公务员期刊网 论文中心 机械结构论文范文

机械结构论文全文(5篇)

机械结构论文

第1篇:机械结构论文范文

(1)井道机架

模型电梯井道机架是支撑、固定所有机械零部件的基础框架,要有足够的强度,同时便于安装时各部件的位置调整。模型电梯为三层站,井道由30×30的方钢焊接而成,并在方钢上开孔供安装时连接用。井道机架的立面,分为三个部分,井道截面尺寸为980mm×1110mm,最下边的部分高度为1160mm,中间部分高度为800mm,上边部分高度为1540mm,连接时采用螺栓进行连接紧固。方钢的截面。这种结构可满足教学实训时反复拆装,井道机架也便于移动、安装。

(2)导向系统

导向系统功能是限制轿厢和对重的活动自由度,使轿厢和对重只沿着各自的导轨作升降运动,使两者在运行中平稳,不会偏摆。模型电梯导向系统由导轨支架、导轨、导靴几部分组成,导轨支架设计成可调式,可根据导轨安装精度要求在安装过程中进行位置调整,其立面。导轨和导靴全部选用实际电梯配件,真实反映实际电梯结构特点。

(3)曳引系统

曳引系统的作用是向电梯输送与传递动力,使电梯运行,是电梯运行的根本,是电梯中的核心部分之一。模型电梯的曳引系统由曳引机、钢丝绳、对重组成。曳引机选用杂物梯配套的曳引机,型号为YJ120,额定载重为200kg,交流双速电机,钢丝绳选用实际电梯钢丝绳,其型号为8×19S+FC-8mm。对重由钢板焊接而成,具有一定的重量,每块重量10kg,对重总重量按照如下公式配置:P=G+0.5Q=50+0.5×200=150(kg)(1)式中:P为对重总重量;G为轿厢自重;Q为额定载重。

(4)轿厢系统

轿厢由轿厢架、轿底、轿壁、轿顶组成。轿厢架由上梁、下梁、立柱、拉条等部件组成,其作用是固定和悬吊轿厢。在上下梁两端固定有导靴,引导轿厢沿着导轨上下移动,保持轿厢在井道内的水平位置。在下梁上装有安全钳,在电梯超速下坠时,安全钳可在限速器带动下将轿厢夹持在导轨上,在上梁上还有固定绳吊板,起悬吊轿厢的作用。轿厢选用厚度为2mm的不锈钢板制成。其中,轿底为一块729mm×620mm的整板,轿顶为一块723mm×602mm的整板,后壁板由4块经折弯的板材拼接而成,4块板材尺寸分别为282mm×680mm、282mm×680mm、247×680mm、140mm×680mm,两个侧壁分别由2块经折弯的板材拼接而成,2块板材尺寸分别为282mm×680mm、247mm×680mm,前壁板左右各由一块尺寸为131mm×710mm的板材和一块尺寸为140mm×480mm的中间连接板组成。轿厢架由型材连接而成,其结构立体图见图4所示。

(5)门系统

模型电梯的门系统由层门、轿门及开关门机构组成,层门和轿门由门、导轨、滑轮、滑块,门框、地坎等部件组成。门由厚度为2mm的不锈钢板制成,为了使门具有一定的机械强度和刚性,在门的背面配有加强筋。为减小门运动中产生的噪声,门板背面涂贴防振材料。层门和轿门的尺寸为250mm×570mm,门滑块和门滑轮均选用三菱电梯配件,导轨采用45钢加工而成,限位挡轮选择内径为6mm的圆柱滚子轴承,电动机选用直流电机,电动机速度计算如下。开关门平均时间t设定为2s,门开关行程h为250mm,由此计算开关门的速度为因此选择直流电动机型号为ASLONG-JGB37-520-24V-45r/min,并经过试验验证,可以满足速度和载荷的要求。门系统结构立体图见图5所示。

(6)安全保护系统

模型电梯的机械安全保护装置主要有限速器和安全钳、缓冲器、端站保护装置、制动器、层门门锁与轿门电气联锁装置、门的安全保护装置、轿顶安全窗、轿顶防护栏杆、护脚板等;限速器能反映电梯实际运行速度,当电梯速度超过允许值时,能发出电信号及产生机械动作,切断安全回路或迫使安全钳动作,安装在机房中。安全钳能与限速器产生连动,以机械动作将轿厢强行制停在导轨上,安装在轿厢或对重的两侧。缓冲器是当轿厢或对重撞击底坑时吸收能量,保证轿厢安全制停,有弹簧式及油压式之分。端站保护装置是一组防止电梯超越上下端站的开关或强迫换速装置,能在轿厢或对重碰撞缓冲器前,切断控制回路或者总电源,使电梯安全制停。模型电梯的限速器、安全钳、缓冲器均采用实际电梯所配置的部件。

