公务员期刊网 精选范文 数字化转型的概念范文

数字化转型的概念精选(九篇)

数字化转型的概念

第1篇:数字化转型的概念范文

1、受控语言与自然语言结合模式比较分析

理想的检索状态是:在系统外部,用户可以灵活使用自己的语言(自然语言)检索和组织信息,不需要看见和直接使用受控语言;在系统内部,存在着以超级知识库为基础的、高度专业化的受控语言,支持用户自然语言提问的转换。受控语言与自然语言一体化模式有很多种,其中影响较大的有:词素相似度识别转换模式、一体化语言系统模式、概念空间模型、学科事物概念组配模式和后控制模式等。现将此五种结合模式在体系结构上的相似与差异性作一比较。

1.1 五种结合模式的相似性

它们的共同点是:基本都允许用户使用自然语言检索提问,由系统进行一定程度上的词汇转换与控制,支持用户易用性要求。在体系结构上都能够:①构建语义网络。即以概念为中心对词汇实施控制,通过识别概念之间的关系,建立一个与概念体系相对应的具有层次结构的术语体系。②使用概念代码。以概念为中心,以唯一标识代码为主体是新型情报检索语言系统的特点。③使用入口词表。将符合语义索引要求的主题词或同义词、相关词反馈给用户,由用户来选择、确定他所需要的概念词,最后提交给索引系统进行检索。

1.2 五种结合模式的差异性

1.2.1 词素相似度识别转换模式

其代表是EMT系统,它的每个主题词款目基本数据项有:款目主题词、汉语拼音、英文译名、范畴代号、注释、范畴名称、用项、代项、属项、分项、参项等[1]。另外在其基本数据项中又增加了释义和词素项。各主题词相互之间构成用代、属分、参照3类关系。各主题词款目之间的不同形式排列形成主题词表的体系结构。 主题词款目的各基本数据项间构成了一个概念语义网络群。具体做法是:将每个表的每个款目词均定义为热节点;两两相关节点之间均建立有向索引链进行链接;全部节点由结构链聚合形成整个语义网络。

EMT系统根据转换知识库中的词素及词素同义对照关系,对主题概念或主题词进行分词整形,产生对应的词素标注集合。通过对主题概念与主题词所含词素相似度分析,便可实现主题概念到主题词的对应转换。标引文献时,文献主题概念可全部用自然语言词自由表达。若主题概念与词表中的主题词一致,或与词表中的入口词(同义词和被组代词)一致,则可立即自动转换成主题词,并自动将主题词登录入标引结果字段[2]。词表的入口率越高,与自然语言的自动转换能力就越强。 此种模式针对汉语系统设计,相对于其他针对英文系统设计的模式来说还处于实验阶段。目前,此种模式只在《军用主题词表》中应用,效果理想。该系统有一定的推广价值,随着汉字信息处理技术的发展,特别是汉字自动分词技术的发展,此种模式一定会有广阔的前景。

1.2.2 一体化语言系统模式

其典型代表是美国国立医学图书馆设计的一体化医学语言系统(UMLS)。该系统的语义网络通过134 种语义类型为超级叙词表中所有概念提供了一个统一的分类体系。UMLS系统语义网络的构建步骤是:各个语义类型组成语义网络的节点,节点与节点之间存在的关系即为语义关系。由语义类型及语义关系构成网状的语义结构,它起着统领超级叙词表概念的作用。语义网络将全部概念划分成组,每一组共享几种特定的语义类型,语义类型又共享几种语义关系,使概念不仅高度结构化而且广泛联系。

对于同一概念的不同术语以及不同的变异形式,UMLS采用了三级结构模式:概念(Ⅰ级),用唯一标识符CUI;术语(Ⅱ级),用唯一标识符LUI;词串(Ⅲ级),用唯一标识符SUI[3]。UMLS系统的特点在于:①其目标是受控语言和自然语言的一体化,编制的超级叙词表融先控制与后控制于一体,对概念词进行了不同层次、不同角度的控制。②专家词典程序可同时计算两个概念的共现频率、特殊事物的共现数据以及语义网络推理、识别和转换,使系统的自然语言理解和处理成为可能。③具有更广泛的适用性, 在各种系统、 脱机环境和网络环境中都能很好的应用。UMLS系统已投入使用,目前已被广泛应用于医学领域信息系统的智能化检索、自然语言系统研究、专业词表的编制、医学专业搜索引擎的开发等方面。

1.2.3 概念空间模型

该模型语义网络的构建步骤是:对已识别、选定的概念通过概念共现率分析,得到任意两个概念一起出现的可能概率,将概念作为神经网络的节点,节点间非对称的关联系数作为神经元之间带权重的链接就是概念共现率,这样就构成了神经网络。在文本概念空间生成后,按概念空间的结构分层、分类地建立起具有联想功能的语义索引,然后将语义索引按其在概念空间上的位置构成一个概念语义空间。

概念语义空间的入口词表是“智能型检索接口”。接口将检索要求处理成字符串,与语义空间中已有关键词的字符串相比较。利用缩写展开、赘字消除方法,自动转换成适合查询的字符串,并可将检索词分解到义原的层次,实现检索词的同义原联想功能。概念空间模型的特点是:①实现概念层次的检索,突破了关键词检索局限于形式匹配的缺陷。②实现了对用户检索请求的合理联想,给出进一步检索建议,大大加强与用户的联系。③概念查全率较高,优于人工词表。关键技术在于:①用于自动词表生成的算法,算法先进与否决定这项技术的成败,共现分析是概念空间算法的核心。②向用户提供符合用户检索要求规范词的智能检索接口。

第2篇:数字化转型的概念范文

关键词:本体学习;自动化;本体构建

一、本体的定义

本体一词来源于哲学,它指的是一种存在的系统解释。近年来,在计算机科学中关于本体的研究越来越多。在人工智能界,Ontology被定义为“给出构成相关领域词汇的基本术语和关系,以及利用这些术语和关系构成的规定这些词汇外延的规则的定义”。在信息系统、知识系统等领域,最著名并被引用得最为广泛的定义是由Gruber提出的,“本体是概念化的明确的规范说明”。W.N.Borst对该定义进行了引申“本体是共享的概念模型的形式化的规范说明”。Fensel对这个定义进行分析后认为Ontology的概念包括4个主要方面:

概念化(conceptualization):客观世界的现象的抽象模型。

明确(explicit):概念及它们之间联系都被精确定义。

形式化(formal):精确的数学描述。

共享(share):本体中反映的知识是其使用者共同认可的。

目前,关于本体的公认的定义是Gruber在1994年提出的:“本体是关于领域共享概念的一致的形式化说明”。这个定义包含3层含义:

共享概念包括用来对领域知识进行建模的概念框架、需要互操作的主体之间用于交互的与内容相关的协议以及用于表示特定领域的理论的共同约定等。

本体必须是一致的,即本体概念和关系不能出现逻辑上矛盾的陈述或推理上的逻辑矛盾。

本体的描述是形式化的,支持对领域概念和关系的推理。

二、基于本体学习的自动或半自动本体构建方法

由于人工的方法费时费力,使得本体的构建成为一项艰巨的任务。因此,如何利用知识获取技术来降低本体构建的开销是一个很有意义的研究方向。

国外在该方向的研究很活跃,把相关的技术称为本体学习技术(Ontology Learning),其目标是利用机器学习和统计等技术自动或半自动的从已有数据资源中获取渴望的本体。根据源数据结构化程度,可以将本体学习技术分为以下类别:

(一)基于结构化数据的本体学习

结构化数据主要是包括关系数据库或面向对象数据库中的数据。现在的应用大多采用关系数据库来组织和存储数据。但是关系模型有一个致命弱点,即它不能用一张表模型表示出复杂对象的语义。

基于结构化数据的本体学习的主要任务就是分析关系模型中蕴涵的语义信息,将其映像到本体中的相应部分。

从数据库中抽取本体,一般的做法是:利用数据库的逆向工程或映射技术将关系模型转换为一种中间模型,然后将该中间模型转换成本体。

例如,Johannesson提出了将关系模型转换成一个概念模型,该概念模型实际上是扩展的实体――关系模型的形式化表示,然后由用户对该概念模型进行修订生成最终的本体。

Rubin等人提出了一种使用关系数据库中的数据来丰富指定本体中的实例,并自动获取这些实例在相应属性上值的方法。Stojanovic等人使用映射技术将关系数据库模式映射为本体。通过考察数据库中的表、属性、主外键和包含依赖关系,给出了一组从关系模型到本体的映像规则,在根据这些规则的基础上能够直接获取候选本体。由于关系模式中蕴涵的语义十分有限,所以只适合构建轻量级的本体。Kashyap提出首先根据关系模式得到一个初步的本体,然后基于用户查询进一步丰富该本体中的概念和关系。由于用户查询具有很大的随机性,所以很难保证结果的质量。Astrova通过对数据库中的元组的分析,得到了概念间的继承关系。

(二)基于非结构化数据的本体学习

非结构化数据是指没有固定结构的数据,例如纯文本、Web网页、Word文件和PDF文件等。目前,基于非结构化数据的本体学习技术的研究主要集中在从纯文本中获取本体。由于缺乏一定的结构,要使机器能够自动地理解纯文本并从中抽取出需要的知识,必须利用自然语言处理(Natural Language Process,NLP)技术对其预处理,然后利用统计、机器学习等手段从中获取知识,重点是从文本抽取领域概念、实例,并发现概念之间的关系。

对于概念的获取,常用统计方法是计算概念在文本集中出现的频率,如果该频率大于指定的阀值,则将其作为领域本体中的概念。对于概念间关系的获取有基于模式,概念聚类,关联规则挖掘的方法。基于模式的方法需要判断文本中词的序列是否匹配某个模式,如果匹配,则可以识别出相应的关系。概念聚类的方法是利用概念之间的语义距离,对概念进行层次聚类,聚类的结果就是概念间的分类关系。关联规则挖掘的方法常用来获取概念间的非分类关系,其基本思想是,如果两个概念经常出现在同一文档(或段落,句子)中,则这两个概念之间必定存在关系。

