公务员期刊网 精选范文 建立数学模型的方法范文

建立数学模型的方法精选(九篇)

建立数学模型的方法

第1篇:建立数学模型的方法范文

【关键词】 面向对象 仿真建模 模型

计算机仿真技术是以计算机为工具,以相似原理、信息技术以及各种相关应用领域的基本原理与技术为基础,根据系统试验的目的,建立系统模型,并在不同的条件下,对模型进行动态运行的一门综合性技术。而计算机仿真是使用计算机仿真技术,建立相应物理系统的数学模型,并在计算机上解算数学模型的过程。

计算机仿真的核心是系统模型,系统模型的粒度、运行效率直接决定了仿真的效果,只有建立正确的系统模型,才能得到正确的仿真结果,仿真才有意义和价值。在计算机仿真领域,系统模型称为仿真模型,建立仿真模型的过程称为仿真建模,仿真建模的根本目的是建立能够在计算机上解算系统数学模型的系统模型软件。

系统仿真模型软件作为一类软件,在设计、开发、运行和维护等方面符合软件的一般规律。仿真建模作为系统模型数学模型、模型软件建立过程,同样需要方法学指导。

1 面向对象方法

面向对象(Object-oriented,简称OO)思想是一种思维方式,强调思考过程中从现实世界中客观存在的事物(即对象)出发并尽可能地运用人类的自然思维方式。面向对象思想产生于编程语言,目前已经扩展应用于计算机硬件、数据库、软件工程、用户接口、计算机体系结构等多个领域,但在软件工程领域应用最为深入。

基于面向对象思想分析与解决问题的方法是面向对象方法。在软件工程领域,面向对象方法是指以面向对象思想为指导的软件设计与开发方法,强调运用人类在日常逻辑思维中经常采用的思考方法与原则,以对象为中心,以类和继承为基本构造机制来抽象现实世界,以对象、类、属性、方法、封装、继承、消息、聚合等概念对软件进行设计和开发。

2 面向对象仿真建模

仿真建模的根本目的是建立能够在计算机上解算系统数学模型的系统模型软件,为了达到这一目的,必须经历两次建模过程:一是数学模型设计,使用数学语言对系统进行抽象和描述,即数学建模,成果是包含数学公式、数据等元素的文档、图表等;二是模型软件建立,将数学模型转换为计算机软件,使数学模型能够在计算机上进行解算,成果是模型软件,这一过程是狭义上的仿真建模,可分为设计与开发两个步骤。

数学模型设计与模型软件建立这两次建模过程是紧密相关的,采用面向对象方法设计的数学模型,其模型软件必须同样采用面向对象方法建立,即在模型软件设计、模型软件开发均采用面向对象方法。这样一是能够最大化发挥面向对象方法的优势,包括直观、数据抽象、信息隐蔽、模块性、可重用性、可维护性、灵活性等;二是能够保证数学模型能够转换为模型软件,保证数学模型与模型软件的一致。

3 面向对象数学模型设计

数学模型设计使用数学语言对被仿真系统进行抽象和描述,被仿真系统由一系列组成部分构成,按照面向对象方法,可将被仿真系统的各组成部分定义为对象,这些对象可以拥有、传递和处理消息,并能相互作用。更进一步,可将被仿真系统各组成部分作为系统进一步分解为更加详细的对象。将被仿真系统分解并定义为一系列对象是面向对象数学模型设计的第一步。

面向对象思想认为任何现实世界客观存在的事物都可以通过状态和对状态的改变来进行描述,对象也是客观存在的事物,同样如此。在面向对象方法中,对象的状态使用属性来描述,而对象状态的改变使用方法描述,对象之间通过消息相互作用。对象拥有的消息是属性的一部分,对象传递和处理消息的过程是对状态的改变,是方法的一部分。面向对象数学模型设计的第二步是定义对象属性和方法。

对象属性分为静态属性和动态属性:静态属性描述了对象的静态特征,不会发生改变;动态属性描述了对象的动态特征,可被对象方法改变。对象方法描述了改变属性的方式和过程。

从数学的角度看,被仿真系统可使用数学方程来描述。那么,可以认为对象方法描述了数学方程本身,而对象属性则描述了数学方程中的变量。

4 面向对象模型软件建立

模型软件是对被仿真系统数学模型的软件实现,按照软件工程学,模型软件建立可粗略划分为设计和开发两个阶段。

4.1 面向对象模型软件设计

数学模型设计阶段已经明确了被仿真系统的对象组成,以及对象的属性和方法。模型软件设计阶段是连接数学模型与模型软件之间的桥梁,主要任务包括:按照面向对象方法,从软件设计角度对数学模型进行分析,将对象抽象为类,设计类之间的继承、聚合关系;根据仿真目的,从数学模型的对象属性中挑选部分属性作为类的属性,挑选部分方法作为类的方法,增加部分软件运行需要的属性和方法;设计类的实现方式,如编程语言、属性命名、方法的算法等;理清对象之间的关系,设计对象之间消息传递过程。

4.2 面向对象模型软件开发

模型软件开发是仿真建模的最后一个步骤,是采用面向对象方法,根据模型软件设计,将类、对象、对象属性、对象方法、消息通信等实现为软件组件的过程。

软件组件有很多种不同名称,又称为应用程序、程序、函数、模块、动态链接库、子程序或者类。这些名称基于不同的软件语言和协议,都表示一组计算机代码,都可以响应命令和接收数据。具体采用哪个形式,需要根据采用的编程语言、运行环境、重用性要求、模型调用要求等确定。建议采用面向对象编程语言实现模型软件,如C++、JAVA、C#等,并在开发过程中综合考虑运行效率、时间一致性、重用性的要求。

5 结束语

本文对面向对象方法在仿真建模中的应用进行了初步研究,是计算机仿真技术与软件工程方法相结合的一次有益探索。实际上,计算机仿真需要以仿真模型为核心,根据仿真目的构建仿真系统,在这过程中,面向对象方法必然能够发挥积极作用,这是下一步的重点研究方向。

参考文献

[1]周彦.戴剑伟等.HLA仿真程序设计[M].北京:电子工业出版社,2002.

[2]徐庚保.曾莲芝等.数字仿真的发展[J].计算机仿真,2008,03.

[3]王常武.刁联旺等.作战仿真中的实体运动模型[J].计算机工程,2002,30(2):45-46.

作者简介

李宏海(1981-),男,大学本科学历。河北省抚宁县人。工程师。主要研究方向为计算机仿真。

第2篇:建立数学模型的方法范文

一、数学建模的重要意义

把一个实际问题抽象为用数学符号表示的数学问题,即称为数学模型。数学模型能解释特定现象的显示状态,能预测对象的未来状况,能提供处理对象的最有效决策或控制。在小学数学教育中开展数学建模的启蒙教育,能培养学生对实际问题的浓厚兴趣和进行科学探究的强烈意识,培养学生不断进取和不怕困难的良好学风,培养学生分析问题和解决问题的较强能力,培养学生敏锐的洞察力、丰富的想象力和持久的创造力,培养学生的团结协作精神和数学素养。

二、数学建模的基本原则

1.简约性原则。生活中的原型都是具有多因素、多变量、多层次的比较复杂的系统,对原型进行一定的简约性即抓住主要矛盾。数学模型应比原型简约,数学模型自身也应是“最简单”的。

2.可推导原则。由数学模型的研究可以推导出一些确定的结果,如果建立的数学模型在数学上是不可推导的,得不到确定的可以应用于原型的结果,这个数学模型就是无意义的。

3.反映性原则。数学模型实际上是人对现实生活的一种反映形式,因此数学模型和现实生活的原型就应有一定的“相似性”,抓住与原型相似的数学表达式或数学理论就是建立数学模型的关键。

三、数学建模的一般步骤

数学课程标准向学生提供了现实、有趣、富有挑战性的学习内容,这些内容的呈现以“问题情景——建立模型——解释应用——拓展反思”的基本形式展开,这也正是建立数学模型的一般步骤。

