公务员期刊网 精选范文 医用高分子材料及其应用范文

医用高分子材料及其应用精选(九篇)

医用高分子材料及其应用

第1篇:医用高分子材料及其应用范文

口腔生物医学材料具有比较广泛的应用范围,不只是在因先天或后天原因导致牙体组织和颌面器官缺损的修复方面进行应用,还可能在鉴别诊断口腔疾病方面具有辅助作用。生物医学材料可实现对缺损组织与器官的修复和置换,恢复组织或器官的正常功能。随着迅猛发展的科技水平,口腔生物医学材料的制作方法也具有明显的改进,日益推出复合型与功能型形式各样的生物医学材料,并日益优化其性能。

2. 资料与方法

通过对生物医学和生命科学有关文献的数据库的检索,并进行较深入地分析。结合临床口腔生物医学材料应用的特点,比较分析有关数据。口腔生物医学材料基础性研究、临床应用的生物医学材料等相关文献都是重要依据,并将与目的无关的研究结果予以排除。

3. 结果

按照材质类别可将口腔生物医学材料分为金属、高分子及非金属生物复合材料三类。金属类材料在临床口腔生物材料中是最早应用的一类材料,这类材料优点是具有较高强度、较强韧性、获取容易等,在临床中应用广泛。还可结合其成分将金属类材料分为纯金属、合金及特种金属三种,在临床中纯金属类材料应用不多,应用较多的主要是合金和特种金属。合金类金属材料由不少于两种金属元素组成,尽管其延展与抗压等物理性能低于纯金属材料,但在应用中生物安全性较高,所以在临床中具有比较广泛的应用。钴基合金材料目前广泛应用的合金类材料,主要有钴铬钨镍和钴铬钼合金两类,具有抗腐蚀性较强的性能,高于单一金属材料40倍。但在加工制作过程中比较烦琐,所以相对具有比较昂贵的价格。此外,机械性能也比纯金属类材料高,通常在替换颞下颌关节与颌面部内固定大面积骨折中应用较多。钛合金与上述金属合金材料相比较,具有较高的机械性能和相容性,在人体植入后不会产生排斥反应和毒副作用,生物相容性较好。通常在种植牙基桩制作、固定骨折及骨缺损替代植入性材料中比较常用。但在使用中金属材料也具有不足之处,诸如在使用中因人体具有比较复杂的内部环境,因人体内长期存在金属材料部会造成离子向体内微渗入,进而产生较大的副作用和毒性。

在现代口腔生物医学材料中非金属生物复合材料也是其中的重要组成部分,主要有以下三种。一是生物活性陶瓷,该材料是表面具有生物活性和吸附性的一?N陶瓷,通常具有羟基,为多孔形,具有较高的孔隙率。在体内生物活性陶瓷能够降解吸收,通常在生物体内用于骨诱导材料对新生骨生长具有一定的诱导作用。在实际应用中骨传导性与诱导性良好,所以通常该材料可用于修复骨缺损的一种支架材料,在支架的周围利用填充材料的良好生物学活性充填覆盖,以实现对缺损的修复作用,并使材料增加生物相容性。二是惰性生物陶瓷材料,其主要成分是氧化铝和氧化锆,硬度高,生物相容性好,所以通常在内固定骨折中应用较多,在制作口腔全瓷牙内冠中也比较常用。三是复合树脂,主要混合有机树脂基质和无机填料形成,在特定条件下是能够引发化学性反应的一种修复材料,在修复小面积牙体缺损时比较适合。在临床中目前主要应用的有光固化、化学固化及复合固化等树脂类材料,该材料具有较强的可塑性、良好的仿真性、较高的生物相容性、比较耐磨等优势。

在临床中高分子类材料是一种比较广泛应用的材料,稳定性强,聚乙烯和聚丙烯是其主要成分。与其它材料相比较,该材料在人体中不能降解产生离子,因此不具有毒性。抗冲击性和抗摩擦性也较强,所以在替换人工关节中应用比较广泛。高分子类材料中的硅橡胶材料耐高温、腐蚀及透气性较高,所以在制作颌面部复体及口腔印模精确制取材料中应用较广。另外,该材料可降解,经一段时间后可形成小分子化合物而随人体基础代谢排出患者体外。

4. 讨论

通过研究分析生物材料有关文献资料,在口腔临床生物医学材料中选取金属材料、高分子、生物复合材料三大类分别进行研究。大部分高分子材料与生物复合材料都是由不少于两种材料构成,对这类材料进行制作时,可利用相关技术对材料微观构造进行改变,使材料特性和优点得到充分发挥,对不足之处进行有效弥补,对生物材料赋予新的生物特性。材料的生物相容性和机械强度较高,具有较强的耐腐蚀性,在特定环境下能够降解吸收,在临床应用中完全满足。在高分子材料与生物复合材料中,我国开展相关的研究相对较晚,并在研究初期发展相对较为缓慢,但经过近年来的不断发展,已由最初的盲目效仿逐渐发展到自主研发,由质变迅速发展发展到量变。口腔医用生物医学材料目前在我国已逐渐由传统的单一功能、非专一化、低效逐步发展为功能完善、复合化、专业化及高效,发表的生物医学材料的相关文献也跃居世界第二。

随着医学技术及材料技术的快速发展,口腔生物医学材料也得到了前所未有的发展机遇。目前在临床研究中已逐渐由常用的无机材料转变为有机材料,有机类生物材料在开展较多研究的就是多糖类物质。天然多糖类物质中壳聚糖属于其中一种,其生物相容性良好,抗菌性能优异。通常该类材料被用于对各种材料进行塑造以便于长入细胞和将应力传递至骨与骨之间。壳聚糖类物质因其生物相容性和细胞黏附性较好,而被广泛用于各种细胞因子和药物载体,实现对遗传信息进行传递以及相关疾病的临床治疗。

第2篇:医用高分子材料及其应用范文

关键词:交叉学科;本科教学;互动;创新思维;实践认知

中图分类号:G642.0 文献标志码:A 文章编号:1674-9324(2013)07-0143-03

现代社会科技进步日新月异,创新性的研究和产品不断涌现,其中非常多的成果都来自于交叉学科的贡献。一个已经被普遍接受的共识是:学科交叉点往往就是科学新的生长点、新的科学前沿,这里最有可能产生重大的科学突破,使科学发生革命性的变化;同时,交叉科学是综合性、跨学科的产物,因而有利于解决人类面临的重大复杂科学问题、社会问题和全球性问题[1]。所以,对于本科教学中的交叉学科课程的教学就提出了更高的要求,如要求教师纵览多个学科的发展,从而能站在交叉学科的前沿来引领学生去认知和创新性思考;同时,也要求学生积极主动地去检索相关资料,能互动地参与到整个课程教学的过程中来。只有这样,交叉学科的本科教学才能获得理想的教学效果,提高学生的科学敏锐力和培养学生的创新性思维。尽管教育界对交叉学科研究生阶段创新型人才培养已有较多思考[2],但是迄今为止对交叉学科的本科教学的交流还很少。

本文以四川大学高分子科学与工程学院开设的“生物高分子及制品”课程教学为例,从课堂教学的多个方面提出了对交叉学科的本科教学的思考和体会。

一、课程背景

“生物高分子及制品”是四川大学高分子科学与工程学院为大三学生开设的一门课程,任课教师均来自我院医用高分子材料及人工器官系。医用高分子材料专业建立于1978年,并分别于1986年和1992年获得硕士、博士学位授予权,是我国最早的培养生物医用高分子材料专业人才的基地之一。系内的教师在生物医用高分子材料及人工器官的科研、教学方面有30多年的丰富经验。本课程所使用教材主要为我系老师合力编写的普通高等教育“十一五”部级规划教材《生物医用高分子材料》[3],并结合科研前沿做了丰富多样的专题讲解。目前一个年级有三个班平行授课,每个班的人数在70~90人。本门课程是典型的交叉学科产物,其内容涉及生物医学、材料学(高分子材料)、工程设计、医疗器械等多个领域。教材的主要章节包括绪论、高分子材料和生物体的相互作用、生物医用高分子材料的生物相容性和安全性评价、人工器官用高分子材料、医疗诊断用高分子材料、药物缓控释高分子材料、软硬组织替代和组织工程用高分子材料、医用高分子材料的设计。根据我院学生学术研究发展方向和工程应用发展方向并重的特点,在课堂讲授的时候授课教师会尽量同时扩展到前沿的科研领域(如医用高分子非病毒基因载体)和相关产业的应用环节(如生物医用高分子材料制品的生产、消毒)等。考查方式以课堂讨论、平时成绩和期末笔试成绩综合打分。