目前,从纯文本中获取概念和概念间分类关系的研究比较多,但对概念间非分类关系的获取,大部分方法都停留在判断两个概念之间是否存在关系的层次。该方法需要人工预先制定模板。

(三)基于半结构化数据的本体学习

大量的XML格式和HTML格式的网页,以及它们遵循的文档类型定义(XML Schema或DTD)等具有隐含结构的数据都是半结构数据。本体学习的方法是利用一些映射规则从中获取本体。

另外,机器可读的词典也是一种特殊的半结构化数据,通常使用语言学分析,语义分析和模式匹配等方法来获取特定领域的概念及概念之间的关系。鉴于传统字典对于每个字词所定义的同义词、字根、原形等关系,该建构方法就是利用这种词汇与词汇之间的关系――上位词、下位词来确定概念的阶层关系。基于字典的建构方法是其他建构方法的基础,然而以此方法建构的本体通常为一般性的描述,并不是与特定领域相关的本体,因此必须结合其他方法以及由领域专家的参与才能形成有意义的本体架构,故此方法无法独立使用。该建构方法不仅受限于字典本身的范围大小,而形成不同范围的子领域,还存在无法适应环境变化的要求而造成遗漏信息。

Papatheodorou等人提出了一种从XML或RDF格式的文档中获取概念间分类关系的方法;Modica等开发的OntoBuilder工具能够用户浏览行为从XML和HTML标记的半结构化数据源中生成本体的功能。2003年,Volz等人提出了一种基于XML Schema和DTD的本体学习方法。该方法依赖于一组从源数据到本体的映射规则或模式匹配规则,如何获取这些规则就成为关键。

总之,采用本体学习技术,虽然可以简化人工构建本体的工作量。但在实际的知识获取过程中,有些知识虽然人能理解,但很难确切地表达出来,比如很多隐含的概念和概念间的关系,这些关系都是隐含在人的头脑中或者是文档中的。另外这些隐含的概念及概念间的关系要用形式化的方式确切地表示出来更加困难。

参考文献:

1、邓志鸿,唐世渭,张铭等.Ontology研究综述[J].北京大学学报(自然科学版),2002(5).

2、Thomas R,Gruber.Toward Principles for the Design of Ontologies Used for Knowledge Sharing[J].Revision,1993(23).

3、Fensel D,Harmelen F Vl.OIL:An Ontology Infrastructure for the Semantic Web.IEEE Intelligent Systems,2001(2).

第3篇:数字化转型的概念范文

一、用数学图形说明地理概念

第一,用结构图表说明反映比例关系的有关概念,主要有扇形图、饼状图、柱形图、矩形图等。如构成概念,就可先出示扇形统计图,然后由图形说明构成,即某地理事物各个组成部分所占的百分比,其总量为1。

例如,中国各种地形的构成比例。由右图可直观得出我国地形特点之一:地形多种多样,山区面积广大。

类似的概念,如地球大气的组成、地壳的物质组成、能源消费构成、农业产值构成、工业产值构成、产业构成、人口构成等,形象地说明了各组成部分间的相对比例关系。再如,我国水能蕴藏量的地区分布构成、世界石油主要分布区的储量构成、主要石油产区的产量构成等,用图形形象地从局部与整体的角度说明了某一地理事物大致的空间分布。通过数学图形与地理语言相结合,深化了对地理概念的理解。在讲解地理概念时,应注意对概念下定义要准确,概念的内涵和外延应讲明白,同时要引导学生总结出概念之间的关系。

第二,用坐标图反映地理事物的变化规律,如人口再生产类型的转变。它的决定因素为出生率、死亡率和自然增长率。如果教学中借助了人口增长模式及其转变示意图,理解起来就容易多了。

根据以上示意图可提出以下几个问题进行学习:

(1)原始型向传统型转变时、传统型向现代型转变时的人口自然增长率分别是多少?

(2)描述三种人口增长模式的基本特征。

(3)人口增长模式的转变是由什么的降低开始的?最终是由什么的降低实现的?

二、利用几何知识得出地理原理与结论

几何图形是空间思维的重要表示方法。地理学科空间概念强,经常用几何图形来表示空间地理事物,如地球自转与公转示意图、地球光照图等。因此,在地理教学中,许多可以将地理事物关系通过几何图形直观地表现出来,利用几何方法突破了教学难点,起到了事半功倍的效果。既有利于突破重难点、使学生加深对知识的理解,同时还可培养学生空间思维能力和读图、解图的能力。例如,利用几何图形认识太阳直射点的回归运动所引起的变化。

从右面简单的光照图中可以得到:太阳直射点的纬度( )与晨昏线和经线夹角( )以及AN两点的纬度差是相等的。可以想象,当变化时会带动与AN纬度差的变化。可见,当太阳直射点从赤道向北回归线移动过程中,太阳直射点的纬度( )变大,伴随着晨昏线与经线夹角( )也增大,南北半球的极昼、极夜范围也在扩大;昼夜差值(ED)也在增大。反之亦然。

太阳直射点的回归运动所引起的变化是高中地理的一个重点,也是一个难点。它对空间思维能力要求较高,学生学习起来较为吃力。在讲解该内容时,利用上述几何图形引导学生借用数学方法求证,同时结合动画演示,让学生自己总结出昼夜长短产生的原因及其规律。这样既能让学生轻松理解难点知识,还可以帮助学生对重点知识的记忆。

三、用数字图表定量说明地理事物的特征与相互关系

中学地理教学中存在大量的地理数字。地理数字是地理知识的重要组成,能说明地理事物的特征及其相互关系。应用图表将地理数字形象化、规律化,既能吸引学生注意力,提高学习兴趣,还能帮助学生认识地理事物和现象的本质,形成分析和判断能力。同时,很多地理高考试题都利用地理图表进行立意,这样既能考查学生对有关知识的掌握,又可以有效地考查学生有关地理能力的形成情况。所以,地理图表的学习越来越引起更多的关注。

例如,在讲述世界气候类型的判断时,先让学生根据有关气候类型的数据统计表,从气温方面比较、归纳不同气候带的差别,然后从降水量上进行比较得出同一气候带内不同气候类型的差别,建立进行气候类型判别的最基本的依据,掌握进行气候类型判别的最基本的方法,为以后进行准确的分析、判断提供前提。

第4篇:数字化转型的概念范文

(烟台大学法学院,山东 烟台 264005)

[摘 要] 基于证据在程序中的重要地位以及证据与社会发展息息相关的紧密关联,要促进程序法在数字时代的发展,首先要研究的便是数字技术对包括民事、行政、刑事证据在内的程序证据制度的影响。使用“计算机证据”、“电子证据”概念并不能科学的归纳出这种证据的内涵,而“数字证据”概念则更符合其之本质特征。在证据类型上,数字证据与书证、视听资料等已有证据类型颇不相同,是一种新的独立的证据类型,并且,在证据规则上,数字证据具有与其数字技术特性相应的新规则。

[关键词] 数字化;数字证据;视听资料;书证 ;数字证据规则

STUDY ON THE DIGITAL EVIDENCE

YU Hai-fang ,JIANG Feng-ge

(Law school of Yantai university, Yantai Shandon, 264005)

Abstract: In order to accelerate the development of the procedural law, we should study the effects of digital technology on the system of evidence. As for the concept, digital evidence should be adopted , instead of computer evidence or electronic evidence; as for the sort of evidence, digital evidence should be a new sort of evidence through the comparison with documentary evidence and audio-visual reference material. As for the rules, there must be some special rules for digital evidence. When do some research on the new problems as a result of hi-technology, we should connect the technological characters of it and the feature of it.

Key words: digitalization; digital evidence; documentary evidence; audio-visual reference material ;rules of evidence

[中图分类号] D 925.1 [文献标识码] A

具有相辅相承关系的自然科学与人文社会科学是人类文明不可分割的整体,自然科学成就以及其所积累起来的大量实证科学知识,为社会科学提供新的思维方式与研究方法,而社会科学不仅要思考具体社会关系中人与人的关系问题,还要回答自然科学发展中出现的一系列制度层面和道德层面的问题。包括法律在内的社会科学往往随着自然科学的发展,在对自然科学所引导的社会关系进行调整的同时获得了自身的进一步发展与完善。从法律纵向发展历史来看,每次重大技术进步都会在刺激生产力飞跃提升的同时促进法律进步,工业革命时代如此,当前以数字技术为主导技术的信息革命时代也是如此。数字技术推促环境迅速发展、改变,使法律不得不正面回答其所提出的问题。在这个过程中,首先进行的一般是实体法的扩展与新创,随之而来的则是程序法的映射修正。但是由于目前研究正处于伊使状态,许多问题并没有得到有效解决。

面对数字技术对法律提出的不同以往的挑战,体现于合同法、知识产权法、行政法的一些程序流程中,我国在一些实体法中已开始逐渐进行解决,但在程序法上却仍未开始这方面的尝试。在当前已经出现的大量技术含量极高的案例中,作为程序的核心——证据制度,①不论是民事,还是刑事、行政证据制度在面对新问题时都处于一种尚付阙如的尴尬境地,这种尴尬在目前沸沸扬扬的新浪与搜狐的诉讼之争中又一次被重演。不仅当前制定证据法的学者们所提出数稿中有的根本就没有此方面的规定,即使作为对以往司法实践的总结与最新的证据规则的《最高人民法院关于民事诉讼证据的若干规定》,对数字技术引发出现的愈来愈多的问题也依然未给予应有的注意。数字技术引发的种种问题现下可谓已渐有燎原之势,却仍不进行解决,可谓欠缺,因此为避免这种脱节,理应在数字技术环境下对括民事、刑事、行政证据制度进行新的研究。