1.问题情境。将现实生活中的问题引进课堂,根据问题的特征和目的,对问题进行化简,并用精确的数学语言加以描述。

2.建立模型。在假设的基础上利用适当的数学工具、数学知识,来刻划事物之间的数量关系或内部关系,建立其相应的数学结构。

3.解释应用。对模型求解,并将求解结果与实际情况相比较,以此来验证模型的科学性。

4.拓展反思。将求得的数学模型运用到实际生活中,使原本复杂的问题得以简化。

四、数学建模的常见类型

1.数学概念型,如时、分、秒等数学概念。

2.数学公式型,如推导和应用有关周长、面积、体积、速度、单价的计算公式等。

3.数学定律型,如归纳和应用加法、乘法的运算定律等。

4.数学法则型,如总结和应用加法、减法、乘法、除法的计算法则等。

5.数学性质型,如探讨和应用减法、除法的运算性质等。

6.数学方法型,如小结和应用解决问题的方法“审题分析——列式计算——检验写答”等。

7.数学规律型,如探寻和应用一列数或者一组图形的排列规律等。

五、数学建模的常用方法

1.经验建模法。学生的生活经验是学习数学最宝贵的资源之一,也是学生建立数学模型的重要方法之一。例如,教学人教版课程标准实验教科书数学一年级上、下册中的“时、分”的认识时,由于学生在生活中已经多次、反复接触过钟表等记时工具,看到或听说过记时工具上的时刻,因此,他们对“时、分”的概念并不陌生,教学是即可充分利用学生这种已有的生活经验,让学生广泛交流,在交流的基础上将生活经验提升为数学概念,从而建立关于“时、分”的数学模型。

2.操作建模法。小学生年龄小,生活阅历少,活动经验也极其有限,教学中即可利用操作活动来丰富学生的经验,从而帮助学生感悟出数学模型。例如,教学人教版课程标准实验教科书数学四年级下册中的“三角形特性”时,教师让学生将各种大小、形状不同的三角形多次推拉,学生发现——不管用力推拉哪个三角形,其形状都不会改变,并由此建立数学模型:“三角形具有稳定性。”

3.画图建模法。几何直观是指利用图形描述和分析数学问题。借助几何直观可以把复杂的数学问题变得简明、形象,有助于探索解决问题的思路、预测结果。几何直观不仅在“图形与几何”的学习中发挥着不可替代的作用,而且贯穿在整个数学学习和数学建模过程中。例如,教学人教版课程标准实验教科书数学三年级下册《数学广角》中的“集合问题”时,让学生画出韦恩图,从图中找出重复计算部分,即找到了解决此类问题的关键所在,也建立了解决“集合问题”的数学模型——画韦恩图。

4.观察建模法。观察是学生获得信息的基础,也是学生展开思维的活动方式。如何建立“加法交换律”这一数学模型?教学人教版课程标准实验教科书数学四年级下册的这一内容时,教师引导学生先写出这样一组算式:6+7=7+6、20+35=35+20、300+600=600+300、……,然后让学生认真、有序、多次地观察这组算式,并组合学生广泛交流,学生从中即可感悟到“两个加数交换位置,和不变。”的数学模型。

5.列表建模法。把通过观察、画图、操作、实验等获得的数据列成表格,再对表格中的数据展开分析,也是建立数学模型的重要方式。例如,教学人教版课程标准实验教科书数学四年级下册的“植树问题”时,教师组织学生把不同情况下植树的棵数与段数填入表格中,学生借助表格展开观察和分析,即可建立相应的数学模型——“在一段距离中,两端都植树时,棵数=段数+1;两端都不植树时,棵数=段数-1;一端不植树时,棵数=段数;在封闭曲线上植树时,棵数=段数。”。

6.计算建模法。计算是小学数学教学的重要内容,是小学生学习数学的重要基础,是小学生解决问题的重要工具,也是小学生建立数学模型的重要方法。例如,教学人教版课程标准实验教科书数学六年级下册第132~133页的“数学思考”中的例4时,教师就让学生将实验数据记录下来,然后运用数据展开计算,在计算的基础上即可建立数学模型——过n个点连线段条数:1+2+3+4+……+(n-1)=1/2 (n2-n)。其主要过程如下:

过2个点连线段条数:1

过3个点连线段条数:1+2

过4个点连线段条数:1+2+3

过5个点连线段条数:1+2+3+4

……

第3篇:建立数学模型的方法范文

关键词:初中数学;建模思想;数学应用

利用数学建模的方法是学习初中数学的新方法,是素质教育和新课标的要求,能为学生的数学能力发展提供全新途径,提高学生运用数学工具解决问题的能力,让学生在用数学工具解决问题中体会到数学学习的意义,从而提高数学学习兴趣。

一、数学建模的概念

数学建模就是对具体问题分析并简化后,运用数学知识,找出解决方法并利用数学式子来求解,从而使问题得以解决。数学建模方法有以下几个步骤:一是对具体问题分析并简化,然后用数学知识建立关系式(模型),二是求解数学式子,三是根据实际情况检验并选出正确答案。初中阶段数学建模常用方法有:函数模型、不等式模型、方程模型、几何模型等。

二、数学建模的方法步骤

要培养学生的数学建模方法,可按以下方法步骤进行:

1.分析问题题意为建模做准备。对具体问题包含的已知条件和数量关系进行分析,根据问题的特点,选择使用数学知识建立模型。

2.简化实际问题假设数学模型。对实际问题进行一定的简化,再根据问题的特征和要求以及解题的目的,对模型进行假设,要找出起关键作用的因素和主要变量。

3.利用恰当工具建立数学模型。通过建立恰当的数学式子,来建立模型中各变量之间的关系式,以此来完成数学模型的

建立。

4.解答数学问题找出问题答案。通过对模型中的数学问题进行解答,找出实际问题的答案。

5.根据实际意义决定答案取舍。对于解答数学问题的答案,要根据实际意义,来决定答案的取舍,从而使解答的数学结论有实际意义。

三、初中笛Ы模应用

1.方程模型应用

例1.甲、乙两个水果店各自用3000元购进相同质量、相同价格的苹果,甲店出售方案是:对苹果分类,对400千克大苹果以进价的2倍出售,小苹果则以高出进价10%出售;乙店的方案是:以甲店的平均价不分大小出售。商品全部出售后,甲店赚了2100元。求:(1)苹果进价是多少?(2)乙店盈利多少?哪种销售方案盈利更多?

解析:按建模方法,找出各种变量和等量关系,假设苹果进价为x元,建立方程模型:400x×10%×(■-400)=2100,求得x=5。即苹果进价为5元。就可求出两店购进苹果各600千克,甲店的售价是大苹果10元/千克,小苹果是5.5元/千克,因此,可求出:乙店盈利=600×■-57=1650元,所以可看出甲店的出售方式盈利更多。

本题就是应用方程模型来解决实际问题。

2.函数模型的应用

例2.某超市购进18元一件的衣服,以40元销售,每月可卖出20万件,为了促销进行降价,超市发现衣服每降价1元,月销售增加2万件。求:

(1)月销售量y与售价x之间的销售模型(函数关系式);

(2)月销售利润Z与售价x之间的销售模型(函数关系式);

(3)为使超市月销售利润Z不少于480万元,根据(2)中函数式确定衣服售价范围。

解析:(1)根据题目已知条件可列出销售模型,月销售量=原销售量+降价后增加的销量,可求出函数关系式为:y=20+2(40-x)=

-2x+100

(2)月利润=(售价-进价)×销量,可列出函数关系式为:Z=(x-18)y=-2x2+136x-1800

(3)可假设Z=480,即480=-2x2+136x-1800,整理得:x2-68x+1140=0,解方程得x1=30,x2=38,即售价在30~38元之间可保证利润不少于480万元。本例的数学模型是y=ax2+bx+c一次函数。

3.几何模型的应用

例3.在一条河上有一座拱形大桥,桥

的跨度为37.4米,拱高是7.2米,如果一条10米宽的货船要从桥下通过,求:该条船所装货物最高不能超过几米?