2样机实验

采用上述各部分机械结构组装而成的整体样机,进行可靠性和疲劳强度实验。结果证明:让模型电梯自动往返运行1000次,电梯未出现故障,各机械零件运转正常,无明显噪音;模型电梯经反复拆装10次,各结构件无疲劳损坏,重新连接后强度、精度无明显下降,对模型电梯运行质量没有影响。

3结论

第2篇:机械结构论文范文

德国人发明的这一种变元法,是目前世界上最为科学易懂的变元方法,它能够衍生出许多不同的方法,具有很大的可塑性。这种方法的内涵主要有两部分:它变化内容多样,包括材料、数量、位置、尺寸、形状、连接、工艺七个方面;另一部分是上述七个方面的具体运用,运用的前提条件是机械基本结构,这些元素在其基本结构的基础上进行一定的变化,这样就有不同的形式,新的机械结构设计方案就创造出来了,这样就达到了优化设计机械结构的目的。接下来笔者将会重点介绍七种创新方案在机械结构设计的具体运用,其最终目的还是满足整个机械产品的生产的要求,这也是目前机械工作者普遍使用的方案。

1.1材料变元

现实生活中很多种材料都可以用来设计机械结构,不一样的材料要求的加工方法和手段不一样、适用的结构类别不一样、零件需要的大小也不一样。材料的变元可以变化出不一样的结构模式。比如说:在进行钢材料的结构设计过程中,零件的截面面积越大,材料结构强度就越大、越硬;在铁材料的结构设计中,为了使结构变强变硬,人们通常使用加强筋和隔板的方法;在塑料材料的结构设计中,塑料件的筋板和壁厚应该无差而别且对称均匀。

1.2数量变元

在产品的结构当中主要包括以下几个方面,即零件以及轮廓面、线和加工、工作面共同构成了产品本身,如果想要将机械的结构目的进行改变,那么就可以通过调节上述结构元素而实现。就好比在铸件的过程中,是希望越简单便捷越好的。能够节省一些不必要的零件配置,又能在安装的时候方便人们的使用,这在无形中就提高了工作效率,比如安装一个螺丝钉的时候,如果按照螺钉和垫圈以及弹簧垫圈才能结合在一起的模式去安装,那么就需要最少三个步骤,但是如果把它们设计为一体的话,就可以大量地节省安装的时间,提高了效率。

1.3位置变元

在实际操作过程中,产品结构的元素之间的位置是可以进行调换的,这样可以无形中使结构本身的设计更加完善。比如,零件的焊缝位置应该对应中性轴或者至少需要靠近中性轴,这样便于将收缩力减少或者能够避免产品的变形。除此之外,零件的摆放问题也十分重要,如果杂乱无章则会大大阻碍操作速度。

1.4尺寸变元

零件的尺寸必须符合使用的标准才行,必须在各项标准合格之后才可以进行操作,比如:在冷冲压弯这一工艺中,就需要零件按照既定的需求进行弯曲,如果零件在加工的过程中,实现了标准的弯度,那么就算是一个成品,不需要再度进行加工。如果不符合产品的需求那么还需要进一步的加工整形来达到产品的要求。

1.5形状变元

机械整体的结构目的可以通过调整零件的形状或者改变其规格的大小而实现。比如在弹簧的生产过程中需要考虑多个问题,首先是弹簧的大小及其相对的螺丝垫圈的规格,能否让弹簧和使用的螺旋面以及被需要压紧的零件相吻合,就需要设计出不同规则的产品,无论零件的形状面如何都需要相匹配的弹簧来配合才行,如果零件之间的距离过大,或者不能够将压力有效融合,那么零件在安装过后就不算是合格,如果这一类零件销售在市场中,很可能造成一系列事故,那么为了防止拉簧因为这些问题而失去使用效率,就势必要将弹簧的设计空间放大,并且实现它的自身独特性,即使它在单独使用的过程中也可以实现跟其他零件的配合。