二、互动式授课的几点思考与体会

1.综合多学科领域的讲解方式。生物医用高分子材料是功能高分子材料中重要的组成部分,是指在生物及医学领域所使用的高分子材料。总体而言,本课程是两个一级学科:材料学(其中的高分子材料)和生物医学工程学(其中的生物材料)的交叉点。两个学科的跨度很大,如何能生动形象地讲解和引领学生思考至为关键。例如,在进行人工器官用高分子材料的讲解时,我们通常会采取由浅入深的启发式教学方法。首先,我们将人体器官做一个对应的抽象化的模型,其中包括脑—计算机、耳—声音探测器、肺—气体交换器、心—泵/液体输送器、肝—化学工厂、肾—分离/净化系统和血管—输送管路等,以方便同学们从功能上理解人体器官并能针对性地对人工器官进行设计、思考。通过讲解,同学们了解到研究人工器官并不能简单考虑其与人体组织器官的类似,更重要的是能使其再现或部分再现人体器官的功能。举例来说,在讲到人工肾时,我们会先从医学的角度讲述肾脏的结构和功能,重点描述肾小球的滤过作用和肾小管的重吸收作用。其中,肾小球每天以125ml/min的滤过率处理约180L的血液,肾小管将滤过液中大部分的水、电解质、葡萄糖和其他小分子有用物质重新吸收入血液,而每天最终排尿量仅为2.0L。通过上述讲解,同学们可以清楚地了解肾脏在人体中的主要功能,那么进一步的关于人工肾功能设计的讲解也就顺理成章了。人工肾是血液净化技术中所使用的最重要的人工器官,再通过进一步关联讲解病理学的内容,我们可以使同学们了解到使用人工肾的血液净化技术的目的和意义在于治疗与血液相关的疾病,既包括肾脏方面的疾病如肾衰竭,也包括各种由于血浆成分发生病理改变而产生的血液性或免疫性疾病,如巨球蛋白血症、系统性红斑狼疮、血友病和多发性骨髓瘤等。紧接着,针对不同的疾病和需要去除致病物质,我们很自然就将知识点转到不同的血液净化技术上来,分别讲述血液透析、血液滤过和血液透析滤过三种人工肾技术。最终,三种不同的人工肾技术就引出了不同的生物医用高分子材料和制品的需求和设计:通过对用于人工肾的各种生物医用高分子材料的化学成分、物理性能的分析,以及对完成其制品的各种工程技术的描述和表征,使同学们融会贯通,掌握这个跨多学科交叉领域的知识点。再举一个例子,在讲组织工程用高分子材料章节时,由于这是一个非常前沿的跨生物学、医学和材料学的交叉领域,如何有机结合多学科知识使同学们带着兴趣学习就非常关键。首先,我们会用“人耳鼠”等组织工程经典的图片展开绪论,使同学们的目光一下子就被吸引住了,让他们去思考:人类科技的进展真的有一天能实现更换人体的各个组织器官吗?由于多个现实的案例摆了出来,他们就会意识到这是有可能并已经部分实现了的前沿科技。进而,我们就会用搭房子来做一个形象的比喻讲解组织工程的三要素:细胞是砖块,生长因子是建筑工人,而生物材料就是整个房屋的支架。而组织工程支架材料对生物相容性、生物降解性能的要求就使得生物医用高分子成了其中的首选。在这样的引领下,同学们的关注点自然就转到了我们高分子学科与组织工程的关系,并能带着兴趣学习接下来的组织工程的原理和方法、软骨组织工程支架材料、神经组织工程支架材料、血管组织工程支架材料、肌腱组织工程支架材料、皮肤组织工程支架材料、角膜组织工程材料、组织工程支架制品的制备方法等多个知识点。在讲解的过程中,我们还会播放组织工程培养细胞、体外构建人工血管等录像资料,让同学们更直观地认识生物医用高分子材料在组织工程中的应用。

2.学生积极参与的教学互动形式。除了教师的有效引领作用外,学生能否积极参与教学过程的互动也是交叉学科本科教学能否成功的关键。对于本课程,我们主要采取了课外检索学术资料做PPT报告和分组讨论的形式。如前所述,我们将人体组织、器官分开并做了一个对应的抽象化的模型。对应于此,我们将学生分成了若干个小组,安排每个小组负责准备和主持一个主题的PPT报告和讨论。我们会提前一周通知负责组的同学(通常为4~8人),事先与他们讨论讲述的主线和子方向,要求同学们分工合作,其中一些同学负责每人5分钟的PPT讲解,其他一些同学负责资料收集和整理工作。例如对肺的一个主题,通过一周的准备,同学们查阅了一定数量的文献资料,准备了精美的PPT资料和讲解内容:第一个同学做了呼吸系统和常见呼吸系统疾病的综述;第二个同学的报告集中于描述现有的呼吸系统手术(尤其是肺部手术)中使用的大量生物医用高分子材料和制品,例如包括呼吸道麻醉科导管、单肺通气封堵导管等医疗器械;第三个同学从人工肺的研究角度出发,用较多的学术资料描述了该领域的研究前沿,进一步通过阅读资料提出了现有研究的不足,并提出他们小组讨论后对该领域的展望;最后一个同学结合工程实际,从生产设备、生产工艺等方面描述该领域医用高分子制品的制备方法,并简单提及国内外的主要生产企业。通过这样的一个“准备—讲述”的过程,该组同学系统地掌握了交叉学科从基本概念到学术研究,再到工业领域的诸多方面,并能逻辑清晰地讲述给全班同学。在同学们的PPT讲述过程中,任课教师会组织听报告的同学们进行有益的讨论。例如,在讲解到有关生物医用高分子材料和制品的生物相容性的时候,有做报告的同学会以隐形眼镜为例讲解,其制备原料主要是聚羟乙基甲基丙烯酸酯类材料。这时,我们会请有戴过隐形眼镜的同学举手,并组织讨论:为什么隐形眼镜有日抛、月抛和年抛的区别,它们对材料的要求有何不同?为什么夜晚要取下眼镜进行清洗保养?作为使用者,自己戴隐形眼镜会有什么样的要求?通过这些问题的讨论,同学们可以进一步了解作为交叉学科的产品,生物医用高分子材料和制品不仅要在功能上满足使用的医学目的,还要求我们从材料学和工程学的角度去设计,才能获得较为理想的使用性能。而且这样的讨论也容易引起同学们的兴趣,避免过多过深的理论讲解会导致的注意力分散。在整个PPT报告和讨论的过程中,任课教师会针对同学们的资料准备情况、PPT讲解情况和讨论情况进行评价和打分,作为成绩考核的重要标准之一。

3.创造条件结合实践教学。交叉学科除了能在学术前沿激发出更多的创新性火花之外,往往还可以通过学科的交叉设计、生产出大量的实用的制品。本门课程针对的生物医用高分子材料和制品就是典型例子,其所涉及的产业主要为医疗行业和医疗材料(器械)企业。因此,创造条件结合实践进行教学就成了本门课程重要的组成部分。本门课程的授课教师大多与上述行业的企业有长年的产学研合作关系,已经完成或正在研发多项生物医用高分子材料和制品的工作,因而具备较好的实际条件进行实践教学。例如,任课教师与成都市的多家医疗器械生产企业建立了长期的科研关系,从而能将课程的认识实践带到其中的一些单位,包括人工肾的生产企业和医疗耗材(导管、输液制品)企业等。通过实习参观企业,以及在课堂上观摩老师带的各种生物医用高分子材料和医疗器械,同学们对这门交叉学科涉及的产业有了更好的认识。另外,经常有高端的相关行业展会在成都举行,例如2012年的第68届中国国际医疗器械秋季博览会在成都云集了国内外的多家企业。这种时候,任课教师就会及时公布展会时间,并鼓励同学们去参观,通过学习和对比国内外企业的产品,了解其设计理念和所使用的生物医用高分子材料。展会结束之后,我们会和同学们在课堂上针对展会上的所见所想进行很多有益的讨论,很好地帮助同学们更进一步地认识这门交叉学科的知识和产业。

4.结合教学内容邀请专业医生讲座的教学。结合课堂讲授内容,我们会定期或不定期邀请一些医生到课堂进行讲座,如讲授到血液透析时,我们会专门邀请四川大学华西医院肾内科进行血液透析的医生到课堂进行讲座,从医生的角度讲述医用高分子材料在血液透析制品方面的临床应用。通过这些讲座,使同学们更深刻了解医用高分子材料及制品的实际应用,增加了学习的积极性和兴趣。最后,由于交叉学科课程覆盖的知识面非常广,简单地进行死记硬背的考试是不适宜的。经过商讨,本课程的多位任课老师达成了一致的共识:平时的讨论和报告占学生成绩的很大一部分,期末考试以开卷方式进行,出题尽量是基于交叉学科的特点来综合性地考查学生的逻辑思维、判断和创新能力。通过八年多的教学实践,我们发觉本课程的教学互动效果很好,也起到了很好的引领作用,有很多学生对这门交叉学科产生了浓厚的兴趣,并相继进入了生物医用高分子材料和制品的科研或产业领域。

总而言之,交叉学科的独特性决定了对其本科教学方法的灵活性、多样性的要求。只有不断解放思想、更新教学理念和完善教学手段,才能保证交叉学科教学的质量,才能更加有效地提高同学们的兴趣和综合能力,为更高阶段的交叉学科创新性研究以及相关交叉学科的产业输送人才。

参考文献:

[1]路甬祥.学科交叉与交叉学科的意义[J].中国科学院院刊,2005,20(1):58-60.