解析:几何在工程上的应用非常广泛,如在航海、测量、建筑、道路桥梁设计等方面经常涉及一定图形的性质,需要建立“几何”模型,从而使问题得到解决。

此题运用垂径定理可得到:BD=■AB=18.7米,根据勾股定理可得:R2=OD2+BD2=(R-7.2)2+18.72,R=27.9米,继续运用勾股定理:EQ=■=27.4米,OD=R-CD=27.9-7.2=20.7米,EF=EQ-FQ=EQ-OD=27.4-20.9=6.7米,所以,该船所装货物最高不超过6.7米。

本题的解答主要运用了“圆”这个几何模型。

总之,培养学生的数学建模方法还可运用表格、图像来建构数学模型,还可以跨学科运用数学公式来构建解决问题的模型,以此提升学生数学建模的意识和建模应用能力。

参考文献:

[1]岳本营.例谈初中数学教学中建模思想的培养[J].数学学习与研究,2014(6).

[2]于虹.初中数学建模教学研究[D].内蒙古师范大学,2010.

第4篇:建立数学模型的方法范文

传统的药代动力学研究取样频繁,病人遭受痛苦大,很难在临床中推广。群体药代动力学的研究方法改变了传统研究方法获取药动学参数的途径,通过将群体研究的方法与Bayes反馈法结合,可以较准确地估算个体药动学参数,优化用药方案。近年来,群体药代动力学发展迅速,国内外有关群体药代动力学的研究日益增多。儿童是一个特殊群体,有关儿童群体药代动力学的研究也在不断开展。但我国关于儿童的群体药代动力学研究还很有限,为更好地提高儿科临床药物治疗水平,推进儿童个体化用药进程,现就有关群体药代动力学方面的知识及其实施和应用进行简要介绍。

1 儿童药物试验和评价面临的困难

目前用于儿童疾病的治疗药物,大多数在上市前是以成年患者为研究对象的。众所周知,儿童并不是成人的缩小版,儿童的药物治疗是有别于成人的。但由于儿童群体的特殊性,一些适用于成人的药物临床试验方法,无法将其应用于儿童。现有的儿童用药剂量多来自于对成人用药剂量的外推,药物安全性方面信息却无法通过简单的外推法获得,因此人们渴望获得直接源于儿童群体的药物研究信息。目前,为数不多的儿童药物临床试验也存在许多问题,例如试验例数不足或缺乏计算依据,试验方案设计中对安全性、有效性的评价标准不规范,药品临床试验中对药物不良反应缺少比较全面的预测等。

在儿童群体中进行药物研究要比在成人群体中进行研究困难得多,主要有以下四方面原因:①有些疾病是在儿童阶段特发的,相对罕见,难以获得试验所必需的样本量;②儿童这一概念自身的多样性给临床试验带来一定的困难,比如试验群体入组年龄的限定问题;③伦理学方面对儿童临床试验的限制;④如何确定试验的终点。

2 群体药代动力学的有关概念

通过药物临床试验计算机仿真(clinical trial simulation,CTS),可以较好地解决以上这些问题。CTS可考察某些特定因素,如人口学特征(包括性别、年龄、身高、体重、体表面积、种族等)、遗传背景(如某些与药物代谢有关的遗传代谢性疾病)以及病理、生理状态等对研究结果的影响。药物临床试验仿真简单而言就是根据试验目的建立仿真模型,然后将试验数据输入模型,通过计算机拟合,定量描述药物的药动学、药效学特征,从而研究给药方案和效应之间的关系,预测不同方案的试验结果并加以分析,从而确定试验药物的有效性和安全性。

群体药动学/药效学(population pharmacokinetics/pharmacodynamics,PPK/PD)的研究方法是目前正在得到广泛应用的一种仿真临床试验[1]。该研究方法避免了传统药代动力学研究方法取样频繁、病人遭受痛苦大、难以推广的缺点,通过分析大量病人零散的临床常规药物浓度监测数据,应用专业软件计算群体药代动力学参数,然后测定病人的1~2个血药浓度,结合病人个体的生物学资料和用药信息,利用Bayes反馈法与药物的群体药代动力学参数混合运算后得到该病人的个体药代动力学参数,从而优化用药方案,指导临床个体化治疗。此法适于儿童、老年人、孕妇等特殊群体。PPK用于儿童药物研究的优势在于:侵入性较小;对于儿童这个特殊年龄段的群体更符合伦理;样本的采集更灵活,减少了对患者的不利影响。因此,有必要开展PPK研究,寻找真正适合儿童的药物治疗方法。试想如果没有PPK的研究方法,那么对于儿童疾病特别是罕见疾病的药物治疗方案的确定,则只能寄希望于国内、国际的合作,将需要投入大量的时间和资源。

概括来讲,群体药代动力学是研究药物在某一特定群体中的动力学特征,通过将药代动力学模型与统计学原理相结合,全面分析药物与机体的相互作用。通过群体药代动力学研究可以了解特定群体的药代动力学和药效动力学的整体特征,求算药代动力学群体参数即参数典型值;观察有关因素对群体药代动力学、药效动力学的影响并确定影响作用的大小;评估群体中个体间、个体内的变异性及测定误差对药代、药效动力学参数的影响等。

3 群体药代动力学模型的建立

与普通药物动力学的研究方法相似,群体药动学也是通过建立药物代谢动力学模型以非线性拟合的方法找出一组药动学参数,使得由模型求出的拟合值与实际观测值之间的偏差最小。

群体药动学模型的建立是群体药动学研究的重点。建立群体药动学模型实际上就是确立和完善预测模型的过程,是药动学、药效学、生理学、病理学、毒理学及数理统计学等多门学科知识的综合运用。

概括来讲,群体药代动力学研究是通过建立药动学和统计学联合模型,将影响药动学参数的固定效应和随机效应统一定量考察,估算药动学参数。定量考察固定效应的模型称为固定效应模型,而表达随机变异的数学模型称为统计学模型。

3.1 群体药动学模型的建立模式

注:OFV是指加入或去除某一影响因素后目标函数值的变化

根据研究目的不同以及分析人员的个人经验不同,加上所采用的药动学模型与误差模型的组合不同,对于相同的一组数据,不同的研究人员得到的研究结果不可能完全相同。

3.2 群体药动学模型的建立过程

3.2.1 样本采集 样本的采集主要通过两种方式实施,第一种是属于前瞻性的,在范围较小的群体内搜集研究资料,并根据药物自身的特点合理安排固定的采样时间;第二种为回顾性的,是在较大的样本群体中进行资料搜集,其标本的采样时间为随机的。

转贴于

3.2.2 模型建立 按以下步骤建立PPK模型:

(1)检视数据:首先要保证数据录入的准确,接着对数据资料进行初步分析,对其中包含的信息尽可能掌握,并检查资料中有无异常数据。

(2)建立基础模型:先建立初始结构模型,即建立药代动力学或药效动力学模型。可以根据相关的文献报道或采用类似药物的模型。例如,丙戊酸、卡马西平、拉莫三嗪,根据文献报道均为一室一级吸收和消除的药物,药代动力学模型采用一室模型。再建立随机误差模型,随机误差的加入形式有加和型、比例型、指数型及混合型,多数情况下,药动学的个体参数与群体参数间是对数正态分布的关系,多采用指数型。最后确定模型参数的初始值,多根据文献值或以往的试验结果进行设定。参数初始值是否处于适当的范围内是影响模型目标函数值能否收敛的众多因素中较为重要的一个因素。

(3)建立全量回归模型:在模型化的初始阶段,由于许多固定效应因素和随机效应因素尚未放入模型中考虑,所以没有必要在这一阶段浪费太多的精力。但在建立全量回归模型的过程中,也就是各因素逐渐加入的过程中,模型所采用的形式要进行一番取舍,取舍的标准主要有两点:一点是拟合吻合度,即模型拟合值与实际观测值之间的吻合程度;另一点是保证模型的相对简单。