1.6分析连接变元

一是联接方法,主要的模式有焊接、胶结以及螺纹联接等方式。二是联接的方式,根据结构类型的不同而不同,因此为了丰富联接方式以及寻找到最为契合的联接方式,各个联接的结构以及联接的方式都可以进行相对应的合理调整。比如:针对一些需要拆卸的零件,如果在联接的方式上不能选择好,那么就会在联接和拆卸方面造成一定的困难,此类的零件需要便捷的拆卸模式,比如日常生活中所购买的一些产品,像是随声听的后盖,就可以任意拆卸下来安装电池来维持继续使用,这样的结构也方便用户使用,从未为其提供便捷的操作模式。

1.7分析工艺变元

零件在产生之前,往往会有其自己的设计图纸,而设计图纸上面的结构内容直接决定了产品属于何种工艺级别的零件,因为每一个设备的零件都不是完全相同的,所以零件的设计以及成本也千差万别,如果设计工艺在产品出产之前没有得到完善,那么势必会影响到零件自身的质量,一旦零件没有合乎要求,那么产品的整体结构就会受到一定的影响。因此在零件铸造之前对于零件图纸的研究必须给予深度的重视,现在的加工技艺正呈现着不断创新和完善的趋势,但是问题也就随之而来,这些加工工艺虽然具有创新性,但是还不够成熟,并非达到了理想中的需求,因此还需要进一步的对此加大研究的力度。

2机械结构创新的尝试及优化测评

2.1机械结构设计的创新尝试

防腐剂在石油以及一些石化设备中具有十分重要的作用,下文以其为例,阐述变元法在其中重要的作用。石油和石化设备必须进行防腐蚀性的设计,这样一来,在设计的最初就应该考虑到防腐蚀性的大小和影响因素,从而采取必要的保护和防治措施,主要有以下几个方面。首先,在总体的设计上面,对停车间给予了严格的要求,不能堆放杂乱,不能潮湿,不能含有其他不利于防腐的物质存在。其次,设备的使用年限与设备本身一些极为细小的间隙区有着十分重大的联系,这些缝隙极有可能在人眼看不到的地方发生腐蚀问题,或者这些缝隙人是无法凭借手工去进行操作控制的,就像是一些产品的焊接点,这些产品貌似看起来已经不存在腐蚀的可能,但是难免会有看不到的缝隙存在,应该进行必要的封存和填补,或者干脆将缝隙扩大,这样便于对其进行维修补救和防护。再次,温度较高以及质量较高的浓度阶梯,局部势差问题往往在这种情况和产品中产生,一旦发生了腐蚀则不可控制。此外,每一种金属都有着自己独特的属性,产品在构建的过程中不一定是一种金属构建而成,多半是几种金属共同组合而成,但是不同的金属势必会产生接触面的腐蚀,应该对此进行绝缘处理。最后,面积越小腐蚀的点也就越小,因此要针对产品的不同设计缩小表面积从而减少腐蚀。

2.2对机械结构变元创新设计的优化评测

机械结构在完成变元创新实践之后。要根据目前的性能以及使用效果进行一个综合的测评,首先要进行模糊测评,运用理论研究和一些理想化的模型设计一种测评模式,但是这种测评模式并不是实际操作中的模型,而是通过一定的数学模型,根据先进的设计理念和规划,对其进行变化创新设计的检测。在测试的过程中测试者凭借自己多年的使用经验和研究理念进行对其综合评价的过程,并根据现有的先进思维对其进行构建,在测试的过程中还需要考虑到社会实际问题,产品在经过变元之后,使用方面是否安全,便捷,可维修性是否达到了指标,并且要将逻辑推理的思维运用到其中,选择出使用其整体变元的方案,最后针对已经选择好了的方案,进行进一步地修改和完善,从而作用于产品的机械结构构建当中,服务于产品的整体功能。