一、数字证据的可采性与可行性分析

数字技术推动出现的社会经济关系提出新的要求,体现于法律之上,在实体法上表现为,要求重新确认这种新技术指示的新类型社会关系当事人间的权利义务关系;在程序法上表现为,当这种社会关系的当事人因权利义务关系发生纠纷时,应当存在与之相适应的相关程序,或者对已有程序进行完善,能够满足这种纠纷不同以往而与其技术特征相适应的要求。而在程序法证据制度上的一个基本表现就是,要求数字化过程中所产生的一些数据资料等能够纳入到证据体系中,得到证据规则的认可,能够被法庭接受成为证明案件事实的证据。

自20世纪90年代起,EDI数据交换方式以其便捷、高效、准确而备受青睐。一些重要的国际组织针对电子商务等进行大量的立法工作,欧美各国在实体上早已承认以数据电文方式订立合同、申报纳税与以信件、电报、传真等传统方式具有相同效力,在程序法上也作了相应的规定。美国《联邦证据规则》通过重申现行判例和成文法的形式肯定了数据电文无论是人工做成的还是计算机自动录入的,都可作为诉讼证据。英国1968年《民事证据法》规定,在任何民事诉讼程序中,文书内容只要符合法庭规则就可被接受成为证明任何事实的证据,而不论文书的形式如何。[8]在1988年修正《治安与刑事证据法》(The Police and Criminal Evidence Act)也作出了类似的规定。加拿大通过R. v. McMullen (Ont. C.A., 1979)一案确立了新证据在普通法上的相关规则。联合国贸法会在《电子商务示范法》中规定,“不得仅仅以某项信息采用数据电文形式为理由而否定其法律效力、有效性和可执行性。”又承认了以数据电文方式订立的合同的有效性,并且认为,在一定情况下数据电文满足了对原件的要求,在诉讼中不得否认其为原件而拒绝接受为证据。这些规定运用功能等同法(functional-equivalent),认为只要与传统方式具有相同的功能,即可认定为具有同等效力。我国也与这一国际立法趋势相靠拢,例如我国新修订的海关法中规定了电子数据报关方式。更为重要的是,我国在合同法中已承认以电子数据交换方式订立的合同的有效性,承认其符合法律对合同书面形式的要求。要使实体法的修改有实际意义,就必须设定相应的程序规则,使在以实体规定为依据在诉讼中寻求救济时具有程序法基础,否则实体法上的修改不啻一纸空文。

虽然数字证据并不单纯只是在电子商务关系中产生,其还可在其他社会关系中产生,①但数字证据问题主要是由于电子商务的飞速发展而提出。由于电子商务交易追求交易的快速便捷、无纸化(paperless trading)流程,在很多交易过程中很少有甚至根本就没有任何纸质文件出现,电子商务交易中所存在的与交易相关的资料可能完全是以数字化形式存在于计算机等存储设备中。一旦产生纠纷,如果在程序法上不承认数字证据的证据力,当事人将没有任何证据来支持自己的权利主张,无法得到法律救济,商人对电子交易就难以产生依赖感,不利于电子商务的发展。

纵观证据法的发展历程,各种证据类型是在随着经济社会的发展中逐渐得到法律承认的,目前作为主要证据形态的纸质文件经历了很长的时间方得到法律认可,视听资料也经历了类似的过程。电子技术在20世纪大行其道,导致证据法上接受了电子资料的证据效力,而数字技术在20世纪末便开始获得了极大进步,对经济与社会有着深远影响,在新世纪之初所取得的发展与对社会发展的促进作用有目共睹。虽然法院尚未正式使用数字技术形成的数字证据,但法院却早已开始使用数字技术方便案件的处理,虽然不能肯定数字技术会否在某一天取代电子技术,但却能肯定数字技术必将抢占电子技术所占据的社会份额,其对社会的影响必将超越电子技术。任何一种技术新出现时都会有其欠缺之处,但正如电子资料最终成为证据法上的证据类型一样,不能因为数字证据在目前所具有的脆弱性等消极因素而拒绝直面技术的发展、社会的进步,对于其之消极方面可以通过立法技术来加以调整,保障其在诉讼中的可采性,从而扬长避短,在程序法上充分发挥数字技术的作用。

并且,承认数字证据在我国法律上也是可行的。在法律上承认数字证据的可行性就在于法律能否将数字证据容纳进去,而与法律的价值理念不相冲突,并可与原有的法律规定相协调,重新建立的规则与原有的体系也并不矛盾。各国在证据立法上有三种模式:一是自由式,原则上不限制所有出示的有关证据;二是开列清单式,明确列举可作为证据的种类,此为我国所采;三是英美判例法证据模式。承认数字证据,在我国诉讼法中并不存在不可逾越的障碍,我国并不存在英美判例法国家由判例中长期以来形成的例如“最佳证据规则”与“传闻规则”的束缚,以至于由于与根本性原则不相符合而使程序法容纳数字证据大费周折。①我国诉讼法对证据采取列举式的规定,只要立法将新的证据类型予以确认,即可使之成为合法的证据,可以在诉讼中有效使用。将原有的一些规则进行重新阐释或者进行规则的另行制定,即可建立起数字证据制度。法律是个不断进化、发展的而不是僵化的封闭体系,在有完善的必要时,或者修改立法,或者在未修改前对这种新证据以司法解释的形式进行扩大解释,予以诉讼上的许可也是合理的,既符合立法者意图,也不违反我国程序法的相关规定,所以在我国法律上是可行的。

二、数字证据概念的比较研究

使用精确的概念,进行内涵的准确界定与外延的清晰延展,对于一个科学体系的建立极具方法论意义,并且也符合社会学方法的规则,因此,建立一个体系首先进行的便应是概念的归纳。同时,一个精确的概念必须能够抽象归纳出所有客体的本质共性所在,必须能够把表现相同性质的所有现象全部容纳进去。对数字证据进行概念归纳,基于其之鲜明的技术特征,在归纳时要回归到数字技术层面,在其所使用的数字技术与存在的社会经济基础的结合中寻找恰当的突破点。

对于所采用的概念,在国际上至今未有定论,如computer evidence(计算机证据)、electronic evidence(电子证据)、digital evidence(数字证据)都有其之使用者。我国采取数字证据概念大多数是IT 业界,法律学者采用的概念主要是:计算机证据与电子证据,进而在这些概念基础上分析证据的性质、效力、类型等。②这些概念以及在此基础上的分析存在一些问题,之所以如此,或者是因为单纯注重对社会经济层面的考查却忽略对技术层面的透彻分析,或者是因为虽进行了技术的分析,但却未深入到进行法律归纳所需要的足够程度。因而有必要从与这些概念、定义的多维比较中分析数字证据概念的内涵与外延。

(一)与计算机证据、电子证据概念相比较

首先必须明确的是,虽各概念所使用的语词虽不同,但在内涵上,计算机证据、电子证据都是针对不同于传统的数字化运算过程中产生的证据,在外延上一般都试图囊括数字化运算中产生的全部信息资料。不过,计算机证据与电子证据这两种概念并不妥贴,不能充分表现该种证据的本质内涵,由此而容易导致概念在外延上不能涵盖该种证据的全部表现。

1、 “计算机证据”概念 有人认为,“计算机证据,是指在计算机或计算机系统运行过程中产生的以其记录的内容来证明案件事实的电磁记录物。”[1]采取“计算机证据”概念来表述数字化过程中形成的证据具有一定合理性,因为计算机及以计算机为主导的网络是数字化运算的主要设备,并且目前数字化信息也大多存储于电磁性介质之中。从数字化所倚靠的设备的角度来归纳此类证据的共性,在外延上能够涵盖绝大多数此类证据。然而,虽然计算机设备是当前数字化处理的主要设备,计算机中存储的资料也是当前此类证据中的主要部分,但是进行数字化运算处理的计算机这一技术设备并不是数字化的唯一设备,例如扫描仪、数码摄像机这些设备均是数字化运算不可或缺的设备,但并不能认为这些也属.于计算机之列。从国外立法来看,没有国家采取computer evidence,采用这种概念的学者在论述中也往往又兼用了其他的概念。

迪尔凯姆认为,研究事物之初,要从事物的外形去观察事物,这样更容易接触事物的本质,但却不可以在研究结束后,仍然用外形观察的结果来解释事物的实质。所以,“计算机证据”概念从事物外形上进行定义具有一定合理性,但是“计算机证据”概念未能归纳出数字化过程中形成的可以作为证明案件事实情况的证据共性,其不仅仅只是能够涵盖当前数字化过程中产生的大多数却不是全部的信息资料,而且在法律上也不能对将来出现的证据类型预留出弹性空间。

2、 “电子证据”概念 目前,采用“电子证据”者甚众,其存在各种各样的定义。有人认为:“电子证据,又称为计算机证据,是指在计算机或计算机系统运行过程中产生的以其记录的内容来证明案件事实的电磁记录物。” [2]有人认为:“电子证据,是指以数字的形式保存在计算机存储器或外部存储介质中,能够证明案件真实情况的数据或信息。” [3] “电子证据是指以储存的电子化信息资料来证明案件真实情况的电子物品或电子记录,它包括视听资料和电子证据。” [4] 加拿大明确采取了电子证据概念,在《统一电子证据法》(Uniform Electronic Evidence Act)的定义条款中规定,“电子证据,指任何记录于或产生于计算机或类似设备中的媒介中的资料,其可以为人或计算机或相关设备所读取或接收。”[5]

综合起来,各种电子证据的定义主要有这样两种:第一,狭义上的电子证据,等同于计算机证据概念,即自计算机或计算机外部系统中所得到的电磁记录物,此种内涵过于狭小,不能涵盖数字化过程中生成的全部证据,不如第二种定义合理。第二,广义上的电子证据,包括视听资料与计算机证据两种证据,在内容上包含了第一种定义,并且还包括我国诉讼法中原有的视听资料。但我们认为,这些定义中不仅所使用的“电子”一词不妥,而且所下定义亦为不妥,理由如下:

第一,将电子证据或者计算机证据定性为电磁记录物未免过于狭隘。虽然数字设备的整个运作过程一般由电子技术操控,各个构件以及构件相互之间以电子运动来进行信息传输,但是仍然不可以认为该种证据即为自电子运动过程中得到的资料。美国《统一电子交易法》2(5)中规定:“电子(electronic),是指含有电子的、数据的、磁性的、光学的、电磁的或类似性能的相关技术。”扩大解释了电子的语词内涵,使用各种不同的技术载体来表达扩大的电子语义,已经失去了“电子”一词的原义,原本意义上的电子只是其使用的“电子”概念中的一种技术而已,从而能够涵盖大多数此类证据。不过,既然如此,还不如直接使用能够涵盖这些技术特性的“数字”概念,在工具价值方面更有可取之处。加拿大《统一电子证据法》解释中解释之所以采取“电子”,“因为信息为计算机或类似设备所记录或存储”,但这个理由并不充分。并且接下来又承认有些数字信息(digital form)未涵盖于本法,因为有其他的法律进行调整。 第二,电子证据概念不能揭示此类证据的本质特征。电子运动只是数字化运算的手段,而非本质,并且也并不是所有数字设备的运算全都采取电子运动手段。进行数字化运算的计算机设备及其他数字设备的共同之处在于这些设备的运算均采取数字化方式,而非在于均采取电子运动手段。 第三,不论是将视听资料这种已存的证据类型纳于电子证据中,还是将电子证据纳入视听资料中,会致使“电子证据”与我国诉讼法中的“视听资料”相混淆,而此类证据与视听资料证据的本质共性并不相同。视听资料中主要为录音、录像资料,其信息的存储以及传输等也都采取电子运动手段。录音、录像采取模拟信号方式,其波形连续;而在计算机等数字设备中,以不同的二进制数字组合代表不同的脉冲,表达不同信号,信息的存储、传输采取数字信号,其波形离散、不连续。二者的实现、表现、存储、转化都不相同。传统的电话、电视、录音、录像等都采取模拟信号进行通讯,这是视听资料的共性,而计算机与网络信息技术则采取数字化方式通信,这是数字化运算中生成的证据的共性,两者不同,不应混淆。

可见,狭义上的电子证据在外延上只能容纳数字化过程中产生的部分证据,失之过狭;广义上的电子证据确实能够在外延上容纳数字化过程中产生的全部证据,但却失之过宽,如将视听资料与计算机证据这两种差别极大的证据容于同一种证据类型中,将不得不针对两种证据进行规则的制定,从而导致同种证据类型的证据规则不相统一,很难建立起一个和谐有致的体系。

(二)数字证据①概念的内涵与外延

我们认为,数字证据就是信息数字化过程中形成的以数字形式读写的能够证明案件事实情况的资料。

这里使用的“数字”(digital, digits pl.)与日常用语中的“数字”语义并不相同,虽并不如“电子”更为人们熟悉和容易理解,但重要的是根据科学的需要和借助于专门术语的表达,使用科学的概念来清晰的定义相关事物,况且“数字”概念在现今信息时代也并不是一个新概念,早已为人们广泛接受和使用。现代计算机与数字化理论认为,数是对世界真实和完全的反映,是一种客观实在。人类基因组的破译说明,甚至代表人类文明最高成就的人自身也可以数字化。[6]来势汹涌的全球信息化潮流实际上就是对事物的数字化(digitalization)处理过程,区别于纸质信件、电话、传真等传统信息交流方式,这种采用新的信息处理、存储、传输的数字方式在现代社会包括日常交往与商业贸易中逐步建立了其不可替代的地位。毋庸置疑的是,数字技术还会不断的发展,因此在进行法律调整之时就更不能限定所使用的技术与存储的介质,从而在法律上为技术的发展留存一个宽松的空间。

1、数字证据有其数字技术性。信息数字化处理过程中,数字技术设备以“0”与“1”二进制代码进行数值运算与逻辑运算,所有的输入都转换为机器可直接读写而人并不能直接读写的“0”、“1”代码在数字技术设备中进行运算,然后再将运算结果转换为人可读的输出。数字证据以数字化为基础,以数字化作为区别于其他证据类型的根本特征。数字证据具有依赖性,其生成、存储、输出等都需借助于数字化硬件与软件设备;具有精确性,数字证据能准确的再现事实;具有易篡改性,数字化技术特性决定了数字资料可以方便的进行修正、补充,但这优点在数字资料作为证据使用时成为缺点,使其极易被篡改或被销毁,从而降低了数字证据的可靠性,这个特点也决定了在对数字证据进行规则的制定时应当切实保障其之真实性。SWGDE (Scientific Working Group on Digital Evidence)与 IOCE(International Organization on Digital Evidence)在1999年在伦敦举办的旨在为各国提供数字证据交换规则的会议IHCFC (International Hi-Tech Crime and Forensics Conference ) 上提交了一份名为《数字证据:标准与原则》的报告也对数字证据从技术方面进行了定义,“数字证据是指以数字形式存储或传输的信息或资料。”[7]在接下来的规则中则重点阐述了如何对数字证据的真实性进行保障。

第5篇:数字化转型的概念范文

关键词:数字地球 电子政务 信息共享 数据挖掘

一、数字地球及其相关概念

在目前这个高速信息化的进程中,信息技术正在深刻地改变着人类社会的方方面面。作为信息技术的基本要素,数据正如决堤之水,汹涌而来。然而相对于数据的迅速膨胀,人们利用数据的能力则十分局限。一方面是浩如烟海的数据不断扩张,另一方面则是决策信息的十分贫乏,造成这种结果的原因是数据整合共享的能力不足。数字地球就是针对这种情况提出的解决方案。数字地球这一概念由美国前副总统戈尔于1998年1月首先提出[1],旨在通过数字地球的宏观架构,将各种数据无缝集成到一个统一的整体框架中,实现信息的时空集成、立体表示和智能利用。陈述彭曾指出,数字地球的核心是用全盘数字化的信息获取、存储、传输与处理技术,去控制和操纵全球性的事务[2]。以此为发端,世界各国掀起了轰轰烈烈的数字地球建设热潮。数字地球计划不仅意味着信息化的巨大进步,同时也意味着信息时代面临新的国家安全战略挑战――数字地球必将对信息时代的全球战略格局带来深远的影响。面对这一挑战,必须认真研究数字地球,并积极参与到数字地球建设的实践中去。为此,我国相继提出了“数字中国”、“数字城市”、“数字流域”等的构想,为新形势下的信息化事业开创了一个全新的局面。

从数字地球的处理技术流程看,可以分为数据的获取、存储、传输和处理等环节;从数字地球的体系结构看,可分为数据层、应用层和服务层;从数字地球的实施步骤看,可分为数字城市、数字省、数字国家、数字区域和数字地球几个层级[3]。可见数字城市、数字中国是数字地球战略架构中的基础实施步骤。

二、电子政务与数字地球的关系

从戈尔对数字地球的描述中可以看到,地理空间信息(或称历史地理空间信息)构成了数字地球的时空骨架,而各种应用信息则构成其肌体。政务信息资源可以说是数字地球肌体中的神经网络体系,是其中最为精彩的应用信息。数字地球就是要将空间信息与其他各类信息实现无缝整合,实现各类信息的综合共享。只有实现了地理空间信息与其他各类应用信息的无缝整合和全面共享,才能让人们乘着“数字魔毯”自由飞翔,才能随时伸出“数字手指”获取任何想要的信息,并藉此驱动信息的运动。可以想象,借助“数字魔毯”和“数字手套”的帮助,政府首脑、各级领导和政府公务员实施政务决策和政务处理,是何等高效、准确和科学?因此,数字地球是电子政务的美好前景,而电子政务是数字地球的重要组成部分。

数字地球的数据模型是由基础数据与各种专题数据、领域应用数据组成的层次体系,政务数据可以认为处于这个层次体系的最顶层。在数字地球这个信息层次体系中,要实现各类信息的无缝整合和全面共享,既要实现水平层内的信息片整合,还要实现垂直方向的信息层间的整合。整合后,当这个数字地球的立体层次体系中的任一点触发了任一应用的活动时,则可根据活动目标随意调用需要的相关应用功能,敏捷地形成业务线,并迅速装配该业务线所需要的功能组件,调用各应用需要的各类数据资源,进行自组织有序的运算,将运算结果展现出来,构建虚拟可视场景,形成虚拟决策场景。政务处理实际上就是由一系列的决策构成的决策流,在数字地球所提供的虚拟场景中,决策流可转化为连续的虚拟决策场景的变换。这样的虚拟政务决策场景变换,使得政务决策过程实现了真正的数字化,而且可以最大限度地保证实时性。支撑虚拟政务决策的所有信息都来自后台复杂的信息监控、采集、集成、融合和处理等过程。这样的数字决策显然是最为科学的,同时也是最为高效实时的。

是各种社会活动的高级形态。以其他各类活动为依据,是一个处于社会运动形态顶层的人类综合决策运动。要综合应用各类活动的信息,力图使决策活动更加全面合理和高效。政务的信息表达形态即电子政务,在数字地球的总体框架中属于高端应用,它要以各类信息资源为支撑,是一个典型的复杂系统。由于政务信息资源是国家信息资源的核心部分,对于国家信息安全关系重大,因此,安全是首要的考虑因素。在数字城市、数字中国的战略中,信息安全体系是最为重要的保障性体系。政务信息资源的安全性要求,必须在数字城市、数字中国的整体框架中得到切实的解决。