(4)建立最终回归模型:模型的建立过程就是个体参数的求算和固定效应与随机效应的区分过程。在建模初期,个体参数与群体参数之间的差异包括了固定效应因素和随机效应因素两部分。在全量回归过程中将个体的混合效应因素加入群体参数中就得到了个体参数。但是为了校验各因素在全量回归模型中存在的必要性,还应采用更严格的标准将各因素逐一从模型中除去,去掉该因素后目标函数值的变化至少大于7.78(df=1)才能将该因素留在模型中。

(5)最终模型的验证:即有效性验证。模型的有效性检验根据验证数据来源的不同可分为外部有效性检验和内部有效性检验,一个模型只有内部有效后才能尝试外推。效能的验证,预测误差是衡量拟合准确程度和精密程度的尺度,其可以再细分为预测偏差和预测精度。预测偏差包括平均预测误差、标准平均预测误差;预测精度包括平均绝对误差、平均方差等。

4 群体药代动力学的应用

笔者曾经所在的课题研究组最先将群体药动学/药效学模型引入我国儿科临床,利用常规监测的血浓研究。药理学研究的重要内容之一。其通过运用各种灵敏的现代分析测定手段,定量分析生物样品(特别是患者用药后血浆或其它体液)中药物或其代谢产物的浓度。随着药师的工作重心向临床药学转移,在临床药效学和药动学研究的基础上,解释患者体内血药浓度

度数据和完整的生物学资料,取得了较好的研究成果,指导常用抗癫痫药物的合理应用。姜德春等[2,3]回顾性地收集了246例癫痫患儿应用丙戊酸(VPA)的临床数据(570个稳态血药浓度),用NONMEM法和USCPACK软件成功建立了中国癫痫儿童VPA的PPK和PK/PD模型,得出丙戊酸在儿童体内的分布容积与体重成正比,清除率与年龄成正比,并定量地计算出某一血药浓度获得不同疗效等级的概率。何大可等[4]建立了测定拉莫三嗪(LTG)的反相高效液相色谱法,收集了60例癫痫患儿应用拉莫三嗪(LTG)完整的临床数据(114个常规监测的稳态血药浓度),应用NONMEM法和USCPACK软件,成功建立了LTG的儿童PPK模型,认为拉莫三嗪在儿童体内的分布容积与体重成正比,清除率与是否同时应用影响肝药酶活性的药物和患儿体重有关。我们曾建立HPLC方法并回顾性地收集了168例癫痫患儿服用卡马西平的临床资料,共229个血药浓度数据[5]。应用NONMEM法对数据进行分析,采用一室一级吸收和消除模型,建立了卡马西平(CBZ)和卡马西平环氧化物(CBZE)的群体药代动力学模型,得到CBZ的清除率与体重相关,分布容积与药物剂量相关;CBZE的清除率与是否合用丙戊酸及体重相关,分布容积与药物剂量相关。并应用已建立的CBZ、CBZE模型预测9例患儿的CBZ、CBZE血药浓度,预测结果良好。张珅等[6]回顾性收集165例服用拉莫三嗪(LTG)的癫痫患儿,303个常规监测的稳态浓度及临床资料,用NONMEM法建立中国癫痫患儿LTG的PPK模型。用平均预测误差(ME)、标准平均预测误差(SME)、平均方差(MSE)、平均根方差(RMSE)及加权残差(WRES)作为模型预测准确程度和精密程度的评价指标,对基础模型和最终模型的预测效能进行比较,经过内部验证和外部验证,所建立的最终模型有良好的稳定性和预测效能。

利用PPK的研究方法能够尽可能充分的了解药物在儿童群体的代谢特点,可准确的预测药物血药浓度,促进临床个体化用药的实施,提高儿童群体的药物治疗水平。

参考文献

[1] 魏树礼, 张 强. 生物药剂学与药物动力学[M]. 北京: 北京医科大学出版社, 2004: 9.

[2] 姜德春, 王 丽, 卢 炜. 用NONMEM法建立中国癫痫儿童丙戊酸钠的群体药动学模型[J]. 中国药学杂志, 2007, 42(4): 291317.

[3] 姜德春, 王 丽, 卢 炜. 用NONMEM 法建立中国癫痫儿童丙戊酸钠的群体药动学/药效学结合模型[J]. 中国临床药理学与治疗学, 2005, 10(11): 12791285.

[4] 何大可,王 丽,王寅初.反相高效液相色谱法同时测定拉莫三嗪和卡马西平血药浓度[J].药物分析杂志,2006,26(2):212214.

第5篇:建立数学模型的方法范文

【关键词】 数学建模 建模方法 应用

【中图分类号】 G424 【文献标识码】 A 【文章编号】 1006-5962(2012)06(b)-0035-01

数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段。当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。

1 数学模型的基本概述

数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是 数学公式,算法、表格、图示等。数学模型法就是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来研究实际问题的一般数学方法。教师在应用题教学中要渗透这种方法和思想,要注重并强调如何从实际问题中发现并抽象出数学问题,如何用数学模型(包括数学概念、公式、方程、不等式函数等)来表达实际问题。

2 数学建模的重要意义

电子计算机推动了数学建模的发展;电子计算机推动了数学建模的发展;数学建模在工程技术领域应用广泛。应用数学去解决各类实际问题时,建立数学模型是重要关键。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分折和解决问题。数学建模越来越受到数学界和工程界的普遍重视,已成为现代科技工作者重要的必备能力。

3 数学建模的主要方法和步骤:

3.1 数学建模的步骤可以分为几个方面

(1)模型准备。首先要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。(2)模型假设。根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。(3)模型构成。根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。(4)模型求解。可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。(5)模型分析。对模型解答进行数学上的分析,特别是误差分析,数据稳定性分析。

3.2 数学建模采用的主要方法包括

a.机理分析法。根据对客观事物特性的认识从基本物理定律以及系统的结构数据来推导出模型。(1)比例分析法:建立变量之间函数关系的最基本最常用的方法。(2)代数方法:求解离散问题(离散的数据、符号、图形)的主要方法。(3)逻辑方法:是数学理论研究的重要方法,对社会学和经济学等领域的实际问题解决对策中得到广泛应用。(4)常微分方程:解决两个变量之间的变化规律,关键是建立“瞬时变化率”的表达式。(5)偏微分方程:解决因变量与两个以上自变量之间的变化规律。

b.数据分析法:通过对量测数据的统计分析,找出与数据拟合最好的模型

可以包括四个方法:(1)回归分析法(2)时序分析法(3)回归分析法(4)时序分析法

c.其他方法:例如计算机仿真(模拟)、因子试验法和人工现实法

4 数学建模应用

数学建模应用就是将数学建模的方法从目前纯竞赛和纯科研的领域引向商业化领域,解决社会生产中的实际问题,接受市场的考验。可以涉足企业管理、市场分类、经济计量学、金融证券、数据挖掘与分析预测、物流管理、供应链、信息系统、交通运输、软件制作、数学建模培训等领域,提供数学建模及数学模型解决方案及咨询服务,是对咨询服务业和数学建模融合的一种全新的尝试。例如北京交通大学在校学生组建了国内第一支数学建模应用团队,积极地展开数学建模应用推广和应用。

5 努力倡导数学建模活动的要求

5.1 积极开展数学建模活动,鼓励大家积极参与

为了提高学生的数学建模能力,学校可以开展数学建模活动,可以是竞赛制的和非竞赛制的,应当对成绩比较优秀的学生给予一定的奖励,从而提高学生的积极性。建模活动要有规章制度,要比较正规化,否则可能会达不到预期效果,而且建模过程竞赛要保证公平、公开,保证学生不受干扰影响。

5.2 巩固数学基础,激发学生学习兴趣

首先数学建模需要扎实学生的数学基础,同时学生要具备较好的理论联系实际的能力以及抽象能力,还有就是要激发学生的学习兴趣,兴趣是学习的最好老师,假设教学课堂中过于枯燥无味,学生容易产生厌倦情绪,不利于学习。数学建模过程本质是比较有趣的过程,是对实际生活进行简化的一个过程,生动和有实际价值的。鼓励学生相互交流,促使学生用建模的思维方法去思考和解决生活中的实际问题,表现优秀的同学可以适度给予奖励评价。

总之,数学建模能力的培养应贯穿于学生的整个学习过程,积极地激发学生的潜能。数学应用与数学建模目的是要通过教师培养学生的意识,教会学生方法,让学生自己去探索?研究?创新,从而提高学生解决问题的能力。 随着学生参加数模竞赛的积极性广泛提高,赛题也越来越向实用性发展。可以说正是数学建模竞赛带动了数模一步一步走向生产和实践中的应用。所以,数学建模广泛应用必成为了社会的发展趋势。

参考文献

[1] 郑平正.浅谈数学建模在实际问题中的应用[J].考试(教研版).2007(01).