3结束语

第3篇:机械结构论文范文

为满足系统的刚度和稳定性,选择3轴XX'YZ型拱架机器人结构,

1.1XY直线运动平台驱动方式和结构设计

由于XY平台要求大行程、高速、精确、平稳定位,因此自动配液机的x轴及y轴采用同步带柔性驱动,如图3所示。同步带柔性驱动方式相对于刚性传动定位系统,具有传动平稳、冲击小、无需润滑、噪声小、传动距离远、成本低等优点,主要用于对加速度和速度要求较高的应用场合。虽然同步带的弹性可减少冲击,但同时也带来定位误差和振动问题,如何有效抑制系统定位误差,充分发挥柔性驱动直线定位技术的优势,成为本文需要解决的主要问题之一。一般同步带按照中心距大小和带轮尺寸设计选择同步带基准长度,然后将环形同步带安装在两个带轮上。在此设计中为保持同步带张紧力和便于在支撑轨道型材安装,同步带有接头而两端用压板同滑块连接,以便于安装和调节。同步带在位于型材两端托架上的两个同步带轮之间进行运转。一个带轮安装在电机上,另一个则安装在张紧装置上。同步带带动滑块在导轨上移动,滑块支撑在滚珠导轨上,同步带纵向穿过支撑导轨的异型铝合金型材。

1.2运动平台导向结构

低速运动平稳就是当导轨作低速运动或微量进给时,应保证运动始终平稳不出现“爬行”现象。数控工作台的位移量是以脉冲当量作为它的最小单位,它常以极低的速度运动,这是要求工作台对数控装置发出的指令要做出准确响应,这与运动件之间的摩擦特性有直接的关系。滚动导轨的静摩擦力较小,而且还由于润滑油的作用,使它们的摩擦力随运动速度的提高而增大,这就有效地避免了低速爬行现象,从而提高工作台的运动平稳性和定位精度。但滚动导轨抗振性较差、对防护要求较高、结构复杂、制造比较困难、成本较高。

1.3工作头夹持手结构设计

按照移液管夹持手的工作流程,要求夹持手到达母液瓶位置下降,下夹持手夹持住母液瓶里的吸管,上夹持手夹持住活塞吸取一定的母液,然后带动吸管整体上移到脱离母液瓶,移动到计量区,夹持手推动吸管活塞将母液按配方剂量注入到染料瓶里,然后回到母液区,将吸管放回到的原来的位置。手爪通常是由手指、传动机构和驱动机构组成,其结构要根据作业对象的大小形状和位姿等几何条件以及重量、硬度、表面质量等物理条件来综合考虑,同时还要考虑手爪与被抓物体接触后产生的约束和自由度等问题。设计摆动式夹持器,夹持手左右手爪为对称结构,由两个气缸驱动带动连杆机构将移液管夹持住。将活塞连杆手爪和移液管外壳手爪设计为一体,当气缸动作时两个手爪同时动作,方便快捷。在工作的时候手指只有两个工作位置,采用气压驱动能够快速达到工作位置,节约时间。

2柔性同步带驱动定位动态分析

在该系统中,电机的运动通过同步带传输到移动装置。在啮合齿之间必须有足够的间隙,以确保运动的流畅,没有干涉,但这种间隙的存在导致滞后现象的产生和噪音。当运动方向改变时,在外部激励支配下动力传输齿产生脱离和微小滑移。这一现象的结果是带慢慢滑移直到下一对齿进入啮合。

3试验测量装置

柔性同步带定位系统的运动误差特性,弹性变形的影响和间隙的影响,对于弹性变形所引起的误差,采用两个编码器分别测量主动轮和从动轮转速。为精确控制移动负载的加速或减速,本试验装置采用线性坐标测量装置(CMM),结合高分辨率刻线尺搭建模型来验证模型预期的性能。在系统中使用了常规的控制器PC104PMAC卡,为确定传动系统引起的位置误差,采用位置测量的基本旋转编码器(PE)以和高分辨率刻线尺(LS)的测量结果进行对比。控制电机速度按照梯形路径输入,叠加获得定位误差图形(ΔX=XLS-XPE)。ΔX包含与支承元件(如抗摩轴承、轴承轴)等相关的几何和运动误差,如前所述定位误差具有延时滞后的特点,具有相当的重复性。

4结束语

第4篇:机械结构论文范文

(1)对电梯进行分类时

如果以其运行的速度快慢为依据,那么通常应将电梯分为超高速电梯、高速电梯、快速电梯和低速电梯四大类,超高速电梯的运行速度是要超过4m/s的,通常在分区进行控制的高层大厦中常采用这种电梯;而高速电梯的运行速度则是在2m/s-4m/s的范围内,在高层写字楼中通常会采用高速电梯;快速电梯的运行速度一般都在1m/s-2m/s的范围内,通常情况下,住宅电梯和楼层数小于15层的多层客梯会采用快速电梯;低速电梯的运行速度是小于1m/s的,其通常都被应用在绝大部分的货梯中;

