生命、爱惜生命的态度,学会欣赏和热爱自己的生命,进而学会对他人生命的尊重、关怀和欣赏,树立正确的世界观、人生观和价值观。只要我们的每一位老师都能从我做起,把学生视为一个个独特的生命体,关注学生,关爱学生,努力创造条件发展学生,那样,我们的学校就一定能够成为实现学生生命价值的绿洲。让每一个学生都有机会焕发生命的活力,都有可能焕发生命的活力,这是教育的伟大,也是教育的崇高。

参考文献:

第8篇:生物信息学基本概念范文

关键词:立体化教学资源的内涵

中图分类号:G633.7文献标识码:B文章编号:1672-1578(2015)06-0296-01

随着计算机技术、网络技术和多媒体技术的发展,教育教学模式和教学手段发生了很大的变化,学习空间不断拓展。学生获取知识的途径除从书本和课堂获取信息外,更多的是从计算机、Internet获取知识。这就要求教育管理者和教学组织者不仅要抓好课堂教学的组织和实施,更重要的是如何利用现有的教学资源,科学整合,系统开发,努力建设全方位、多层次、系统性的立体化教学资源体系,以适应现代教育的发展需要。

立体化教学资源是以现代化的信息技术为手段,以适合远程传输的数字化教育教学软件为教材,以Internet/Intranet为学习和管理环境,以自主式、开放式、交互式学习为主体的学习模式,以媒体素材为基础,适用于多层次教学对象,覆盖教学的全过程各个环节而构建的教学资源体系。立体化教学资源从纸质教材到数字教材,从传统教室到现代化网络,从简单媒体到高技术多媒体;按预定目标设计,对相关的教学资源信息进行全方位、多层次、系统性整合,构建了立体化、数字化、实时性的教学空间。

图1立体化教学资源体系的模型

立体化教学资源包括教学信息系统化,教学环境数字化,教学对象层次化三个方面的内涵。立体化教学资源模型如图1所示。该空间就是我们要建设的立体化教学资源系统,对上述内涵可细化为

立体化教学资源=[教学信息1,…]*[教学环境,…]*[教学对象1,…]

系统化教学信息=电子教材+纸质教材+…数字化教学环境=教学支持环境+教学管理环境

教学支持环境=信息交流环境+实验模拟环境+教学评价环境+…

教学管理环境=教师管理环境+学生管理环境+课程管理环境+…

系统化教学信息包括数字化教材和纸质教材,数字化教材包括辅助授课系统、辅助学习系统、电子教案、网络课件和网络课程等。数字化教学环境必须覆盖课程教学的所有环节,包括课前预习环境、课堂讲授环境、课后复习环境、辅导答疑环境、实验模拟环境、学生自测环境、教学评价环境、信息交流环境等。层次化的教学对象为学科教学、远程教学、学习培训,适用各学科的教学和学习等。

在概念学习中,要明确相关概念引入的目的。如"速度"是贯穿运动学的基本概念,为什么要引入这个概念?物体的位置变化可用位移表示,但不同物体在相同的时间内位移不同,位置变化不同,有的物置变化快(如汽车),有的物置变化慢(如自行车),为了区分不同物体的位置变化快慢,就必须引入"速度"这个概念。只有弄清引入某一概念的真正意图,才能对要研究的问题有深入的了解,才能说真正地掌握了一个物理概念。

物理概念主要有两大类:一类是根据物理现象用词语直接表达的概念,如共点力、受迫振动、内能、点电荷、光谱等,它们不但直接影响对物理问题的表达,而且是进一步学习新知识的基础,如"共点力"概念不清,静力平衡以及动力学的问题就难以处理;另一类是用数学语言表达的概念(又称为物理量),如加速度a=Δv/Δt、动能Ek=1/2mv2等,对这些量的表达式,要明确式中符号所代表的含义、各量的单位及其适用条件,如重力势能的表达式E=mgh,是基于物体的重力恒定这一条件,只在高度及纬度变化不太大时才成立。

明确概念的内涵即明确概念所反映的物理现象或过程所特有的本质属性。对于定量概念其内涵一般包括:是描述什么的物理量?是否矢量?它的大小和方向(对矢量)是如何定义的?单位是什么?是状态量还是过程量?如何测量?等等。如加速度引入的目的是为了描述物体速度变化的快慢,定义式为a=Δv/Δt,国际制中的单位是m/s2,是矢量,一个物体的加速度由它所受的合外力与质量决定,教材专门安排了测定匀变速直线运动物体加速度的实验(测量方法之一)。

横向分析物理概念,可以是对概念作横向比较,例如位移和路程、速度与加速度、动量和动能、电场强度与电势、电势与电势能等都有本质的区别与联系,弄清它们的区别与联系,可以加深对概念本质的理解;横向分析也可以是对相似概念采用类比的方法学习,例如学过电场线的概念,理解电场线的性质后,再学习磁感线,可利用表格将电场线与磁感线类比,得出磁感线的概念和性质。这样,可达到对概念的全方位、多角度的认识。