[2]吴宜灿.学科交叉与创新型人才培养的实践与思考[J].中国科学院院刊,2009,24(5):511-517.

[3]赵长生.生物医用高分子材料[M].化学工业出版社,2009.

第3篇:医用高分子材料及其应用范文

论文摘要:目前应用于生物医学中的纳米材料的主要类型有纳米碳材料、纳米高分子材料、纳米复合材料等。纳米材料在生物医学的许多方面都有广泛的应用前景。

1应用于生物医学中的纳米材料的主要类型及其特性

1.1纳米碳材料

纳米碳材料主要包括碳纳米管、气相生长碳纤维也称为纳米碳纤维、类金刚石碳等。

碳纳米管有独特的孔状结构[1],利用这一结构特性,将药物储存在碳纳米管中并通过一定的机制激发药物的释放,使可控药物变为现实。此外,碳纳米管还可用于复合材料的增强剂、电子探针(如观察蛋白质结构的AFM探针等)或显示针尖和场发射。纳米碳纤维通常是以过渡金属Fe、Co、Ni及其合金为催化剂,以低碳烃类化合物为碳源,氢气为载体,在873 K~1473 K的温度下生成,具有超常特性和良好的生物相溶性,在医学领域中有广泛的应用前景。类金刚石碳(简称DLC)是一种具有大量金刚石结构C—C键的碳氢聚合物,可以通过等离子体或离子束技术沉积在物体的表面形成纳米结构的薄膜,具有优秀的生物相溶性,尤其是血液相溶性。资料报道,与其他材料相比,类金刚石碳表面对纤维蛋白原的吸附程度降低,对白蛋白的吸附增强,血管内膜增生减少,因而类金刚石碳薄膜在心血管临床医学方面有重要的应用价值。

1.2纳米高分子材料

纳米高分子材料,也称高分子纳米微粒或高分子超微粒,粒径尺度在1 nm~1000 nm范围。这种粒子具有胶体性、稳定性和优异的吸附性能,可用于药物、基因传递和药物控释载体,以及免疫分析、介入性诊疗等方面。

1.3纳米复合材料

目前,研究和开发无机—无机、有机—无机、有机—有机及生物活性—非生物活性的纳米结构复合材料是获得性能优异的新一代功能复合材料的新途径,并逐步向智能化方向发展,在光、热、磁、力、声[2]等方面具有奇异的特性,因而在组织修复和移植等许多方面具有广阔的应用前景。国外已制备出纳米ZrO2增韧的氧化铝复合材料,用这种材料制成的人工髋骨和膝盖植入物的寿命可达30年之久[3]。研究表明,纳米羟基磷灰石胶原材料也是一种构建组织工程骨较好的支架材料[4]。此外,纳米羟基磷灰石粒子制成纳米抗癌药,还可杀死癌细胞,有效抑制肿瘤生长,而对正常细胞组织丝毫无损,这一研究成果引起国际的关注。北京医科大学等权威机构通过生物学试验证明,这种粒子可杀死人的肺癌、肝癌、食道癌等多种肿瘤细胞。

此外,在临床医学中,具有较高应用价值的还有纳米陶瓷材料,微乳液等等。

2纳米材料在生物医学应用中的前景

2.1用纳米材料进行细胞分离

利用纳米复合体性能稳定,一般不与胶体溶液和生物溶液反应的特性进行细胞分离在医疗临床诊断上有广阔的应用前景。20世纪80年代后,人们便将纳米SiO2包覆粒子均匀分散到含有多种细胞的聚乙烯吡咯烷酮胶体溶液中,使所需要的细胞很快分离出来。目前,生物芯片材料已成功运用于单细胞分离、基因突变分析、基因扩增与免疫分析(如在癌症等临床诊断中作为细胞内部信号的传感器[5])。伦敦的儿科医院、挪威工科大学和美国喷气推进研究所利用纳米磁性粒子成功地进行了人体骨骼液中癌细胞的分离来治疗病患者[6]。美国科学家正在研究用这种技术在肿瘤早期的血液中检查癌细胞,实现癌症的早期诊断和治疗。

2.2用纳米材料进行细胞内部染色

比利时的De Mey博士等人利用乙醚的黄磷饱和溶液、抗坏血酸或柠檬酸钠把金从氯化金酸(HAuCl4)水溶液中还原出来形成金纳米粒子,(粒径的尺寸范围是3 nm~40 nm),将金纳米粒子与预先精制的抗体或单克隆抗体混合,利用不同抗体对细胞和骨骼内组织的敏感程度和亲和力的差异,选择抗体种类,制成多种金纳米粒子—抗体复合物。借助复合粒子分别与细胞内各种器官和骨骼系统结合而形成的复合物,在白光或单色光照射下呈现某种特征颜色(如10 nm的金粒子在光学显微镜下呈红色),从而给各种组织“贴上”了不同颜色的标签,为提高细胞内组织分辨率提供了各种急需的染色技术。

2.3纳米材料在医药方面的应用

2.3.1纳米粒子用作药物载体

一般来说,血液中红血球的大小为6000 nm~9000 nm,一般细菌的长度为2000 nm~3000 nm[7],引起人体发病的病毒尺寸为80 nm~100 nm,而纳米包覆体尺寸约30 nm[8],细胞尺寸更大,因而可利用纳米微粒制成特殊药物载体或新型抗体进行局部的定向治疗等。专利和文献资料的统计分析表明,作为药物载体的材料主要有金属纳米颗粒、无机非金属纳米颗粒、生物降解性高分子纳米颗粒和生物活性纳米颗粒。

磁性纳米颗粒作为药物载体,在外磁场的引导下集中于病患部位,进行定位病变治疗,利于提高药效,减少副作用。如采用金纳米颗粒制成金溶液,接上抗原或抗体,就能进行免疫学的间接凝聚实验,用于快速诊断[9]。生物降解性高分子纳米材料作为药物载体还可以植入到人体的某些特定组织部位,如子宫、阴道、口(颊、舌、齿)、上下呼吸道(鼻、肺)、肛门以及眼、耳等[10]。这种给药方式避免了药物直接被消化系统和肝脏分解而代谢掉,并防止药物对全身的作用。如美国麻省理工学院的科学家已研制成以用生物降解性聚乳酸(PLA)制的微芯片为基础,能长时间配选精确剂量药物的药物投送系统,并已被批准用于人体。近年来生物可降解性高分子纳米粒子(NPs)在基因治疗中的DNA载体以及半衰期较短的大分子药物如蛋白质、多肽、基因等活性物质的口服释放载体方面具有广阔的应用前景。药物纳米载体技术将给恶性肿瘤、糖尿病和老年痴呆症的治疗带来变革。

2.3.2纳米抗菌药及创伤敷料

Ag+可使细胞膜上蛋白失去活性从而杀死细菌,添加纳米银粒子制成的医用敷料对诸如黄色葡萄球菌、大肠杆菌、绿浓杆菌等临床常见的40余种外科感染细菌有较好抑制作用。

2.3.3智能—靶向药物

在超临界高压下细胞会“变软”,而纳米生化材料微小易渗透,使医药家能改变细胞基因,因而纳米生化材料最有前景的应用是基因药物的开发。德国柏林医疗中心将铁氧体纳米粒子用葡萄糖分子包裹,在水中溶解后注入肿瘤部位,使癌细胞部位完全被磁场封闭,通电加热时温度达到47℃,慢慢杀死癌细胞。这种方法已在老鼠身上进行的实验中获得了初步成功[11]。美国密歇根大学正在研制一种仅20 nm的微型智能炸弹,能够通过识别癌细胞化学特征攻击癌细胞,甚至可钻入单个细胞内将它炸毁。

2.4纳米材料用于介入性诊疗

日本科学家利用纳米材料,开发出一种可测人或动物体内物质的新技术。科研人员使用的是一种纳米级微粒子,它可以同人或动物体内的物质反应产生光,研究人员用深入血管的光导纤维来检测反应所产生的光,经光谱分析就可以了解是何种物质及其特性和状态,初步实验已成功地检测出放进溶液中的神经传达物质乙酰胆碱。利用这一技术可以辨别身体内物质的特性,可以用来检测神经传递信号物质和测量人体内的血糖值及表示身体疲劳程度的乳酸值,并有助于糖尿病的诊断和治疗。