(2)如果根据使用用途对电梯进行分类,一般可以将电梯分为乘客、观光、载货、杂物、医用、船舶以及车辆等多种类型,同时市场上还存在着一些特殊种类的电梯

常见的有立体停车场用电梯、斜行电梯以及建筑施工电梯等。

2电梯机械结构和相关问题

2.1电梯机械结构中的门系统

在电梯的机械结构中,轿厢门系统通常都包括四个部分,分别为轿门、开关门系统、厅门和门保护装置,由于门系统的存在,等候电梯人员坠落到井道中的安全事故就被有效避免了,同时井道和厢内人员之间也不会出现相互碰撞的问题了。在电梯的运行过程中,为了保证其安全性和稳定性,在电梯起动之前厅门和轿门之间必须是要保持关闭状态的,并且在厅门上还应安装门锁,只有钥匙才能将厅门打开,否则厅门就应是出于关闭状态的。而对于控制电路来说,由于在门锁上是安有微动开关的,那么其就能有效的控制电梯回路的断开和接通状态,从而实时的调整电梯的运行状态。在分析电梯的门系统时,应重点注意以下几个问题:轿厢起动时,轿厢门应是出于自动闭锁状态的,在轿厢未停稳并且未上升到层门时,层门也应出于自动闭锁状态。

2.2电梯机械结构中的轿厢系统

轿厢系统的最主要作用就是运送乘客和货物,其主要包括两部分,即轿厢架和轿厢体,而轿厢架主要起到的是悬吊和固定的作用,其是主要的承载构件,而在轿厢架上还都会设置拉条,这么做的目的就是要提升轿厢的刚度,从而有效避免轿厢倾斜现象的出现。而轿厢体则都是由四部分组成的,分别为轿门、轿顶、轿壁和轿底,其中,轿顶通常都会安装检修用的操作设备和照明设备,同时还设有安全窗,这样当出现故障时,乘客便可以借助安全窗撤离到轿厢内;轿底则是起支撑作用的,在其前端设置了轿门地坎,在地坎位置处装有光滑挡板,并且还应配有轿厢称重装置,当超过了电梯出现超重问题时,报警器就会响起。轿壁是连接轿顶和轿底的部分,在其背面通常都会设置加强筋,从而充分的提升其机械强度。

2.3电梯机械结构中的曳引系统

这一系统的主要作用为及时的牵引轿厢的上和下,从而帮助乘客顺利的到达相应的楼层。其主要包括曳引机、导向轮、限速轮和曳引钢索等部分,曳引机就是电梯的动力装置、根据电机的差异性又分为直流曳引机和交流曳引机,根据速度的快慢可分为超高速、高速、快速和低速曳引机,根据结构形式的区别可分为卧式曳引机和立式曳引机,根据减速方式的差异性分为无齿轮曳引机和齿轮曳引机。电梯的轿厢会悬挂在曳引轮上,曳引轮在曳引机的驱动下就可以实现轿厢的上下运行。

2.4电梯机械结构中的重量平衡系统

重量平衡系统主要包括了补偿装置、补偿缆、补偿绳以及对重等结构部分,在曳引轮和导向轮的牵引下,对重用的钢丝绳会直接连接轿厢,而在整个系统的运行过程中,这一系统主要起到的是对电梯和轿厢负载的平衡作用。在配置对重量的量值时,应严格的依据电梯额定载重量的相关要求,从而保证整个电梯系统是具备一个良好的使用状态的。如果电梯的曳引高度超过了30m,那么曳引钢丝绳的差重对电梯运行的平衡性和稳定性就可能会产生影响,所以,必须设置补偿缆和补偿链等相应的补偿装置。

2.5电梯机械结构中的导向系统

此系统主要包括了三个部分的结构,分别为导轨、导轨架和导靴,其主要作用是保证轿厢在井道中是按照正确的路线上下运行的,并且还能有效避免出现过多振动的现象。当出现了突发紧急情况时,轿厢就会被卡死在导轨上,那么就会避免坠落等安全事故的发生。导轨能够精确的控制电梯的升降方向,所以,导向系统就是可以控制对重和水平方向轿厢的移动的,保证对重和轿厢在井道中都是出于一个合理的位置的。在电梯的井道中通常会设置4根导轨,两根是对重架导向,另外两根则是轿厢导向,固定导轨时通常都采用压道板和螺栓、螺母等设备。