立向的能力提高,一方面要通过正确地运用概念,有针对性的解决有关问题,使物理的抽象上升为理性的具体。另一方面,要注意物理概念发展的阶段性,通过反复加深认识的过程,在越来越广泛的知识和背景上来把握概念。

注重引入设计增强教学魅力

王晓琳

(辽宁省本溪市南芬中学辽宁本溪117014)

摘要:引入是教学之始,新课之端。新颖、生动、活泼的新课引入会大大激发学生对新知识学习的热望。新课引入应精心设计。本文对此进行了论述。

关键词:生物教学;新课;引入;设计;方法

第9篇:生物信息学基本概念范文

关键词:品牌生命系统 功能 结构

问题的提出

二十世纪以来,通过不同学科之间在概念、方法和原理等层面的相互借鉴,产生了许多边缘学科领域。管理学家和企业实践者在这一背景的启示下逐渐发现品牌管理也存在着类似于生命的现象,于是,关于品牌生命性的研究成为品牌管理研究中的热点问题。

在学界和业界都愿意将品牌看做生命个体的同时,不能忽略的是必须首先厘清品牌生命系统的基本结构和功能,因为任何生命都有一定的结构,并以特定的结构作为功能载体从而保持生命系统的整体性。然而品牌是一个兼具社会属性和自然属性的复杂系统,它毕竟不是可以在显微镜下直观观察的“人体”,因此,对于品牌生命系统结构与功能的研究一定需要寻找更恰当的方法来实现。

1978年美国学者J.G. Miller经过多年的研究,在大量科学事实的佐证下提出了生命系统理论(Living System Theory,以下简称LST)。长期以来,LST因其高度概括的普适性理论体系被很多学科所应用。在被广泛应用的同时,LST的理论体系也不断得到发展和完善。它所提供的生命系统本质的内容以及逻辑框架已经逐渐成为许多交叉学科研究可以借鉴的方法论体系。本文将以LST理论为框架展开关于品牌生命系统的研究。

生命系统理论概述

Miller论证了凡是有生命存在的地方均可分为复杂度渐增的八个层次:细胞、器官、有机体、群体、组织、社团、社会和超国家系统。

LST在生命系统八个层次上概括出20个能够完成不同功能的基本过程,这些基本过程与一种或多种生命成分一起构成生命系统的20个子系统,Miller依据作用对象的不同将20个子系统分为三类:8个处理物质与能量的子系统,10个用于处理信息的子系统,以及2个既处理物质与能量也处理信息的子系统,具体表示为以下几种系统:

(一)既处理物质/能量又处理信息的子系统

再生器(Reproducer):执行遗传信息指令或系统章程并调动物质/能量、信息去制造多个相似系统。

边界器(Boundary):在系统内部与环境之间形成稳定的边界,保护系统免受外部环境压力,对物质/能量、信息的出入进行过滤。

(二)处理物质/能量的子系统

吸收器(Ingestor):将物质/能量通过边界输入系统。

分配器(Distributor):将来自系统外部的物质/能量和内部子系统待输出的物质/能量在系统内部移动或传送到有关部分。

转换器(Converter):它能够将进入系统的物质/能量转换成更适合利用的形式。

生产器(Producer):综合物质以供机体生长、修复,并且提供能量以供机体运动,为超系统提品或者信息,形成稳定联结以保持物质/能量输入或从转换器输出。

存储器(Matter-energy storage):存储、维持、恢复物质/能量。

排泄器(Extruder):将物质/能量以产品或废物的形式推出系统。

原动器(Motor):它是指使系统相对于环境或其自身各部分之间发生相动运动。

支撑器(Supporter):使系统的各组成部分维持一定的空间关系,使它们保持一定的固有的形态。

(三)处理信息的子系统

输入变换器(Input transducer):将信息引入系统,并将其转换成适合内部传送的其它物质/能量形式。

内部变换器(Internal transducer):将来自内部子系统的信息转换成内部可传送的物质/能量形式。

通道与网络(Channel and net):由物理空间中单一路线或多条相互联结的路线所组成的通道和网络将信息传送到系统的各个部分。

计时器(Timer):确定节奏并进行计时等。

译码器(Decoder):将输入系统的信息代码翻译或解释为系统内部使用的“私有”代码。

联结器(Associater):是学习过程的第一阶段,它使系统内部各种信息条目之间形成联系。

存储器(Memory):是学习过程的第二阶段,它存储系统内部不同时间阶段的信息,并随时取用。

决策器(Decider):通过决策来指导、协调并控制整个系统。

编码器(Encoder):将系统内部的“私有”信息代码转换成能被其它系统所理解的“公用”代码。

输出变换器(Output transducer):将信息从系统中输出,并转换成外部可传送的物质/能量形式。

Miller抽象出的20个关键子系统对任何层次的生命系统都适用,每个层次的生命系统都有自相似性,他们是全息对应的。

品牌生命系统要素及其功能

(一)品牌生命系统的概念体系