2.5纳米材料在人体组织方面的应用

纳米材料在生物医学领域的应用相当广泛,除上面所述内容外还有如基因治疗、细胞移植、人造皮肤和血管以及实现人工移植动物器官的可能。

目前,首次提出纳米医学的科学家之一詹姆斯贝克和他的同事已研制出一种树形分子的多聚物作为DNA导入细胞的有效载体,在大鼠实验中已取得初步成效,为基因治疗提供了一种更微观的新思路。

纳米生物学的设想,是在纳米尺度上应用生物学原理,发现新现象,研制可编程的分子机器人,也称纳米机器人。纳米机器人是纳米生物学中最具有诱惑力的内容,第一代纳米机器人是生物系统和机械系统的有机结合体,这种纳米机器人可注入人体血管内,进行健康检查和疾病治疗(疏通脑血管中的血栓,清除心脏脂肪沉积物,吞噬病菌,杀死癌细胞,监视体内的病变等)[12];还可以用来进行人体器官的修复工作,比如作整容手术、从基因中除去有害的DNA,或把正常的DNA安装在基因中,使机体正常运行或使引起癌症的DNA突变发生逆转从而延长人的寿命。将由硅晶片制成的存储器(ROM)微型设备植入大脑中,与神经通路相连,可用以治疗帕金森氏症或其他神经性疾病。第二代纳米机器人是直接从原子或分子装配成具有特定功能的纳米尺度的分子装置,可以用其吞噬病毒,杀死癌细胞。第三代纳米机器人将包含有纳米计算机,是一种可以进行人机对话的装置。这种纳米机器人一旦问世将彻底改变人类的劳动和生活方式。

瑞典正在用多层聚合物和黄金制成医用微型机器人,目前实验已进入能让机器人捡起和移动肉眼看不见的玻璃珠的阶段[13]。

纳米材料所展示出的优异性能预示着它在生物医学工程领域,尤其在组织工程支架、人工器官材料、介入性诊疗器械、控制释放药物载体、血液净化、生物大分子分离等众多方面具有广泛的和诱人的应用前景。随着纳米技术在医学领域中的应用,临床医疗将变得节奏更快,效率更高,诊断检查更准确,治疗更有效。

参考文献

[1]Philippe P,Nang Z L et al.Science,1999,283:1513

[2]孙晓丽等.材料科学与工艺,2002,(4):436-441

[3]赖高惠编译.化工新型材料,2002,(5):40

[4]苗宗宁等.实用临床医药杂志,2003,(3):212-214

[5]崔大祥等.中国科学学院院刊,2003,(1):20-24

[6]顾宁,付德刚等.纳米技术与应用.北京:人民邮电出版社,2002:131-133

[7]胥保华等.生物医学工程学杂志,2004,(2):333-336

[8]张立德,牟季美.纳米材料和结构.北京:科学出版社,2001:510

[9]刘新云.安徽化工,2002,(5):27-29

[10]姚康德,成国祥.智能材料.北京:化学工业出版社,2002:71

[11]李沐纯等.中国现代医学杂志,2003,13:140-141

第4篇:医用高分子材料及其应用范文

1.1数据来源

以中国知网(CNKI)的《中国科技成果数据库》为数据源,采用“名称+关键词+成果简介”的组合检索策略,以“生物*医用*金属”、“生物*医用*高分子”、“生物*陶瓷”、“生物*复合材料”、“生物*医学*衍生物”为检索词,对2000-2010年间我国科技成果产出进行检索与数据清洗,得到1772条题录。

1.2方法

使用TDA、Excel2010和Origin等统计与绘图软件为分析工具,从科技成果计量分析的角度,对相关科技成果数量进行数值模拟与计算,研究我国尤其是中国科学院系统生物医学材料科技成果的年度分布、科技成果产出机构分布等,并进行对比分析、描述和数据挖掘等深入研究。

2结果

2.1科技成果产出数量趋势

我国生物医学材料科技成果数量的纵向变化规律,反映了生物医学材料的受关注程度和发展速度。2006-2009年是生物医学材料科技成果的高峰时期,与我国的生物医学材料技术研发投入主要分布在近5年即“十一五”相吻合。中国科学院系统在该领域的发展趋势与全国基本一致。图1我国生物医学材料技术成果产出年度分布

2.2我国科技成果产出内容分析

统计结果表明,生物复合材料在近年发展最为迅猛,从2006年开始取得跨越式发展,至2010年累计取得411项成果;而医用金属(188项)、医用高分子(177项)、生物陶瓷(189项)、生物医学衍生物等材料(209项)的发展速度低于生物复合材料,比较平稳。统计结果显示,从2000-2010年,中国科学院系统生物医学材料科技成果也主要集中在生物复合材料方面,共计62项;其他4种生物医学材料科技成果产出相对较少,分别为生物医学衍生物37项,陶瓷材料31项,医药高分子32项,医用金属材料35项。

2.3科技成果产出地区分布

分析我国主要省市在生物医学工程领域的科技成果产出,有助于挖掘不同地区间研发力量的差异,合理配置资源,进行深入研发。重点对我国北京市、上海市、江苏省等7个省市进行了技术领域构成计量分析,结果发现各主要省市生物复合材料研发成果仍然占据主体,生物医用金属材料科技成果的产出以北京市、天津市与江苏省较多,生物陶瓷技成果的产出以上江苏省与湖北省较多,详见图2。表明这些省市在生物医学工程某些关键材料的研究方面已占据先机。

2.4科技成果产出机构分析

2.4.1生物医用金属材料科技成果产出机构分析

医用金属材料是一类生物医用的金属和合金,是临床应用最广泛的植入材料,主要用于骨和牙等硬组织的修复和替换,心血管和软组织的修复以及人工器官制造中的结构元件[5]。检索结果显示,2000-2010年间共有医用金属材料相关的科技成果278项,大部分科研机构只有零星的成果产出,只有少数机构多年来保持着可观的科技成果产出。科技成果数量排名前3位的机构有中国科学院、南开大学、四川大学,分别完成科研成果36,12,6项;其他科研单位如浙江大学、上海交通大学、清华大学等成果数量达到5项;其他均少于5项。在中国科学院系统,山西煤炭化学研究所(5项)、金属研究所(4项)在医用金属材料上也取得较多科技成果。表明我国各主要机构的生物医用金属材料技术科技成果数量不均衡。

2.4.2生物医用高分子科技成果产出机构分析

医用高分子材料是指在生理环境中使用的高分子材料[6-7]。2000-2010年间共检索出医用高分子材料相关的科技成果263件,科技成果数量排名前5位的是中国科学院、浙江大学、武汉大学、清华大学、江南大学,分别获得科研成果32,8,5,5,5项,其成果数量占相关成果总数的21%;其他单位的成果数量均在5项以下。在中国科学院系统,医用高分子材料科技成果数量排名前3位的是微生物研究所、上海药物研究所、上海有机化学研究所,所获成果数量分别是4,3,3项,这10项科技成果占中国科学院总产出量的31%。

2.4.3生物陶瓷科技成果产出机构分析

生物陶瓷包括精细陶瓷、多孔陶瓷、某些玻璃和单晶[8]。2000-2010年间共检索到生物陶瓷相关的科技成果323项,多个科研机构在生物陶瓷研究中取得了较好的研究成果,科技成果在5项以上的机构有10个,其中中国科学院、武汉理工大学、清华大学、四川大学、上海交通大学分别完成科研成果33,18,13,11,10项,前5名机构成果数占总成果数的26%。在中国科学院院系统,生物陶瓷科技成果数量最多的有上海硅酸盐研究所、过程工程研究所贡献了20项科技成果,占中国科学院总产出量的65%。

2.4.4生物复合材料科技成果产出机构分析

生物复合材料是由两种或两种以上不同生物相容性优良的材料复合而成的生物医学材料,可以最大限度地模仿人体组织与器官的功能,进而实现组织的修复与再生,是最有发展潜力和应用前景的组织与器官替代和修复材料[9]。2000-2010年间共检索到生物复合材料相关的科技成果582项,可谓成果丰硕。多个科研机构取得了众多成果,成果数量在10项以上的机构有9个,其中中国科学院、清华大学、四川大学、上海交通大学、暨南大学分别获得63,24,18,17,13项,上述前5名机构的成果数占总成果数的23%。在中国科学院系统,生物复合材料科技成果数量排名前5位的是上海硅酸盐研究所(12项)、长春应用化学研究所(8项)、生态环境研究中心(5项)、金属研究所(5项)、兰州化学物理研究所(4项),总共贡献了20项科技成果,占中国科学院总产出量的55%。