三、电子政务信息共享面临的困难

信息整合和共享是实施数字地球计划的关键技术,也是目前世界各国研究的焦点问题之一。要实现信息共享,就要解决以下五个层次的问题:首先要解决数据之间的集成、融合问题;其次要解决应用间的互操作问题;第三要解决业务间的协同工作问题;第四要解决组织间的任务协调分配问题;最后要实现绩效评估标准的统一。对于各个层次,构建相应的标准体系,提供集成、融合、互操作、协同和协调的接口标准和实施机制标准,是行之有效的措施,因此,越来越多的研究集中在标准化体系开发领域。但是,随着研究的深入,人们发现概念及概念间关系的复杂性,是实现信息共享的关键障碍。任何事物,都必须抽象为概念,才能实现数字化。也就是说,现实世界中的事物,必须经过人脑抽象,与概念世界中的概念进行对应,才能转化为概念世界中的元素,而只有概念世界中的元素,才有机会在数字地球中出现。由于现实世界事物间的联系是普遍的,因此,概念之间的联系也是普遍,这种概念间联系的普遍性,可以用概念间关系网络来形象地表示。如果人们对现实世界事物与概念世界中概念元素间的对应关系理解不一致,那么概念所对应的元素与现实世界中的事物就会根本不同,就根本不可能在数字地球中做到信息的共享,最后将导致数字地球的虚妄性。因此,构建一个全球各行业各领域共用的概念网络,是数字地球研究的当务之急。

作为数字地球层次体系中的应用层要素,电子政务层既要实现同层内的信息共享,还要实现与其他层次间的信息共享。特别是由于政务处理本身就是综合决策过程,因此,信息共享显得尤为重要,而构建电子政务信息共享的概念网络体系就是电子政务研究的关键问题。这个概念网络体系叫做概念模型。

信息共享的难点在于概念的语义异构和语法异构。语法异构主要是因为不同信息团体对概念的使用方法不同所致,而语义异构是由于对客观事物本质的认识差异所致。因此,语义异构问题是影响信息共享更为根本性的问题。为了解决概念的语义异构和语法异构,研究人员尝试了各种方法,其中最具成效的莫过于本体论方法。电子政务信息共享可划分为数据模型、应用协同机制、职能边界确定、政务分类、绩效评估等层次。技术、规范和安全等标准体系是电子政务信息共享的关键支撑环境。不同层次应该具有相应的信息共享模型体系,这些模型体系相互之间具有一定关系,它们共同构成一个统一的电子政务信息共享模型体系。这个统一的电子政务信息共享模型体系首先要采用一套共享的概念体系来构建,即概念模型体系,用以支持电子政务的语义信息共享。在这个概念模型体系支持下,电子政务语法信息共享才可能正确实施。这个概念模型体系,用本体技术来构建,就是电子政务本体。由此可见,电子政务信息共享本体,即e-Gov Ontology,是电子政务信息共享研究的关键课题。有关本体的知识,受篇幅所限,这里不做详细介绍。

电子政务信息共享的目的是为了提供统一、高效的政务服务。服务是电子政务的核心理念,一站式服务是电子政务所追求的目标。一站式服务需要集成、整合和共享全社会所有的政务资源,需要最大限度地降低资源的冗余存储,需要保持政务资源的一致性,需要所有政务处理系统提供高效的互操作机制,而这些技术正是电子政务服务模型所需要面对和解决的关键问题。因此,在此将前述的电子政务信息共享模型更一般地称之为电子政务服务参考模型,电子政务的服务参考模型用本体技术来表达,就是电子政务服务本体。电子政务服务本体,是解决当前迫在眉睫的电子政务信息整合、共享和互操作的有效方案。

此外,数据必须经过优选、深加工才能成为有效信息;信息再经过科学的深加工过程,才能增值,升华成为知识经济的要素[2]。数据挖掘是“数字地球”战略至关重要的环节,也是最薄弱、最有发展潜力的环节。数据挖掘的目的是从浩如烟海的数据和信息中发现和突现知识,而知识才是决策支持的真正力量源泉。数据和信息必须经过知识化处理,才能真正被高效利用。由于电子政务本身就是一个决策过程流,数据挖掘对它来说具有非同寻常的意义。然而,数据挖掘长期以来一直是电子政务面临的巨大难题。其中一个重要因素,就是政务领域的知识模型问题。只有在科学合理的政务领域知识模型支持下,才有可能进行客观有效的政务数据信息挖掘。但是,由于政务领域的复杂性,其领域知识体系不仅涉及范围广大,而且充满了不确定因素。据此,可以推断,政务领域知识模型将是电子政务建设所面临的又一个巨大挑战。

四、基于3S的电子政务应用

遥感(Remote Sensing,RS)、地理信息系统(Geographic Information System,GIS)和全球定位系统(Global Positioning System,GPS)是实现数字地球的核心技术支撑,如果没有3S技术(上述RS技术、GIS技术和GPS技术的简称),数字地球就根本无从谈起。因此,从数字地球的视角来观察电子政务,我们首先就会想到基于3S的电子政务应用。陈述彭院士在《遥感应用与数字地球》一文中认为,数字地球是遥感应用功能的延伸,可将其分为五个步骤:数字化、信息化、知识化、再现、决策[4]。RS的主要作用就是获取数据,实现对地球观察的数字化;而信息化则是从海量数据中提取有效信息的过程;知识化是通过各种专业应用模型,从有效信息和数据中凝练出规律;再现是通过虚拟仿真,重建自然或社会的历史过程,延伸和预测未来发展趋势,提供可能的解决方案;最后一步是决策,则是指由决策部门、集体或个人审时度势,对多种方案做出取舍。政务过程集中表现为决策过程,它要以数据化、信息化、知识化和再现等步骤为前提和基础。GPS技术主要是提供地理定位支持,这对于基于位置的政务服务具有重要的支撑意义。GIS技术的作用就在于实现数据的信息化管理,并在领域知识模型的支持下,尽可能地从信息和数据中凝练出知识。此外,GIS也将承担决策场景虚拟再现的任务。由此可见,GIS技术对于数字地球框架中的电子政务的实施具有深远意义。

据统计,80%的信息资源是与地理要素有关的。因此,与地理要素有关的政务是电子政务的重要构成部分。自然资源管理、环境管理、城市建设、地籍管理、交通运输、国土安全等与地理要素直接相关的自不必说,即便是看起来与地理信息最无关紧要的办公自动化系统,也可以将GIS的图层方法引入,形成基于图层的公文批示解决方案。可以这样说,只有实现了基于3S等技术支持的电子政务,才可以认为是真正的电子政务。换句话说,只有在数字地球的框架中实施的电子政务,才可称之为真正的电子政务。而GIS等技术也只有作为普通工具应用于包括电子政务的各类专业应用系统中,才可以焕发出新的生机。

五、结束语

数字地球的体系结构是一个多层次系统,其中的数据层和应用层也是一个多层次体系。电子政务信息资源处于数据层次体系的顶层,而电子政务应用也处于数字地球应用层次体系的顶层。电子政务是数字地球框架中的高端应用系统,也是数字地球的重要服务目标之一。在数字地球框架中的电子政务才真正体现了信息社会中的政务决策形式,这一认识思路也许会对健康、有序、正确地推进社会信息化建设向纵深发展起到一点积极作用。

参考文献:

Gore A L.The Digital Earth:Understanding our planet in the 21st Century[R].California,1998

陈述彭.“数字地球”战略及其制高点[J].遥感学报,1999,3(4):247-253

李琦,杨超伟.“数字地球”的体系结构[J].遥感学报,1999,3(4):254-258

陈述彭.遥感应用与数字地球[EB/OL].[2007-05-22].nrscc.省略/mj/mj2.asp?num=706

作者简介:

李海军,男,北京大学遥感与地理信息系统研究所博士生,主要研究方向为电子政务与数字城市。

第6篇:数字化转型的概念范文

【关键词】概念课型 核心任务 教学定位

【中图分类号】G633.6 【文献标识码】A 【文章编号】2095-3089(2015)06-0130-02

1.概念课型的界定

数学概念课型是以“事实学习”为中心内容的课型。该课型体现学生的学习活动是在进行“代表学习”和“概念学习”。通过“概念学习”,把作为新知识中的概念,正确地初步地转化为学生自身认知结构的概念体系里的概念。通过“代表学习”,对概念的文字、语言叙述或概念的定义能初步理解,掌握这些数学概念所对应的数学符号及这些符号的书写、使用方法。初步了解由这些数学符号组成的语言含义,并能初步把它转译成一般语言。

2.高中数学概念课的核心任务与教学定位

2.1高中数学概念课的核心任务

高中数学概念课教学的核心任务是对数学对象的抽象概括。

正确地理解和形成一个数学概念,必须明确这个数学概念的内涵――对象的“质”的特征,及其外延――对象的“量”的范围。一般来说,数学概念是运用定义的形式来揭露其本质特征的。但在这之前,有一个通过实例、练习及口头描述来理解的阶段。比如,儿童对自然数,对运算结果――和、差、积、商的理解,就是如此。到小学高年级,开始出现以文字表达一个数学概念,即定义的方式,如分数、比例等。有些数学概念要经过长期的酝酿,最后才以定义的形式表达,如函数、极限等。定义是准确地表达数学概念的方式。

许多数学概念需要用数学符号来表示。数学符号是表达数学概念的一种独特方式,对学生理解和形成数学概念起着极大的作用,它把学生掌握数学概念的思维过程简约化、明确化了。许多数学概念的定义就是用数学符号来表达,从而增强了科学性。

许多数学概念还需要用图形来表示。有些数学概念本身就是图形,如平行四边形、棱锥、双曲线等。有些数学概念可以用图形来表示,比如基本初等函数的图像等。有些数学概念具有几何意义,如函数的导数。数形结合是表达数学概念的又一独特方式,它把数学概念形象化、数量化了。

总之,数学概念是在人类历史发展过程中,逐步形成和发展的。学生对数学概念的学习,应有一个抽象概括的过程,从文字语言、符号语言及图形语言等不同角度抽取概念本质属性,在准确把握概念外延的基础上,形成清晰的学习数学知识结构的认识。