第6篇:建立数学模型的方法范文

关键词: 数学教学 模型思想 重要性

引言

初中数学课程是学生学习的重点课程,通过数学课程的科学化教学模式应用,对提升实际教学水平有促进作用。传统教学模式已不能有效适应当前教学发展要求,只有充分注重将模型思想应用在实际教学中,才有利于学生学习效率提高,从理论层面对数学教学中模型思想的应用进行研究,对实际教学发展有着积极意义。

1.初中数学教学中模型思维应用重要性及建模程序

1.1初中数学教学中模型思维应用重要性分析

初中数学教学过程中对模型思维的应用,有助于学生学习效率的提高,让学生在新的学习方法的应用下,在整体数学学习便捷性上得以有效呈现。数学这一学科本身就是模式的科学,数和代数之中有着诸多规律及公式算法等,这些内容是有着规律的,所以只有充分注重模型思维的应用,才能将数学知识灵活应用[1]。数学建模方法的应用是重要教学方法,对其进行应用有助于教师教学效率水平提升,教学质量也能得以有效保障。建模思想的应用对信息简化比较有利,能够抽象成数学问题。

1.2初中数学教学中模型思维应用程序分析

初中数学教学中对模型思维的应用,要能按照相应程序实施,只有这样才有助于建模作用的充分发挥。在建模方法应用过程中,先要审题,这是对实际问题得以了解最基础的方法,只有有效掌握实际数学问题的各种信息,掌握数学问题的目的和要求,才能为实际问题的解决起到促进作用。

其次是进行假设,这一环节主要是对数学问题的目的及特征等进行了解,然后对实际问题实施抽象及简化,通过精确的数学语言提出相应假设[2]。接着进行模型建立,也就是在假设基础上通过相应数学工具应用,对各种变量间的数学关系进行刻画,从而建立相应数学结构和模型。在获得数据资源的应用下,对数学模型参数进行计算及估计等。

最后对数学模型进行检验。在对相关数据进行分析之后,将所得结果和实际进行比对,从而对模型的准确性加以验证,以及对模型的适用性及合理性等加以充分重视。在这些方面得到了保障,才有助于模型思维的应用效率的提高。

2.初中数学教学中模型思维应用的策略探究

将模型思维应用在初中数学教学中,要能注重策略科学实施,首先在教学观念上及时转变,有效提升教学效率。新课程标准实施下,要能充分注重教学思想观念的转变优化。在对几何数学的教学过程中,必须注重几何体模型教学观念的正确树立,通过模型理论作为教学基础,为学生建立全面数学课堂[3]。实际教学中,老师可通过直观的几何模型开展教学,有效降低学生学习难度,有助于学生学习效率的提高。

实际数学知识学习过程中,要注重结合实际问题建立数学模型。如在方程组的模型建立过程中,要能明确化。生活中有着大量数量相等关系,在方程组模型建立过程中,是以实际生活中的数量关系作为基础的,从数量关系角度进行分析,有着积极作用。

例如:初中数学教学过程中,对一些打折销售及分期付款的问题,可通过方程组方式解决。有一批笔记本学习机的原价为800元钱,在两个公司共同销售。其中A公司买一台单价为780元钱,买两台每台为760元钱,也就是多买一台降低20块钱。限制在440元钱以内[4]。而在B公司则按照800元钱的百分之七十五实施促销。如果购买6台,那么应该去哪家公司比较划算呢?如果有7500元钱,在一个公司购买相应的笔记本学习机,是在哪家公司买的?数量为多少呢?这就要建立方程组的模型。x(800-20x)=7500,解之得x=15或x=25,在x=15的时候,每台的价格是800-20×15=500>440,比较符合题意。当x=25时,每台单价为800-20×15=500>440,这一结果和题意不符。如果是在B公司花费了7500元钱,就会得出600x=7500,这就和题意不相符,所以是在A公司买的。

通过建立模型的方法进行应用,对数学问题的解决有着积极作用,对学生学习效率的提升也比较有利。

3.结语

在数学教学过程中应用模型思想,要能从多方面加以充分重视,结合实际实现模型建立科学化。此次主要从理论层面对数学教学模型思维应用策略进行探究,通过这些策略的应用,对实际教学目标的实现有着积极促进作用。

参考文献:

[1]刘海燕.初中数学建模思想初探[J].现代教育科学,2014(04).

[2]刘晓燕.加强初中数学建模教学培养学生应用数学意识[J].科技资讯,2014(26).