2.4.5生物医学衍生物科技成果产出机构分析

生物衍生材料是经过特殊处理的天然生物组织形成的生物医学材料。由于它具有类似天然组织的构型和功能,在人体组织的修复和替换中具有重要作用,主要用作皮肤掩膜、血液透析膜、人工心脏瓣膜等[10]。2000-2010年间共检索到相关科技成果326项,获得5项以上科技成果的机构10余个。其中排名前5名的是中国科学院、南开大学、中国海洋大学、武汉大学、中国药科大学,分别获得科研成果36,13,9,8,6项,累计成果数占总成果数的23%。中国科学院系统中,成果数量排名前5的是上海有机化学研究所(4项)、长春应用化学研究所(4项)、上海应用物理研究所(4项)、生物物理研究所(3项)、上海原子核研究所(2项),总共贡献了17项科技成果,占中国科学院总产出的46%。

第5篇:医用高分子材料及其应用范文

【关键词】智能高分子材料;智能给药系统;应用;发展前景

中图分类号:TB381文献标识码:A文章编号:1006-0278(2012)02-106-01

智能高分子材料是一种新型的现代高分子材料,又名智能聚合物、环境敏感性化和物等,它随着外界环境等影响因素的变化而发生自身性能的改变,比如在温度、压力、磁场等不同因素影响下,其外在形状、电场、面积大小等随之做出相应改变,来适应不同环境的变化,,是一种新型的现代化的智能应用材料。随着科技的发展,智能高分子材料的应用领域越来越广,不但在建筑工程、化工、高科技领域得到充分发展体现,近年来,智能高分子材料被越来越多地应用到医学领域,特别体现智能给药系统的应用上,预示着良好的发展前景。智能高分子材料具体可分为合成智能高分子材料、半合成智能高分子材料、天然智能高分子材料,下面,我们具体对三种不同类型的高分子材料在智能给药系统中的应用进行分析探究。

一、合成智能高分子材料

合成高分子材料之一是智能高分子凝胶,它是由三维交联网络结构的聚合物和低分子介质组成的多元体系结构的一直合成智能高分子,随着外界环境因素的变化而变化,体现在体积大小上的收缩、持续或间断的变化,具有良好的收缩和溶胀的性能。因此在智能给药系统中,发挥其自我调节和反馈的功能,智能高分子凝胶粒具有感应温度、血糖、磁场等性能,并在身体状态良好的情况下保持收缩状态,当其收到病情信号时,体积膨胀从而扩散到身体病变部位,扩散药物以便达到良好的治疗功效,对智能给药系统具有良好的调节和促进作用;此外,可生物降解的聚酯类是合成智能高分子材料的另一种重要应用,同样在医学等各个领域都得到了广泛应用。同时,在智能给药系统中,由于可生物降解的聚酯类具有可生物降解、化学稳定性高、无毒无害等优点,大量被用于注射给药系统中,并且在肿瘤药物治疗中,可生物降解的聚酯类相对于其它游离药物具有减缓肿瘤生长等功效,有效地解决了医学领域许多棘手的难题,在智能给药系统中更是得到了充分体现和发展。

二、半合成智能高分子材料

半合成智能高分子材料作为智能高分子材料的一个重要组成部分,具有毒性小、粘度大、溶解度高等优点,可以有效地控制药物在人体的释放速度,增加药物吸收程度、降低了药物毒副作用提高药效等,对治疗各种疾病起到良好的促进作用,因而被广泛地应用到缓释药物制剂的研发和利用中,发挥了其在智能给药系统中的重要作用。比如,在智能给药系统中,蛋白质或肽类药物既可以在保持其生物活性的同时,又提高了载药量,是一种适合在肠道定向给药的特殊蛋白质药物递送系统,最大限度的降低了药物降解,起到了提高药效等作用。此外,对于心脏病等疾病,利用半合成智能高分子材料设计一种时控型的药物释放系统,按照药理学和患者病情定量给药,从而发挥其药效和并起到良好的预防作用。

三、天然智能高分子材料

相对于合成和半合成高分子材料,天然智能高分子材料特别具有良好的生物溶解性、天然无毒性等优点,是医学领域特别是智能给药系统中应用广泛和发展前景宽广的一种智能高分子材料。具体表现为壳聚糖、海藻酸盐、明胶三种类别。壳聚糖具有良好的生物降解性和溶解性、生物活性、粘附性等多种优点,被广泛地应用到结肠定位系统、缓控释、蛋白多肽等给药系统中,并且壳聚糖可进行交联。酯化等多种化学改性,从而研究制成具有不同特性的壳聚糖衍生物,并通过各种研发,研制了各种壳聚糖凝胶给药系统,提升了其在智能给药系统中的地位,大大扩展了其在医学领域的应用范围,具有良好的发展前景;其次,海藻酸盐在智能给药系统中的运用主要体现在与蛋白药物领域的结合,通过各种化学反应的作用,提高蛋白物的活性,制成各种蛋白质药物给要系统,提高了蛋白质药物的生物利用度,更加有利于患者治疗;再次,利用明胶和葡聚糖半互穿网络结构研制成的脂质微球,是一种双重刺激响应的半互穿网络系统,这种系统对于治疗多种复杂疾病具有良好的功效,在控制明胶相变温度变化的前提下,研制的半互穿网络结构水凝胶,具有特殊的控制脂质微球降解的功效,此外,脂质微球从凝胶中释放的基础是A-糜蛋白酶和葡聚糖酶同时存在的情况下,因此这种可生物降解的水凝胶构成的半互穿网络系统,在医学领域很有发展潜力, 不但阻止了单一酶存在导致的药物快速降解负面影响, 而且当在两种酶同时存在时, 药物才能从脂质微球中释放出来, 从而起到了药物缓控释释放的效果,从而实现智能给药系统对于疾病的综合治理,在医学领域展现了良好的发展前景。

四、结语

伴随着现代社会高科技的迅猛发展,智能高分子材料作为一种新型的、发展前景巨大的应用材料,已经普及到社会发展的各个领域和发展事业,不仅体现在国外的良好的发展前景,目前,在我国,智能高分子作为一种高科技研发、具有多样性和复杂性的智能材料在医学领域更是得到了长足和充分体现,对于在治疗各种疾病,制备多种给药系统的应用上发挥了重要作用。随着智能高分子材料研究的不断深入,并且通过各个领域的合作交流,智能高分子材料越发朝着信息化、智能化、自动化的方向发展,更加智能化的透析病理生理,制备兼具多种功能的智能释放药物系统,在我国医学领域必将得到充分、长足的发展运用。

参考文献:

[1]张胜兰,杨庆等.智能材料的现状及发展趋势[J].中国纺织大学学报,2000(03).

[2]陶宝祺.智能材料结构[M].北京:国际工业出版社,2009(07).

第6篇:医用高分子材料及其应用范文

一、功能高分子材料的介绍以及其研究现状

1.功能高分子材料的简介

功能高分子材料是指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料,通常也可简称为功能高分子,也可称为精细高分子或特种高分子。

2.功能高分子材料的研究现状

在原来高分子材料的基础上,可将功能高分子材料分为两类:一类是以改进其性能为目的的高功能高分子材料;另一类是为赋予其某种新功能的新型功能高分子材料。

2.1高功能高分子材料

2.1.1光功能高分子材料

光功能高分子材料是指能够对光进行透射、吸收、储存、转换的一类高分子材料,可制成各种透镜、棱镜、塑料光导纤维、塑料石英复合光导纤维、感光树脂、光固化涂料及黏合剂等。这类材料主要包括光记录材料、光导材料、光加工材料、光转换系统材料、光学用塑料、光导电用材料、光合作用材料、光显示用材料等。在光的作用下,实现对光的传输、吸收、贮存、转换的高分子材料即为光功能高分子材料

2.1.2生物医用高分子材料

生物医用高分子材料需要满足的基本条件:除具有医疗功能外,还要强调安全性,即要对人体健康无害。不会因与体液或血液接触而发生变化;对周围组织不会引起炎症反应;不会产生遗传毒性和致癌;不会产生免疫毒性;长期植入体内也应保持所需的拉伸强度和弹性等物理机械性能;具有良好的血液相容性;能经受必要的灭菌过程而不变形;易于加工成所需要的、复杂的形态。

2.1.3电功能高分子材料

导电高分子材料通常是指一类具有导电功能、电导率在10-6S/cm以上的聚合物材料。这类高分子材料具有密度小、易加工、耐腐蚀、可大面积成膜,以及电导率可在绝缘体-半导体-金属态(10-9到105S/cm)的范围里变化。按照材料结构和制备方法的不同可把导电高分子材料分为结构型(或本征型)导电高分子材料和复合型导电高分子材料两大类。

2.2新型功能高分子材料

2.2.1高吸水性高分子材料

高吸水性树脂是一种三维网络结构的新型功能高分子材料,它不溶于水而大量吸水膨胀形成高含水凝胶。高吸水性树脂的主要性能是具有吸水性和保水性。它可吸收自身重量数百倍至上千倍的水,自身含有强亲水性基团同时具有一定交联度。,此外,高吸水性树脂的保水性能极好,即使受压也不会渗水,而且具有吸收氨等臭气的功能。高吸水性树脂在石油、化工、轻工、建筑等部门被用作堵水剂、脱水剂、增粘剂、密封材料等;在农业上可以做土壤改良剂、保水剂、植物无土栽培材料、种子覆盖材料,并可用以改造沙漠,防止土壤流失等;在日常生活中,高吸水性树脂可用作吸水性抹布、餐巾、鞋垫、一次性尿布等。