2.2高中数学概念课的教学定位

数学概念课的教学中应引导学生经历从具体实例抽象概括出数学概念的过程,经历对实际背景的感知与抽象、概括的过程。

(1)对每一个数学概念,都应该准确地给它下定义。对一些基本(原始)概念,不宜定义的也应给予清晰准确的“描述”。通过给概念下定义的教学,让学生从定义的表达形式及逻辑思维中去领会该事物与其它事物的根本区别。并注意对同一概念的下定义的不同方案,从而深化对概念的理解。

(2)对概念(定义)的理解必须克服形式主义。课内应通过大量的正、反实例,变式等,反复地让学生进行分析、比较、鉴别、归纳,使之与邻近概念不至混淆,并要解决好新旧概念的相互干扰。

(3)概念教学还必须认真解决“语言文字”与“数学符号、式子”之间的互译问题,为以后在数、式运算中应用数学概念指导运算打下基础。使学生把代表某一概念的数学符号与概念内涵直接挂钩。

(4)克服学生普遍存在的“学数学只管计算,何必花时间学概念”之类的错误认识。重视概念课教学的启发性和艺术性,重视创设情境,激发学习兴趣,引导学生对概念学习的高度重视。同时应采用多种形式的训练(如选择答案、填空、变式等),从多个侧面去加深对概念的理解与应用。

3.高中数学概念课课型分析

课型1:从整体背景到局部知识的结构教学(以《集合的含义与表示》为例)

(1)背景引入――介绍数学对象的相关背景。

介绍集合论及其发展过程的相关背景。

(2)材料感知――借助具体事例,从数学概念体系的发展过程或解决实际问题的需要引入概念。

问题1:我们学习过哪些集合?

问题2:你能再举出一些集合的例子吗?

教师引导学生回忆、举例,并对学生活动进行评价。

(3)分类辨析――以实例为载体分析关键词的含义(使用反例,鼓励学生大量举例)。

问题3:你能说出你所举例子的特点吗?

教师引导学生独立思考,举出一些能够构成集合及不能构成集合的例子,概括所举例子的特点。如果学生仍不能有效地提炼出集合的三个基本特征,教师可以作如下的提示:“请所有的男同学站起来;请所有的高个子站起来”,以此来帮助学生理解集合的“确定性”。

(4)提炼本质――提供典型丰富的具体例证,进行属性的分析、比较、综合,概括不同例证的共同特征。

问题4:你能概括出所举例子所具有的共同特征吗?

师生共同概括所举例子的特征,得出结论。

(5)抽象命名――概念的明确与表示:下定义,给出准确的数学语言描述,即把实际问题数学化(文字的、符号的)。

引导学生抽象概括出集合的含义及集合中元素的特征――确定性、互异性、无序性。

(6)巩固应用――用概念作判断的具体事例,形成用概念作判断的具体步骤。

问题5:我们可以从哪些角度来研究集合?

学生阅读教科书,自己尝试整理相关的知识内容,归纳出元素与集合的关系,常用数集的记号以及表示集合的三种方法:自然语言、集合语言(列举法或描述法)及图形语言。

(7)概念的“精致”――纳入概念系统,建立与相关概念的联系。

课本例1与例2;课本第5页练习1,2。

学生独立思考,解决问题,全班交流讨论,教师析疑。

除集合外,以上教学流程适用于一般数学对象的抽象概括,如命题、向量、数(复数)、数列(包括等差数列、等比数列)、角、事件等,它们具有相同的学习“基本套路”,即按“背景――概念――表示――分类――性质(关系及运算)――应用”展开。

课型2:从上位概念到下位概念的结构教学(以《不等关系与不等式》为例)

(1)背景引入――提供一些学生感兴趣和富有时代感的素材。

问题1:如图抛物线中,试找出相关的不等关系。

(2)概念形成――让学生自己举例或提供大量材料,引导学生对这些材料进行辨析,学会透过表面现象发现它们的本质特点,形成上位概念。

问题2:数学和日常生活中存在大量不等关系,你能举出一些含有不等关系的例子吗?

学生每人至少各举一个数学及日常生活中的例子并在小组交流,独立归纳概括出不等式(组)的概念。

(3)辨析比较――教师要注意引导学生在比较中辨析和体会哪种分类更合理、更准确,并注意特殊情况的研究和思考。

问题3:你能对以上所举例子进行分类吗?

第一层次:独立进行分类,并以小组为单位对不同分类标准的合理性进行讨论。

第二层次:全班进行交流和讨论。

教师引导学生在比较中辨析和体会哪个分类更合理、更准确,并注意特殊情况的研究和思考。

(4)抽象命名――引导学生根据各种分类结果的本质特点,对各种关系进行命名,从而得到下位概念的各种类型。

提炼出不等式的概念,并对不等式进行分类。

根据字母所在位置进行分类:整式不等式,分式不等式,无理不等式,……

在整式不等式中,根据字母的个数进行分类:一元不等式,二元不等式,……;根据字母的次数进行分类:一次不等式,二次不等式,……

在此基础上,学生说出一元一次不等式、一元二次不等式及二元一次不等式的概念及形式,以及不等式组的概念,并能举例加以说明。

(5)巩固应用――用概念作判断的具体事例,形成用概念作判断的具体步骤。

问题探究(课本素材)

(6)整体认识――从整体上认识与概念相关知识内容及研究套路。

教师引导学生回顾之前学习过的方程(等式)的知识内容,如等式的性质,一元一次方程,一元二次方程,二元一次方程等,梳理相关知识结构。

类比方程(等式)的相关内容,构建不等式的知识网络。

课型3:探索数学对象运动变化的规律(以《函数的概念》为例)

(1)概念的引入――通过复习回顾或日常生活中的实例引入概念,学生经历材料感知的基础上初步认识概念。

问题1:函数的概念是什么?我们已经学习过哪些函数?

提出问题引导学生思考,通过对一些基本初等函数,如正比例函数,反比例函数,一次函数,二次函数等的认识,揭示函数是用于描述变量之间依赖关系的模型。

(2)概念的形成――引导学生从数学活动或数学实例中概括出概念的本质。

问题2:y=1是函数吗?y=x与y=■是同一个函数吗?

展示课本三个实例并提问:

问题3:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系?三个实例变量之间有什么共同点?

(3)概括概念――学生尝试给概念下定义,在小组交流、全班研讨中不断完善对概念的精确描述。

问题4:你还能举出一些相关的例子吗?你能归纳概括出一般结论吗?

除了课本中的三个实例,让学生大量举例(可以是已经学习过的基本初等函数),通过聚类分析提炼抽象本质属性,获得函数概念。

(4)理解概念――从概念的内涵与处延、概念的要素理解概念。

问题5:我们可以从哪些方面理解函数的定义?

引导学生明确以下几点:①函数的要素:定义域、值域和对应关系。②函数的表示法:解析式、图象、表格。③函数记号y=f(x)的内涵。

(5)应用概念――用概念作判断的具体事例,形成用概念作判断的具体步骤。

问题6:初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

提出问题,引导学生思考,启发学生利用表格对一次函数、二次函数、反比例函数的要素进行归纳与类比,并可利用信息技术工具(几何画板)画出函数的图像帮助理解上述函数的三个要素。

(6)形成认知――归纳总结概念的形成过程,概括应用概念解决问题的方法步骤。

问题7:你对“函数是描述变量之间的依赖关系的重要数学模型”这句话有什么体会?构成函数的要素有哪些?你能举出生活中一些函数的例子吗?

举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。

第7篇:数字化转型的概念范文

一、综合题在高考试卷中的位置与作用

数学综合性试题常常是高考试卷中把关题和压轴题。在高考中举足轻重,高考的区分层次和选拔使命主要靠这类题型来完成预设目标。目前的高考综合题已经由单纯的知识叠加型转化为知识、方法和能力综合型尤其是创新能力型试题。综合题是高考数学试题的精华部分,具有知识容量大、解题方法多、能力要求高、突显数学思想方法的运用以及要求考生具有一定的创新意识和创新能力等特点。

二、解综合性问题的三字诀“三性”:综合题从题设到结论,从题型到内容,条件隐蔽,变化多样,因此就决定了审题思考的复杂性和解题设计的多样性。在审题思考中,要把握好“三性”,即(1)目的性:明确解题结果的终极目标和每一步骤分项目标。(2)准确性:提高概念把握的准确性和运算的准确性。(3)隐含性:注意题设条件的隐含性。审题这第一步,不要怕慢,其实慢中有快,解题方向明确,解题手段合理,这是提高解题速度和准确性的前提和保证。

“三化”:(1)问题具体化(包括抽象函数用具有相同性质的具体函数作为代表来研究,字母用常数来代表)。即把题目中所涉及的各种概念或概念之间的关系具体明确,有时可画表格或图形,以便于把一般原理、一般规律应用到具体的解题过程中去。(2)问题简单化。即把综合问题分解为与各相关知识相联系的简单问题,把复杂的形式转化为简单的形式。(3)问题和谐化。即强调变换问题的条件或结论,使其表现形式符合数或形内部固有的和谐统一的特点,或者突出所涉及的各种数学对象之间的知识联系。

“三转”:(1)语言转换能力。每个数学综合题都是由一些特定的文字语言、符号语言、图形语言所组成。解综合题往往需要较强的语言转换能力。还需要有把普通语言转换成数学语言的能力。(2)概念转换能力:综合题的转译常常需要较强的数学概念的转换能力。(3)数形转换能力。解题中的数形结合,就是对题目的条件和结论既分析其代数含义又分析其几何意义,力图在代数与几何的结合上找出解题思路。运用数形转换策略要注意特殊性,否则解题会出现漏洞。

“三思”:(1)思路:由于综合题具有知识容量大,解题方法多,因此,审题时应考虑多种解题思路。(2)思想:高考综合题的设置往往会突显考查数学思想方法,解题时应注意数学思想方法的运用。(3)思辩:即在解综合题时注意思路的选择和运算方法的选择。

第8篇:数字化转型的概念范文

[关键词] 数字化;数字证据;视听资料;书证 ;数字证据规则

STUDY ON THE DIGITAL EVIDENCE

YU Hai-fang ,JIANG Feng-ge

(Law school of Yantai university, Yantai Shandon, 264005)

Abstract: In order to accelerate the development of the procedural law, we should study the effects of digital technology on the system of evidence. As for the concept, digital evidence should be adopted , instead of computer evidence or electronic evidence; as for the sort of evidence, digital evidence should be a new sort of evidence through the comparison with documentary evidence and audio-visual reference material. As for the rules, there must be some special rules for digital evidence. When do some research on the new problems as a result of hi-technology, we should connect the technological characters of it and the feature of it.