第7篇:建立数学模型的方法范文

教学以传授理论知识为主,虽然也讲培养能力,但主要是解题能力,很少体现自学能力,分析解决实际问题的能力。传统的数学教育普遍存在着脱离实际,重理论,轻应用的倾向。这样的教学内容使学生感到的是数学的枯燥,远离生活实际,同时也使学生的创造性得不到充分发挥,不利于能力的培养。 尽管目前大部分高校都开设了“数学建模”选修课,但仅此一举,对培养学生能力所起的作用是微弱的。一方面,由于“数学建模”所包含的内容非常广泛,对不同问题分析的方法又各不相同,真正掌握难度很大。另一方面,数学建模教育实质上是一种能力和素质的教育,需要较长的过程,单靠开设一门选修课还远远不够。另外,“数学建模”作为一门选修课,学习的人数毕竟是有限的,因此解决这一问题的有效办法是在数学教学中渗透数学建模思想,介绍数学建模的基本方法。 一、数学教学过程中数学建模思想培育 1.数学建模的思想内涵 数学建模是指人们对各类实际问题进行组建数学模型并使用计算机数值求解的过程。数学建模一般要经历下列步骤。(1)调查研究。在建模前,建模者要对实际问题的历史背景和内在机理有深刻的了解,对『廿】题进行全面深入细致的调查研究。(2)抽象简化。建模前必须抓住问题的主要因素,确立和理顺因素之间的关系,提出必要的、合理的假设,将现实问题转化为数学问题。(3)建立模型。这一步是调动数学基础知识的关键,要将问题归结为某种数学结构。(4)用数值计算方法求解模型。这要求建模者熟练地使用Mauab、Mathtype、Spss等软件。(5)模型分析。对所求出的解,进行实际意义和数学理论方面的分析。(6)模型检验。虽然并非所有模型都要进行检验,但在许多问题中,所建立的模型是否真实反映客观实际是需要用已知数据去验证的。(7)模型修改。对不合理部分,如变量类型、变量取舍、已知条件等进行调整,使模型中的各个因素更加合理。(8)模型应用。数学模型及其求解的目的应该是对实际工作进行指导及对未来进行预测和估计。由此可见,数学建模是一个系统的过程,在进行数学建模活动的过程中需要利用各种技巧、技能以及综合分析等认知活动。 2.高校数学教学的现状及其弊端 我国高等院校数学课课程在授课内容上,主要着眼于数学内部的理论结构和它们之间的逻辑关系,存在重经典、轻现代,重分析、轻数值计算,重运算技巧、轻数学方法,重理论、轻应用的倾向。过分强调数学的逻辑性和严密性。在教学方法上,数学教学越来越形式化,注重理论推导,着重训练学生的逻辑思维能力,而忽视理论背景和实际应用的传授,致使学生不知如何从实际问题中提炼出数学问题以及如何使用数学来解决实际问题。数学应用的讲解,也仅仅停留在古典几何和物理上,忽视数学在实际工程问题中的应用,导致学生主动应用数学的意识淡薄,不利于培养学生运用数学知识解决实际问题的能力,不能满足后续专业课的需要。教学过程中以教师课堂讲授为主。多采用注入式。缺乏师生间必要的沟通与互动,不利于学生能力的培养,更不利于创造性思维和创造能力的培养。 二、数学建模思想融入数学教学中的有效途径 由于教材对原始研究背景的省略、教师对原始研究背景的重视不够和课堂有限的学习时间等各种因素,传统数学教育很少对前人的数学探索过程进行再现。然而,这正是数学建模思想的点睛之处。任何一门数学分支学科都是由于人类在探索自然规律过程中的需要而发展起来的,所以,重要概念的提出、公式和定理的推导以及整个分支理论的完善都是前人对现实问题进行数学建模的结果。 那么,如何将前人的建模思想在传授知识的过程中再现给学生呢?经过长期教学实践,笔者认为,可以通过如下两个途径来实现。 一是尽量用原始背景和现实问题,通俗的比喻,直观的演示引入定义、定理和公式,然后再由通俗的描述性语言过渡到严谨的数学语言。这样不仅使学生真正了解到知识的来龙去脉,熟悉了这类问题的本质属性,而且掌握了处理这类问题的数学建模方法,即学会了如何从实际问题中筛选有用的信息和数据,建立数学模型,进而解决问题。同时还让学生认识到数学不是孤立的,它与其他领域紧密地联系着。数学模型所表现的符号美、抽象美、统一美、和谐美与严谨美更让学生浸润在数学美的享受之中。例如,教材中以“户矿、“户Ⅳ”语言给予形式化精确描述的极限概念,由于这种描述高度抽象与概括,造成初学者难以用自己的思想去思考、理解它的含意,只能把它看做是一些干巴巴的数学符号,不加理解地死记它,久而久之就失去了学习的兴趣。如果我们从刘徽的“割圆术”讲起,并利用课件进行动态数值模拟演示。尽可能地向学生展示极限定义的形成过程,挖掘极限定义的实质,然后再利用“P矿、。户Ⅳ”语言给出准确的定义,从而使学生理解“极限”这个概念模型的构建过程。这样既省时又直观,教学效果自然更佳。 二是精选数学应用例题,进行建模示范,启发学生用数学解决实际问题的意识。我们本着减少经典、增加现代、减少技巧、增加应用的原则,弃去了原书中部分经典例子,加入既能反映问题,又能开阔学生眼界的例子。这样教学,很容易牵动学生的数学思维,加深了他们对知识的理解,让他们体验到了应用数学解决实际问题的乐趣,激发了他们用数学的思维和方法积极地探索现实世界。 三、数学建模思想融入数学教学中的一些教学案例 1.数学建模思想融入微积分教学中的教学案例经典微积分学理论是近代科学的伟大创造。它的背景包含了前人数学建模的过程,蕴藏着丰富的创造性思维的轨迹。“无穷小量分析”和“微元分析”是微积分学的主要思想方法,微分和积分的基本概念就是运用这两个思想方法,在解决实际问题中,分析和处理变与不变、直与曲、局部与全局、近似与精确、有限与无限的矛盾中建立和发展起来的。#p#分页标题#e# 下面以定积分定义的教学为例,谈谈如何切入数学建模的思想。 设计如下教学过程:(I)实际问题。如何求曲边梯形的面积?(2)引导学生利用“无限细分、化整为零、以直代曲取近似、无限积累聚零为整取极限”的微积分的基本思想,得到问题的表达式。(3)概括总结,抽象出数学模型,从而引出定积分的定义。(4)回到实际问题中。数学模型的根本作用在于它将客观原型化繁为简、化难为易,便于人们采用定量的方法去分析和解决实际问题(这样的习题在教材和相关教辅上很多)。 2.数学建模思想融入线性代数和空间解析几何教学中的教学案例在讲Gauss消元法时,我们向同学们介绍了计算机层析X射线照相术。教学过程大致如下:(1)实际问题。计算机层析扫描仪根据仅从病人头外部测得的X射线,来计算此病人大脑的图像,这样做合理吗?(2)模型建立。引导学生用点线图(点代表人体某个器官,线代表X射线)来描述扫描仪的工作原理,建立相关的线性方程组。(3)模型求解。可让学生利用刚学的Gauss消元法求解。(4)模型分析。解释计算机层析x射线照相术的合理性。这样让学生领悟到这样简单的数学知识也能应用到如此神秘的仪器中,学生学习线性代数的愉悦感油然而生。 这种给形式化的抽象的数学问题赋予实际意义的做法,使学生认识到数学既源于生活、又高于生活,缩小了“形式化”的抽象数学与现实之间的差距。 3.数学建模思想融入概率论与数理统计教学中的教学案例 在讲全概率公式时。我们向同学们介绍了常染色体遗传模型。教学过程大致如下 (1)实际问题。在常染色体遗传中,后代是从每个亲体的基因对中各继承一个基因,形成自己的基因对,基因对也称基因型。植物园中某种植物的基因型为AA、Aa和aa。计划AA型的植物与各种基因型植物随机相结合的方案培育植物后代,经过若干年以后,这种植物的第n代的三种基因型分布会发生什么变化?通过这样的方法是否可以纯化品种? (2)模型建立。引导学生利用全概率公式建立起第n代的三种基因型分布与第n-I代的分布的递推关系式。 (3)模型分析和评价。通过取极限的结果来解释用这种方法纯化品种的科学性. 4.数学建模思想融入常微分方程教学中的教学案例 建立常微分方程,解常微分方程是建立数学模型解决实际问题的有力工具。因此,教师在传授常微分基础理论的同时,还应多花时间讲授在实际问题中那些可用此方法建模、如何提炼出微分方程模型。 下面以分离变量法的教学为例,谈谈如何切入数学建模的思想。设计如下教学过程:(1)实际问题。根据国家计划生育委员会估计,中国总人口的峰值年是2044年,峰值人口数达到15.6.15.7亿。如何建立一个数学模型,合理的论证计生委的估计及如何准确定位、保持人口合理增长?(2)模型基本假设。假定人口总数是随时间连续可微地变化,并假定单位时间内人口增长量与当时的人口成正比。(3)模型建立。引导学生用微分来刻画人口增长率,用一阶齐次微分方程建立模型。事实上就是著名的Malthus人口模型。(4)模型求解。可让学生利用刚学过的分离变量法求解,“热炒热卖”以便巩固。(5)模型分析与检验。可让学生课后查阅计划生育委员会的统计数据,进行检验及完善。 这种将数学问题赋予生活内涵的教学法,可唤起和支配学生学习数学和研究的兴趣。更重要的是,在人口统计方面的惊人数字给学生的震撼力,可引导着学生关注社会、关注未来。通过对模型的检验,使学生体验到对数学问题解答的合理性进行检验的必要性,从而培养了学生敢于质疑、善于反思、精益求精的治学态度。 5.数学建模思想融入运筹学教学中的教学案例 运筹学是一门应用性很强的数学科学,目前几乎涉及社会的各个方面。除在产品的市场销售、生产计划的制定、物资的库理、运输问题、设备更新、工程的优化设计、城市管理、财政与会计、人事管理、计算机信息系统、军事领域有广泛系统的应用以外,在建筑、纺织、水利、邮电、科学研究、工农业及农林医等方面也有它们的身影。运筹学在解决这些实际问题时,按研究对象的不同所采取的建模方法各异。运筹学模型可分为确定性模型和随机性模型。确定性模型包括:线性规划模型、目标规划模型、整数规划模型、非线性规划模型、网络分析中的模型。随机性模型包括:动态规划模型、捧队论模型、存储论模型、对策论与决策论中的模型。因此,从一定意义上说,数学建模属于运筹学的一部分,所以,教师在运筹学的教学中更应该突出数学建模的思想,强化学生的数学建模能力,增强学生的数学应用意识。 运筹学在解决大量实际问题过程中形成了自己的工作步骤,所以教师在讲授运筹学时,因尽量遵循如下步骤。(1)提出和形成问题。教师应尽可能选取贴近学生实际的问题。(2)建立模型。引导学生分析问题的要旨(属确定性问题还是随机性问题),用准确的数学语言表述问题,并帮助其建立起模型。(3)模型求解。可让学生利用Lindo、Lingo或Matlab自行求解。(4)解的检验。在作灵敏度分析时,需要建模者一定的实践经验,教师应对学生的所做结果给出及时的肯定和指正。(5)解的控制和实施。此步是对问题的决策者提出相关建议,也是将所得的研究结果用通俗易懂的语言进行再次“翻译”。 四、教学中渗透数学建模思想需要注意的几个问题 数学建模不仅是数学知识的应用和升华,而且是一种数学思想的表达和教学方法,实际上基本概念、公式、定理都是一个数学模型。所以,数学教学的实质就是数学模型教学。在教学过程中贯穿数学建模的思想和方法时,应注意如下几点。(1)模型的选题要大众化。应选择密切联系学生,易接受、且有趣味、实用的数学建模内容,不能让学生反感。尽量讲清数学模型的运用范围,即它可以解决怎样的现实问题。(2)设计颇有新意的例子,启发学生积极思考,循序渐进,发现规律。(3)在教学中举例宜少而精,忌大而泛,冲淡高等数学理论识的学习。没有扎实的理论知识,也谈不上什么应用。(4)应从现实原形出发,引导学生观察、分析、概括、抽象出数学模型。(5)要循序渐进,由简单到复杂,逐步渗透,逐步训练学生用所学的数学建模知识解决现实生活中的问题。#p#分页标题#e#