2.2.2形状记忆功能高分子材料

形状记忆功能高分子材料自19世纪80年现热致形状记忆高分子材料,人们开始广泛关注作为功能材料的一个分支——形状记忆功能高分子材料。形状记忆功能材料的特点是形状记忆性,它是一种能循环多次的可逆变化。即具有特定形状的聚合物受到外力作用,发生变形并被保持下来;一旦给予适当的条件(力、热、光、电、磁),就会恢复到原始状态。

2.2.3生物可降解高分子材料

生物降解高分子材料具有无毒、可生物降解及良好的生物相容性等优点,所以其应用领域非常广,市场潜力非常大。高分子的降解主要是各种生物酶的水解,其中聚乳酸类高分子是已开发应用于生命科学新型生物可降解材料,生物降解高分子材料除了在包装、餐饮业、农业、医药领域的应用外,在一次性日用品、渔网具、尿布、卫生巾、化妆品、手套、鞋套、头套、桌布、园艺等多方面都存在着潜在的市场,有很好的发展前景。

二、新型高分子材料的应用

现代高分子材料是相对于传统材料如玻璃而言是后起的材料,但其发展的速度应用的广泛性却大大超越了传统材料。高分子材料不仅可以用于结构材料,也可以用于功能材料。

这些新型的高分子材料在人类的社会生活、医药卫生、工业生产和尖端技术等方方面面都有广泛的应用。在生物的医用材料界中研制出的一系列的改性聚碳酸亚丙酯(PM-PPC)的新型高分子材料是腹壁缺损修复的高效材料;在工业污水的处理中,可以利用新型高分子材料的物理法除去油田中的污水;开发的苯乙烯、聚丙烯等热塑性树脂及聚酰亚胺等热固性树脂复合材料,这些材料比模量和比强度比金属还高,是国防、尖端技术等方面不可缺少的材料;同样,在药物的传递系统中应用新型的高分子材料,在包转材料中的应用,在药剂学中应用等等。

三、开发新型高分子材料的重要意义

从上世纪30年代高分子材料的出现开始到现代,世界工业科学不再只是满足与对基础高分子材料的开发研究,从90代开始,科学家们就将注意力转到了高智能的高分子材料的开发上。新型高分子材料的开发主要是集中在制造工艺的改进上,以提高产品的性能,减少环境的污染,节约资源。目前而言,合成树脂新品种、新牌号和专用树脂仍然层出不穷,以茂金属催化剂为代表的新一代聚烯烃催化剂开发仍然是高分子材料技术开发的热点之一。在开发新聚合方法方面,着重于阴离子活性聚合、基团转移聚合和微乳液聚合的丁业化。同时,也更加重视在降低和防止高分子材料生产和使用过程中造成的环境污染。新型高分子材料的开发,不但能够满足现代工业发展对于材料工业的高要求,更重要的是能够促进能源与资源的节约,减少环境的污染,提高生产的能力,体现现代科技的高速发展。加快高分子材料回收、再生技术的开发和推广应用,大力开展有利于保护环境的可降解高分子材料的研究开发。

四、结束语

材料是人类用来制造各种产品的物质,是人类生活和生产的物质基础,是一个国家工业发展的重要基础和标志。我国国民经济和高技术已进入高速发展时期,需要日益增多的高性能、廉价的高分子材料,环境保护则要求发展环境协调、高效益的高分子材料制备和改性新技术,实施高分子材料绿色工程。作为材料重要组成部分的高分子材料随着时代的发展,技术的进步,越来越能影响人类的生活,工业的进步。

参考文献

[1]严瑞芳.高分子形状记忆材料.材料科学技术百科全书[M].北京:中国大百科全书出版社,2008:382~383.

[2]陈莉主编.智能高分子材料[M].北京:化学工业出版社,2006.

[3]何天白,胡汉杰主编,功能高分子与新技术,北京:化学工业出版社,2009.

第7篇:医用高分子材料及其应用范文

关键词:高分子材料 发展 应用

中D分类号:TB324 文献标识码:A 文章编号:1009-5349(2017)07-0197-01

高分子材料是最近几年发展壮大起来的,目前不仅应用广泛,而且在化工领域占位较重。

对于高分子材料的研究在目前国内外来说,也是非常之活跃。

一、高分子材料在生活中的应用

1.高分子材料在机械工业中的应用

高分子材料的“替代”功能在机械工业中得以真切体现。比如,以前在建筑中,经常采用的是笨重的钢管做下水管等,而现在,这些笨重的钢管已经被高分子材料,这也就是我们说的“以塑代钢”和“以塑代铁”。高分子材料完全改变了以往的机械产品笨重、高消耗的运用模式,而向轻便又安全、经济又耐用来转变。如聚氨酯弹性体。在工业中,运用聚氨酯弹性体是借助它突出的耐磨性,其磨耗远远低于其他材料,在磨粒磨损的机械上应用。聚甲醛也是一种高分子材料,多见于制造各种齿轮、轴承、螺母等,这些可代替锌、铜、铝等昂贵的有色金属,减少投资成本。

2.高分子材料在现代农业中的应用

在农业中,高分子材料应用最为大家熟悉的就是作为地膜使用的高分子塑料。在农村,近年来地膜覆盖以及温室大棚成为农村经济发展的一个重要方面,这也使高分子材料使用规模逐渐扩大。膜覆盖具有保温、保湿、防虫及促进植物生长等诸多作用,为农民增加收入创造了条件。同时高分子材料还具有轻便、耐腐、使用方便等特点,这些都为农民提高生活质量创造了条件。此外,渔民所用的渔网、吊装工人所用的吊装绳索等都是高分子材料。在农业种子处理中高分子材料也得到有效利用。比如,科学地把种子跟其他高分子材料混和造粒后,改善了种子外观跟形状,这样为机械播种提供了非常便利的播种条件。

3.高分子材料在电气工业中的应用

在电气电子工业中,高分子材料以绝缘、屏蔽、导电、导磁等为主要应用方面;在通信领域,随着信息技术的发展,高分子材料的需求量也愈来愈突出,各类终端设备不仅广泛应用,而且作为高性能材料的光纤、光盘等也被广泛使用。作为电气生产的大国,我国各行各业对高分子材料的需求量与日俱增。其轻质、易于成型、绝缘、耐腐蚀等特点成为各种家用电器生产的最佳材料。

4.高分子材料在医学中的应用

在医学领域,高分子材料因其生物活性高及其材料性能广等优点成为最早、最广的应用领域之一,而且用量还是最大的。高分子材料在目前来看,是现代医疗材料中的主要构成部分。比如在人造器官上,如心脏瓣膜、人工肾、人造皮肤等都属于高分子材料制成。再有就是在医疗器械运用上,医生为患者做手术缝合的缝线是由高分子材料制成,许多用于患者检查的器械,还有一些用于妇女妇科检查的植入器械等。另外,如药物控释载体跟靶向材料等用于药物助剂的材料也都是由高分子材料制成。

高分子材料还广泛应用于包装、家居装修、电信、交通运输、污水处理等诸多领域之中,可以说在当今市场中占有非常重要的地位,而且随着人们生活质量的不断提高,这种地位会越来越重要。

二、高分子材料的发展前景

社会的不断进步,势必带动高科技的进一步发展,如此发展形势下,高分子材料也定会在人们及社会不断提高的需求中得到进一步发展。可以肯定地说,未来的高分子材料,其发展前景无比美好,应该是趋于更高的性能、更高的功能向前发展,同时更加复合化、智能化和绿色化。

1.具有更高的性能和功能

时代的进步助推高分子材料的进步是社会发展的必然。比如,积极创新发展,研制出更优质的高分子聚合物;通过新措施、新手段不断改进高分子材料性能,更好地满足社会各领域的需求。再有高功能化是未来高分子材料最具活力的新领域。从当前高分子材料研究方面看,新功能的高分子材料不断被研究出来,诸如用于医用的人造器官高分子材料、导热导电的高聚物等。从以上发展状况推断,更高功能的高分子材料前景风光无限。

2.复合型高分子材料成趋势

新生态环境下,单一的高分子材料将逐步被复合型高分子材料所取代。因为不同的材料各有其不同的优缺点,复合化后的高分子材料将弥补单一材料的不足,这样更能适应高标准的材料市场需求,经济效益也会有所提高,更能拓宽高分子材料的应用范围。目前,复合型高分子材料还非常有限,仅在航空造船、航天、海洋工程等少数领域被引用。跟随发展的步伐,将来复合型材料应将向高性能、高模量的纤维增强材料发展,再就是向高强度、优良耐热性以及优良成型加工性能方面发展。