Key words: digitalization; digital evidence; documentary evidence; audio-visual reference material ;rules of evidence

[中图分类号] D 925.1

[文献标识码] A

具有相辅相承关系的自然科学与人文社会科学是人类文明不可分割的整体,自然科学成就以及其所积累起来的大量实证科学知识,为社会科学提供新的思维方式与研究方法,而社会科学不仅要思考具体社会关系中人与人的关系问题,还要回答自然科学发展中出现的一系列制度层面和道德层面的问题。包括法律在内的社会科学往往随着自然科学的发展,在对自然科学所引导的社会关系进行调整的同时获得了自身的进一步发展与完善。从法律纵向发展历史来看,每次重大技术进步都会在刺激生产力飞跃提升的同时促进法律进步,工业革命时代如此,当前以数字技术为主导技术的信息革命时代也是如此。数字技术推促环境迅速发展、改变,使法律不得不正面回答其所提出的问题。在这个过程中,首先进行的一般是实体法的扩展与新创,随之而来的则是程序法的映射修正。但是由于目前研究正处于伊使状态,许多问题并没有得到有效解决。

面对数字技术对法律提出的不同以往的挑战,体现于合同法、知识产权法、行政法的一些程序流程中,我国在一些实体法中已开始逐渐进行解决,但在程序法上却仍未开始这方面的尝试。在当前已经出现的大量技术含量极高的案例中,作为程序的核心-证据制度,①不论是民事,还是刑事、行政证据制度在面对新问题时都处于一种尚付阙如的尴尬境地,这种尴尬在目前沸沸扬扬的新浪与搜狐的诉讼之争中又一次被重演。不仅当前制定证据法的学者们所提出数稿中有的根本就没有此方面的规定,即使作为对以往司法实践的总结与最新的证据规则的《最高人民法院关于民事诉讼证据的若干规定》,对数字技术引发出现的愈来愈多的问题也依然未给予应有的注意。数字技术引发的种种问题现下可谓已渐有燎原之势,却仍不进行解决,可谓欠缺,因此为避免这种脱节,理应在数字技术环境下对括民事、刑事、行政证据制度进行新的研究。

一、数字证据的可采性与可行性分析

数字技术推动出现的社会经济关系提出新的要求,体现于法律之上,在实体法上表现为,要求重新确认这种新技术指示的新类型社会关系当事人间的权利义务关系;在程序法上表现为,当这种社会关系的当事人因权利义务关系发生纠纷时,应当存在与之相适应的相关程序,或者对已有程序进行完善,能够满足这种纠纷不同以往而与其技术特征相适应的要求。而在程序法证据制度上的一个基本表现就是,要求数字化过程中所产生的一些数据资料等能够纳入到证据体系中,得到证据规则的认可,能够被法庭接受成为证明案件事实的证据。

自20世纪90年代起,EDI数据交换方式以其便捷、高效、准确而备受青睐。一些重要的国际组织针对电子商务等进行大量的立法工作,欧美各国在实体上早已承认以数据电文方式订立合同、申报纳税与以信件、电报、传真等传统方式具有相同效力,在程序法上也作了相应的规定。美国《联邦证据规则》通过重申现行判例和成文法的形式肯定了数据电文无论是人工做成的还是计算机自动录入的,都可作为诉讼证据。英国1968年《民事证据法》规定,在任何民事诉讼程序中,文书内容只要符合法庭规则就可被接受成为证明任何事实的证据,而不论文书的形式如何。[8]在1988年修正《治安与刑事证据法》(The Police and Criminal Evidence Act)也作出了类似的规定。加拿大通过R. v. McMullen (Ont. C.A., 1979)一案确立了新证据在普通法上的相关规则。联合国贸法会在《电子商务示范法》中规定,“不得仅仅以某项信息采用数据电文形式为理由而否定其法律效力、有效性和可执行性。”又承认了以数据电文方式订立的合同的有效性,并且认为,在一定情况下数据电文满足了对原件的要求,在诉讼中不得否认其为原件而拒绝接受为证据。这些规定运用功能等同法(functional-equivalent),认为只要与传统方式具有相同的功能,即可认定为具有同等效力。我国也与这一国际立法趋势相靠拢,例如我国新修订的海关法中规定了电子数据报关方式。更为重要的是,我国在合同法中已承认以电子数据交换方式订立的合同的有效性,承认其符合法律对合同书面形式的要求。要使实体法的修改有实际意义,就必须设定相应的程序规则,使在以实体规定为依据在诉讼中寻求救济时具有程序法基础,否则实体法上的修改不啻一纸空文。

虽然数字证据并不单纯只是在电子商务关系中产生,其还可在其他社会关系中产生,①但数字证据问题主要是由于电子商务的飞速发展而提出。由于电子商务交易追求交易的快速便捷、无纸化(paperless trading)流程,在很多交易过程中很少有甚至根本就没有任何纸质文件出现,电子商务交易中所存在的与交易相关的资料可能完全是以数字化形式存在于计算机等存储设备中。一旦产生纠纷,如果在程序法上不承认数字证据的证据力,当事人将没有任何证据来支持自己的权利主张,无法得到法律救济,商人对电子交易就难以产生依赖感,不利于电子商务的发展。

纵观证据法的发展历程,各种证据类型是在随着经济社会的发展中逐渐得到法律承认的,目前作为主要证据形态的纸质文件经历了很长的时间方得到法律认可,视听资料也经历了类似的过程。电子技术在20世纪大行其道,导致证据法上接受了电子资料的证据效力,而数字技术在20世纪末便开始获得了极大进步,对经济与社会有着深远影响,在新世纪之初所取得的发展与对社会发展的促进作用有目共睹。虽然法院尚未正式使用数字技术形成的数字证据,但法院却早已开始使用数字技术方便案件的处理,虽然不能肯定数字技术会否在某一天取代电子技术,但却能肯定数字技术必将抢占电子技术所占据的社会份额,其对社会的影响必将超越电子技术。任何一种技术新出现时都会有其欠缺之处,但正如电子资料最终成为证据法上的证据类型一样,不能因为数字证据在目前所具有的脆弱性等消极因素而拒绝直面技术的发展、社会的进步,对于其之消极方面可以通过立法技术来加以调整,保障其在诉讼中的可采性,从而扬长避短,在程序法上充分发挥数字技术的作用。

并且,承认数字证据在我国法律上也是可行的。在法律上承认数字证据的可行性就在于法律能否将数字证据容纳进去,而与法律的价值理念不相冲突,并可与原有的法律规定相协调,重新建立的规则与原有的体系也并不矛盾。各国在证据立法上有三种模式:一是自由式,原则上不限制所有出示的有关证据;二是开列清单式,明确列举可作为证据的种类,此为我国所采;三是英美判例法证据模式。承认数字证据,在我国诉讼法中并不存在不可逾越的障碍,我国并不存在英美判例法国家由判例中长期以来形成的例如“最佳证据规则”与“传闻规则”的束缚,以至于由于与根本性原则不相符合而使程序法容纳数字证据大费周折。①我国诉讼法对证据采取列举式的规定,只要立法将新的证据类型予以确认,即可使之成为合法的证据,可以在诉讼中有效使用。将原有的一些规则进行重新阐释或者进行规则的另行制定,即可建立起数字证据制度。法律是个不断进化、发展的而不是僵化的封闭体系,在有完善的必要时,或者修改立法,或者在未修改前对这种新证据以司法解释的形式进行扩大解释,予以诉讼上的许可也是合理的,既符合立法者意图,也不违反我国程序法的相关规定,所以在我国法律上是可行的。

二、数字证据概念的比较研究

使用精确的概念,进行内涵的准确界定与外延的清晰延展,对于一个科学体系的建立极具方法论意义,并且也符合社会学方法的规则,因此,建立一个体系首先进行的便应是概念的归纳。同时,一个精确的概念必须能够抽象归纳出所有客体的本质共性所在,必须能够把表现相同性质的所有现象全部容纳进去。对数字证据进行概念归纳,基于其之鲜明的技术特征,在归纳时要回归到数字技术层面,在其所使用的数字技术与存在的社会经济基础的结合中寻找恰当的突破点。

对于所采用的概念,在国际上至今未有定论,如computer evidence(计算机证据)、electronic evidence(电子证据)、digital evidence(数字证据)都有其之使用者。我国采取数字证据概念大多数是IT 业界,法律学者采用的概念主要是:计算机证据与电子证据,进而在这些概念基础上分析证据的性质、效力、类型等。②这些概念以及在此基础上的分析存在一些问题,之所以如此,或者是因为单纯注重对社会经济层面的考查却忽略对技术层面的透彻分析,或者是因为虽进行了技术的分析,但却未深入到进行法律归纳所需要的足够程度。因而有必要从与这些概念、定义的多维比较中分析数字证据概念的内涵与外延。

(一)与计算机证据、电子证据概念相比较首先必须明确的是,虽各概念所使用的语词虽不同,但在内涵上,计算机证据、电子证据都是针对不同于传统的数字化运算过程中产生的证据,在外延上一般都试图囊括数字化运算中产生的全部信息资料。不过,计算机证据与电子证据这两种概念并不妥贴,不能充分表现该种证据的本质内涵,由此而容易导致概念在外延上不能涵盖该种证据的全部表现。