第8篇:建立数学模型的方法范文

关键词 建模 学生 数学素质

中图分类号:G424 文献标识码:A

Modeling to Promote Student to Improve the Quality of Mathematics

MA Hengguang

(Liaocheng Technician College, Liaocheng, Shandong 252400)

Abstract Mathematical modeling is an actual phenomenon constructed by mental activity can seize an important and useful features, it's related to the level of university students' mathematics, mathematics ability, mathematics sense and mathematical quality, is the core of the overall quality of college mathematics content. This paper discusses the meaning of mathematical modeling, mathematical modeling is important to improve the quality of students' mathematical optimization modeling and presents some suggestions for teaching.

Key words modeling; student; mathematical quality

1 数学建模的内涵

自 1992 年起开始主办全国大学生数学建模竞赛以来,全国大学生数学建模竞赛规模飞速发展,参赛院校从 1992 年的全国 79 所增加2011年的全国1251所 ,参赛队也从 1992 年的 314队增加到 2011 年的 19490 队。并且随着计算机技术的发展,CAD 技术大量替代传统工程设计中的现场实验,MATLAB 等数学软件能够提供精确的计算结果和实现良好的量化分析。这些,都使得数学建模展现出强大的活力,发挥出更大的作用。数学建模就是将现实世界中的实际问题加以提炼抽象为数学模型,然后求出模型的解,验证模型的合理性,并用该模型的结论来解释现实问题。其运用方法主要有机理分析法和测试分析法,机理分析主要是通过已经认识的客观事物特性,找出内部数量规律,由数量规律建立数学模型。而测试分析则需用到概率和数理统计知识来进行建模,也就是说,测试分析是用来解决“黑箱”问题的。数学建模一般包括以下几个步骤:模型准备,模型假设,模型建立,模型求解,模型分析,模型检验和模型应用。具体说来,首先,用数学语言了解实际问题。其次,根据建模的目的和实际问题的特性,提出恰当的假设,并运用数学工具刻画各变量之间的关系,同时也要注意对建模进行必要的简化。最后,将获取的数据资料,对模型进行计算,并将分析后的数据与实际情况进行比较,继而验证出模型的准确性、合理性。

2 建模对学生数学素质的促进作用

2.1 培养学生数学意识

数学意识不仅能使学生理解和学习现成的数学知识和技能,而且还能够让学生逐步学会主动地认识数学,初步形成用数学的观点和方法看待事物,处理问题,具有从现实世界中寻找数量关系和数学模型的态度和方法,是将认识数学过程中的态度和情感体验联系在一起的前提。数学建模能使学生从现实世界中看似与数学没有丝毫关系的问题最终抽象成数学问题,培养学生以数学的思维、从数学的角度去思考现实问题,潜移默化地加强了数学意识。

2.2 培养学生数学语言翻译能力

建立数学模型,要运用到假设、收集和应用证据等进行抽象简化。确切地将其用数学语言表达成数学问题的形式,然后将数学语言编译成计算机程序,通过计算机进行数据处理、数据分析、论证得出曲线图表或数学语言表达的结论。最后还要用常人能理解的一般描述性语言表达出来,提出解决某一问题的方案或是建议。数学建模可以充分锻炼学生的自然语言、数学语言和计算机语言之间的翻译表达能力。

2.3 提高学生的创新能力

创新能力是人的各种能力的综合和最高形式表现。创新能力不仅仅是智力活动,它不仅表现为对知识的摄取、改组和应用,还表现了一种发现问题、积极探索问题的心理取向,是一种善于把握机会的敏锐性和积极改变自己并改变环境的应变能力。数学建模的实质就是构造模型。但模型的构造并不容易,需要有足够强的创造能力。通过构造模型,在学生应用数学知识的基础之上,激发学生的创造性思维。从而在不断地运用数学知识和发散思维之中,提高学生的创新能力。

2.4 提高学生转换能力

数学建模实质是把实际问题转换成数学问题,通过数学建模,使学生有独到的见解和与众不同的思考方法。恩格斯曾经说过:“由一种形式转化为另一种形式不是无聊的游戏而是数学的杠杆,如果没有它,就不能走很远。”因此,我们在数学教学中要注重转化,善于发现问题,沟通各类知识之间的内在联系。进一步培养学生的思维转换能力,(下转第148页)(上接第125页)这对培养学生思维品质的灵活性、创造性及开发智力、能力培养、提高解题速度大有裨益。

3 优化高校建模教学方法措施

3.1 在教学中渗透建模教学思想

在高等数学教学中,渗透数学建模的思想,让学生初步了解建立数学模型的思想和方法,通过逐渐的渗透,能潜移默化地培养学生数学意识和数学思维习惯。例如,在学习函数内容时,可以介绍金融业务中的单利模型,用微分方程建立冷却模型和浓度模型。对于繁复的公式推导以及难度大的数学计算,可用数学软件解决复杂的数学计算,实现课堂教学和数学实验的有机结合。如学习定积分时,要求学生掌握定积分概念的产生背景、定积分的思想、基本性质和微积分基本定理,并熟练使用牛顿·莱布尼兹公式、换元法和分部积分法,对于难度大的定积分计算,要善于使用数学软件求解。

3.2 加大数学实验课的力度

通过历届数学建模竞赛情况来看,有许多学生在比赛时,能够列出公式,能构建出模型,但却不知道如何解答模型。例如,列出了问题的微分方程,但不知道怎样求解,建立了问题的模型,但不知怎样去开发算法,解出模型。因此,应当加大学生的解题能力训练,特别是要培养学生利用现代的数学软件进行解题的能力。在全校开展数学实验课和数学建模实验课,将学生分为各个小组,以小组为单位开展对数学实验和数学建模实验问题的探讨,有利于培养学生的动手解题能力。

3.3 建立稳定的教育实习基地

教育实习基地建设历来是各师范院校十分重视的问题。如何建设好稳定的教育实习基地?第一,在工作中,要打破传统教育实习管理体制,建立健全的管理体制。制度建设可以尝试由地方教育行政部门参与和尝试选留毕业生和实习相结合形式共同参与制度建设。第二,营造互惠互利的联合机制。做到互相交流教育、科研信息,共同研究基础教育改革,共同建设教育实习基地。第三,提高实习生综合素质,确保教育实习基地的建设和巩固。

总之,数学学习不仅要在数学基础知识、基本技能和思维能力、运算能力、空间想象能力等方面得到训练和提高,而且要在应用数学、分析和解决实际问题的能力方面得到训练和提高。在课堂教学中,要使学生学会提出问题,建立数学模型,将把问题抽象为数学问题。只有这样,才能提高分析问题和解决问题的能力,才能提高学生的创新能力。因此,如果我们能逐步地将数学建模活动和数学教学有机地结合起来,就能更好地提高学生的数学素质。

参考文献

[1] 梁方楚,蔡军伟,程锋.利用数学建模拓展大学生素质[J].科技咨询导报,2006(14).