第8篇:医用高分子材料及其应用范文

纳米科学技术是20世纪80年展起来的一门多学科交叉融合的技术科学,其最终目标是直接以原子、分子及物质在纳米尺度上表现出来的新颖的物理、化学和生物学特性来制造具有特定功能的产品。纳米材料是指具有纳米量级的超微粒构成的固体物质。纳米材料具有三个结构特点:①结构单元或特征维度尺寸在纳米数量级(1~100nm);②存在大量的界面或自由表面;③各纳米单元之间存在一定的相互作用。由于纳米材料结构上的特殊性,使纳米材料具有一些独特的效应,主要表现为小尺寸效应和表面或界面效应,因而在性能上与相同组成的微米材料有非常显著的差异,体现出许多优异的性能和全新的功能。纳米材料在化学、冶金、电子、航天、生物和医学等领域展现出广阔的应用前景。当铁磁材料的粒子处于单畴尺寸时,矫顽力(Hc)将呈现极大值,粒子进入超顺磁性状态。这些特殊性能使各种磁性纳米粒子的制备方法及性质的研究愈来愈受到重视。开始,多以纯铁(a-Fe)纳米粒子为研究对象,制备工艺几乎都是采用化学沉积法。后来,出现了许多新的制备方法,如湿化学法和物理方法,或两种及两种以上相结合的方法制备具有特殊性能的磁性纳米材料。磁性纳米材料具有许多不同于常规材料的独特效应,如量子尺寸效应、表面效应、小尺寸效应及宏观量子隧道效应等,这些效应使磁性纳米粒子具有不同于常规材料的光、电、声、热、磁、敏感特性[2]。当磁性纳米粒子的粒径小于其超顺磁性临界尺寸时,粒子进入超顺磁性状态,无矫顽力和剩磁。众所周知,对于块状磁性材料(如Fe、Co、Ni),其体内往往形成多畴结构以降低体系的退磁场能。纳米粒子尺寸处于单畴临界尺寸时具有高的矫顽力[3]。小尺寸效应和表面效应导致磁性纳米粒子具有较低的居里温度[4]。另外,磁性纳米粒子的饱和磁化强度(Ms)比常规材料低,并且其比饱和磁化强度随粒径的减小而减小。当粒子尺寸降低到纳米量级时,磁性材料甚至会发生磁性相变。磁性纳米材料也具有良好的磁导向性、较好的生物相容性、生物降解性和活性能基团等特点,它可结合各种功能分子,如酶、抗体、细胞、DNA或RNA等,因而在靶向药物、控制释放、酶的固定化、免疫测定、DNA和细胞的分离与分类等领域可望有广泛的应用。

2性纳米材料在生物医学领域的应用

2.1靶向药物载体技术

利用磁性纳米颗粒制造靶向输送医疗药物,是目前医药学研究的热点。通常的靶向纳米药物载体是运用了载体对机体各组织或病变部位亲和力的不同,或将单克隆抗体与载体结合,使药物能够转运到特定的治疗部位,但如果制备的载药颗粒过大,如处于微米量级,可能会引起血栓样血管栓塞,甚至导致死亡,而纳米级的磁性颗粒可以解决这个问题。磁性纳米颗粒的粒径比毛细血管通路还小1-2个数量级,用其作为定向载体,通过磁性导向系统控制,可将药物靶向输送到病变部位释放,以增强疗效。制备出生物相容性和单分散性较好的无机磁性纳米颗粒载体(主要为铁系氧化物),再用生物高分子(氨基酸、多肽、蛋白质、酶等)包覆磁性纳米颗粒载体,再将包覆好的磁性载体与药物分子结合,将这种载有药物分子的磁性纳米粒子注射到生物体内,在外加磁场的作用下,通过纳米颗粒的磁性导向性使药物更准确地移向病变部位,增强其对病变组织的靶向性,有利于提高药效,达到定向治疗的目的,从而降低药物对正常细胞的伤害,改变目前放疗和化疗中正常细胞和癌细胞统统被杀死的状况,减少副作用。动物临床实验证实,载药磁性纳米微粒具有高效、低毒、高滞留性的优点,它在治疗结束后可以通过人体肝脏和脾脏自然排泄。磁性纳米药物载体一般通过下面3种方式结合:(1)药物与高分子先结合成颗粒,磁性颗粒再吸附其表面;(2)磁性颗粒和高分子先结合成颗粒再吸附药物;(3)磁性颗粒、药物、高分子一起混合经均匀化后再颗粒化。磁性高分子颗粒作为药物载体,其中控制释放速率是影响药效的主要因素,骨架材料的选择对控释作用具有一定的影响,而搅拌速度和成型温度对颗粒控释作用也有很大影响。纳米颗粒有的微型水解通道的多少、宽窄及交联程度是决定颗粒能否控释的主要因素,而搅拌速率和成型温度对颗粒中最后形成的微型通道程度起决定作用。早期应用的载体多为葡聚糖磁性毫微粒(DextranMNP),但易被RES系统吞噬,被动靶向于肝脾,难于实现其他组织的靶向给药。后来,有人改变载体的表面的性能,使其具有一定负电性,可更好地应用于主动靶向治疗。

2.2细胞分离和免疫分析

细胞分离是生物细胞学研究中一种十分重要的技术,高效的细胞分离在临床中是首要的、重要的步骤。这种细胞分离技术在医疗临床诊断上有广范的应用,例如治疗癌症需在辐射治疗前将骨髓抽出,且要将癌细胞从骨髓液中分离出来。传统的细胞分离技术主要采用离心法,利用密度梯度原理进行分离,时间长、效果差。随着合成磁性粒子的发展,免疫磁性粒子在分离细胞方面已经获得了快速的发展经动物临床试验已获成功。其中最重要的是选择一种生物活性剂或者其他配体活性物质(如抗体、荧光物质、外源凝结素等),根据细胞表面糖链的差异,使其仅对特定细胞有亲和力,从而达到分离、分类以及对其种类、数量分布进行研究的目的。磁性粒子用于细胞分离需要考虑以下几个因素:不与非特定细胞结合、具有灵敏的磁响应性、在细胞分离介质中不凝结。免疫分析在现代生物分析技术中是一种重要的方法,它对蛋白质、抗原、抗体及细胞的定量分析发挥着巨大的作用。在免疫检测中,经常利用一些具有特殊物理化学性质的标记物如放射性同位素、酶、胶体金和有机荧光染料分子等对抗体(或抗原)进行偶联标记,在抗体与抗原识别后,通过对标记物的定性和定量检测而达到对抗原(或抗体)检测的目的。由于磁性纳米颗粒性能稳定,较易制备,可与多种分子复合使粒子表面功能化,如果磁性颗粒表面引接具有生物活性的专一性抗体,在外加磁场的作用下,利用抗体和细胞的特异性结合,就可以得到免疫磁性颗粒,利用它们可快速有效地将细胞分离或进行免疫分析,具有特异性高、分离快、重现性好等特点,同时磁性纳米颗粒具有超顺磁性,为样品的分离、富集和提纯提供了很大方便,因而磁性纳米颗粒在细胞分离和免疫检测方面受到了广泛关注。

2.3磁性纳米颗粒对蛋白酶的吸附及固定化

生物高分子例如酶等都具有很多官能团,可以通过物理吸附、交联、共价偶合等方式将他们固定在磁性颗粒的表面。用磁性纳米颗粒固定化酶的优点是:易于将酶与底物和产物分离;可提高酶的生物相容性和免疫活性;能提高酶的稳定性,且操作简单、成本较低。制备吸附蛋白酶的磁性高分子颗粒的过程可以概括为:制备磁流体,在对磁流体中的磁性纳米颗粒用大分子包覆或联结,所形成的磁性高分子载体可用作亲和吸附的磁性亲和载体。作为酶的固定化载体,磁性高分子颗粒有利于固定化酶从反应体系中分离和回收,还可以利用外部磁场控制磁性材料固定化酶的运动和方向,从而代替传统的机械搅拌方式,提高固定化酶的催化效率。磁性高分子颗粒作为酶的固定化载体还具有以下优点:固定化酶可重复使用,降低成本;可以提高酶的稳定性,改善酶的生物相容性、免疫活性、亲疏水性;分离及回收酶的操作简单,适合大规模连续化操作。