1、 “计算机证据”概念 有人认为,“计算机证据,是指在计算机或计算机系统运行过程中产生的以其记录的内容来证明案件事实的电磁记录物。”[1]采取“计算机证据”概念来表述数字化过程中形成的证据具有一定合理性,因为计算机及以计算机为主导的网络是数字化运算的主要设备,并且目前数字化信息也大多存储于电磁性介质之中。从数字化所倚靠的设备的角度来归纳此类证据的共性,在外延上能够涵盖绝大多数此类证据。然而,虽然计算机设备是当前数字化处理的主要设备,计算机中存储的资料也是当前此类证据中的主要部分,但是进行数字化运算处理的计算机这一技术设备并不是数字化的唯一设备,例如扫描仪、数码摄像机这些设备均是数字化运算不可或缺的设备,但并不能认为这些也属。于计算机之列。从国外立法来看,没有国家采取computer evidence,采用这种概念的学者在论述中也往往又兼用了其他的概念。

迪尔凯姆认为,研究事物之初,要从事物的外形去观察事物,这样更容易接触事物的本质,但却不可以在研究结束后,仍然用外形观察的结果来解释事物的实质。所以,“计算机证据”概念从事物外形上进行定义具有一定合理性,但是“计算机证据”概念未能归纳出数字化过程中形成的可以作为证明案件事实情况的证据共性,其不仅仅只是能够涵盖当前数字化过程中产生的大多数却不是全部的信息资料,而且在法律上也不能对将来出现的证据类型预留出弹性空间。

2、 “电子证据”概念 目前,采用“电子证据”者甚众,其存在各种各样的定义。有人认为:“电子证据,又称为计算机证据,是指在计算机或计算机系统运行过程中产生的以其记录的内容来证明案件事实的电磁记录物。” [2]有人认为:“电子证据,是指以数字的形式保存在计算机存储器或外部存储介质中,能够证明案件真实情况的数据或信息。” [3] “电子证据是指以储存的电子化信息资料来证明案件真实情况的电子物品或电子记录,它包括视听资料和电子证据。” [4] 加拿大明确采取了电子证据概念,在《统一电子证据法》(Uniform Electronic Evidence Act)的定义条款中规定,“电子证据,指任何记录于或产生于计算机或类似设备中的媒介中的资料,其可以为人或计算机或相关设备所读取或接收。”[5]

综合起来,各种电子证据的定义主要有这样两种:第一,狭义上的电子证据,等同于计算机证据概念,即自计算机或计算机外部系统中所得到的电磁记录物,此种内涵过于狭小,不能涵盖数字化过程中生成的全部证据,不如第二种定义合理。第二,广义上的电子证据,包括视听资料与计算机证据两种证据,在内容上包含了第一种定义,并且还包括我国诉讼法中原有的视听资料。但我们认为,这些定义中不仅所使用的“电子”一词不妥,而且所下定义亦为不妥,理由如下:

第一,将电子证据或者计算机证据定性为电磁记录物未免过于狭隘。虽然数字设备的整个运作过程一般由电子技术操控,各个构件以及构件相互之间以电子运动来进行信息传输,但是仍然不可以认为该种证据即为自电子运动过程中得到的资料。美国《统一电子交易法》2(5)中规定:“电子(electronic),是指含有电子的、数据的、磁性的、光学的、电磁的或类似性能的相关技术。”扩大解释了电子的语词内涵,使用各种不同的技术载体来表达扩大的电子语义,已经失去了“电子”一词的原义,原本意义上的电子只是其使用的“电子”概念中的一种技术而已,从而能够涵盖大多数此类证据。不过,既然如此,还不如直接使用能够涵盖这些技术特性的“数字”概念,在工具价值方面更有可取之处。加拿大《统一电子证据法》解释中解释之所以采取“电子”,“因为信息为计算机或类似设备所记录或存储”,但这个理由并不充分。并且接下来又承认有些数字信息(digital form)未涵盖于本法,因为有其他的法律进行调整。 第二,电子证据概念不能揭示此类证据的本质特征。电子运动只是数字化运算的手段,而非本质,并且也并不是所有数字设备的运算全都采取电子运动手段。进行数字化运算的计算机设备及其他数字设备的共同之处在于这些设备的运算均采取数字化方式,而非在于均采取电子运动手段。 第三,不论是将视听资料这种已存的证据类型纳于电子证据中,还是将电子证据纳入视听资料中,会致使“电子证据”与我国诉讼法中的“视听资料”相混淆,而此类证据与视听资料证据的本质共性并不相同。视听资料中主要为录音、录像资料,其信息的存储以及传输等也都采取电子运动手段。录音、录像采取模拟信号方式,其波形连续;而在计算机等数字设备中,以不同的二进制数字组合代表不同的脉冲,表达不同信号,信息的存储、传输采取数字信号,其波形离散、不连续。二者的实现、表现、存储、转化都不相同。传统的电话、电视、录音、录像等都采取模拟信号进行通讯,这是视听资料的共性,而计算机与网络信息技术则采取数字化方式通信,这是数字化运算中生成的证据的共性,两者不同,不应混淆。

可见,狭义上的电子证据在外延上只能容纳数字化过程中产生的部分证据,失之过狭;广义上的电子证据确实能够在外延上容纳数字化过程中产生的全部证据,但却失之过宽,如将视听资料与计算机证据这两种差别极大的证据容于同一种证据类型中,将不得不针对两种证据进行规则的制定,从而导致同种证据类型的证据规则不相统一,很难建立起一个和谐有致的体系。

(二)数字证据①概念的内涵与外延我们认为,数字证据就是信息数字化过程中形成的以数字形式读写的能够证明案件事实情况的资料。

第9篇:数字化转型的概念范文

一、引入概念要注意方法

初中数学概念复杂多样,因它们的产生和发展有各种不同的途径,引入概念的方法也就不同,因此引入概念要注意方法。关于概念的引入,我认为有以下途径。

(一)观察现实模型引入,对于数学概念的具体内容都有它的现实模型,学生在现实生活中或多或少都有过接触,可引导学生观察现实模型,通过分析、概括、抽象出要引入的概念,例如讲圆的概念时,学生对圆的实例地球仪的经纬线等有较多的了解,就可以实例通过分析、概括、抽象出圆的概念:到定点的距离等于定长的点的集合叫做圆,但必须强调圆是一条封闭曲线。

(二)从认识发展的需要引入。对于数学本身的矛盾发展而出现的概念,引入时应注意充分揭露旧概念的矛盾,认识旧概念的局限性,从而明确引入新概念的必要,在与旧概念的对比中引入新概念。例如:讲无理数的概念时,先讲清有理数的解决问题时并不完善,有它的局限性,说明必须把有理数扩充,再复习有理数的无限循环小数,通过对比得出无理数的概念――无限不循环小数,叫做无理数。

(三)由旧概念引入。许多概念是在已知概念的基础上发展而来的,在教学中首先使学生熟悉已知概念,再引导他们从已知的概念上建立新概念。例如:讲平行四边形的概念时,先复习四边形的概念,再画出一般平行四边形,还要画矩形、菱形、正方形、引导学生对所画图进行分析。找出这些图形的共同特点:两组对边分别平行,与角的大小、边的长短变化无关,从而得出平行四边形的概念――两组对边分别平行的四边形是平行四边形。

除此以外,概念的引入,还要符合学生的认识规律,对于一些较易理解的概念,不要轻描淡写,一带而过,要对它的内涵和外延进行必要的探讨,以便沟通知识的内在联系;对于较为抽象的概念,要逐字逐句推敲,从具体到抽象,从粗略到精细,从现象到本质。

二、抓好概念升级的转化

数学概念有个逐渐变化、螺旋上升的过程,抓好升级转化才能避免旧知识对新知识的干扰而产生负迁移,例如:引入字母代替数,从算术转化到代数;引入平面几何,从数转化到形;引人函数,从常量转化到变量。其次在代数运算中有加――乘――乘方――开方的升级过程,在几何图形中,有点――钱――线段――三角形――四边形――多边形的升级过程。抓住升级关口,讲清新旧知识的来龙去脉,前因后果,是概念教学的关键。

三、运用对比法澄清混淆概念

对比法是学习数学的重要方法之一。各种概念之间千差万别,概念之间的相互关系,只有通过比较,才能清楚认识。在教学中,若能用对比的方法,将概念的本质属性用最集中、最精确的形式表现出来,就能给学生以鲜明的印象。因此在概念教学中,应引导学生用对比的方法,澄清混淆概念,使学生逐步理解数学知识的内在联系和规律,以及这些规律的来源,以达到切实掌握、灵活运用的目的。对于混淆概念只须教师运用对比法逐条列出,讲清区别和联系,学生便能牢固掌握。例如:三角形角平分线与角平分线:共同点都是将一个角分成两个相等的角,不同点前者是为一条线段,后者为一条射线,在初中数学中像这样易混淆的概念还很多,如去分母与通分、方程与恒等式、同类根式与同次根式、中线与中位线、全等与相等、命题与定理等。

四、运用返例使学生正确理解概念

概念是解题的依据之一,对概念理解不清,就会犯偷换概念的毛病。对于较抽象的概念,即使教师讲得十分透彻,但学生理解也不是十分清晰,存在这样和那样的模糊疑问,作业生搬硬套,得不出满意条件的答案。或者失掉满足条件的答案。在这种情况下,列出一些错误概念的例子,让学生辨析比较,从例子中得到启发,正确理解概念。例如:讲正多边形的概念后,有些学生认为边相等或角相等的多边形就是正方形,这就受正三角形的影响。教学中及时用矩形和菱形作为返例,由学生辨别出:角相等――矩形,并不一定是正方形,边相等――菱形并不一定是正方形,这样就能消除这种负迁移,加深对概念的理解。

五、掌握概念,运用概念解题