[2] 姚新钦.在高等数学教学中融入数学建模思想[J].广东农工商职业技术学院学报,2009(4).

第9篇:建立数学模型的方法范文

关键词:数学建模;MATLAB;数学模型;数值计算

21世纪的今天,我们生活在“大数据”时代里,数据信息隐藏于各行各业,如互联网、股市、勘探、军工、商业等,可以说我们每天都在跟数据打交道,因此高效的数据处理方式显得尤为重要。数学建模是联系实际问题与数学之间的桥梁,建模的思想与以往解决问题的思路有很大的不同,我们以往求解数学问题时,都有明确的目标和已知条件,我们只要通过合理的方法,进行多次的数学运算,便能得到问题的解析解,但在现实生活中,很多实际问题是很难得到解析解的,甚至求解的问题和结果的范围都是模糊不清的,数学建模主要就是解决这样的问题,我们以实际问题出发,根据已有的经验,对已有的数据进行相关的分析、处理,通过合理的简化,建立合适的模型,再求解模型,最终会得到结果,这种方法行之有效,在实际生活中,通过建模已经解决了大量难题,近年来,随着科技的飞速发展,很多数学软件应运而生,如MATLAB、Mathematic、Maple等,目前应用最为广泛的数学软件便是MATLAB,它是1984年由美国MathWork公司推出的商业数学软件,用于算法开发,数据可视化、数值计算的高级计算语言和交互式环境,凭借计算功能强大、操作简便的特点在数学软件中脱颖而出,使得很多人在建模中选择该软件。

为了说明MATLAB软件能够提高数学建模的效率和质量,本文将以2014年高教杯全国大学生数学竞赛A题为例,来演示MATLAB软件在数学建模中的作用,下面首先对数学建模做简要介绍。

1 数学建模简介

1.1 数学建模与数学模型

数学建模一词出现的时间并不是很长,大概可以追溯到30年前,它的出现是基于科学技术的进步,尤其近半个世纪以来,随着计算机技术的进步和发展,数学建模便应运而生,并得到迅速的发展,直到现在已经大致形成了体系,在我国,数学建模比赛也有20多年的时间了,建模参考书籍越来越多,内容越来越完备,不同的书籍对数学建模的定义虽然有所不同,但大致可以归纳位:对实际问题进行分析,做出简化假设,分析其内在规律,并运用数学符号和数学语言将规律描述出来,再用适当的数学工具,得到一个数学结构,该结构称为数学模型,建立数学模型的过程叫做数学建模。

应用数学去解决实际问题时,建立数学模型是至关重要的一步,也是比较困难的一步,建立数学模型的过程,就是把一个实际问题进行合理的简化,并对相关信息进行调查、收集、整理,分析出问题的内在规律,并用数学符号将这种隐含的规律表达出来,然后运用恰当的数学方法对其进行分析、计算,最终解决问题,这一步对建模者的数学基础要求比较高,要求建模者有较为完善的数学体系,并且还要有敏锐的想象力和洞察力,数学建模的作用越来越受到数学工程界的普遍认可,它以成为现代科技者的必备技能之一。

1.2 数学建模的一般步骤

下面结合数学建模的几个环节和数学建模实例,简要介绍MATLAB在数学建模中的一般步骤,模型准备:在建模前要了解问题的实际背景,搜索问题信息,明确求解目的,从而确定用何种数学方法和建立何种数学模型;模型假设:根据实际对象的特征和建模的目的,抓住问题的主要因素,对问题进行合理简化,用精确的语言提出恰当的假设;模型建立:在假设的基础上,利用合理的数学工具刻画各变量、常量之间的数学关系,建立相应的数学结构;④模型求解:利用获取的数据 和已有的数学方法,来求解上一步的数学问题,对模型的参数进行相应计算⑤模型分析:对所建立的模型的思路进行阐述,对所得的结果进行数学上的分析;⑥模型检验:将模型与实际情况进行比较,以此来检验模型的准确性、合理性,如果不符合实际情况需重新建立模型;⑦模型的推广:在现有的模型基础上,对模型进行更加全面的考虑,使模型更能反映实际情况。

2 建模实例

由于MATLAB软件具有很强的数据处理和数据可视化功能,同时具备有操作方便的特点,所以当把MATLAB软件运用在数学建模里时,必将提高数学建模的质量和效率,并能起到事倍功半的效果,下面以2014年高教杯全国大学生数学竞赛A题为例来说明MATLAB软件在数学建模里的重要作用。

2014年高教杯全国大学生数学竞赛题目A题是嫦娥三号软着陆轨道设计与优化问题,嫦娥三号是中国国家航天局嫦娥工程第二阶段的登月探测器,包括着陆器和玉兔号月球车,嫦娥三号在高速飞行的情况下,要保证准确地在月球预定区域内实现软着陆,关键问题是着陆轨道与控制策略问题。在卫星着路的过程中,不考虑主减速段,完全由姿态调整发动机控制水平运动的阶段为粗避障和精避障段,为了节省燃料,应尽量减少卫星在空中的悬停时间。题目中附件三、附件四分别是距月球表面2400米和100米的高程图,根据高程图中的数据信息,我们可以确定最佳的降落位置。我们可以运用MATLAB软件对于高程图的进行处理,首先用MATLAB软件软件中imread命令将其转化为矩阵形式,然后分别做出月球表面立体的三维图和等高线二维平面图,建立数值地形的不同区域,我们可以通过三维图很直观的观察到月球表面具体地形、地貌,通过等高线二维图形,我们可以清楚地看到月球表面地势高低变化成度,从而确定卫星降落地最佳地点。本文只以100米高程图作为例子演示,具体地操作程序以及输出结果如下:

g=imread(‘附件4距100m处的高程图.tif’);

% 用imread函数读取图片信息,注意路径要以电脑中图片的实际路径为准

gg=double(g);

% 将图片中的信息转化为数值矩阵信息以便以MATLAB软件进行后期处理

gg=gg-1/255;

% 将彩色值转为0-1的渐变值以便于观察

[x,y]=size(gg);

% 取原图大小

[X,Y]=meshgrid(1:y,1:x);

% 以原图大小构建网格

mesh(X,Y,gg);

% 呈现三维地貌图

contour(X,Y,gg);

% 呈现月球表面等高线图

grid on

3 结论

从本文数学建模实例可以看出,在建模时,当需要对图片、表格、数据进行处理时,我们可以运用MATLAB软件进行解决,MATLAB凭借其丰富的库函数和工具箱,能够非常方便的解决这些问题,并且将数据可视化,结果清晰明了,显示出其他软件无法比拟的优势,除此之外,MATLAB软件在数据分析、数值计算以及规划、预测等多方面数学问题都占有绝对的优势,因此,我们提倡将MATLAB软件引入教学中去,让更多的学生在建模前了解其相关知识,进行软件操作,这不仅能够激发学生的建模积极性,而且可以使学生掌握一项技能,同时也提高学生动手实践能。

参考文献