2.4基因治疗

20世纪70年代,医学领域提出了“基因治疗”这一概念,即将遗传物质导入细胞或组织,进行疾病的治疗即将遗传物质导入组织或细胞进行疾病治疗。目前常用病毒载体和脂质体载体,病毒载体存在制备困难,装载外源DNA大小有限制,能诱导宿主免疫反应及潜在的致瘤性等缺点。多价阳离子聚合物,如目前广泛应用的脂质体,具有病毒载体的优点,而没有病毒载体的缺点。但是聚合物的颗粒大小是影响转染效率的因素之一。磁性纳米粒子的出现克服了它们的缺点。磁性材料直径可达10nm以下,在外磁场作用下具有靶向性。磁性材料外部包裹生物高分子,从而增强了生物相容性,对细胞无毒,而且在血管中循环时间大大延长。目前要控制阳离子聚合物大小的合成方法还不很成熟,且阳离子聚合物的细胞毒性是影响转染的突出问题。磁性四氧化三铁生物纳米颗粒的制作简单,直径可达10nm以下,具有比表面积效应和磁效应。在纳米颗粒的表面可吸附大量DNA。在外加磁场的作用下,可具有靶向性。且四氧化三铁的晶体对细胞无毒。为达到生物相容性,在磁性四氧化三铁的晶体表面可很容易地包埋生物高分子,如多聚糖,蛋白质等形成核壳式结构。由于纳米颗粒有巨大表面能,有多个结合位点,因而携带能力优于其他载体,且转染效率高于目前使用的载体,因此磁性生物纳米颗粒可成为较好的基因载体。

3磁性纳米材料应用于生物医学领域的局限性

纳米材料科学技术的发展为纳米材料的制备提供了许多新的工艺,在此基础上人们已经能够合成出单分散性比较好、形状和尺寸可控的磁性纳米材料,但磁性纳米材料目前处于研究实验阶段,有些问题还需要进一步研究解决,但目前尚处于实验阶段,有众多的问题亟待进一步研究解决:

(1)磁性纳米颗粒的特性与颗粒的尺寸、颗粒尺寸的分布、颗粒的形状和晶体结构密切相关,因而深入研究这些因素与磁性纳米颗粒性能(尤其是磁学性能)的关系,以便找到最佳的合成工艺,最终达到对材料性能剪裁的目的。从热力学和动力学两方面深入探索纳米尺度范围内材料合成机理对磁性纳米颗粒的尺寸、形状和晶体结构的影响,发展和完善单分散磁性纳米颗粒的制备方法;

(2)着重研究生物大分子在磁性纳米颗粒的组装结合机理,以提高组装的结合力和结合量,发展面向不同应用要求的组装形式和组装方法;深入分析生物大分子在磁性纳米颗粒载体上组装后对其生物功能的影响,进一步研究磁性纳米颗粒及生物高分子组装体中无机成分和有机成分对磁性的贡献以及无机成分与有机成分的磁相互作用,以期将功能设计与组装方法有机地结合起来。

(3)目前的磁性纳米材料在生物医学领域的应用研究才刚刚起步,但随着磁性纳米材料的产业化和商业化的推进,如何大批量的生产质量可靠稳定的磁性纳米材料,如何在生产过程中简化生产步骤,降低成本,以期大规模临床应用。

第9篇:医用高分子材料及其应用范文

关键词:生物可降解高分子材料;分类;应用

随着社会经济的发展,环境问题越来越得到人们的重视,而高分子材料――塑料,作为上个世纪最伟大的发明之一对人类社会的推动作用是毋庸置疑的。但同样它给环境带来的污染问题也日益显著,很重要的一点就是塑料进入自然界后难以被自然环境分解,通常完全分解一类塑料需要数十年甚至要上百年的时间。而随着生物可降解高分子材料的出现及发展,对于塑料难被自然界分解这个问题带来了希望。本文主要介绍下这种材料的分类以及可能给在一些领域带来的改变。

生物可降解高分子材料定义:生物可降解高分子材料是指在一定时间和一定条件下,能够被微生物(细菌、真菌、霉菌、藻类等)或其分泌物在酶或化学分解作用下发生降解的高分子材料。

2、生物可降解高分子材料的类型

按合成方法可分为如下几种类型。

2.1微生物生产型

许多微生物能合成高分子,这类高分子主要有微生物聚醋和微生物多糖,具有生物降解性。研究表明,若给予合适的有机化合物作食物碳源,许多微生物都具有合成聚醋的能力。此外,许多微生物能合成各种多糖类高分子,其中有一些多糖类高分子具有良好的物理性能和生物降解性,可望用于制造不污染环境的生物降解性塑料。

2. 2合成高分子型

将脂肪族聚酷和芳香族聚酷(或聚酞胺)制成一定结构的共聚物,这种共聚物既有良好的性能,又有一定的生物降解性。聚乳酸(PLA)和聚乙醇酸(PGA)作为新型生物降解的医用高分子材料正日益受到广泛重视。

2. 3天然高分子型

自然界中存在的纤维素、甲壳素和木质素等均属降解性天然高分子,这些高分子可被微生物完全降解。但因纤维素存在物理性能上的不足,因此,它大多与其它高分子,如由甲壳质制得的脱乙酞基多糖等共混制得。如日本以纤维素和脱乙酞基壳多糖进行复合,制得了生物降解塑料,采用流涎法制得的薄膜与普通的PE膜的强度相似,并可在2个月后完全分解,盒状制品75天可完全分解,但目前尚未工业化生产。

2. 4掺合型

在没有生物降解性的高分子材料中,掺混一定量有生物降解性的高分子物,使所得产品具有相当程度的生物降解性,这就制成了掺合型生物降解高分子材料,但这种材料不能完全生物降解。目前主要开发改性淀粉与可生物降解或可水溶性塑料的降解塑料合金母料,或以淀粉为主要原料的可完全生物降解塑料,可以100%地分解,其分解速度可按要求控制在数分钟到一年的时间。

3、生物可降解高分子材料的应用

生物可降解高分子材料因其独特的性能,使得它的发展前景极为广阔,将为减少环境污染、保护地球与大自然,为人类创造一个无污染的环境发挥巨大作用。生物可降解高分子材料的分类应用主要有以下几个方面:医疗领域、农业、包装材料,其他领域。

3.1生物可降解高分子材料的医学应用

由于可降解高分子材料不击一次手术移出,因此其特别适合于一些击暂时性存在的植入场合根据其临床中的应用,可分为以下几类:

(1)药物控制释放。在过去20年,合成生物可降解高分子被广泛用于最贡要的药物释放领域。用生物可降解高分子制成的药物控制释放系统来控制药物的释放速率,而理想的情况应是,药物能在合适的时间、合适的地方加以释放,以满足生理击要。以生物可降解高分子材料作为载体的避孕制剂是属于控释、缓释制剂,不但要求制剂中的药物能够恒定释放,并且要求生物可降解高分子材料在释药过程中要保持一定的形状以保证有效释药面积。

(2)外科固定。PGA和PL、作为可吸收的合成缝合线被用于外科固定植入体。随后又增加了其在上肢和下肢的应用和整形外科领域获得了新的应用。日前经过改性的PLGA植入体的性质己能更好地适应肌健、韧带和骨骼复原的需要。

(3)组织支架PLLA的物理化学性能能让它作为象肝这样的软组织,象软骨和骨骼这样的硬组织的支架材料;PC、被用作细胞移植和器官再生的人造支架;PLGA被运用于肠和肝再生,以及骨组织工程上。

3.2在包装领域,人们致力于研制可完全生物降解的高分了以取代现在使用的非生物降解高分了。己商品化的有聚己内醋、聚乙烯醇、聚乙一醇、聚乳酸等。这些高分性能优良,可用吹模、注塑等方法加工,但它们的应用并不广泛,因为价格较高,比常用包装材料聚乙烯、聚内烯价格高4― 6倍。

3.3在农业领域光生物降解聚乙烯农膜可使作物成熟期提前,减少杂草生长。通过提高田间温度增加收成,并使收获期提前。可降解农用地膜可节省灌溉水和肥料的用量,避免残留物对下一季作物生长的危害。这种薄膜还可通过在种植前儿周升高土地温度来杀死病原性细菌,可避免使用某些破坏大气臭氧层的农药如一澳甲烷。在日本已用氧俗生物降解塑料包封的农药,可达到长期缓释高效,减少对河、湖的富营养化。近来日本开发出的壳聚糖塑料降解地膜,强度大,尤污染,成本低,可生物降解,而目降解后的产物对土壤有改良作用。纤维蔚微品壳聚糖制备的功能性杂化纤维有一定的机械强度,可生物降解,降解产物对人体尤毒副作用。

除上述应用外,生物可降解高分了在其他领域也得到了运用。例如,用合成生物可降解聚醋作包装材料,在洗涤剂粉中用PA、及其共聚物处理废水,在农业土壤中用特种PH BV片来释放杀虫剂,以及在兽医中用PH BV大药丸来释放药物。用可再生资源如玉米、小麦等淀粉生产的聚乳酸,经纺妊成型制得性能良好的纺织纤维,在服装、农业、渔业、卫生、建筑等领域的应用,己实现半商品化。随着技术的进一步发展和产品的逐步商业化,生物可降解高分了的应用前景定会更加光明。(郑州大学材料科学与工程学院;河南;郑州;450001)

参考文献:

[1] 赵博,对生物可降解高分子材料的研究【J】,科技经济市场,2006年4月,28