2.6电梯机械结构中的机械装置

为了最大限度地保证电梯使用的安全性,那么在电梯机械结构中还必须设有安全钳、限速器、缓冲器和终端超越保护装置等机械装置,当电梯系统的运行速度超过了其极限值时,限速器就会停止工作状态,并且借助绳轮之间的摩擦力还能将拉杆机构提拉起来,发出相应的警报信号并且切断控制电路,那么安全钳就必须发出动作,强制性的将轿厢停留在导轨上,在所有的安全开关都恢复状态后,安全钳才会释放,在所有的安全保护装置都失去作用后,缓冲器就会作为最后一道保护装置出来,其能够将轿厢的能力吸收并消耗掉,避免轿厢出现坠落的事故。而终端超越保护装置的最主要作用就是保证电气系统的顺利运行,从而保证轿厢的稳定运行,避免撞底和冲顶等安全事故的发生。

3结束语

第5篇:机械结构论文范文

1.1辊径参数的确定

通过机械结构设计和数值分析计算得出,辊子的抗弯强度和刚度随着辊径的变化而变化,根据实际工艺经验,辊距与辊径成正比,其关系为D=Kd(其中D为辊直径,K为比例系数,一般取0.75~0.9,d为辊距)。

1.2辊距参数的确定

在实际工程中,辊距参数的选择过大,会造成矫直的钢件的变形不够,造成矫直质量差,并且也不利于机器的入料。辊距参数的选择过小,会直接增加矫直力,使设备容易磨损,同时也容易对工件引起局部应力集中,压溃工件。所以在实际的工程和工艺中,要即保证满足矫直质量,又不损坏工件的情况下,合理选择辊距参数。

1.3矫直质量工艺

矫直要使得型钢弯曲到其材料对应的最大弹复曲率,为保证材料的最大弯曲,应按照图1式子计算。其中,h为轧件高度,单位mm;R为矫直辊半径,单位mm。P是材料的弯曲半径。

1.4最小辊距确定

最小辊距通过接触应力条件或接轴扭转强度确定,选取二者的较大者作为最小辊距。凭借实际经验,在所有工件中,圆钢的高度最低,工字钢最高,一般依据圆钢确定最大辊距,工字钢尺寸确定最小辊距,就能很好的适应加工工艺。最大辊距由矫直质量或满足最小上料条件确定,选取二者的较小值作为最大辊距。

1.5矫直辊强度的设计

矫直辊的自身的强度一般都远远大于工件的强度,所以一般情况下只考虑弯曲强度,弯曲强度不足的时候,可以增加相应的支撑,以多个点来吸收压力。

1.6辊数的确定

一般参照具体的企业生产能力和工艺的需求,对小型钢件一般7到11根,大型钢件取7根左右

1.7矫直速度的确定

钢件的矫直速度一般取决于生产任务的选择,一般在0.8-2m/s的范围内,小型钢件的矫直速度最高,经济效率最好。

1.8辊材料的选择

工作辊直接与型钢接触,并相互挤压,为了尽量减少辊子的磨损,保证矫直机可以长期稳定的工作,长期工作在挤压的恶劣工况下,就要求辊子表面要有足够的硬度,表面要有较高的加工精度,有很好的抗弯抗扭曲强度。按照当前的工艺,若工作辊径D<60mm,采用60CrMoV材料;当D=60~120mm时,采用90CrVMo材料;当D>200mm时,采用9Cr材料。

2软件上位机界面监控和计算

型钢结构参数计算软件的操作界面如图2所示,此软件只要输入钢件材料的规格,就可以直接得到型钢矫直机的结构参数。例如输入以下参数,辊距为1200mm,辊数为7根,型钢圆钢150mm.工字钢190x500mm,矫直速度0.8~2.5m/s软件计算结果:该矫直机辊间距离是1200mm,共有7根矫直辊,钢件矫直加工速度是0.80-2.5m/s。从最终软件计算结果看,该软件计算准确,操作方便。以实际生产中的型钢矫直机为软件设计基础,按照轧钢机械设计的要求,充分考虑了实际生产过程中的工艺,为现代的辊式型钢矫直机的设计提供了较为便捷的方法。

3结束语

友情链接